16062 lines
		
	
	
		
			596 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			16062 lines
		
	
	
		
			596 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements extra semantic analysis beyond what is enforced
 | 
						|
//  by the C type system.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/APValue.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Attr.h"
 | 
						|
#include "clang/AST/AttrIterator.h"
 | 
						|
#include "clang/AST/CharUnits.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclBase.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclarationName.h"
 | 
						|
#include "clang/AST/EvaluatedExprVisitor.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/ExprOpenMP.h"
 | 
						|
#include "clang/AST/FormatString.h"
 | 
						|
#include "clang/AST/NSAPI.h"
 | 
						|
#include "clang/AST/NonTrivialTypeVisitor.h"
 | 
						|
#include "clang/AST/OperationKinds.h"
 | 
						|
#include "clang/AST/RecordLayout.h"
 | 
						|
#include "clang/AST/Stmt.h"
 | 
						|
#include "clang/AST/TemplateBase.h"
 | 
						|
#include "clang/AST/Type.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/AST/UnresolvedSet.h"
 | 
						|
#include "clang/Basic/AddressSpaces.h"
 | 
						|
#include "clang/Basic/CharInfo.h"
 | 
						|
#include "clang/Basic/Diagnostic.h"
 | 
						|
#include "clang/Basic/IdentifierTable.h"
 | 
						|
#include "clang/Basic/LLVM.h"
 | 
						|
#include "clang/Basic/LangOptions.h"
 | 
						|
#include "clang/Basic/OpenCLOptions.h"
 | 
						|
#include "clang/Basic/OperatorKinds.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "clang/Basic/SourceLocation.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/Specifiers.h"
 | 
						|
#include "clang/Basic/SyncScope.h"
 | 
						|
#include "clang/Basic/TargetBuiltins.h"
 | 
						|
#include "clang/Basic/TargetCXXABI.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Basic/TypeTraits.h"
 | 
						|
#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
 | 
						|
#include "clang/Sema/Initialization.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/Ownership.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Sema/Sema.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/APSInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/Support/AtomicOrdering.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/ConvertUTF.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
#include "llvm/Support/Locale.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/SaveAndRestore.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <bitset>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <functional>
 | 
						|
#include <limits>
 | 
						|
#include <string>
 | 
						|
#include <tuple>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
 | 
						|
                                                    unsigned ByteNo) const {
 | 
						|
  return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
 | 
						|
                               Context.getTargetInfo());
 | 
						|
}
 | 
						|
 | 
						|
/// Checks that a call expression's argument count is the desired number.
 | 
						|
/// This is useful when doing custom type-checking.  Returns true on error.
 | 
						|
static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
 | 
						|
  unsigned argCount = call->getNumArgs();
 | 
						|
  if (argCount == desiredArgCount) return false;
 | 
						|
 | 
						|
  if (argCount < desiredArgCount)
 | 
						|
    return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
 | 
						|
           << 0 /*function call*/ << desiredArgCount << argCount
 | 
						|
           << call->getSourceRange();
 | 
						|
 | 
						|
  // Highlight all the excess arguments.
 | 
						|
  SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
 | 
						|
                    call->getArg(argCount - 1)->getEndLoc());
 | 
						|
 | 
						|
  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
 | 
						|
    << 0 /*function call*/ << desiredArgCount << argCount
 | 
						|
    << call->getArg(1)->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// Check that the first argument to __builtin_annotation is an integer
 | 
						|
/// and the second argument is a non-wide string literal.
 | 
						|
static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
 | 
						|
  if (checkArgCount(S, TheCall, 2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // First argument should be an integer.
 | 
						|
  Expr *ValArg = TheCall->getArg(0);
 | 
						|
  QualType Ty = ValArg->getType();
 | 
						|
  if (!Ty->isIntegerType()) {
 | 
						|
    S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
 | 
						|
        << ValArg->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Second argument should be a constant string.
 | 
						|
  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
 | 
						|
  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
 | 
						|
  if (!Literal || !Literal->isAscii()) {
 | 
						|
    S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
 | 
						|
        << StrArg->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  TheCall->setType(Ty);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
 | 
						|
  // We need at least one argument.
 | 
						|
  if (TheCall->getNumArgs() < 1) {
 | 
						|
    S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
 | 
						|
        << 0 << 1 << TheCall->getNumArgs()
 | 
						|
        << TheCall->getCallee()->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // All arguments should be wide string literals.
 | 
						|
  for (Expr *Arg : TheCall->arguments()) {
 | 
						|
    auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
 | 
						|
    if (!Literal || !Literal->isWide()) {
 | 
						|
      S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
 | 
						|
          << Arg->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check that the argument to __builtin_addressof is a glvalue, and set the
 | 
						|
/// result type to the corresponding pointer type.
 | 
						|
static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
 | 
						|
  if (checkArgCount(S, TheCall, 1))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ExprResult Arg(TheCall->getArg(0));
 | 
						|
  QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
 | 
						|
  if (ResultType.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  TheCall->setArg(0, Arg.get());
 | 
						|
  TheCall->setType(ResultType);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check the number of arguments and set the result type to
 | 
						|
/// the argument type.
 | 
						|
static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
 | 
						|
  if (checkArgCount(S, TheCall, 1))
 | 
						|
    return true;
 | 
						|
 | 
						|
  TheCall->setType(TheCall->getArg(0)->getType());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check that the value argument for __builtin_is_aligned(value, alignment) and
 | 
						|
/// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
 | 
						|
/// type (but not a function pointer) and that the alignment is a power-of-two.
 | 
						|
static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
 | 
						|
  if (checkArgCount(S, TheCall, 2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  clang::Expr *Source = TheCall->getArg(0);
 | 
						|
  bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
 | 
						|
 | 
						|
  auto IsValidIntegerType = [](QualType Ty) {
 | 
						|
    return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
 | 
						|
  };
 | 
						|
  QualType SrcTy = Source->getType();
 | 
						|
  // We should also be able to use it with arrays (but not functions!).
 | 
						|
  if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
 | 
						|
    SrcTy = S.Context.getDecayedType(SrcTy);
 | 
						|
  }
 | 
						|
  if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
 | 
						|
      SrcTy->isFunctionPointerType()) {
 | 
						|
    // FIXME: this is not quite the right error message since we don't allow
 | 
						|
    // floating point types, or member pointers.
 | 
						|
    S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
 | 
						|
        << SrcTy;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  clang::Expr *AlignOp = TheCall->getArg(1);
 | 
						|
  if (!IsValidIntegerType(AlignOp->getType())) {
 | 
						|
    S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
 | 
						|
        << AlignOp->getType();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  Expr::EvalResult AlignResult;
 | 
						|
  unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
 | 
						|
  // We can't check validity of alignment if it is value dependent.
 | 
						|
  if (!AlignOp->isValueDependent() &&
 | 
						|
      AlignOp->EvaluateAsInt(AlignResult, S.Context,
 | 
						|
                             Expr::SE_AllowSideEffects)) {
 | 
						|
    llvm::APSInt AlignValue = AlignResult.Val.getInt();
 | 
						|
    llvm::APSInt MaxValue(
 | 
						|
        llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
 | 
						|
    if (AlignValue < 1) {
 | 
						|
      S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
 | 
						|
      S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
 | 
						|
          << MaxValue.toString(10);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (!AlignValue.isPowerOf2()) {
 | 
						|
      S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (AlignValue == 1) {
 | 
						|
      S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
 | 
						|
          << IsBooleanAlignBuiltin;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult SrcArg = S.PerformCopyInitialization(
 | 
						|
      InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
 | 
						|
      SourceLocation(), Source);
 | 
						|
  if (SrcArg.isInvalid())
 | 
						|
    return true;
 | 
						|
  TheCall->setArg(0, SrcArg.get());
 | 
						|
  ExprResult AlignArg =
 | 
						|
      S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
 | 
						|
                                      S.Context, AlignOp->getType(), false),
 | 
						|
                                  SourceLocation(), AlignOp);
 | 
						|
  if (AlignArg.isInvalid())
 | 
						|
    return true;
 | 
						|
  TheCall->setArg(1, AlignArg.get());
 | 
						|
  // For align_up/align_down, the return type is the same as the (potentially
 | 
						|
  // decayed) argument type including qualifiers. For is_aligned(), the result
 | 
						|
  // is always bool.
 | 
						|
  TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
 | 
						|
                                unsigned BuiltinID) {
 | 
						|
  if (checkArgCount(S, TheCall, 3))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // First two arguments should be integers.
 | 
						|
  for (unsigned I = 0; I < 2; ++I) {
 | 
						|
    ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
 | 
						|
    if (Arg.isInvalid()) return true;
 | 
						|
    TheCall->setArg(I, Arg.get());
 | 
						|
 | 
						|
    QualType Ty = Arg.get()->getType();
 | 
						|
    if (!Ty->isIntegerType()) {
 | 
						|
      S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
 | 
						|
          << Ty << Arg.get()->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Third argument should be a pointer to a non-const integer.
 | 
						|
  // IRGen correctly handles volatile, restrict, and address spaces, and
 | 
						|
  // the other qualifiers aren't possible.
 | 
						|
  {
 | 
						|
    ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
 | 
						|
    if (Arg.isInvalid()) return true;
 | 
						|
    TheCall->setArg(2, Arg.get());
 | 
						|
 | 
						|
    QualType Ty = Arg.get()->getType();
 | 
						|
    const auto *PtrTy = Ty->getAs<PointerType>();
 | 
						|
    if (!PtrTy ||
 | 
						|
        !PtrTy->getPointeeType()->isIntegerType() ||
 | 
						|
        PtrTy->getPointeeType().isConstQualified()) {
 | 
						|
      S.Diag(Arg.get()->getBeginLoc(),
 | 
						|
             diag::err_overflow_builtin_must_be_ptr_int)
 | 
						|
        << Ty << Arg.get()->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Disallow signed ExtIntType args larger than 128 bits to mul function until
 | 
						|
  // we improve backend support.
 | 
						|
  if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
 | 
						|
    for (unsigned I = 0; I < 3; ++I) {
 | 
						|
      const auto Arg = TheCall->getArg(I);
 | 
						|
      // Third argument will be a pointer.
 | 
						|
      auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
 | 
						|
      if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
 | 
						|
          S.getASTContext().getIntWidth(Ty) > 128)
 | 
						|
        return S.Diag(Arg->getBeginLoc(),
 | 
						|
                      diag::err_overflow_builtin_ext_int_max_size)
 | 
						|
               << 128;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
 | 
						|
  if (checkArgCount(S, BuiltinCall, 2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
 | 
						|
  Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
 | 
						|
  Expr *Call = BuiltinCall->getArg(0);
 | 
						|
  Expr *Chain = BuiltinCall->getArg(1);
 | 
						|
 | 
						|
  if (Call->getStmtClass() != Stmt::CallExprClass) {
 | 
						|
    S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
 | 
						|
        << Call->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  auto CE = cast<CallExpr>(Call);
 | 
						|
  if (CE->getCallee()->getType()->isBlockPointerType()) {
 | 
						|
    S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
 | 
						|
        << Call->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  const Decl *TargetDecl = CE->getCalleeDecl();
 | 
						|
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
 | 
						|
    if (FD->getBuiltinID()) {
 | 
						|
      S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
 | 
						|
          << Call->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
 | 
						|
    S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
 | 
						|
        << Call->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult ChainResult = S.UsualUnaryConversions(Chain);
 | 
						|
  if (ChainResult.isInvalid())
 | 
						|
    return true;
 | 
						|
  if (!ChainResult.get()->getType()->isPointerType()) {
 | 
						|
    S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
 | 
						|
        << Chain->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ReturnTy = CE->getCallReturnType(S.Context);
 | 
						|
  QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
 | 
						|
  QualType BuiltinTy = S.Context.getFunctionType(
 | 
						|
      ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
 | 
						|
  QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
 | 
						|
 | 
						|
  Builtin =
 | 
						|
      S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
 | 
						|
 | 
						|
  BuiltinCall->setType(CE->getType());
 | 
						|
  BuiltinCall->setValueKind(CE->getValueKind());
 | 
						|
  BuiltinCall->setObjectKind(CE->getObjectKind());
 | 
						|
  BuiltinCall->setCallee(Builtin);
 | 
						|
  BuiltinCall->setArg(1, ChainResult.get());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class EstimateSizeFormatHandler
 | 
						|
    : public analyze_format_string::FormatStringHandler {
 | 
						|
  size_t Size;
 | 
						|
 | 
						|
public:
 | 
						|
  EstimateSizeFormatHandler(StringRef Format)
 | 
						|
      : Size(std::min(Format.find(0), Format.size()) +
 | 
						|
             1 /* null byte always written by sprintf */) {}
 | 
						|
 | 
						|
  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                             const char *, unsigned SpecifierLen) override {
 | 
						|
 | 
						|
    const size_t FieldWidth = computeFieldWidth(FS);
 | 
						|
    const size_t Precision = computePrecision(FS);
 | 
						|
 | 
						|
    // The actual format.
 | 
						|
    switch (FS.getConversionSpecifier().getKind()) {
 | 
						|
    // Just a char.
 | 
						|
    case analyze_format_string::ConversionSpecifier::cArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::CArg:
 | 
						|
      Size += std::max(FieldWidth, (size_t)1);
 | 
						|
      break;
 | 
						|
    // Just an integer.
 | 
						|
    case analyze_format_string::ConversionSpecifier::dArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::DArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::iArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::oArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::OArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::uArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::UArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::xArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::XArg:
 | 
						|
      Size += std::max(FieldWidth, Precision);
 | 
						|
      break;
 | 
						|
 | 
						|
    // %g style conversion switches between %f or %e style dynamically.
 | 
						|
    // %f always takes less space, so default to it.
 | 
						|
    case analyze_format_string::ConversionSpecifier::gArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::GArg:
 | 
						|
 | 
						|
    // Floating point number in the form '[+]ddd.ddd'.
 | 
						|
    case analyze_format_string::ConversionSpecifier::fArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::FArg:
 | 
						|
      Size += std::max(FieldWidth, 1 /* integer part */ +
 | 
						|
                                       (Precision ? 1 + Precision
 | 
						|
                                                  : 0) /* period + decimal */);
 | 
						|
      break;
 | 
						|
 | 
						|
    // Floating point number in the form '[-]d.ddde[+-]dd'.
 | 
						|
    case analyze_format_string::ConversionSpecifier::eArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::EArg:
 | 
						|
      Size +=
 | 
						|
          std::max(FieldWidth,
 | 
						|
                   1 /* integer part */ +
 | 
						|
                       (Precision ? 1 + Precision : 0) /* period + decimal */ +
 | 
						|
                       1 /* e or E letter */ + 2 /* exponent */);
 | 
						|
      break;
 | 
						|
 | 
						|
    // Floating point number in the form '[-]0xh.hhhhp±dd'.
 | 
						|
    case analyze_format_string::ConversionSpecifier::aArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::AArg:
 | 
						|
      Size +=
 | 
						|
          std::max(FieldWidth,
 | 
						|
                   2 /* 0x */ + 1 /* integer part */ +
 | 
						|
                       (Precision ? 1 + Precision : 0) /* period + decimal */ +
 | 
						|
                       1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
 | 
						|
      break;
 | 
						|
 | 
						|
    // Just a string.
 | 
						|
    case analyze_format_string::ConversionSpecifier::sArg:
 | 
						|
    case analyze_format_string::ConversionSpecifier::SArg:
 | 
						|
      Size += FieldWidth;
 | 
						|
      break;
 | 
						|
 | 
						|
    // Just a pointer in the form '0xddd'.
 | 
						|
    case analyze_format_string::ConversionSpecifier::pArg:
 | 
						|
      Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
 | 
						|
      break;
 | 
						|
 | 
						|
    // A plain percent.
 | 
						|
    case analyze_format_string::ConversionSpecifier::PercentArg:
 | 
						|
      Size += 1;
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
 | 
						|
 | 
						|
    if (FS.hasAlternativeForm()) {
 | 
						|
      switch (FS.getConversionSpecifier().getKind()) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      // Force a leading '0'.
 | 
						|
      case analyze_format_string::ConversionSpecifier::oArg:
 | 
						|
        Size += 1;
 | 
						|
        break;
 | 
						|
      // Force a leading '0x'.
 | 
						|
      case analyze_format_string::ConversionSpecifier::xArg:
 | 
						|
      case analyze_format_string::ConversionSpecifier::XArg:
 | 
						|
        Size += 2;
 | 
						|
        break;
 | 
						|
      // Force a period '.' before decimal, even if precision is 0.
 | 
						|
      case analyze_format_string::ConversionSpecifier::aArg:
 | 
						|
      case analyze_format_string::ConversionSpecifier::AArg:
 | 
						|
      case analyze_format_string::ConversionSpecifier::eArg:
 | 
						|
      case analyze_format_string::ConversionSpecifier::EArg:
 | 
						|
      case analyze_format_string::ConversionSpecifier::fArg:
 | 
						|
      case analyze_format_string::ConversionSpecifier::FArg:
 | 
						|
      case analyze_format_string::ConversionSpecifier::gArg:
 | 
						|
      case analyze_format_string::ConversionSpecifier::GArg:
 | 
						|
        Size += (Precision ? 0 : 1);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(SpecifierLen <= Size && "no underflow");
 | 
						|
    Size -= SpecifierLen;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  size_t getSizeLowerBound() const { return Size; }
 | 
						|
 | 
						|
private:
 | 
						|
  static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
 | 
						|
    const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
 | 
						|
    size_t FieldWidth = 0;
 | 
						|
    if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
 | 
						|
      FieldWidth = FW.getConstantAmount();
 | 
						|
    return FieldWidth;
 | 
						|
  }
 | 
						|
 | 
						|
  static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
 | 
						|
    const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
 | 
						|
    size_t Precision = 0;
 | 
						|
 | 
						|
    // See man 3 printf for default precision value based on the specifier.
 | 
						|
    switch (FW.getHowSpecified()) {
 | 
						|
    case analyze_format_string::OptionalAmount::NotSpecified:
 | 
						|
      switch (FS.getConversionSpecifier().getKind()) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case analyze_format_string::ConversionSpecifier::dArg: // %d
 | 
						|
      case analyze_format_string::ConversionSpecifier::DArg: // %D
 | 
						|
      case analyze_format_string::ConversionSpecifier::iArg: // %i
 | 
						|
        Precision = 1;
 | 
						|
        break;
 | 
						|
      case analyze_format_string::ConversionSpecifier::oArg: // %d
 | 
						|
      case analyze_format_string::ConversionSpecifier::OArg: // %D
 | 
						|
      case analyze_format_string::ConversionSpecifier::uArg: // %d
 | 
						|
      case analyze_format_string::ConversionSpecifier::UArg: // %D
 | 
						|
      case analyze_format_string::ConversionSpecifier::xArg: // %d
 | 
						|
      case analyze_format_string::ConversionSpecifier::XArg: // %D
 | 
						|
        Precision = 1;
 | 
						|
        break;
 | 
						|
      case analyze_format_string::ConversionSpecifier::fArg: // %f
 | 
						|
      case analyze_format_string::ConversionSpecifier::FArg: // %F
 | 
						|
      case analyze_format_string::ConversionSpecifier::eArg: // %e
 | 
						|
      case analyze_format_string::ConversionSpecifier::EArg: // %E
 | 
						|
      case analyze_format_string::ConversionSpecifier::gArg: // %g
 | 
						|
      case analyze_format_string::ConversionSpecifier::GArg: // %G
 | 
						|
        Precision = 6;
 | 
						|
        break;
 | 
						|
      case analyze_format_string::ConversionSpecifier::pArg: // %d
 | 
						|
        Precision = 1;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case analyze_format_string::OptionalAmount::Constant:
 | 
						|
      Precision = FW.getConstantAmount();
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return Precision;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
/// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
 | 
						|
/// __builtin_*_chk function, then use the object size argument specified in the
 | 
						|
/// source. Otherwise, infer the object size using __builtin_object_size.
 | 
						|
void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
 | 
						|
                                               CallExpr *TheCall) {
 | 
						|
  // FIXME: There are some more useful checks we could be doing here:
 | 
						|
  //  - Evaluate strlen of strcpy arguments, use as object size.
 | 
						|
 | 
						|
  if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
 | 
						|
      isConstantEvaluated())
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
 | 
						|
  if (!BuiltinID)
 | 
						|
    return;
 | 
						|
 | 
						|
  const TargetInfo &TI = getASTContext().getTargetInfo();
 | 
						|
  unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
 | 
						|
 | 
						|
  unsigned DiagID = 0;
 | 
						|
  bool IsChkVariant = false;
 | 
						|
  Optional<llvm::APSInt> UsedSize;
 | 
						|
  unsigned SizeIndex, ObjectIndex;
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default:
 | 
						|
    return;
 | 
						|
  case Builtin::BIsprintf:
 | 
						|
  case Builtin::BI__builtin___sprintf_chk: {
 | 
						|
    size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
 | 
						|
    auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
 | 
						|
 | 
						|
    if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
 | 
						|
 | 
						|
      if (!Format->isAscii() && !Format->isUTF8())
 | 
						|
        return;
 | 
						|
 | 
						|
      StringRef FormatStrRef = Format->getString();
 | 
						|
      EstimateSizeFormatHandler H(FormatStrRef);
 | 
						|
      const char *FormatBytes = FormatStrRef.data();
 | 
						|
      const ConstantArrayType *T =
 | 
						|
          Context.getAsConstantArrayType(Format->getType());
 | 
						|
      assert(T && "String literal not of constant array type!");
 | 
						|
      size_t TypeSize = T->getSize().getZExtValue();
 | 
						|
 | 
						|
      // In case there's a null byte somewhere.
 | 
						|
      size_t StrLen =
 | 
						|
          std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
 | 
						|
      if (!analyze_format_string::ParsePrintfString(
 | 
						|
              H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
 | 
						|
              Context.getTargetInfo(), false)) {
 | 
						|
        DiagID = diag::warn_fortify_source_format_overflow;
 | 
						|
        UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
 | 
						|
                       .extOrTrunc(SizeTypeWidth);
 | 
						|
        if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
 | 
						|
          IsChkVariant = true;
 | 
						|
          ObjectIndex = 2;
 | 
						|
        } else {
 | 
						|
          IsChkVariant = false;
 | 
						|
          ObjectIndex = 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Builtin::BI__builtin___memcpy_chk:
 | 
						|
  case Builtin::BI__builtin___memmove_chk:
 | 
						|
  case Builtin::BI__builtin___memset_chk:
 | 
						|
  case Builtin::BI__builtin___strlcat_chk:
 | 
						|
  case Builtin::BI__builtin___strlcpy_chk:
 | 
						|
  case Builtin::BI__builtin___strncat_chk:
 | 
						|
  case Builtin::BI__builtin___strncpy_chk:
 | 
						|
  case Builtin::BI__builtin___stpncpy_chk:
 | 
						|
  case Builtin::BI__builtin___memccpy_chk:
 | 
						|
  case Builtin::BI__builtin___mempcpy_chk: {
 | 
						|
    DiagID = diag::warn_builtin_chk_overflow;
 | 
						|
    IsChkVariant = true;
 | 
						|
    SizeIndex = TheCall->getNumArgs() - 2;
 | 
						|
    ObjectIndex = TheCall->getNumArgs() - 1;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Builtin::BI__builtin___snprintf_chk:
 | 
						|
  case Builtin::BI__builtin___vsnprintf_chk: {
 | 
						|
    DiagID = diag::warn_builtin_chk_overflow;
 | 
						|
    IsChkVariant = true;
 | 
						|
    SizeIndex = 1;
 | 
						|
    ObjectIndex = 3;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Builtin::BIstrncat:
 | 
						|
  case Builtin::BI__builtin_strncat:
 | 
						|
  case Builtin::BIstrncpy:
 | 
						|
  case Builtin::BI__builtin_strncpy:
 | 
						|
  case Builtin::BIstpncpy:
 | 
						|
  case Builtin::BI__builtin_stpncpy: {
 | 
						|
    // Whether these functions overflow depends on the runtime strlen of the
 | 
						|
    // string, not just the buffer size, so emitting the "always overflow"
 | 
						|
    // diagnostic isn't quite right. We should still diagnose passing a buffer
 | 
						|
    // size larger than the destination buffer though; this is a runtime abort
 | 
						|
    // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
 | 
						|
    DiagID = diag::warn_fortify_source_size_mismatch;
 | 
						|
    SizeIndex = TheCall->getNumArgs() - 1;
 | 
						|
    ObjectIndex = 0;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Builtin::BImemcpy:
 | 
						|
  case Builtin::BI__builtin_memcpy:
 | 
						|
  case Builtin::BImemmove:
 | 
						|
  case Builtin::BI__builtin_memmove:
 | 
						|
  case Builtin::BImemset:
 | 
						|
  case Builtin::BI__builtin_memset:
 | 
						|
  case Builtin::BImempcpy:
 | 
						|
  case Builtin::BI__builtin_mempcpy: {
 | 
						|
    DiagID = diag::warn_fortify_source_overflow;
 | 
						|
    SizeIndex = TheCall->getNumArgs() - 1;
 | 
						|
    ObjectIndex = 0;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Builtin::BIsnprintf:
 | 
						|
  case Builtin::BI__builtin_snprintf:
 | 
						|
  case Builtin::BIvsnprintf:
 | 
						|
  case Builtin::BI__builtin_vsnprintf: {
 | 
						|
    DiagID = diag::warn_fortify_source_size_mismatch;
 | 
						|
    SizeIndex = 1;
 | 
						|
    ObjectIndex = 0;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::APSInt ObjectSize;
 | 
						|
  // For __builtin___*_chk, the object size is explicitly provided by the caller
 | 
						|
  // (usually using __builtin_object_size). Use that value to check this call.
 | 
						|
  if (IsChkVariant) {
 | 
						|
    Expr::EvalResult Result;
 | 
						|
    Expr *SizeArg = TheCall->getArg(ObjectIndex);
 | 
						|
    if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
 | 
						|
      return;
 | 
						|
    ObjectSize = Result.Val.getInt();
 | 
						|
 | 
						|
  // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
 | 
						|
  } else {
 | 
						|
    // If the parameter has a pass_object_size attribute, then we should use its
 | 
						|
    // (potentially) more strict checking mode. Otherwise, conservatively assume
 | 
						|
    // type 0.
 | 
						|
    int BOSType = 0;
 | 
						|
    if (const auto *POS =
 | 
						|
            FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
 | 
						|
      BOSType = POS->getType();
 | 
						|
 | 
						|
    Expr *ObjArg = TheCall->getArg(ObjectIndex);
 | 
						|
    uint64_t Result;
 | 
						|
    if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
 | 
						|
      return;
 | 
						|
    // Get the object size in the target's size_t width.
 | 
						|
    ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  // Evaluate the number of bytes of the object that this call will use.
 | 
						|
  if (!UsedSize) {
 | 
						|
    Expr::EvalResult Result;
 | 
						|
    Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
 | 
						|
    if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
 | 
						|
      return;
 | 
						|
    UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  if (UsedSize.getValue().ule(ObjectSize))
 | 
						|
    return;
 | 
						|
 | 
						|
  StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
 | 
						|
  // Skim off the details of whichever builtin was called to produce a better
 | 
						|
  // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
 | 
						|
  if (IsChkVariant) {
 | 
						|
    FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
 | 
						|
    FunctionName = FunctionName.drop_back(std::strlen("_chk"));
 | 
						|
  } else if (FunctionName.startswith("__builtin_")) {
 | 
						|
    FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
 | 
						|
  }
 | 
						|
 | 
						|
  DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
 | 
						|
                      PDiag(DiagID)
 | 
						|
                          << FunctionName << ObjectSize.toString(/*Radix=*/10)
 | 
						|
                          << UsedSize.getValue().toString(/*Radix=*/10));
 | 
						|
}
 | 
						|
 | 
						|
static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
 | 
						|
                                     Scope::ScopeFlags NeededScopeFlags,
 | 
						|
                                     unsigned DiagID) {
 | 
						|
  // Scopes aren't available during instantiation. Fortunately, builtin
 | 
						|
  // functions cannot be template args so they cannot be formed through template
 | 
						|
  // instantiation. Therefore checking once during the parse is sufficient.
 | 
						|
  if (SemaRef.inTemplateInstantiation())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Scope *S = SemaRef.getCurScope();
 | 
						|
  while (S && !S->isSEHExceptScope())
 | 
						|
    S = S->getParent();
 | 
						|
  if (!S || !(S->getFlags() & NeededScopeFlags)) {
 | 
						|
    auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | 
						|
    SemaRef.Diag(TheCall->getExprLoc(), DiagID)
 | 
						|
        << DRE->getDecl()->getIdentifier();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isBlockPointer(Expr *Arg) {
 | 
						|
  return Arg->getType()->isBlockPointerType();
 | 
						|
}
 | 
						|
 | 
						|
/// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
 | 
						|
/// void*, which is a requirement of device side enqueue.
 | 
						|
static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
 | 
						|
  const BlockPointerType *BPT =
 | 
						|
      cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
 | 
						|
  ArrayRef<QualType> Params =
 | 
						|
      BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
 | 
						|
  unsigned ArgCounter = 0;
 | 
						|
  bool IllegalParams = false;
 | 
						|
  // Iterate through the block parameters until either one is found that is not
 | 
						|
  // a local void*, or the block is valid.
 | 
						|
  for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
 | 
						|
       I != E; ++I, ++ArgCounter) {
 | 
						|
    if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
 | 
						|
        (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
 | 
						|
            LangAS::opencl_local) {
 | 
						|
      // Get the location of the error. If a block literal has been passed
 | 
						|
      // (BlockExpr) then we can point straight to the offending argument,
 | 
						|
      // else we just point to the variable reference.
 | 
						|
      SourceLocation ErrorLoc;
 | 
						|
      if (isa<BlockExpr>(BlockArg)) {
 | 
						|
        BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
 | 
						|
        ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
 | 
						|
      } else if (isa<DeclRefExpr>(BlockArg)) {
 | 
						|
        ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
 | 
						|
      }
 | 
						|
      S.Diag(ErrorLoc,
 | 
						|
             diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
 | 
						|
      IllegalParams = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return IllegalParams;
 | 
						|
}
 | 
						|
 | 
						|
static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
 | 
						|
  if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
 | 
						|
    S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
 | 
						|
        << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
 | 
						|
  if (checkArgCount(S, TheCall, 2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (checkOpenCLSubgroupExt(S, TheCall))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // First argument is an ndrange_t type.
 | 
						|
  Expr *NDRangeArg = TheCall->getArg(0);
 | 
						|
  if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
 | 
						|
    S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
 | 
						|
        << TheCall->getDirectCallee() << "'ndrange_t'";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *BlockArg = TheCall->getArg(1);
 | 
						|
  if (!isBlockPointer(BlockArg)) {
 | 
						|
    S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
 | 
						|
        << TheCall->getDirectCallee() << "block";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return checkOpenCLBlockArgs(S, BlockArg);
 | 
						|
}
 | 
						|
 | 
						|
/// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
 | 
						|
/// get_kernel_work_group_size
 | 
						|
/// and get_kernel_preferred_work_group_size_multiple builtin functions.
 | 
						|
static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
 | 
						|
  if (checkArgCount(S, TheCall, 1))
 | 
						|
    return true;
 | 
						|
 | 
						|
  Expr *BlockArg = TheCall->getArg(0);
 | 
						|
  if (!isBlockPointer(BlockArg)) {
 | 
						|
    S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
 | 
						|
        << TheCall->getDirectCallee() << "block";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return checkOpenCLBlockArgs(S, BlockArg);
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose integer type and any valid implicit conversion to it.
 | 
						|
static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
 | 
						|
                                      const QualType &IntType);
 | 
						|
 | 
						|
static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
 | 
						|
                                            unsigned Start, unsigned End) {
 | 
						|
  bool IllegalParams = false;
 | 
						|
  for (unsigned I = Start; I <= End; ++I)
 | 
						|
    IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
 | 
						|
                                              S.Context.getSizeType());
 | 
						|
  return IllegalParams;
 | 
						|
}
 | 
						|
 | 
						|
/// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
 | 
						|
/// 'local void*' parameter of passed block.
 | 
						|
static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
 | 
						|
                                           Expr *BlockArg,
 | 
						|
                                           unsigned NumNonVarArgs) {
 | 
						|
  const BlockPointerType *BPT =
 | 
						|
      cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
 | 
						|
  unsigned NumBlockParams =
 | 
						|
      BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
 | 
						|
  unsigned TotalNumArgs = TheCall->getNumArgs();
 | 
						|
 | 
						|
  // For each argument passed to the block, a corresponding uint needs to
 | 
						|
  // be passed to describe the size of the local memory.
 | 
						|
  if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
 | 
						|
    S.Diag(TheCall->getBeginLoc(),
 | 
						|
           diag::err_opencl_enqueue_kernel_local_size_args);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the sizes of the local memory are specified by integers.
 | 
						|
  return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
 | 
						|
                                         TotalNumArgs - 1);
 | 
						|
}
 | 
						|
 | 
						|
/// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
 | 
						|
/// overload formats specified in Table 6.13.17.1.
 | 
						|
/// int enqueue_kernel(queue_t queue,
 | 
						|
///                    kernel_enqueue_flags_t flags,
 | 
						|
///                    const ndrange_t ndrange,
 | 
						|
///                    void (^block)(void))
 | 
						|
/// int enqueue_kernel(queue_t queue,
 | 
						|
///                    kernel_enqueue_flags_t flags,
 | 
						|
///                    const ndrange_t ndrange,
 | 
						|
///                    uint num_events_in_wait_list,
 | 
						|
///                    clk_event_t *event_wait_list,
 | 
						|
///                    clk_event_t *event_ret,
 | 
						|
///                    void (^block)(void))
 | 
						|
/// int enqueue_kernel(queue_t queue,
 | 
						|
///                    kernel_enqueue_flags_t flags,
 | 
						|
///                    const ndrange_t ndrange,
 | 
						|
///                    void (^block)(local void*, ...),
 | 
						|
///                    uint size0, ...)
 | 
						|
/// int enqueue_kernel(queue_t queue,
 | 
						|
///                    kernel_enqueue_flags_t flags,
 | 
						|
///                    const ndrange_t ndrange,
 | 
						|
///                    uint num_events_in_wait_list,
 | 
						|
///                    clk_event_t *event_wait_list,
 | 
						|
///                    clk_event_t *event_ret,
 | 
						|
///                    void (^block)(local void*, ...),
 | 
						|
///                    uint size0, ...)
 | 
						|
static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
 | 
						|
  unsigned NumArgs = TheCall->getNumArgs();
 | 
						|
 | 
						|
  if (NumArgs < 4) {
 | 
						|
    S.Diag(TheCall->getBeginLoc(),
 | 
						|
           diag::err_typecheck_call_too_few_args_at_least)
 | 
						|
        << 0 << 4 << NumArgs;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *Arg0 = TheCall->getArg(0);
 | 
						|
  Expr *Arg1 = TheCall->getArg(1);
 | 
						|
  Expr *Arg2 = TheCall->getArg(2);
 | 
						|
  Expr *Arg3 = TheCall->getArg(3);
 | 
						|
 | 
						|
  // First argument always needs to be a queue_t type.
 | 
						|
  if (!Arg0->getType()->isQueueT()) {
 | 
						|
    S.Diag(TheCall->getArg(0)->getBeginLoc(),
 | 
						|
           diag::err_opencl_builtin_expected_type)
 | 
						|
        << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Second argument always needs to be a kernel_enqueue_flags_t enum value.
 | 
						|
  if (!Arg1->getType()->isIntegerType()) {
 | 
						|
    S.Diag(TheCall->getArg(1)->getBeginLoc(),
 | 
						|
           diag::err_opencl_builtin_expected_type)
 | 
						|
        << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Third argument is always an ndrange_t type.
 | 
						|
  if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
 | 
						|
    S.Diag(TheCall->getArg(2)->getBeginLoc(),
 | 
						|
           diag::err_opencl_builtin_expected_type)
 | 
						|
        << TheCall->getDirectCallee() << "'ndrange_t'";
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // With four arguments, there is only one form that the function could be
 | 
						|
  // called in: no events and no variable arguments.
 | 
						|
  if (NumArgs == 4) {
 | 
						|
    // check that the last argument is the right block type.
 | 
						|
    if (!isBlockPointer(Arg3)) {
 | 
						|
      S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
 | 
						|
          << TheCall->getDirectCallee() << "block";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // we have a block type, check the prototype
 | 
						|
    const BlockPointerType *BPT =
 | 
						|
        cast<BlockPointerType>(Arg3->getType().getCanonicalType());
 | 
						|
    if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
 | 
						|
      S.Diag(Arg3->getBeginLoc(),
 | 
						|
             diag::err_opencl_enqueue_kernel_blocks_no_args);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  // we can have block + varargs.
 | 
						|
  if (isBlockPointer(Arg3))
 | 
						|
    return (checkOpenCLBlockArgs(S, Arg3) ||
 | 
						|
            checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
 | 
						|
  // last two cases with either exactly 7 args or 7 args and varargs.
 | 
						|
  if (NumArgs >= 7) {
 | 
						|
    // check common block argument.
 | 
						|
    Expr *Arg6 = TheCall->getArg(6);
 | 
						|
    if (!isBlockPointer(Arg6)) {
 | 
						|
      S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
 | 
						|
          << TheCall->getDirectCallee() << "block";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (checkOpenCLBlockArgs(S, Arg6))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Forth argument has to be any integer type.
 | 
						|
    if (!Arg3->getType()->isIntegerType()) {
 | 
						|
      S.Diag(TheCall->getArg(3)->getBeginLoc(),
 | 
						|
             diag::err_opencl_builtin_expected_type)
 | 
						|
          << TheCall->getDirectCallee() << "integer";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // check remaining common arguments.
 | 
						|
    Expr *Arg4 = TheCall->getArg(4);
 | 
						|
    Expr *Arg5 = TheCall->getArg(5);
 | 
						|
 | 
						|
    // Fifth argument is always passed as a pointer to clk_event_t.
 | 
						|
    if (!Arg4->isNullPointerConstant(S.Context,
 | 
						|
                                     Expr::NPC_ValueDependentIsNotNull) &&
 | 
						|
        !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
 | 
						|
      S.Diag(TheCall->getArg(4)->getBeginLoc(),
 | 
						|
             diag::err_opencl_builtin_expected_type)
 | 
						|
          << TheCall->getDirectCallee()
 | 
						|
          << S.Context.getPointerType(S.Context.OCLClkEventTy);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Sixth argument is always passed as a pointer to clk_event_t.
 | 
						|
    if (!Arg5->isNullPointerConstant(S.Context,
 | 
						|
                                     Expr::NPC_ValueDependentIsNotNull) &&
 | 
						|
        !(Arg5->getType()->isPointerType() &&
 | 
						|
          Arg5->getType()->getPointeeType()->isClkEventT())) {
 | 
						|
      S.Diag(TheCall->getArg(5)->getBeginLoc(),
 | 
						|
             diag::err_opencl_builtin_expected_type)
 | 
						|
          << TheCall->getDirectCallee()
 | 
						|
          << S.Context.getPointerType(S.Context.OCLClkEventTy);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (NumArgs == 7)
 | 
						|
      return false;
 | 
						|
 | 
						|
    return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
 | 
						|
  }
 | 
						|
 | 
						|
  // None of the specific case has been detected, give generic error
 | 
						|
  S.Diag(TheCall->getBeginLoc(),
 | 
						|
         diag::err_opencl_enqueue_kernel_incorrect_args);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns OpenCL access qual.
 | 
						|
static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
 | 
						|
    return D->getAttr<OpenCLAccessAttr>();
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if pipe element type is different from the pointer.
 | 
						|
static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
 | 
						|
  const Expr *Arg0 = Call->getArg(0);
 | 
						|
  // First argument type should always be pipe.
 | 
						|
  if (!Arg0->getType()->isPipeType()) {
 | 
						|
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
 | 
						|
        << Call->getDirectCallee() << Arg0->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  OpenCLAccessAttr *AccessQual =
 | 
						|
      getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
 | 
						|
  // Validates the access qualifier is compatible with the call.
 | 
						|
  // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
 | 
						|
  // read_only and write_only, and assumed to be read_only if no qualifier is
 | 
						|
  // specified.
 | 
						|
  switch (Call->getDirectCallee()->getBuiltinID()) {
 | 
						|
  case Builtin::BIread_pipe:
 | 
						|
  case Builtin::BIreserve_read_pipe:
 | 
						|
  case Builtin::BIcommit_read_pipe:
 | 
						|
  case Builtin::BIwork_group_reserve_read_pipe:
 | 
						|
  case Builtin::BIsub_group_reserve_read_pipe:
 | 
						|
  case Builtin::BIwork_group_commit_read_pipe:
 | 
						|
  case Builtin::BIsub_group_commit_read_pipe:
 | 
						|
    if (!(!AccessQual || AccessQual->isReadOnly())) {
 | 
						|
      S.Diag(Arg0->getBeginLoc(),
 | 
						|
             diag::err_opencl_builtin_pipe_invalid_access_modifier)
 | 
						|
          << "read_only" << Arg0->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Builtin::BIwrite_pipe:
 | 
						|
  case Builtin::BIreserve_write_pipe:
 | 
						|
  case Builtin::BIcommit_write_pipe:
 | 
						|
  case Builtin::BIwork_group_reserve_write_pipe:
 | 
						|
  case Builtin::BIsub_group_reserve_write_pipe:
 | 
						|
  case Builtin::BIwork_group_commit_write_pipe:
 | 
						|
  case Builtin::BIsub_group_commit_write_pipe:
 | 
						|
    if (!(AccessQual && AccessQual->isWriteOnly())) {
 | 
						|
      S.Diag(Arg0->getBeginLoc(),
 | 
						|
             diag::err_opencl_builtin_pipe_invalid_access_modifier)
 | 
						|
          << "write_only" << Arg0->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if pipe element type is different from the pointer.
 | 
						|
static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
 | 
						|
  const Expr *Arg0 = Call->getArg(0);
 | 
						|
  const Expr *ArgIdx = Call->getArg(Idx);
 | 
						|
  const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
 | 
						|
  const QualType EltTy = PipeTy->getElementType();
 | 
						|
  const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
 | 
						|
  // The Idx argument should be a pointer and the type of the pointer and
 | 
						|
  // the type of pipe element should also be the same.
 | 
						|
  if (!ArgTy ||
 | 
						|
      !S.Context.hasSameType(
 | 
						|
          EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
 | 
						|
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
 | 
						|
        << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
 | 
						|
        << ArgIdx->getType() << ArgIdx->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Performs semantic analysis for the read/write_pipe call.
 | 
						|
// \param S Reference to the semantic analyzer.
 | 
						|
// \param Call A pointer to the builtin call.
 | 
						|
// \return True if a semantic error has been found, false otherwise.
 | 
						|
static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
 | 
						|
  // OpenCL v2.0 s6.13.16.2 - The built-in read/write
 | 
						|
  // functions have two forms.
 | 
						|
  switch (Call->getNumArgs()) {
 | 
						|
  case 2:
 | 
						|
    if (checkOpenCLPipeArg(S, Call))
 | 
						|
      return true;
 | 
						|
    // The call with 2 arguments should be
 | 
						|
    // read/write_pipe(pipe T, T*).
 | 
						|
    // Check packet type T.
 | 
						|
    if (checkOpenCLPipePacketType(S, Call, 1))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
 | 
						|
  case 4: {
 | 
						|
    if (checkOpenCLPipeArg(S, Call))
 | 
						|
      return true;
 | 
						|
    // The call with 4 arguments should be
 | 
						|
    // read/write_pipe(pipe T, reserve_id_t, uint, T*).
 | 
						|
    // Check reserve_id_t.
 | 
						|
    if (!Call->getArg(1)->getType()->isReserveIDT()) {
 | 
						|
      S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
 | 
						|
          << Call->getDirectCallee() << S.Context.OCLReserveIDTy
 | 
						|
          << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check the index.
 | 
						|
    const Expr *Arg2 = Call->getArg(2);
 | 
						|
    if (!Arg2->getType()->isIntegerType() &&
 | 
						|
        !Arg2->getType()->isUnsignedIntegerType()) {
 | 
						|
      S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
 | 
						|
          << Call->getDirectCallee() << S.Context.UnsignedIntTy
 | 
						|
          << Arg2->getType() << Arg2->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check packet type T.
 | 
						|
    if (checkOpenCLPipePacketType(S, Call, 3))
 | 
						|
      return true;
 | 
						|
  } break;
 | 
						|
  default:
 | 
						|
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
 | 
						|
        << Call->getDirectCallee() << Call->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Performs a semantic analysis on the {work_group_/sub_group_
 | 
						|
//        /_}reserve_{read/write}_pipe
 | 
						|
// \param S Reference to the semantic analyzer.
 | 
						|
// \param Call The call to the builtin function to be analyzed.
 | 
						|
// \return True if a semantic error was found, false otherwise.
 | 
						|
static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
 | 
						|
  if (checkArgCount(S, Call, 2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (checkOpenCLPipeArg(S, Call))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check the reserve size.
 | 
						|
  if (!Call->getArg(1)->getType()->isIntegerType() &&
 | 
						|
      !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
 | 
						|
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
 | 
						|
        << Call->getDirectCallee() << S.Context.UnsignedIntTy
 | 
						|
        << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Since return type of reserve_read/write_pipe built-in function is
 | 
						|
  // reserve_id_t, which is not defined in the builtin def file , we used int
 | 
						|
  // as return type and need to override the return type of these functions.
 | 
						|
  Call->setType(S.Context.OCLReserveIDTy);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Performs a semantic analysis on {work_group_/sub_group_
 | 
						|
//        /_}commit_{read/write}_pipe
 | 
						|
// \param S Reference to the semantic analyzer.
 | 
						|
// \param Call The call to the builtin function to be analyzed.
 | 
						|
// \return True if a semantic error was found, false otherwise.
 | 
						|
static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
 | 
						|
  if (checkArgCount(S, Call, 2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (checkOpenCLPipeArg(S, Call))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check reserve_id_t.
 | 
						|
  if (!Call->getArg(1)->getType()->isReserveIDT()) {
 | 
						|
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
 | 
						|
        << Call->getDirectCallee() << S.Context.OCLReserveIDTy
 | 
						|
        << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Performs a semantic analysis on the call to built-in Pipe
 | 
						|
//        Query Functions.
 | 
						|
// \param S Reference to the semantic analyzer.
 | 
						|
// \param Call The call to the builtin function to be analyzed.
 | 
						|
// \return True if a semantic error was found, false otherwise.
 | 
						|
static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
 | 
						|
  if (checkArgCount(S, Call, 1))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!Call->getArg(0)->getType()->isPipeType()) {
 | 
						|
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
 | 
						|
        << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// OpenCL v2.0 s6.13.9 - Address space qualifier functions.
 | 
						|
// Performs semantic analysis for the to_global/local/private call.
 | 
						|
// \param S Reference to the semantic analyzer.
 | 
						|
// \param BuiltinID ID of the builtin function.
 | 
						|
// \param Call A pointer to the builtin call.
 | 
						|
// \return True if a semantic error has been found, false otherwise.
 | 
						|
static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
 | 
						|
                                    CallExpr *Call) {
 | 
						|
  if (checkArgCount(S, Call, 1))
 | 
						|
    return true;
 | 
						|
 | 
						|
  auto RT = Call->getArg(0)->getType();
 | 
						|
  if (!RT->isPointerType() || RT->getPointeeType()
 | 
						|
      .getAddressSpace() == LangAS::opencl_constant) {
 | 
						|
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
 | 
						|
        << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
 | 
						|
    S.Diag(Call->getArg(0)->getBeginLoc(),
 | 
						|
           diag::warn_opencl_generic_address_space_arg)
 | 
						|
        << Call->getDirectCallee()->getNameInfo().getAsString()
 | 
						|
        << Call->getArg(0)->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  RT = RT->getPointeeType();
 | 
						|
  auto Qual = RT.getQualifiers();
 | 
						|
  switch (BuiltinID) {
 | 
						|
  case Builtin::BIto_global:
 | 
						|
    Qual.setAddressSpace(LangAS::opencl_global);
 | 
						|
    break;
 | 
						|
  case Builtin::BIto_local:
 | 
						|
    Qual.setAddressSpace(LangAS::opencl_local);
 | 
						|
    break;
 | 
						|
  case Builtin::BIto_private:
 | 
						|
    Qual.setAddressSpace(LangAS::opencl_private);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Invalid builtin function");
 | 
						|
  }
 | 
						|
  Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
 | 
						|
      RT.getUnqualifiedType(), Qual)));
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
 | 
						|
  if (checkArgCount(S, TheCall, 1))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Compute __builtin_launder's parameter type from the argument.
 | 
						|
  // The parameter type is:
 | 
						|
  //  * The type of the argument if it's not an array or function type,
 | 
						|
  //  Otherwise,
 | 
						|
  //  * The decayed argument type.
 | 
						|
  QualType ParamTy = [&]() {
 | 
						|
    QualType ArgTy = TheCall->getArg(0)->getType();
 | 
						|
    if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
 | 
						|
      return S.Context.getPointerType(Ty->getElementType());
 | 
						|
    if (ArgTy->isFunctionType()) {
 | 
						|
      return S.Context.getPointerType(ArgTy);
 | 
						|
    }
 | 
						|
    return ArgTy;
 | 
						|
  }();
 | 
						|
 | 
						|
  TheCall->setType(ParamTy);
 | 
						|
 | 
						|
  auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
 | 
						|
    if (!ParamTy->isPointerType())
 | 
						|
      return 0;
 | 
						|
    if (ParamTy->isFunctionPointerType())
 | 
						|
      return 1;
 | 
						|
    if (ParamTy->isVoidPointerType())
 | 
						|
      return 2;
 | 
						|
    return llvm::Optional<unsigned>{};
 | 
						|
  }();
 | 
						|
  if (DiagSelect.hasValue()) {
 | 
						|
    S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
 | 
						|
        << DiagSelect.getValue() << TheCall->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // We either have an incomplete class type, or we have a class template
 | 
						|
  // whose instantiation has not been forced. Example:
 | 
						|
  //
 | 
						|
  //   template <class T> struct Foo { T value; };
 | 
						|
  //   Foo<int> *p = nullptr;
 | 
						|
  //   auto *d = __builtin_launder(p);
 | 
						|
  if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
 | 
						|
                            diag::err_incomplete_type))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  assert(ParamTy->getPointeeType()->isObjectType() &&
 | 
						|
         "Unhandled non-object pointer case");
 | 
						|
 | 
						|
  InitializedEntity Entity =
 | 
						|
      InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
 | 
						|
  ExprResult Arg =
 | 
						|
      S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
 | 
						|
  if (Arg.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  TheCall->setArg(0, Arg.get());
 | 
						|
 | 
						|
  return TheCall;
 | 
						|
}
 | 
						|
 | 
						|
// Emit an error and return true if the current architecture is not in the list
 | 
						|
// of supported architectures.
 | 
						|
static bool
 | 
						|
CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
 | 
						|
                          ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
 | 
						|
  llvm::Triple::ArchType CurArch =
 | 
						|
      S.getASTContext().getTargetInfo().getTriple().getArch();
 | 
						|
  if (llvm::is_contained(SupportedArchs, CurArch))
 | 
						|
    return false;
 | 
						|
  S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
 | 
						|
      << TheCall->getSourceRange();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
 | 
						|
                                 SourceLocation CallSiteLoc);
 | 
						|
 | 
						|
bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
 | 
						|
                                      CallExpr *TheCall) {
 | 
						|
  switch (TI.getTriple().getArch()) {
 | 
						|
  default:
 | 
						|
    // Some builtins don't require additional checking, so just consider these
 | 
						|
    // acceptable.
 | 
						|
    return false;
 | 
						|
  case llvm::Triple::arm:
 | 
						|
  case llvm::Triple::armeb:
 | 
						|
  case llvm::Triple::thumb:
 | 
						|
  case llvm::Triple::thumbeb:
 | 
						|
    return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
 | 
						|
  case llvm::Triple::aarch64:
 | 
						|
  case llvm::Triple::aarch64_32:
 | 
						|
  case llvm::Triple::aarch64_be:
 | 
						|
    return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
 | 
						|
  case llvm::Triple::bpfeb:
 | 
						|
  case llvm::Triple::bpfel:
 | 
						|
    return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
 | 
						|
  case llvm::Triple::hexagon:
 | 
						|
    return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
 | 
						|
  case llvm::Triple::mips:
 | 
						|
  case llvm::Triple::mipsel:
 | 
						|
  case llvm::Triple::mips64:
 | 
						|
  case llvm::Triple::mips64el:
 | 
						|
    return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
 | 
						|
  case llvm::Triple::systemz:
 | 
						|
    return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
 | 
						|
  case llvm::Triple::x86:
 | 
						|
  case llvm::Triple::x86_64:
 | 
						|
    return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
 | 
						|
  case llvm::Triple::ppc:
 | 
						|
  case llvm::Triple::ppcle:
 | 
						|
  case llvm::Triple::ppc64:
 | 
						|
  case llvm::Triple::ppc64le:
 | 
						|
    return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
 | 
						|
  case llvm::Triple::amdgcn:
 | 
						|
    return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
 | 
						|
                               CallExpr *TheCall) {
 | 
						|
  ExprResult TheCallResult(TheCall);
 | 
						|
 | 
						|
  // Find out if any arguments are required to be integer constant expressions.
 | 
						|
  unsigned ICEArguments = 0;
 | 
						|
  ASTContext::GetBuiltinTypeError Error;
 | 
						|
  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
 | 
						|
  if (Error != ASTContext::GE_None)
 | 
						|
    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
 | 
						|
 | 
						|
  // If any arguments are required to be ICE's, check and diagnose.
 | 
						|
  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
 | 
						|
    // Skip arguments not required to be ICE's.
 | 
						|
    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
 | 
						|
 | 
						|
    llvm::APSInt Result;
 | 
						|
    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
 | 
						|
      return true;
 | 
						|
    ICEArguments &= ~(1 << ArgNo);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (BuiltinID) {
 | 
						|
  case Builtin::BI__builtin___CFStringMakeConstantString:
 | 
						|
    assert(TheCall->getNumArgs() == 1 &&
 | 
						|
           "Wrong # arguments to builtin CFStringMakeConstantString");
 | 
						|
    if (CheckObjCString(TheCall->getArg(0)))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_ms_va_start:
 | 
						|
  case Builtin::BI__builtin_stdarg_start:
 | 
						|
  case Builtin::BI__builtin_va_start:
 | 
						|
    if (SemaBuiltinVAStart(BuiltinID, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__va_start: {
 | 
						|
    switch (Context.getTargetInfo().getTriple().getArch()) {
 | 
						|
    case llvm::Triple::aarch64:
 | 
						|
    case llvm::Triple::arm:
 | 
						|
    case llvm::Triple::thumb:
 | 
						|
      if (SemaBuiltinVAStartARMMicrosoft(TheCall))
 | 
						|
        return ExprError();
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      if (SemaBuiltinVAStart(BuiltinID, TheCall))
 | 
						|
        return ExprError();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // The acquire, release, and no fence variants are ARM and AArch64 only.
 | 
						|
  case Builtin::BI_interlockedbittestandset_acq:
 | 
						|
  case Builtin::BI_interlockedbittestandset_rel:
 | 
						|
  case Builtin::BI_interlockedbittestandset_nf:
 | 
						|
  case Builtin::BI_interlockedbittestandreset_acq:
 | 
						|
  case Builtin::BI_interlockedbittestandreset_rel:
 | 
						|
  case Builtin::BI_interlockedbittestandreset_nf:
 | 
						|
    if (CheckBuiltinTargetSupport(
 | 
						|
            *this, BuiltinID, TheCall,
 | 
						|
            {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
 | 
						|
  // The 64-bit bittest variants are x64, ARM, and AArch64 only.
 | 
						|
  case Builtin::BI_bittest64:
 | 
						|
  case Builtin::BI_bittestandcomplement64:
 | 
						|
  case Builtin::BI_bittestandreset64:
 | 
						|
  case Builtin::BI_bittestandset64:
 | 
						|
  case Builtin::BI_interlockedbittestandreset64:
 | 
						|
  case Builtin::BI_interlockedbittestandset64:
 | 
						|
    if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
 | 
						|
                                  {llvm::Triple::x86_64, llvm::Triple::arm,
 | 
						|
                                   llvm::Triple::thumb, llvm::Triple::aarch64}))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__builtin_isgreater:
 | 
						|
  case Builtin::BI__builtin_isgreaterequal:
 | 
						|
  case Builtin::BI__builtin_isless:
 | 
						|
  case Builtin::BI__builtin_islessequal:
 | 
						|
  case Builtin::BI__builtin_islessgreater:
 | 
						|
  case Builtin::BI__builtin_isunordered:
 | 
						|
    if (SemaBuiltinUnorderedCompare(TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_fpclassify:
 | 
						|
    if (SemaBuiltinFPClassification(TheCall, 6))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_isfinite:
 | 
						|
  case Builtin::BI__builtin_isinf:
 | 
						|
  case Builtin::BI__builtin_isinf_sign:
 | 
						|
  case Builtin::BI__builtin_isnan:
 | 
						|
  case Builtin::BI__builtin_isnormal:
 | 
						|
  case Builtin::BI__builtin_signbit:
 | 
						|
  case Builtin::BI__builtin_signbitf:
 | 
						|
  case Builtin::BI__builtin_signbitl:
 | 
						|
    if (SemaBuiltinFPClassification(TheCall, 1))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_shufflevector:
 | 
						|
    return SemaBuiltinShuffleVector(TheCall);
 | 
						|
    // TheCall will be freed by the smart pointer here, but that's fine, since
 | 
						|
    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
 | 
						|
  case Builtin::BI__builtin_prefetch:
 | 
						|
    if (SemaBuiltinPrefetch(TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_alloca_with_align:
 | 
						|
    if (SemaBuiltinAllocaWithAlign(TheCall))
 | 
						|
      return ExprError();
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case Builtin::BI__builtin_alloca:
 | 
						|
    Diag(TheCall->getBeginLoc(), diag::warn_alloca)
 | 
						|
        << TheCall->getDirectCallee();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__assume:
 | 
						|
  case Builtin::BI__builtin_assume:
 | 
						|
    if (SemaBuiltinAssume(TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_assume_aligned:
 | 
						|
    if (SemaBuiltinAssumeAligned(TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_dynamic_object_size:
 | 
						|
  case Builtin::BI__builtin_object_size:
 | 
						|
    if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_longjmp:
 | 
						|
    if (SemaBuiltinLongjmp(TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_setjmp:
 | 
						|
    if (SemaBuiltinSetjmp(TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_classify_type:
 | 
						|
    if (checkArgCount(*this, TheCall, 1)) return true;
 | 
						|
    TheCall->setType(Context.IntTy);
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_complex:
 | 
						|
    if (SemaBuiltinComplex(TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_constant_p: {
 | 
						|
    if (checkArgCount(*this, TheCall, 1)) return true;
 | 
						|
    ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
 | 
						|
    if (Arg.isInvalid()) return true;
 | 
						|
    TheCall->setArg(0, Arg.get());
 | 
						|
    TheCall->setType(Context.IntTy);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Builtin::BI__builtin_launder:
 | 
						|
    return SemaBuiltinLaunder(*this, TheCall);
 | 
						|
  case Builtin::BI__sync_fetch_and_add:
 | 
						|
  case Builtin::BI__sync_fetch_and_add_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_add_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_add_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_add_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_add_16:
 | 
						|
  case Builtin::BI__sync_fetch_and_sub:
 | 
						|
  case Builtin::BI__sync_fetch_and_sub_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_sub_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_sub_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_sub_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_sub_16:
 | 
						|
  case Builtin::BI__sync_fetch_and_or:
 | 
						|
  case Builtin::BI__sync_fetch_and_or_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_or_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_or_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_or_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_or_16:
 | 
						|
  case Builtin::BI__sync_fetch_and_and:
 | 
						|
  case Builtin::BI__sync_fetch_and_and_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_and_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_and_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_and_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_and_16:
 | 
						|
  case Builtin::BI__sync_fetch_and_xor:
 | 
						|
  case Builtin::BI__sync_fetch_and_xor_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_xor_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_xor_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_xor_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_xor_16:
 | 
						|
  case Builtin::BI__sync_fetch_and_nand:
 | 
						|
  case Builtin::BI__sync_fetch_and_nand_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_nand_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_nand_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_nand_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_nand_16:
 | 
						|
  case Builtin::BI__sync_add_and_fetch:
 | 
						|
  case Builtin::BI__sync_add_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_add_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_add_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_add_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_add_and_fetch_16:
 | 
						|
  case Builtin::BI__sync_sub_and_fetch:
 | 
						|
  case Builtin::BI__sync_sub_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_sub_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_sub_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_sub_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_sub_and_fetch_16:
 | 
						|
  case Builtin::BI__sync_and_and_fetch:
 | 
						|
  case Builtin::BI__sync_and_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_and_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_and_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_and_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_and_and_fetch_16:
 | 
						|
  case Builtin::BI__sync_or_and_fetch:
 | 
						|
  case Builtin::BI__sync_or_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_or_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_or_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_or_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_or_and_fetch_16:
 | 
						|
  case Builtin::BI__sync_xor_and_fetch:
 | 
						|
  case Builtin::BI__sync_xor_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_xor_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_xor_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_xor_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_xor_and_fetch_16:
 | 
						|
  case Builtin::BI__sync_nand_and_fetch:
 | 
						|
  case Builtin::BI__sync_nand_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_nand_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_nand_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_nand_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_nand_and_fetch_16:
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap:
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap_1:
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap_2:
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap_4:
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap_8:
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap_16:
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap:
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap_1:
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap_2:
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap_4:
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap_8:
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap_16:
 | 
						|
  case Builtin::BI__sync_lock_test_and_set:
 | 
						|
  case Builtin::BI__sync_lock_test_and_set_1:
 | 
						|
  case Builtin::BI__sync_lock_test_and_set_2:
 | 
						|
  case Builtin::BI__sync_lock_test_and_set_4:
 | 
						|
  case Builtin::BI__sync_lock_test_and_set_8:
 | 
						|
  case Builtin::BI__sync_lock_test_and_set_16:
 | 
						|
  case Builtin::BI__sync_lock_release:
 | 
						|
  case Builtin::BI__sync_lock_release_1:
 | 
						|
  case Builtin::BI__sync_lock_release_2:
 | 
						|
  case Builtin::BI__sync_lock_release_4:
 | 
						|
  case Builtin::BI__sync_lock_release_8:
 | 
						|
  case Builtin::BI__sync_lock_release_16:
 | 
						|
  case Builtin::BI__sync_swap:
 | 
						|
  case Builtin::BI__sync_swap_1:
 | 
						|
  case Builtin::BI__sync_swap_2:
 | 
						|
  case Builtin::BI__sync_swap_4:
 | 
						|
  case Builtin::BI__sync_swap_8:
 | 
						|
  case Builtin::BI__sync_swap_16:
 | 
						|
    return SemaBuiltinAtomicOverloaded(TheCallResult);
 | 
						|
  case Builtin::BI__sync_synchronize:
 | 
						|
    Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
 | 
						|
        << TheCall->getCallee()->getSourceRange();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_nontemporal_load:
 | 
						|
  case Builtin::BI__builtin_nontemporal_store:
 | 
						|
    return SemaBuiltinNontemporalOverloaded(TheCallResult);
 | 
						|
  case Builtin::BI__builtin_memcpy_inline: {
 | 
						|
    clang::Expr *SizeOp = TheCall->getArg(2);
 | 
						|
    // We warn about copying to or from `nullptr` pointers when `size` is
 | 
						|
    // greater than 0. When `size` is value dependent we cannot evaluate its
 | 
						|
    // value so we bail out.
 | 
						|
    if (SizeOp->isValueDependent())
 | 
						|
      break;
 | 
						|
    if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) {
 | 
						|
      CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
 | 
						|
      CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
#define BUILTIN(ID, TYPE, ATTRS)
 | 
						|
#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
 | 
						|
  case Builtin::BI##ID: \
 | 
						|
    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
 | 
						|
#include "clang/Basic/Builtins.def"
 | 
						|
  case Builtin::BI__annotation:
 | 
						|
    if (SemaBuiltinMSVCAnnotation(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_annotation:
 | 
						|
    if (SemaBuiltinAnnotation(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_addressof:
 | 
						|
    if (SemaBuiltinAddressof(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_is_aligned:
 | 
						|
  case Builtin::BI__builtin_align_up:
 | 
						|
  case Builtin::BI__builtin_align_down:
 | 
						|
    if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_add_overflow:
 | 
						|
  case Builtin::BI__builtin_sub_overflow:
 | 
						|
  case Builtin::BI__builtin_mul_overflow:
 | 
						|
    if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_operator_new:
 | 
						|
  case Builtin::BI__builtin_operator_delete: {
 | 
						|
    bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
 | 
						|
    ExprResult Res =
 | 
						|
        SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
 | 
						|
    if (Res.isInvalid())
 | 
						|
      CorrectDelayedTyposInExpr(TheCallResult.get());
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  case Builtin::BI__builtin_dump_struct: {
 | 
						|
    // We first want to ensure we are called with 2 arguments
 | 
						|
    if (checkArgCount(*this, TheCall, 2))
 | 
						|
      return ExprError();
 | 
						|
    // Ensure that the first argument is of type 'struct XX *'
 | 
						|
    const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
 | 
						|
    const QualType PtrArgType = PtrArg->getType();
 | 
						|
    if (!PtrArgType->isPointerType() ||
 | 
						|
        !PtrArgType->getPointeeType()->isRecordType()) {
 | 
						|
      Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | 
						|
          << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
 | 
						|
          << "structure pointer";
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    // Ensure that the second argument is of type 'FunctionType'
 | 
						|
    const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
 | 
						|
    const QualType FnPtrArgType = FnPtrArg->getType();
 | 
						|
    if (!FnPtrArgType->isPointerType()) {
 | 
						|
      Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | 
						|
          << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
 | 
						|
          << FnPtrArgType << "'int (*)(const char *, ...)'";
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    const auto *FuncType =
 | 
						|
        FnPtrArgType->getPointeeType()->getAs<FunctionType>();
 | 
						|
 | 
						|
    if (!FuncType) {
 | 
						|
      Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | 
						|
          << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
 | 
						|
          << FnPtrArgType << "'int (*)(const char *, ...)'";
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
 | 
						|
      if (!FT->getNumParams()) {
 | 
						|
        Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | 
						|
            << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
 | 
						|
            << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
      QualType PT = FT->getParamType(0);
 | 
						|
      if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
 | 
						|
          !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
 | 
						|
          !PT->getPointeeType().isConstQualified()) {
 | 
						|
        Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | 
						|
            << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
 | 
						|
            << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    TheCall->setType(Context.IntTy);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Builtin::BI__builtin_expect_with_probability: {
 | 
						|
    // We first want to ensure we are called with 3 arguments
 | 
						|
    if (checkArgCount(*this, TheCall, 3))
 | 
						|
      return ExprError();
 | 
						|
    // then check probability is constant float in range [0.0, 1.0]
 | 
						|
    const Expr *ProbArg = TheCall->getArg(2);
 | 
						|
    SmallVector<PartialDiagnosticAt, 8> Notes;
 | 
						|
    Expr::EvalResult Eval;
 | 
						|
    Eval.Diag = &Notes;
 | 
						|
    if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
 | 
						|
        !Eval.Val.isFloat()) {
 | 
						|
      Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
 | 
						|
          << ProbArg->getSourceRange();
 | 
						|
      for (const PartialDiagnosticAt &PDiag : Notes)
 | 
						|
        Diag(PDiag.first, PDiag.second);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
    llvm::APFloat Probability = Eval.Val.getFloat();
 | 
						|
    bool LoseInfo = false;
 | 
						|
    Probability.convert(llvm::APFloat::IEEEdouble(),
 | 
						|
                        llvm::RoundingMode::Dynamic, &LoseInfo);
 | 
						|
    if (!(Probability >= llvm::APFloat(0.0) &&
 | 
						|
          Probability <= llvm::APFloat(1.0))) {
 | 
						|
      Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
 | 
						|
          << ProbArg->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Builtin::BI__builtin_preserve_access_index:
 | 
						|
    if (SemaBuiltinPreserveAI(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_call_with_static_chain:
 | 
						|
    if (SemaBuiltinCallWithStaticChain(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__exception_code:
 | 
						|
  case Builtin::BI_exception_code:
 | 
						|
    if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
 | 
						|
                                 diag::err_seh___except_block))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__exception_info:
 | 
						|
  case Builtin::BI_exception_info:
 | 
						|
    if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
 | 
						|
                                 diag::err_seh___except_filter))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__GetExceptionInfo:
 | 
						|
    if (checkArgCount(*this, TheCall, 1))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (CheckCXXThrowOperand(
 | 
						|
            TheCall->getBeginLoc(),
 | 
						|
            Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
 | 
						|
            TheCall))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    TheCall->setType(Context.VoidPtrTy);
 | 
						|
    break;
 | 
						|
  // OpenCL v2.0, s6.13.16 - Pipe functions
 | 
						|
  case Builtin::BIread_pipe:
 | 
						|
  case Builtin::BIwrite_pipe:
 | 
						|
    // Since those two functions are declared with var args, we need a semantic
 | 
						|
    // check for the argument.
 | 
						|
    if (SemaBuiltinRWPipe(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BIreserve_read_pipe:
 | 
						|
  case Builtin::BIreserve_write_pipe:
 | 
						|
  case Builtin::BIwork_group_reserve_read_pipe:
 | 
						|
  case Builtin::BIwork_group_reserve_write_pipe:
 | 
						|
    if (SemaBuiltinReserveRWPipe(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BIsub_group_reserve_read_pipe:
 | 
						|
  case Builtin::BIsub_group_reserve_write_pipe:
 | 
						|
    if (checkOpenCLSubgroupExt(*this, TheCall) ||
 | 
						|
        SemaBuiltinReserveRWPipe(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BIcommit_read_pipe:
 | 
						|
  case Builtin::BIcommit_write_pipe:
 | 
						|
  case Builtin::BIwork_group_commit_read_pipe:
 | 
						|
  case Builtin::BIwork_group_commit_write_pipe:
 | 
						|
    if (SemaBuiltinCommitRWPipe(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BIsub_group_commit_read_pipe:
 | 
						|
  case Builtin::BIsub_group_commit_write_pipe:
 | 
						|
    if (checkOpenCLSubgroupExt(*this, TheCall) ||
 | 
						|
        SemaBuiltinCommitRWPipe(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BIget_pipe_num_packets:
 | 
						|
  case Builtin::BIget_pipe_max_packets:
 | 
						|
    if (SemaBuiltinPipePackets(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BIto_global:
 | 
						|
  case Builtin::BIto_local:
 | 
						|
  case Builtin::BIto_private:
 | 
						|
    if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
 | 
						|
  case Builtin::BIenqueue_kernel:
 | 
						|
    if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BIget_kernel_work_group_size:
 | 
						|
  case Builtin::BIget_kernel_preferred_work_group_size_multiple:
 | 
						|
    if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
 | 
						|
  case Builtin::BIget_kernel_sub_group_count_for_ndrange:
 | 
						|
    if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_os_log_format:
 | 
						|
    Cleanup.setExprNeedsCleanups(true);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case Builtin::BI__builtin_os_log_format_buffer_size:
 | 
						|
    if (SemaBuiltinOSLogFormat(TheCall))
 | 
						|
      return ExprError();
 | 
						|
    break;
 | 
						|
  case Builtin::BI__builtin_frame_address:
 | 
						|
  case Builtin::BI__builtin_return_address: {
 | 
						|
    if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // -Wframe-address warning if non-zero passed to builtin
 | 
						|
    // return/frame address.
 | 
						|
    Expr::EvalResult Result;
 | 
						|
    if (TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
 | 
						|
        Result.Val.getInt() != 0)
 | 
						|
      Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
 | 
						|
          << ((BuiltinID == Builtin::BI__builtin_return_address)
 | 
						|
                  ? "__builtin_return_address"
 | 
						|
                  : "__builtin_frame_address")
 | 
						|
          << TheCall->getSourceRange();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Builtin::BI__builtin_matrix_transpose:
 | 
						|
    return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
 | 
						|
 | 
						|
  case Builtin::BI__builtin_matrix_column_major_load:
 | 
						|
    return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
 | 
						|
 | 
						|
  case Builtin::BI__builtin_matrix_column_major_store:
 | 
						|
    return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
 | 
						|
  }
 | 
						|
 | 
						|
  // Since the target specific builtins for each arch overlap, only check those
 | 
						|
  // of the arch we are compiling for.
 | 
						|
  if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
 | 
						|
    if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
 | 
						|
      assert(Context.getAuxTargetInfo() &&
 | 
						|
             "Aux Target Builtin, but not an aux target?");
 | 
						|
 | 
						|
      if (CheckTSBuiltinFunctionCall(
 | 
						|
              *Context.getAuxTargetInfo(),
 | 
						|
              Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
 | 
						|
        return ExprError();
 | 
						|
    } else {
 | 
						|
      if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
 | 
						|
                                     TheCall))
 | 
						|
        return ExprError();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return TheCallResult;
 | 
						|
}
 | 
						|
 | 
						|
// Get the valid immediate range for the specified NEON type code.
 | 
						|
static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
 | 
						|
  NeonTypeFlags Type(t);
 | 
						|
  int IsQuad = ForceQuad ? true : Type.isQuad();
 | 
						|
  switch (Type.getEltType()) {
 | 
						|
  case NeonTypeFlags::Int8:
 | 
						|
  case NeonTypeFlags::Poly8:
 | 
						|
    return shift ? 7 : (8 << IsQuad) - 1;
 | 
						|
  case NeonTypeFlags::Int16:
 | 
						|
  case NeonTypeFlags::Poly16:
 | 
						|
    return shift ? 15 : (4 << IsQuad) - 1;
 | 
						|
  case NeonTypeFlags::Int32:
 | 
						|
    return shift ? 31 : (2 << IsQuad) - 1;
 | 
						|
  case NeonTypeFlags::Int64:
 | 
						|
  case NeonTypeFlags::Poly64:
 | 
						|
    return shift ? 63 : (1 << IsQuad) - 1;
 | 
						|
  case NeonTypeFlags::Poly128:
 | 
						|
    return shift ? 127 : (1 << IsQuad) - 1;
 | 
						|
  case NeonTypeFlags::Float16:
 | 
						|
    assert(!shift && "cannot shift float types!");
 | 
						|
    return (4 << IsQuad) - 1;
 | 
						|
  case NeonTypeFlags::Float32:
 | 
						|
    assert(!shift && "cannot shift float types!");
 | 
						|
    return (2 << IsQuad) - 1;
 | 
						|
  case NeonTypeFlags::Float64:
 | 
						|
    assert(!shift && "cannot shift float types!");
 | 
						|
    return (1 << IsQuad) - 1;
 | 
						|
  case NeonTypeFlags::BFloat16:
 | 
						|
    assert(!shift && "cannot shift float types!");
 | 
						|
    return (4 << IsQuad) - 1;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid NeonTypeFlag!");
 | 
						|
}
 | 
						|
 | 
						|
/// getNeonEltType - Return the QualType corresponding to the elements of
 | 
						|
/// the vector type specified by the NeonTypeFlags.  This is used to check
 | 
						|
/// the pointer arguments for Neon load/store intrinsics.
 | 
						|
static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
 | 
						|
                               bool IsPolyUnsigned, bool IsInt64Long) {
 | 
						|
  switch (Flags.getEltType()) {
 | 
						|
  case NeonTypeFlags::Int8:
 | 
						|
    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
 | 
						|
  case NeonTypeFlags::Int16:
 | 
						|
    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
 | 
						|
  case NeonTypeFlags::Int32:
 | 
						|
    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
 | 
						|
  case NeonTypeFlags::Int64:
 | 
						|
    if (IsInt64Long)
 | 
						|
      return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
 | 
						|
    else
 | 
						|
      return Flags.isUnsigned() ? Context.UnsignedLongLongTy
 | 
						|
                                : Context.LongLongTy;
 | 
						|
  case NeonTypeFlags::Poly8:
 | 
						|
    return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
 | 
						|
  case NeonTypeFlags::Poly16:
 | 
						|
    return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
 | 
						|
  case NeonTypeFlags::Poly64:
 | 
						|
    if (IsInt64Long)
 | 
						|
      return Context.UnsignedLongTy;
 | 
						|
    else
 | 
						|
      return Context.UnsignedLongLongTy;
 | 
						|
  case NeonTypeFlags::Poly128:
 | 
						|
    break;
 | 
						|
  case NeonTypeFlags::Float16:
 | 
						|
    return Context.HalfTy;
 | 
						|
  case NeonTypeFlags::Float32:
 | 
						|
    return Context.FloatTy;
 | 
						|
  case NeonTypeFlags::Float64:
 | 
						|
    return Context.DoubleTy;
 | 
						|
  case NeonTypeFlags::BFloat16:
 | 
						|
    return Context.BFloat16Ty;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid NeonTypeFlag!");
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | 
						|
  // Range check SVE intrinsics that take immediate values.
 | 
						|
  SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
 | 
						|
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
#define GET_SVE_IMMEDIATE_CHECK
 | 
						|
#include "clang/Basic/arm_sve_sema_rangechecks.inc"
 | 
						|
#undef GET_SVE_IMMEDIATE_CHECK
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform all the immediate checks for this builtin call.
 | 
						|
  bool HasError = false;
 | 
						|
  for (auto &I : ImmChecks) {
 | 
						|
    int ArgNum, CheckTy, ElementSizeInBits;
 | 
						|
    std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
 | 
						|
 | 
						|
    typedef bool(*OptionSetCheckFnTy)(int64_t Value);
 | 
						|
 | 
						|
    // Function that checks whether the operand (ArgNum) is an immediate
 | 
						|
    // that is one of the predefined values.
 | 
						|
    auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
 | 
						|
                                   int ErrDiag) -> bool {
 | 
						|
      // We can't check the value of a dependent argument.
 | 
						|
      Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
      if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Check constant-ness first.
 | 
						|
      llvm::APSInt Imm;
 | 
						|
      if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
 | 
						|
        return true;
 | 
						|
 | 
						|
      if (!CheckImm(Imm.getSExtValue()))
 | 
						|
        return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
 | 
						|
      return false;
 | 
						|
    };
 | 
						|
 | 
						|
    switch ((SVETypeFlags::ImmCheckType)CheckTy) {
 | 
						|
    case SVETypeFlags::ImmCheck0_31:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheck0_13:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheck1_16:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheck0_7:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheckExtract:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
 | 
						|
                                      (2048 / ElementSizeInBits) - 1))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheckShiftRight:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheckShiftRightNarrow:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
 | 
						|
                                      ElementSizeInBits / 2))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheckShiftLeft:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
 | 
						|
                                      ElementSizeInBits - 1))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheckLaneIndex:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
 | 
						|
                                      (128 / (1 * ElementSizeInBits)) - 1))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheckLaneIndexCompRotate:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
 | 
						|
                                      (128 / (2 * ElementSizeInBits)) - 1))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheckLaneIndexDot:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
 | 
						|
                                      (128 / (4 * ElementSizeInBits)) - 1))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheckComplexRot90_270:
 | 
						|
      if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
 | 
						|
                              diag::err_rotation_argument_to_cadd))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheckComplexRotAll90:
 | 
						|
      if (CheckImmediateInSet(
 | 
						|
              [](int64_t V) {
 | 
						|
                return V == 0 || V == 90 || V == 180 || V == 270;
 | 
						|
              },
 | 
						|
              diag::err_rotation_argument_to_cmla))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheck0_1:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheck0_2:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    case SVETypeFlags::ImmCheck0_3:
 | 
						|
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
 | 
						|
        HasError = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return HasError;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
 | 
						|
                                        unsigned BuiltinID, CallExpr *TheCall) {
 | 
						|
  llvm::APSInt Result;
 | 
						|
  uint64_t mask = 0;
 | 
						|
  unsigned TV = 0;
 | 
						|
  int PtrArgNum = -1;
 | 
						|
  bool HasConstPtr = false;
 | 
						|
  switch (BuiltinID) {
 | 
						|
#define GET_NEON_OVERLOAD_CHECK
 | 
						|
#include "clang/Basic/arm_neon.inc"
 | 
						|
#include "clang/Basic/arm_fp16.inc"
 | 
						|
#undef GET_NEON_OVERLOAD_CHECK
 | 
						|
  }
 | 
						|
 | 
						|
  // For NEON intrinsics which are overloaded on vector element type, validate
 | 
						|
  // the immediate which specifies which variant to emit.
 | 
						|
  unsigned ImmArg = TheCall->getNumArgs()-1;
 | 
						|
  if (mask) {
 | 
						|
    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
 | 
						|
      return true;
 | 
						|
 | 
						|
    TV = Result.getLimitedValue(64);
 | 
						|
    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
 | 
						|
             << TheCall->getArg(ImmArg)->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  if (PtrArgNum >= 0) {
 | 
						|
    // Check that pointer arguments have the specified type.
 | 
						|
    Expr *Arg = TheCall->getArg(PtrArgNum);
 | 
						|
    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
 | 
						|
      Arg = ICE->getSubExpr();
 | 
						|
    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
 | 
						|
    QualType RHSTy = RHS.get()->getType();
 | 
						|
 | 
						|
    llvm::Triple::ArchType Arch = TI.getTriple().getArch();
 | 
						|
    bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
 | 
						|
                          Arch == llvm::Triple::aarch64_32 ||
 | 
						|
                          Arch == llvm::Triple::aarch64_be;
 | 
						|
    bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
 | 
						|
    QualType EltTy =
 | 
						|
        getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
 | 
						|
    if (HasConstPtr)
 | 
						|
      EltTy = EltTy.withConst();
 | 
						|
    QualType LHSTy = Context.getPointerType(EltTy);
 | 
						|
    AssignConvertType ConvTy;
 | 
						|
    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
 | 
						|
    if (RHS.isInvalid())
 | 
						|
      return true;
 | 
						|
    if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
 | 
						|
                                 RHS.get(), AA_Assigning))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // For NEON intrinsics which take an immediate value as part of the
 | 
						|
  // instruction, range check them here.
 | 
						|
  unsigned i = 0, l = 0, u = 0;
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  #define GET_NEON_IMMEDIATE_CHECK
 | 
						|
  #include "clang/Basic/arm_neon.inc"
 | 
						|
  #include "clang/Basic/arm_fp16.inc"
 | 
						|
  #undef GET_NEON_IMMEDIATE_CHECK
 | 
						|
  }
 | 
						|
 | 
						|
  return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  #include "clang/Basic/arm_mve_builtin_sema.inc"
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
 | 
						|
                                       CallExpr *TheCall) {
 | 
						|
  bool Err = false;
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
#include "clang/Basic/arm_cde_builtin_sema.inc"
 | 
						|
  }
 | 
						|
 | 
						|
  if (Err)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
 | 
						|
                                        const Expr *CoprocArg, bool WantCDE) {
 | 
						|
  if (isConstantEvaluated())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can't check the value of a dependent argument.
 | 
						|
  if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
 | 
						|
  int64_t CoprocNo = CoprocNoAP.getExtValue();
 | 
						|
  assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
 | 
						|
 | 
						|
  uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
 | 
						|
  bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
 | 
						|
 | 
						|
  if (IsCDECoproc != WantCDE)
 | 
						|
    return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
 | 
						|
           << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
 | 
						|
                                        unsigned MaxWidth) {
 | 
						|
  assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
 | 
						|
          BuiltinID == ARM::BI__builtin_arm_ldaex ||
 | 
						|
          BuiltinID == ARM::BI__builtin_arm_strex ||
 | 
						|
          BuiltinID == ARM::BI__builtin_arm_stlex ||
 | 
						|
          BuiltinID == AArch64::BI__builtin_arm_ldrex ||
 | 
						|
          BuiltinID == AArch64::BI__builtin_arm_ldaex ||
 | 
						|
          BuiltinID == AArch64::BI__builtin_arm_strex ||
 | 
						|
          BuiltinID == AArch64::BI__builtin_arm_stlex) &&
 | 
						|
         "unexpected ARM builtin");
 | 
						|
  bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
 | 
						|
                 BuiltinID == ARM::BI__builtin_arm_ldaex ||
 | 
						|
                 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
 | 
						|
                 BuiltinID == AArch64::BI__builtin_arm_ldaex;
 | 
						|
 | 
						|
  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | 
						|
 | 
						|
  // Ensure that we have the proper number of arguments.
 | 
						|
  if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Inspect the pointer argument of the atomic builtin.  This should always be
 | 
						|
  // a pointer type, whose element is an integral scalar or pointer type.
 | 
						|
  // Because it is a pointer type, we don't have to worry about any implicit
 | 
						|
  // casts here.
 | 
						|
  Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
 | 
						|
  ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
 | 
						|
  if (PointerArgRes.isInvalid())
 | 
						|
    return true;
 | 
						|
  PointerArg = PointerArgRes.get();
 | 
						|
 | 
						|
  const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
 | 
						|
  if (!pointerType) {
 | 
						|
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
 | 
						|
        << PointerArg->getType() << PointerArg->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
 | 
						|
  // task is to insert the appropriate casts into the AST. First work out just
 | 
						|
  // what the appropriate type is.
 | 
						|
  QualType ValType = pointerType->getPointeeType();
 | 
						|
  QualType AddrType = ValType.getUnqualifiedType().withVolatile();
 | 
						|
  if (IsLdrex)
 | 
						|
    AddrType.addConst();
 | 
						|
 | 
						|
  // Issue a warning if the cast is dodgy.
 | 
						|
  CastKind CastNeeded = CK_NoOp;
 | 
						|
  if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
 | 
						|
    CastNeeded = CK_BitCast;
 | 
						|
    Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
 | 
						|
        << PointerArg->getType() << Context.getPointerType(AddrType)
 | 
						|
        << AA_Passing << PointerArg->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, do the cast and replace the argument with the corrected version.
 | 
						|
  AddrType = Context.getPointerType(AddrType);
 | 
						|
  PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
 | 
						|
  if (PointerArgRes.isInvalid())
 | 
						|
    return true;
 | 
						|
  PointerArg = PointerArgRes.get();
 | 
						|
 | 
						|
  TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
 | 
						|
 | 
						|
  // In general, we allow ints, floats and pointers to be loaded and stored.
 | 
						|
  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
 | 
						|
      !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
 | 
						|
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
 | 
						|
        << PointerArg->getType() << PointerArg->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // But ARM doesn't have instructions to deal with 128-bit versions.
 | 
						|
  if (Context.getTypeSize(ValType) > MaxWidth) {
 | 
						|
    assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
 | 
						|
    Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
 | 
						|
        << PointerArg->getType() << PointerArg->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (ValType.getObjCLifetime()) {
 | 
						|
  case Qualifiers::OCL_None:
 | 
						|
  case Qualifiers::OCL_ExplicitNone:
 | 
						|
    // okay
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_Weak:
 | 
						|
  case Qualifiers::OCL_Strong:
 | 
						|
  case Qualifiers::OCL_Autoreleasing:
 | 
						|
    Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
 | 
						|
        << ValType << PointerArg->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsLdrex) {
 | 
						|
    TheCall->setType(ValType);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize the argument to be stored.
 | 
						|
  ExprResult ValArg = TheCall->getArg(0);
 | 
						|
  InitializedEntity Entity = InitializedEntity::InitializeParameter(
 | 
						|
      Context, ValType, /*consume*/ false);
 | 
						|
  ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
 | 
						|
  if (ValArg.isInvalid())
 | 
						|
    return true;
 | 
						|
  TheCall->setArg(0, ValArg.get());
 | 
						|
 | 
						|
  // __builtin_arm_strex always returns an int. It's marked as such in the .def,
 | 
						|
  // but the custom checker bypasses all default analysis.
 | 
						|
  TheCall->setType(Context.IntTy);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
 | 
						|
                                       CallExpr *TheCall) {
 | 
						|
  if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
 | 
						|
      BuiltinID == ARM::BI__builtin_arm_ldaex ||
 | 
						|
      BuiltinID == ARM::BI__builtin_arm_strex ||
 | 
						|
      BuiltinID == ARM::BI__builtin_arm_stlex) {
 | 
						|
    return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
 | 
						|
      SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
 | 
						|
      BuiltinID == ARM::BI__builtin_arm_wsr64)
 | 
						|
    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
 | 
						|
 | 
						|
  if (BuiltinID == ARM::BI__builtin_arm_rsr ||
 | 
						|
      BuiltinID == ARM::BI__builtin_arm_rsrp ||
 | 
						|
      BuiltinID == ARM::BI__builtin_arm_wsr ||
 | 
						|
      BuiltinID == ARM::BI__builtin_arm_wsrp)
 | 
						|
    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
 | 
						|
 | 
						|
  if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
 | 
						|
    return true;
 | 
						|
  if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
 | 
						|
    return true;
 | 
						|
  if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // For intrinsics which take an immediate value as part of the instruction,
 | 
						|
  // range check them here.
 | 
						|
  // FIXME: VFP Intrinsics should error if VFP not present.
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default: return false;
 | 
						|
  case ARM::BI__builtin_arm_ssat:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
 | 
						|
  case ARM::BI__builtin_arm_usat:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
 | 
						|
  case ARM::BI__builtin_arm_ssat16:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
 | 
						|
  case ARM::BI__builtin_arm_usat16:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
 | 
						|
  case ARM::BI__builtin_arm_vcvtr_f:
 | 
						|
  case ARM::BI__builtin_arm_vcvtr_d:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
 | 
						|
  case ARM::BI__builtin_arm_dmb:
 | 
						|
  case ARM::BI__builtin_arm_dsb:
 | 
						|
  case ARM::BI__builtin_arm_isb:
 | 
						|
  case ARM::BI__builtin_arm_dbg:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
 | 
						|
  case ARM::BI__builtin_arm_cdp:
 | 
						|
  case ARM::BI__builtin_arm_cdp2:
 | 
						|
  case ARM::BI__builtin_arm_mcr:
 | 
						|
  case ARM::BI__builtin_arm_mcr2:
 | 
						|
  case ARM::BI__builtin_arm_mrc:
 | 
						|
  case ARM::BI__builtin_arm_mrc2:
 | 
						|
  case ARM::BI__builtin_arm_mcrr:
 | 
						|
  case ARM::BI__builtin_arm_mcrr2:
 | 
						|
  case ARM::BI__builtin_arm_mrrc:
 | 
						|
  case ARM::BI__builtin_arm_mrrc2:
 | 
						|
  case ARM::BI__builtin_arm_ldc:
 | 
						|
  case ARM::BI__builtin_arm_ldcl:
 | 
						|
  case ARM::BI__builtin_arm_ldc2:
 | 
						|
  case ARM::BI__builtin_arm_ldc2l:
 | 
						|
  case ARM::BI__builtin_arm_stc:
 | 
						|
  case ARM::BI__builtin_arm_stcl:
 | 
						|
  case ARM::BI__builtin_arm_stc2:
 | 
						|
  case ARM::BI__builtin_arm_stc2l:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
 | 
						|
           CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
 | 
						|
                                        /*WantCDE*/ false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
 | 
						|
                                           unsigned BuiltinID,
 | 
						|
                                           CallExpr *TheCall) {
 | 
						|
  if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_ldaex ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_strex ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_stlex) {
 | 
						|
    return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
 | 
						|
      SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
 | 
						|
      SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
 | 
						|
      SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_wsr64)
 | 
						|
    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
 | 
						|
 | 
						|
  // Memory Tagging Extensions (MTE) Intrinsics
 | 
						|
  if (BuiltinID == AArch64::BI__builtin_arm_irg ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_addg ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_gmi ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_ldg ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_stg ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_subp) {
 | 
						|
    return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_rsrp ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_wsr ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_wsrp)
 | 
						|
    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
 | 
						|
 | 
						|
  // Only check the valid encoding range. Any constant in this range would be
 | 
						|
  // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
 | 
						|
  // an exception for incorrect registers. This matches MSVC behavior.
 | 
						|
  if (BuiltinID == AArch64::BI_ReadStatusReg ||
 | 
						|
      BuiltinID == AArch64::BI_WriteStatusReg)
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
 | 
						|
 | 
						|
  if (BuiltinID == AArch64::BI__getReg)
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
 | 
						|
 | 
						|
  if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // For intrinsics which take an immediate value as part of the instruction,
 | 
						|
  // range check them here.
 | 
						|
  unsigned i = 0, l = 0, u = 0;
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default: return false;
 | 
						|
  case AArch64::BI__builtin_arm_dmb:
 | 
						|
  case AArch64::BI__builtin_arm_dsb:
 | 
						|
  case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
 | 
						|
  case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
 | 
						|
  }
 | 
						|
 | 
						|
  return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
 | 
						|
}
 | 
						|
 | 
						|
static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
 | 
						|
  if (Arg->getType()->getAsPlaceholderType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The first argument needs to be a record field access.
 | 
						|
  // If it is an array element access, we delay decision
 | 
						|
  // to BPF backend to check whether the access is a
 | 
						|
  // field access or not.
 | 
						|
  return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
 | 
						|
          dyn_cast<MemberExpr>(Arg->IgnoreParens()) ||
 | 
						|
          dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()));
 | 
						|
}
 | 
						|
 | 
						|
static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
 | 
						|
                            QualType VectorTy, QualType EltTy) {
 | 
						|
  QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
 | 
						|
  if (!Context.hasSameType(VectorEltTy, EltTy)) {
 | 
						|
    S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
 | 
						|
        << Call->getSourceRange() << VectorEltTy << EltTy;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
 | 
						|
  QualType ArgType = Arg->getType();
 | 
						|
  if (ArgType->getAsPlaceholderType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
 | 
						|
  // format:
 | 
						|
  //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
 | 
						|
  //   2. <type> var;
 | 
						|
  //      __builtin_preserve_type_info(var, flag);
 | 
						|
  if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) &&
 | 
						|
      !dyn_cast<UnaryOperator>(Arg->IgnoreParens()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Typedef type.
 | 
						|
  if (ArgType->getAs<TypedefType>())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Record type or Enum type.
 | 
						|
  const Type *Ty = ArgType->getUnqualifiedDesugaredType();
 | 
						|
  if (const auto *RT = Ty->getAs<RecordType>()) {
 | 
						|
    if (!RT->getDecl()->getDeclName().isEmpty())
 | 
						|
      return true;
 | 
						|
  } else if (const auto *ET = Ty->getAs<EnumType>()) {
 | 
						|
    if (!ET->getDecl()->getDeclName().isEmpty())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
 | 
						|
  QualType ArgType = Arg->getType();
 | 
						|
  if (ArgType->getAsPlaceholderType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
 | 
						|
  // format:
 | 
						|
  //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
 | 
						|
  //                                 flag);
 | 
						|
  const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
 | 
						|
  if (!UO)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
 | 
						|
  if (!CE || CE->getCastKind() != CK_IntegralToPointer)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The integer must be from an EnumConstantDecl.
 | 
						|
  const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
 | 
						|
  if (!DR)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const EnumConstantDecl *Enumerator =
 | 
						|
      dyn_cast<EnumConstantDecl>(DR->getDecl());
 | 
						|
  if (!Enumerator)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The type must be EnumType.
 | 
						|
  const Type *Ty = ArgType->getUnqualifiedDesugaredType();
 | 
						|
  const auto *ET = Ty->getAs<EnumType>();
 | 
						|
  if (!ET)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The enum value must be supported.
 | 
						|
  for (auto *EDI : ET->getDecl()->enumerators()) {
 | 
						|
    if (EDI == Enumerator)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
 | 
						|
                                       CallExpr *TheCall) {
 | 
						|
  assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
 | 
						|
          BuiltinID == BPF::BI__builtin_btf_type_id ||
 | 
						|
          BuiltinID == BPF::BI__builtin_preserve_type_info ||
 | 
						|
          BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
 | 
						|
         "unexpected BPF builtin");
 | 
						|
 | 
						|
  if (checkArgCount(*this, TheCall, 2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The second argument needs to be a constant int
 | 
						|
  Expr *Arg = TheCall->getArg(1);
 | 
						|
  Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
 | 
						|
  diag::kind kind;
 | 
						|
  if (!Value) {
 | 
						|
    if (BuiltinID == BPF::BI__builtin_preserve_field_info)
 | 
						|
      kind = diag::err_preserve_field_info_not_const;
 | 
						|
    else if (BuiltinID == BPF::BI__builtin_btf_type_id)
 | 
						|
      kind = diag::err_btf_type_id_not_const;
 | 
						|
    else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
 | 
						|
      kind = diag::err_preserve_type_info_not_const;
 | 
						|
    else
 | 
						|
      kind = diag::err_preserve_enum_value_not_const;
 | 
						|
    Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // The first argument
 | 
						|
  Arg = TheCall->getArg(0);
 | 
						|
  bool InvalidArg = false;
 | 
						|
  bool ReturnUnsignedInt = true;
 | 
						|
  if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
 | 
						|
    if (!isValidBPFPreserveFieldInfoArg(Arg)) {
 | 
						|
      InvalidArg = true;
 | 
						|
      kind = diag::err_preserve_field_info_not_field;
 | 
						|
    }
 | 
						|
  } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
 | 
						|
    if (!isValidBPFPreserveTypeInfoArg(Arg)) {
 | 
						|
      InvalidArg = true;
 | 
						|
      kind = diag::err_preserve_type_info_invalid;
 | 
						|
    }
 | 
						|
  } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
 | 
						|
    if (!isValidBPFPreserveEnumValueArg(Arg)) {
 | 
						|
      InvalidArg = true;
 | 
						|
      kind = diag::err_preserve_enum_value_invalid;
 | 
						|
    }
 | 
						|
    ReturnUnsignedInt = false;
 | 
						|
  } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
 | 
						|
    ReturnUnsignedInt = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (InvalidArg) {
 | 
						|
    Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ReturnUnsignedInt)
 | 
						|
    TheCall->setType(Context.UnsignedIntTy);
 | 
						|
  else
 | 
						|
    TheCall->setType(Context.UnsignedLongTy);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
 | 
						|
  struct ArgInfo {
 | 
						|
    uint8_t OpNum;
 | 
						|
    bool IsSigned;
 | 
						|
    uint8_t BitWidth;
 | 
						|
    uint8_t Align;
 | 
						|
  };
 | 
						|
  struct BuiltinInfo {
 | 
						|
    unsigned BuiltinID;
 | 
						|
    ArgInfo Infos[2];
 | 
						|
  };
 | 
						|
 | 
						|
  static BuiltinInfo Infos[] = {
 | 
						|
    { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
 | 
						|
    { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
 | 
						|
    { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
 | 
						|
    { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
 | 
						|
    { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
 | 
						|
    { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
 | 
						|
    { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
 | 
						|
    { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
 | 
						|
    { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
 | 
						|
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
 | 
						|
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
 | 
						|
                                                      {{ 1, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
 | 
						|
                                                      {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
 | 
						|
                                                       { 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
 | 
						|
                                                       { 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
 | 
						|
                                                       { 3, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
 | 
						|
                                                       { 3, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
 | 
						|
                                                      {{ 2, false, 4,  0 },
 | 
						|
                                                       { 3, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
 | 
						|
                                                      {{ 2, false, 4,  0 },
 | 
						|
                                                       { 3, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
 | 
						|
                                                      {{ 2, false, 4,  0 },
 | 
						|
                                                       { 3, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
 | 
						|
                                                      {{ 2, false, 4,  0 },
 | 
						|
                                                       { 3, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
 | 
						|
                                                       { 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
 | 
						|
                                                       { 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
 | 
						|
                                                      {{ 1, false, 4,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
 | 
						|
                                                      {{ 1, false, 4,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
 | 
						|
                                                      {{ 3, false, 1,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
 | 
						|
                                                      {{ 3, false, 1,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
 | 
						|
    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
 | 
						|
                                                      {{ 3, false, 1,  0 }} },
 | 
						|
  };
 | 
						|
 | 
						|
  // Use a dynamically initialized static to sort the table exactly once on
 | 
						|
  // first run.
 | 
						|
  static const bool SortOnce =
 | 
						|
      (llvm::sort(Infos,
 | 
						|
                 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
 | 
						|
                   return LHS.BuiltinID < RHS.BuiltinID;
 | 
						|
                 }),
 | 
						|
       true);
 | 
						|
  (void)SortOnce;
 | 
						|
 | 
						|
  const BuiltinInfo *F = llvm::partition_point(
 | 
						|
      Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
 | 
						|
  if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Error = false;
 | 
						|
 | 
						|
  for (const ArgInfo &A : F->Infos) {
 | 
						|
    // Ignore empty ArgInfo elements.
 | 
						|
    if (A.BitWidth == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
 | 
						|
    int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
 | 
						|
    if (!A.Align) {
 | 
						|
      Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
 | 
						|
    } else {
 | 
						|
      unsigned M = 1 << A.Align;
 | 
						|
      Min *= M;
 | 
						|
      Max *= M;
 | 
						|
      Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
 | 
						|
               SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Error;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
 | 
						|
                                           CallExpr *TheCall) {
 | 
						|
  return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
 | 
						|
                                        unsigned BuiltinID, CallExpr *TheCall) {
 | 
						|
  return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
 | 
						|
         CheckMipsBuiltinArgument(BuiltinID, TheCall);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
 | 
						|
                               CallExpr *TheCall) {
 | 
						|
 | 
						|
  if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
 | 
						|
      BuiltinID <= Mips::BI__builtin_mips_lwx) {
 | 
						|
    if (!TI.hasFeature("dsp"))
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
 | 
						|
      BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
 | 
						|
    if (!TI.hasFeature("dspr2"))
 | 
						|
      return Diag(TheCall->getBeginLoc(),
 | 
						|
                  diag::err_mips_builtin_requires_dspr2);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
 | 
						|
      BuiltinID <= Mips::BI__builtin_msa_xori_b) {
 | 
						|
    if (!TI.hasFeature("msa"))
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// CheckMipsBuiltinArgument - Checks the constant value passed to the
 | 
						|
// intrinsic is correct. The switch statement is ordered by DSP, MSA. The
 | 
						|
// ordering for DSP is unspecified. MSA is ordered by the data format used
 | 
						|
// by the underlying instruction i.e., df/m, df/n and then by size.
 | 
						|
//
 | 
						|
// FIXME: The size tests here should instead be tablegen'd along with the
 | 
						|
//        definitions from include/clang/Basic/BuiltinsMips.def.
 | 
						|
// FIXME: GCC is strict on signedness for some of these intrinsics, we should
 | 
						|
//        be too.
 | 
						|
bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
 | 
						|
  unsigned i = 0, l = 0, u = 0, m = 0;
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default: return false;
 | 
						|
  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
 | 
						|
  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
 | 
						|
  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
 | 
						|
  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
 | 
						|
  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
 | 
						|
  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
 | 
						|
  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
 | 
						|
  // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
 | 
						|
  // df/m field.
 | 
						|
  // These intrinsics take an unsigned 3 bit immediate.
 | 
						|
  case Mips::BI__builtin_msa_bclri_b:
 | 
						|
  case Mips::BI__builtin_msa_bnegi_b:
 | 
						|
  case Mips::BI__builtin_msa_bseti_b:
 | 
						|
  case Mips::BI__builtin_msa_sat_s_b:
 | 
						|
  case Mips::BI__builtin_msa_sat_u_b:
 | 
						|
  case Mips::BI__builtin_msa_slli_b:
 | 
						|
  case Mips::BI__builtin_msa_srai_b:
 | 
						|
  case Mips::BI__builtin_msa_srari_b:
 | 
						|
  case Mips::BI__builtin_msa_srli_b:
 | 
						|
  case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
 | 
						|
  case Mips::BI__builtin_msa_binsli_b:
 | 
						|
  case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
 | 
						|
  // These intrinsics take an unsigned 4 bit immediate.
 | 
						|
  case Mips::BI__builtin_msa_bclri_h:
 | 
						|
  case Mips::BI__builtin_msa_bnegi_h:
 | 
						|
  case Mips::BI__builtin_msa_bseti_h:
 | 
						|
  case Mips::BI__builtin_msa_sat_s_h:
 | 
						|
  case Mips::BI__builtin_msa_sat_u_h:
 | 
						|
  case Mips::BI__builtin_msa_slli_h:
 | 
						|
  case Mips::BI__builtin_msa_srai_h:
 | 
						|
  case Mips::BI__builtin_msa_srari_h:
 | 
						|
  case Mips::BI__builtin_msa_srli_h:
 | 
						|
  case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
 | 
						|
  case Mips::BI__builtin_msa_binsli_h:
 | 
						|
  case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
 | 
						|
  // These intrinsics take an unsigned 5 bit immediate.
 | 
						|
  // The first block of intrinsics actually have an unsigned 5 bit field,
 | 
						|
  // not a df/n field.
 | 
						|
  case Mips::BI__builtin_msa_cfcmsa:
 | 
						|
  case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
 | 
						|
  case Mips::BI__builtin_msa_clei_u_b:
 | 
						|
  case Mips::BI__builtin_msa_clei_u_h:
 | 
						|
  case Mips::BI__builtin_msa_clei_u_w:
 | 
						|
  case Mips::BI__builtin_msa_clei_u_d:
 | 
						|
  case Mips::BI__builtin_msa_clti_u_b:
 | 
						|
  case Mips::BI__builtin_msa_clti_u_h:
 | 
						|
  case Mips::BI__builtin_msa_clti_u_w:
 | 
						|
  case Mips::BI__builtin_msa_clti_u_d:
 | 
						|
  case Mips::BI__builtin_msa_maxi_u_b:
 | 
						|
  case Mips::BI__builtin_msa_maxi_u_h:
 | 
						|
  case Mips::BI__builtin_msa_maxi_u_w:
 | 
						|
  case Mips::BI__builtin_msa_maxi_u_d:
 | 
						|
  case Mips::BI__builtin_msa_mini_u_b:
 | 
						|
  case Mips::BI__builtin_msa_mini_u_h:
 | 
						|
  case Mips::BI__builtin_msa_mini_u_w:
 | 
						|
  case Mips::BI__builtin_msa_mini_u_d:
 | 
						|
  case Mips::BI__builtin_msa_addvi_b:
 | 
						|
  case Mips::BI__builtin_msa_addvi_h:
 | 
						|
  case Mips::BI__builtin_msa_addvi_w:
 | 
						|
  case Mips::BI__builtin_msa_addvi_d:
 | 
						|
  case Mips::BI__builtin_msa_bclri_w:
 | 
						|
  case Mips::BI__builtin_msa_bnegi_w:
 | 
						|
  case Mips::BI__builtin_msa_bseti_w:
 | 
						|
  case Mips::BI__builtin_msa_sat_s_w:
 | 
						|
  case Mips::BI__builtin_msa_sat_u_w:
 | 
						|
  case Mips::BI__builtin_msa_slli_w:
 | 
						|
  case Mips::BI__builtin_msa_srai_w:
 | 
						|
  case Mips::BI__builtin_msa_srari_w:
 | 
						|
  case Mips::BI__builtin_msa_srli_w:
 | 
						|
  case Mips::BI__builtin_msa_srlri_w:
 | 
						|
  case Mips::BI__builtin_msa_subvi_b:
 | 
						|
  case Mips::BI__builtin_msa_subvi_h:
 | 
						|
  case Mips::BI__builtin_msa_subvi_w:
 | 
						|
  case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
 | 
						|
  case Mips::BI__builtin_msa_binsli_w:
 | 
						|
  case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
 | 
						|
  // These intrinsics take an unsigned 6 bit immediate.
 | 
						|
  case Mips::BI__builtin_msa_bclri_d:
 | 
						|
  case Mips::BI__builtin_msa_bnegi_d:
 | 
						|
  case Mips::BI__builtin_msa_bseti_d:
 | 
						|
  case Mips::BI__builtin_msa_sat_s_d:
 | 
						|
  case Mips::BI__builtin_msa_sat_u_d:
 | 
						|
  case Mips::BI__builtin_msa_slli_d:
 | 
						|
  case Mips::BI__builtin_msa_srai_d:
 | 
						|
  case Mips::BI__builtin_msa_srari_d:
 | 
						|
  case Mips::BI__builtin_msa_srli_d:
 | 
						|
  case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
 | 
						|
  case Mips::BI__builtin_msa_binsli_d:
 | 
						|
  case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
 | 
						|
  // These intrinsics take a signed 5 bit immediate.
 | 
						|
  case Mips::BI__builtin_msa_ceqi_b:
 | 
						|
  case Mips::BI__builtin_msa_ceqi_h:
 | 
						|
  case Mips::BI__builtin_msa_ceqi_w:
 | 
						|
  case Mips::BI__builtin_msa_ceqi_d:
 | 
						|
  case Mips::BI__builtin_msa_clti_s_b:
 | 
						|
  case Mips::BI__builtin_msa_clti_s_h:
 | 
						|
  case Mips::BI__builtin_msa_clti_s_w:
 | 
						|
  case Mips::BI__builtin_msa_clti_s_d:
 | 
						|
  case Mips::BI__builtin_msa_clei_s_b:
 | 
						|
  case Mips::BI__builtin_msa_clei_s_h:
 | 
						|
  case Mips::BI__builtin_msa_clei_s_w:
 | 
						|
  case Mips::BI__builtin_msa_clei_s_d:
 | 
						|
  case Mips::BI__builtin_msa_maxi_s_b:
 | 
						|
  case Mips::BI__builtin_msa_maxi_s_h:
 | 
						|
  case Mips::BI__builtin_msa_maxi_s_w:
 | 
						|
  case Mips::BI__builtin_msa_maxi_s_d:
 | 
						|
  case Mips::BI__builtin_msa_mini_s_b:
 | 
						|
  case Mips::BI__builtin_msa_mini_s_h:
 | 
						|
  case Mips::BI__builtin_msa_mini_s_w:
 | 
						|
  case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
 | 
						|
  // These intrinsics take an unsigned 8 bit immediate.
 | 
						|
  case Mips::BI__builtin_msa_andi_b:
 | 
						|
  case Mips::BI__builtin_msa_nori_b:
 | 
						|
  case Mips::BI__builtin_msa_ori_b:
 | 
						|
  case Mips::BI__builtin_msa_shf_b:
 | 
						|
  case Mips::BI__builtin_msa_shf_h:
 | 
						|
  case Mips::BI__builtin_msa_shf_w:
 | 
						|
  case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
 | 
						|
  case Mips::BI__builtin_msa_bseli_b:
 | 
						|
  case Mips::BI__builtin_msa_bmnzi_b:
 | 
						|
  case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
 | 
						|
  // df/n format
 | 
						|
  // These intrinsics take an unsigned 4 bit immediate.
 | 
						|
  case Mips::BI__builtin_msa_copy_s_b:
 | 
						|
  case Mips::BI__builtin_msa_copy_u_b:
 | 
						|
  case Mips::BI__builtin_msa_insve_b:
 | 
						|
  case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
 | 
						|
  case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
 | 
						|
  // These intrinsics take an unsigned 3 bit immediate.
 | 
						|
  case Mips::BI__builtin_msa_copy_s_h:
 | 
						|
  case Mips::BI__builtin_msa_copy_u_h:
 | 
						|
  case Mips::BI__builtin_msa_insve_h:
 | 
						|
  case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
 | 
						|
  case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
 | 
						|
  // These intrinsics take an unsigned 2 bit immediate.
 | 
						|
  case Mips::BI__builtin_msa_copy_s_w:
 | 
						|
  case Mips::BI__builtin_msa_copy_u_w:
 | 
						|
  case Mips::BI__builtin_msa_insve_w:
 | 
						|
  case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
 | 
						|
  case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
 | 
						|
  // These intrinsics take an unsigned 1 bit immediate.
 | 
						|
  case Mips::BI__builtin_msa_copy_s_d:
 | 
						|
  case Mips::BI__builtin_msa_copy_u_d:
 | 
						|
  case Mips::BI__builtin_msa_insve_d:
 | 
						|
  case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
 | 
						|
  case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
 | 
						|
  // Memory offsets and immediate loads.
 | 
						|
  // These intrinsics take a signed 10 bit immediate.
 | 
						|
  case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
 | 
						|
  case Mips::BI__builtin_msa_ldi_h:
 | 
						|
  case Mips::BI__builtin_msa_ldi_w:
 | 
						|
  case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
 | 
						|
  case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
 | 
						|
  case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
 | 
						|
  case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
 | 
						|
  case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
 | 
						|
  case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
 | 
						|
  case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
 | 
						|
  case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
 | 
						|
  case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
 | 
						|
  case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
 | 
						|
  case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
 | 
						|
  case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
 | 
						|
  case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!m)
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, i, l, u);
 | 
						|
 | 
						|
  return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
 | 
						|
         SemaBuiltinConstantArgMultiple(TheCall, i, m);
 | 
						|
}
 | 
						|
 | 
						|
/// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
 | 
						|
/// advancing the pointer over the consumed characters. The decoded type is
 | 
						|
/// returned. If the decoded type represents a constant integer with a
 | 
						|
/// constraint on its value then Mask is set to that value. The type descriptors
 | 
						|
/// used in Str are specific to PPC MMA builtins and are documented in the file
 | 
						|
/// defining the PPC builtins.
 | 
						|
static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
 | 
						|
                                        unsigned &Mask) {
 | 
						|
  bool RequireICE = false;
 | 
						|
  ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
 | 
						|
  switch (*Str++) {
 | 
						|
  case 'V':
 | 
						|
    return Context.getVectorType(Context.UnsignedCharTy, 16,
 | 
						|
                                 VectorType::VectorKind::AltiVecVector);
 | 
						|
  case 'i': {
 | 
						|
    char *End;
 | 
						|
    unsigned size = strtoul(Str, &End, 10);
 | 
						|
    assert(End != Str && "Missing constant parameter constraint");
 | 
						|
    Str = End;
 | 
						|
    Mask = size;
 | 
						|
    return Context.IntTy;
 | 
						|
  }
 | 
						|
  case 'W': {
 | 
						|
    char *End;
 | 
						|
    unsigned size = strtoul(Str, &End, 10);
 | 
						|
    assert(End != Str && "Missing PowerPC MMA type size");
 | 
						|
    Str = End;
 | 
						|
    QualType Type;
 | 
						|
    switch (size) {
 | 
						|
  #define PPC_VECTOR_TYPE(typeName, Id, size) \
 | 
						|
    case size: Type = Context.Id##Ty; break;
 | 
						|
  #include "clang/Basic/PPCTypes.def"
 | 
						|
    default: llvm_unreachable("Invalid PowerPC MMA vector type");
 | 
						|
    }
 | 
						|
    bool CheckVectorArgs = false;
 | 
						|
    while (!CheckVectorArgs) {
 | 
						|
      switch (*Str++) {
 | 
						|
      case '*':
 | 
						|
        Type = Context.getPointerType(Type);
 | 
						|
        break;
 | 
						|
      case 'C':
 | 
						|
        Type = Type.withConst();
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        CheckVectorArgs = true;
 | 
						|
        --Str;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return Type;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
 | 
						|
                                       CallExpr *TheCall) {
 | 
						|
  unsigned i = 0, l = 0, u = 0;
 | 
						|
  bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
 | 
						|
                      BuiltinID == PPC::BI__builtin_divdeu ||
 | 
						|
                      BuiltinID == PPC::BI__builtin_bpermd;
 | 
						|
  bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
 | 
						|
  bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
 | 
						|
                       BuiltinID == PPC::BI__builtin_divweu ||
 | 
						|
                       BuiltinID == PPC::BI__builtin_divde ||
 | 
						|
                       BuiltinID == PPC::BI__builtin_divdeu;
 | 
						|
 | 
						|
  if (Is64BitBltin && !IsTarget64Bit)
 | 
						|
    return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
 | 
						|
           << TheCall->getSourceRange();
 | 
						|
 | 
						|
  if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) ||
 | 
						|
      (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd")))
 | 
						|
    return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
 | 
						|
           << TheCall->getSourceRange();
 | 
						|
 | 
						|
  auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
 | 
						|
    if (!TI.hasFeature("vsx"))
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
 | 
						|
             << TheCall->getSourceRange();
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default: return false;
 | 
						|
  case PPC::BI__builtin_altivec_crypto_vshasigmaw:
 | 
						|
  case PPC::BI__builtin_altivec_crypto_vshasigmad:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
 | 
						|
           SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
 | 
						|
  case PPC::BI__builtin_altivec_dss:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
 | 
						|
  case PPC::BI__builtin_tbegin:
 | 
						|
  case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
 | 
						|
  case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
 | 
						|
  case PPC::BI__builtin_tabortwc:
 | 
						|
  case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
 | 
						|
  case PPC::BI__builtin_tabortwci:
 | 
						|
  case PPC::BI__builtin_tabortdci:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
 | 
						|
           SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
 | 
						|
  case PPC::BI__builtin_altivec_dst:
 | 
						|
  case PPC::BI__builtin_altivec_dstt:
 | 
						|
  case PPC::BI__builtin_altivec_dstst:
 | 
						|
  case PPC::BI__builtin_altivec_dststt:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
 | 
						|
  case PPC::BI__builtin_vsx_xxpermdi:
 | 
						|
  case PPC::BI__builtin_vsx_xxsldwi:
 | 
						|
    return SemaBuiltinVSX(TheCall);
 | 
						|
  case PPC::BI__builtin_unpack_vector_int128:
 | 
						|
    return SemaVSXCheck(TheCall) ||
 | 
						|
           SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
 | 
						|
  case PPC::BI__builtin_pack_vector_int128:
 | 
						|
    return SemaVSXCheck(TheCall);
 | 
						|
  case PPC::BI__builtin_altivec_vgnb:
 | 
						|
     return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
 | 
						|
  case PPC::BI__builtin_altivec_vec_replace_elt:
 | 
						|
  case PPC::BI__builtin_altivec_vec_replace_unaligned: {
 | 
						|
    QualType VecTy = TheCall->getArg(0)->getType();
 | 
						|
    QualType EltTy = TheCall->getArg(1)->getType();
 | 
						|
    unsigned Width = Context.getIntWidth(EltTy);
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
 | 
						|
           !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
 | 
						|
  }
 | 
						|
  case PPC::BI__builtin_vsx_xxeval:
 | 
						|
     return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
 | 
						|
  case PPC::BI__builtin_altivec_vsldbi:
 | 
						|
     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
 | 
						|
  case PPC::BI__builtin_altivec_vsrdbi:
 | 
						|
     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
 | 
						|
  case PPC::BI__builtin_vsx_xxpermx:
 | 
						|
     return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
 | 
						|
#define CUSTOM_BUILTIN(Name, Types, Acc) \
 | 
						|
  case PPC::BI__builtin_##Name: \
 | 
						|
    return SemaBuiltinPPCMMACall(TheCall, Types);
 | 
						|
#include "clang/Basic/BuiltinsPPC.def"
 | 
						|
  }
 | 
						|
  return SemaBuiltinConstantArgRange(TheCall, i, l, u);
 | 
						|
}
 | 
						|
 | 
						|
// Check if the given type is a non-pointer PPC MMA type. This function is used
 | 
						|
// in Sema to prevent invalid uses of restricted PPC MMA types.
 | 
						|
bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
 | 
						|
  if (Type->isPointerType() || Type->isArrayType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
 | 
						|
#define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
 | 
						|
  if (false
 | 
						|
#include "clang/Basic/PPCTypes.def"
 | 
						|
     ) {
 | 
						|
    Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
 | 
						|
                                          CallExpr *TheCall) {
 | 
						|
  // position of memory order and scope arguments in the builtin
 | 
						|
  unsigned OrderIndex, ScopeIndex;
 | 
						|
  switch (BuiltinID) {
 | 
						|
  case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
 | 
						|
  case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
 | 
						|
  case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
 | 
						|
  case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
 | 
						|
    OrderIndex = 2;
 | 
						|
    ScopeIndex = 3;
 | 
						|
    break;
 | 
						|
  case AMDGPU::BI__builtin_amdgcn_fence:
 | 
						|
    OrderIndex = 0;
 | 
						|
    ScopeIndex = 1;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult Arg = TheCall->getArg(OrderIndex);
 | 
						|
  auto ArgExpr = Arg.get();
 | 
						|
  Expr::EvalResult ArgResult;
 | 
						|
 | 
						|
  if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
 | 
						|
    return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
 | 
						|
           << ArgExpr->getType();
 | 
						|
  int ord = ArgResult.Val.getInt().getZExtValue();
 | 
						|
 | 
						|
  // Check valididty of memory ordering as per C11 / C++11's memody model.
 | 
						|
  switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
 | 
						|
  case llvm::AtomicOrderingCABI::acquire:
 | 
						|
  case llvm::AtomicOrderingCABI::release:
 | 
						|
  case llvm::AtomicOrderingCABI::acq_rel:
 | 
						|
  case llvm::AtomicOrderingCABI::seq_cst:
 | 
						|
    break;
 | 
						|
  default: {
 | 
						|
    return Diag(ArgExpr->getBeginLoc(),
 | 
						|
                diag::warn_atomic_op_has_invalid_memory_order)
 | 
						|
           << ArgExpr->getSourceRange();
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  Arg = TheCall->getArg(ScopeIndex);
 | 
						|
  ArgExpr = Arg.get();
 | 
						|
  Expr::EvalResult ArgResult1;
 | 
						|
  // Check that sync scope is a constant literal
 | 
						|
  if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
 | 
						|
    return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
 | 
						|
           << ArgExpr->getType();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
 | 
						|
                                           CallExpr *TheCall) {
 | 
						|
  if (BuiltinID == SystemZ::BI__builtin_tabort) {
 | 
						|
    Expr *Arg = TheCall->getArg(0);
 | 
						|
    if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
 | 
						|
      if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
 | 
						|
        return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
 | 
						|
               << Arg->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  // For intrinsics which take an immediate value as part of the instruction,
 | 
						|
  // range check them here.
 | 
						|
  unsigned i = 0, l = 0, u = 0;
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default: return false;
 | 
						|
  case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
 | 
						|
  case SystemZ::BI__builtin_s390_verimb:
 | 
						|
  case SystemZ::BI__builtin_s390_verimh:
 | 
						|
  case SystemZ::BI__builtin_s390_verimf:
 | 
						|
  case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
 | 
						|
  case SystemZ::BI__builtin_s390_vfaeb:
 | 
						|
  case SystemZ::BI__builtin_s390_vfaeh:
 | 
						|
  case SystemZ::BI__builtin_s390_vfaef:
 | 
						|
  case SystemZ::BI__builtin_s390_vfaebs:
 | 
						|
  case SystemZ::BI__builtin_s390_vfaehs:
 | 
						|
  case SystemZ::BI__builtin_s390_vfaefs:
 | 
						|
  case SystemZ::BI__builtin_s390_vfaezb:
 | 
						|
  case SystemZ::BI__builtin_s390_vfaezh:
 | 
						|
  case SystemZ::BI__builtin_s390_vfaezf:
 | 
						|
  case SystemZ::BI__builtin_s390_vfaezbs:
 | 
						|
  case SystemZ::BI__builtin_s390_vfaezhs:
 | 
						|
  case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
 | 
						|
  case SystemZ::BI__builtin_s390_vfisb:
 | 
						|
  case SystemZ::BI__builtin_s390_vfidb:
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
 | 
						|
           SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
 | 
						|
  case SystemZ::BI__builtin_s390_vftcisb:
 | 
						|
  case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
 | 
						|
  case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
 | 
						|
  case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
 | 
						|
  case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
 | 
						|
  case SystemZ::BI__builtin_s390_vstrcb:
 | 
						|
  case SystemZ::BI__builtin_s390_vstrch:
 | 
						|
  case SystemZ::BI__builtin_s390_vstrcf:
 | 
						|
  case SystemZ::BI__builtin_s390_vstrczb:
 | 
						|
  case SystemZ::BI__builtin_s390_vstrczh:
 | 
						|
  case SystemZ::BI__builtin_s390_vstrczf:
 | 
						|
  case SystemZ::BI__builtin_s390_vstrcbs:
 | 
						|
  case SystemZ::BI__builtin_s390_vstrchs:
 | 
						|
  case SystemZ::BI__builtin_s390_vstrcfs:
 | 
						|
  case SystemZ::BI__builtin_s390_vstrczbs:
 | 
						|
  case SystemZ::BI__builtin_s390_vstrczhs:
 | 
						|
  case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
 | 
						|
  case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
 | 
						|
  case SystemZ::BI__builtin_s390_vfminsb:
 | 
						|
  case SystemZ::BI__builtin_s390_vfmaxsb:
 | 
						|
  case SystemZ::BI__builtin_s390_vfmindb:
 | 
						|
  case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
 | 
						|
  case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
 | 
						|
  case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
 | 
						|
  }
 | 
						|
  return SemaBuiltinConstantArgRange(TheCall, i, l, u);
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
 | 
						|
/// This checks that the target supports __builtin_cpu_supports and
 | 
						|
/// that the string argument is constant and valid.
 | 
						|
static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
 | 
						|
                                   CallExpr *TheCall) {
 | 
						|
  Expr *Arg = TheCall->getArg(0);
 | 
						|
 | 
						|
  // Check if the argument is a string literal.
 | 
						|
  if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
 | 
						|
    return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
 | 
						|
           << Arg->getSourceRange();
 | 
						|
 | 
						|
  // Check the contents of the string.
 | 
						|
  StringRef Feature =
 | 
						|
      cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
 | 
						|
  if (!TI.validateCpuSupports(Feature))
 | 
						|
    return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
 | 
						|
           << Arg->getSourceRange();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
 | 
						|
/// This checks that the target supports __builtin_cpu_is and
 | 
						|
/// that the string argument is constant and valid.
 | 
						|
static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
 | 
						|
  Expr *Arg = TheCall->getArg(0);
 | 
						|
 | 
						|
  // Check if the argument is a string literal.
 | 
						|
  if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
 | 
						|
    return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
 | 
						|
           << Arg->getSourceRange();
 | 
						|
 | 
						|
  // Check the contents of the string.
 | 
						|
  StringRef Feature =
 | 
						|
      cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
 | 
						|
  if (!TI.validateCpuIs(Feature))
 | 
						|
    return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
 | 
						|
           << Arg->getSourceRange();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Check if the rounding mode is legal.
 | 
						|
bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
 | 
						|
  // Indicates if this instruction has rounding control or just SAE.
 | 
						|
  bool HasRC = false;
 | 
						|
 | 
						|
  unsigned ArgNum = 0;
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case X86::BI__builtin_ia32_vcvttsd2si32:
 | 
						|
  case X86::BI__builtin_ia32_vcvttsd2si64:
 | 
						|
  case X86::BI__builtin_ia32_vcvttsd2usi32:
 | 
						|
  case X86::BI__builtin_ia32_vcvttsd2usi64:
 | 
						|
  case X86::BI__builtin_ia32_vcvttss2si32:
 | 
						|
  case X86::BI__builtin_ia32_vcvttss2si64:
 | 
						|
  case X86::BI__builtin_ia32_vcvttss2usi32:
 | 
						|
  case X86::BI__builtin_ia32_vcvttss2usi64:
 | 
						|
    ArgNum = 1;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_maxpd512:
 | 
						|
  case X86::BI__builtin_ia32_maxps512:
 | 
						|
  case X86::BI__builtin_ia32_minpd512:
 | 
						|
  case X86::BI__builtin_ia32_minps512:
 | 
						|
    ArgNum = 2;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_cvtps2pd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvttpd2dq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvttpd2qq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvttpd2udq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvttps2dq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvttps2qq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvttps2udq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvttps2uqq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_exp2pd_mask:
 | 
						|
  case X86::BI__builtin_ia32_exp2ps_mask:
 | 
						|
  case X86::BI__builtin_ia32_getexppd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_getexpps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_rcp28pd_mask:
 | 
						|
  case X86::BI__builtin_ia32_rcp28ps_mask:
 | 
						|
  case X86::BI__builtin_ia32_rsqrt28pd_mask:
 | 
						|
  case X86::BI__builtin_ia32_rsqrt28ps_mask:
 | 
						|
  case X86::BI__builtin_ia32_vcomisd:
 | 
						|
  case X86::BI__builtin_ia32_vcomiss:
 | 
						|
  case X86::BI__builtin_ia32_vcvtph2ps512_mask:
 | 
						|
    ArgNum = 3;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_cmppd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpsd_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpss_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtss2sd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_getexpsd128_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_getexpss128_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_getmantpd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_getmantps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_maxsd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_maxss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_minsd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_minss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_rcp28sd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_rcp28ss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_reducepd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_reduceps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscalepd_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscaleps_mask:
 | 
						|
  case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
 | 
						|
    ArgNum = 4;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_fixupimmpd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmpd512_maskz:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmps512_maskz:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmsd_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmsd_maskz:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmss_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmss_maskz:
 | 
						|
  case X86::BI__builtin_ia32_getmantsd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_getmantss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_rangepd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_rangeps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_rangesd128_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_rangess128_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_reducesd_mask:
 | 
						|
  case X86::BI__builtin_ia32_reducess_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscalesd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscaless_round_mask:
 | 
						|
    ArgNum = 5;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_vcvtsd2si64:
 | 
						|
  case X86::BI__builtin_ia32_vcvtsd2si32:
 | 
						|
  case X86::BI__builtin_ia32_vcvtsd2usi32:
 | 
						|
  case X86::BI__builtin_ia32_vcvtsd2usi64:
 | 
						|
  case X86::BI__builtin_ia32_vcvtss2si32:
 | 
						|
  case X86::BI__builtin_ia32_vcvtss2si64:
 | 
						|
  case X86::BI__builtin_ia32_vcvtss2usi32:
 | 
						|
  case X86::BI__builtin_ia32_vcvtss2usi64:
 | 
						|
  case X86::BI__builtin_ia32_sqrtpd512:
 | 
						|
  case X86::BI__builtin_ia32_sqrtps512:
 | 
						|
    ArgNum = 1;
 | 
						|
    HasRC = true;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_addpd512:
 | 
						|
  case X86::BI__builtin_ia32_addps512:
 | 
						|
  case X86::BI__builtin_ia32_divpd512:
 | 
						|
  case X86::BI__builtin_ia32_divps512:
 | 
						|
  case X86::BI__builtin_ia32_mulpd512:
 | 
						|
  case X86::BI__builtin_ia32_mulps512:
 | 
						|
  case X86::BI__builtin_ia32_subpd512:
 | 
						|
  case X86::BI__builtin_ia32_subps512:
 | 
						|
  case X86::BI__builtin_ia32_cvtsi2sd64:
 | 
						|
  case X86::BI__builtin_ia32_cvtsi2ss32:
 | 
						|
  case X86::BI__builtin_ia32_cvtsi2ss64:
 | 
						|
  case X86::BI__builtin_ia32_cvtusi2sd64:
 | 
						|
  case X86::BI__builtin_ia32_cvtusi2ss32:
 | 
						|
  case X86::BI__builtin_ia32_cvtusi2ss64:
 | 
						|
    ArgNum = 2;
 | 
						|
    HasRC = true;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_cvtdq2ps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtudq2ps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtpd2ps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtpd2dq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtpd2qq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtpd2udq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtps2dq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtps2qq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtps2udq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtps2uqq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtqq2pd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtqq2ps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
 | 
						|
    ArgNum = 3;
 | 
						|
    HasRC = true;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_addss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_addsd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_divss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_divsd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_mulss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_mulsd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_subss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_subsd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_scalefpd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_scalefps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_scalefsd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_scalefss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_sqrtsd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_sqrtss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddsd3_mask:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddsd3_maskz:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddsd3_mask3:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddss3_mask:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddss3_maskz:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddss3_mask3:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddpd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddpd512_maskz:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddpd512_mask3:
 | 
						|
  case X86::BI__builtin_ia32_vfmsubpd512_mask3:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddps512_maskz:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddps512_mask3:
 | 
						|
  case X86::BI__builtin_ia32_vfmsubps512_mask3:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
 | 
						|
  case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddsubps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
 | 
						|
  case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
 | 
						|
  case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
 | 
						|
    ArgNum = 4;
 | 
						|
    HasRC = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::APSInt Result;
 | 
						|
 | 
						|
  // We can't check the value of a dependent argument.
 | 
						|
  Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
  if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check constant-ness first.
 | 
						|
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
 | 
						|
  // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
 | 
						|
  // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
 | 
						|
  // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
 | 
						|
  if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
 | 
						|
      Result == 8/*ROUND_NO_EXC*/ ||
 | 
						|
      (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
 | 
						|
      (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
 | 
						|
         << Arg->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
// Check if the gather/scatter scale is legal.
 | 
						|
bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
 | 
						|
                                             CallExpr *TheCall) {
 | 
						|
  unsigned ArgNum = 0;
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case X86::BI__builtin_ia32_gatherpfdpd:
 | 
						|
  case X86::BI__builtin_ia32_gatherpfdps:
 | 
						|
  case X86::BI__builtin_ia32_gatherpfqpd:
 | 
						|
  case X86::BI__builtin_ia32_gatherpfqps:
 | 
						|
  case X86::BI__builtin_ia32_scatterpfdpd:
 | 
						|
  case X86::BI__builtin_ia32_scatterpfdps:
 | 
						|
  case X86::BI__builtin_ia32_scatterpfqpd:
 | 
						|
  case X86::BI__builtin_ia32_scatterpfqps:
 | 
						|
    ArgNum = 3;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_gatherd_pd:
 | 
						|
  case X86::BI__builtin_ia32_gatherd_pd256:
 | 
						|
  case X86::BI__builtin_ia32_gatherq_pd:
 | 
						|
  case X86::BI__builtin_ia32_gatherq_pd256:
 | 
						|
  case X86::BI__builtin_ia32_gatherd_ps:
 | 
						|
  case X86::BI__builtin_ia32_gatherd_ps256:
 | 
						|
  case X86::BI__builtin_ia32_gatherq_ps:
 | 
						|
  case X86::BI__builtin_ia32_gatherq_ps256:
 | 
						|
  case X86::BI__builtin_ia32_gatherd_q:
 | 
						|
  case X86::BI__builtin_ia32_gatherd_q256:
 | 
						|
  case X86::BI__builtin_ia32_gatherq_q:
 | 
						|
  case X86::BI__builtin_ia32_gatherq_q256:
 | 
						|
  case X86::BI__builtin_ia32_gatherd_d:
 | 
						|
  case X86::BI__builtin_ia32_gatherd_d256:
 | 
						|
  case X86::BI__builtin_ia32_gatherq_d:
 | 
						|
  case X86::BI__builtin_ia32_gatherq_d256:
 | 
						|
  case X86::BI__builtin_ia32_gather3div2df:
 | 
						|
  case X86::BI__builtin_ia32_gather3div2di:
 | 
						|
  case X86::BI__builtin_ia32_gather3div4df:
 | 
						|
  case X86::BI__builtin_ia32_gather3div4di:
 | 
						|
  case X86::BI__builtin_ia32_gather3div4sf:
 | 
						|
  case X86::BI__builtin_ia32_gather3div4si:
 | 
						|
  case X86::BI__builtin_ia32_gather3div8sf:
 | 
						|
  case X86::BI__builtin_ia32_gather3div8si:
 | 
						|
  case X86::BI__builtin_ia32_gather3siv2df:
 | 
						|
  case X86::BI__builtin_ia32_gather3siv2di:
 | 
						|
  case X86::BI__builtin_ia32_gather3siv4df:
 | 
						|
  case X86::BI__builtin_ia32_gather3siv4di:
 | 
						|
  case X86::BI__builtin_ia32_gather3siv4sf:
 | 
						|
  case X86::BI__builtin_ia32_gather3siv4si:
 | 
						|
  case X86::BI__builtin_ia32_gather3siv8sf:
 | 
						|
  case X86::BI__builtin_ia32_gather3siv8si:
 | 
						|
  case X86::BI__builtin_ia32_gathersiv8df:
 | 
						|
  case X86::BI__builtin_ia32_gathersiv16sf:
 | 
						|
  case X86::BI__builtin_ia32_gatherdiv8df:
 | 
						|
  case X86::BI__builtin_ia32_gatherdiv16sf:
 | 
						|
  case X86::BI__builtin_ia32_gathersiv8di:
 | 
						|
  case X86::BI__builtin_ia32_gathersiv16si:
 | 
						|
  case X86::BI__builtin_ia32_gatherdiv8di:
 | 
						|
  case X86::BI__builtin_ia32_gatherdiv16si:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv2df:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv2di:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv4df:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv4di:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv4sf:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv4si:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv8sf:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv8si:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv2df:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv2di:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv4df:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv4di:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv4sf:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv4si:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv8sf:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv8si:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv8df:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv16sf:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv8df:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv16sf:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv8di:
 | 
						|
  case X86::BI__builtin_ia32_scattersiv16si:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv8di:
 | 
						|
  case X86::BI__builtin_ia32_scatterdiv16si:
 | 
						|
    ArgNum = 4;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::APSInt Result;
 | 
						|
 | 
						|
  // We can't check the value of a dependent argument.
 | 
						|
  Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
  if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check constant-ness first.
 | 
						|
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
 | 
						|
         << Arg->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
enum { TileRegLow = 0, TileRegHigh = 7 };
 | 
						|
 | 
						|
bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
 | 
						|
                                             ArrayRef<int> ArgNums) {
 | 
						|
  for (int ArgNum : ArgNums) {
 | 
						|
    if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
 | 
						|
                                        ArrayRef<int> ArgNums) {
 | 
						|
  // Because the max number of tile register is TileRegHigh + 1, so here we use
 | 
						|
  // each bit to represent the usage of them in bitset.
 | 
						|
  std::bitset<TileRegHigh + 1> ArgValues;
 | 
						|
  for (int ArgNum : ArgNums) {
 | 
						|
    Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
    if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
      continue;
 | 
						|
 | 
						|
    llvm::APSInt Result;
 | 
						|
    if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | 
						|
      return true;
 | 
						|
    int ArgExtValue = Result.getExtValue();
 | 
						|
    assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
 | 
						|
           "Incorrect tile register num.");
 | 
						|
    if (ArgValues.test(ArgExtValue))
 | 
						|
      return Diag(TheCall->getBeginLoc(),
 | 
						|
                  diag::err_x86_builtin_tile_arg_duplicate)
 | 
						|
             << TheCall->getArg(ArgNum)->getSourceRange();
 | 
						|
    ArgValues.set(ArgExtValue);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
 | 
						|
                                                ArrayRef<int> ArgNums) {
 | 
						|
  return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
 | 
						|
         CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case X86::BI__builtin_ia32_tileloadd64:
 | 
						|
  case X86::BI__builtin_ia32_tileloaddt164:
 | 
						|
  case X86::BI__builtin_ia32_tilestored64:
 | 
						|
  case X86::BI__builtin_ia32_tilezero:
 | 
						|
    return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
 | 
						|
  case X86::BI__builtin_ia32_tdpbssd:
 | 
						|
  case X86::BI__builtin_ia32_tdpbsud:
 | 
						|
  case X86::BI__builtin_ia32_tdpbusd:
 | 
						|
  case X86::BI__builtin_ia32_tdpbuud:
 | 
						|
  case X86::BI__builtin_ia32_tdpbf16ps:
 | 
						|
    return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
 | 
						|
  }
 | 
						|
}
 | 
						|
static bool isX86_32Builtin(unsigned BuiltinID) {
 | 
						|
  // These builtins only work on x86-32 targets.
 | 
						|
  switch (BuiltinID) {
 | 
						|
  case X86::BI__builtin_ia32_readeflags_u32:
 | 
						|
  case X86::BI__builtin_ia32_writeeflags_u32:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
 | 
						|
                                       CallExpr *TheCall) {
 | 
						|
  if (BuiltinID == X86::BI__builtin_cpu_supports)
 | 
						|
    return SemaBuiltinCpuSupports(*this, TI, TheCall);
 | 
						|
 | 
						|
  if (BuiltinID == X86::BI__builtin_cpu_is)
 | 
						|
    return SemaBuiltinCpuIs(*this, TI, TheCall);
 | 
						|
 | 
						|
  // Check for 32-bit only builtins on a 64-bit target.
 | 
						|
  const llvm::Triple &TT = TI.getTriple();
 | 
						|
  if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
 | 
						|
    return Diag(TheCall->getCallee()->getBeginLoc(),
 | 
						|
                diag::err_32_bit_builtin_64_bit_tgt);
 | 
						|
 | 
						|
  // If the intrinsic has rounding or SAE make sure its valid.
 | 
						|
  if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the intrinsic has a gather/scatter scale immediate make sure its valid.
 | 
						|
  if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the intrinsic has a tile arguments, make sure they are valid.
 | 
						|
  if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // For intrinsics which take an immediate value as part of the instruction,
 | 
						|
  // range check them here.
 | 
						|
  int i = 0, l = 0, u = 0;
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case X86::BI__builtin_ia32_vec_ext_v2si:
 | 
						|
  case X86::BI__builtin_ia32_vec_ext_v2di:
 | 
						|
  case X86::BI__builtin_ia32_vextractf128_pd256:
 | 
						|
  case X86::BI__builtin_ia32_vextractf128_ps256:
 | 
						|
  case X86::BI__builtin_ia32_vextractf128_si256:
 | 
						|
  case X86::BI__builtin_ia32_extract128i256:
 | 
						|
  case X86::BI__builtin_ia32_extractf64x4_mask:
 | 
						|
  case X86::BI__builtin_ia32_extracti64x4_mask:
 | 
						|
  case X86::BI__builtin_ia32_extractf32x8_mask:
 | 
						|
  case X86::BI__builtin_ia32_extracti32x8_mask:
 | 
						|
  case X86::BI__builtin_ia32_extractf64x2_256_mask:
 | 
						|
  case X86::BI__builtin_ia32_extracti64x2_256_mask:
 | 
						|
  case X86::BI__builtin_ia32_extractf32x4_256_mask:
 | 
						|
  case X86::BI__builtin_ia32_extracti32x4_256_mask:
 | 
						|
    i = 1; l = 0; u = 1;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_vec_set_v2di:
 | 
						|
  case X86::BI__builtin_ia32_vinsertf128_pd256:
 | 
						|
  case X86::BI__builtin_ia32_vinsertf128_ps256:
 | 
						|
  case X86::BI__builtin_ia32_vinsertf128_si256:
 | 
						|
  case X86::BI__builtin_ia32_insert128i256:
 | 
						|
  case X86::BI__builtin_ia32_insertf32x8:
 | 
						|
  case X86::BI__builtin_ia32_inserti32x8:
 | 
						|
  case X86::BI__builtin_ia32_insertf64x4:
 | 
						|
  case X86::BI__builtin_ia32_inserti64x4:
 | 
						|
  case X86::BI__builtin_ia32_insertf64x2_256:
 | 
						|
  case X86::BI__builtin_ia32_inserti64x2_256:
 | 
						|
  case X86::BI__builtin_ia32_insertf32x4_256:
 | 
						|
  case X86::BI__builtin_ia32_inserti32x4_256:
 | 
						|
    i = 2; l = 0; u = 1;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_vpermilpd:
 | 
						|
  case X86::BI__builtin_ia32_vec_ext_v4hi:
 | 
						|
  case X86::BI__builtin_ia32_vec_ext_v4si:
 | 
						|
  case X86::BI__builtin_ia32_vec_ext_v4sf:
 | 
						|
  case X86::BI__builtin_ia32_vec_ext_v4di:
 | 
						|
  case X86::BI__builtin_ia32_extractf32x4_mask:
 | 
						|
  case X86::BI__builtin_ia32_extracti32x4_mask:
 | 
						|
  case X86::BI__builtin_ia32_extractf64x2_512_mask:
 | 
						|
  case X86::BI__builtin_ia32_extracti64x2_512_mask:
 | 
						|
    i = 1; l = 0; u = 3;
 | 
						|
    break;
 | 
						|
  case X86::BI_mm_prefetch:
 | 
						|
  case X86::BI__builtin_ia32_vec_ext_v8hi:
 | 
						|
  case X86::BI__builtin_ia32_vec_ext_v8si:
 | 
						|
    i = 1; l = 0; u = 7;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_sha1rnds4:
 | 
						|
  case X86::BI__builtin_ia32_blendpd:
 | 
						|
  case X86::BI__builtin_ia32_shufpd:
 | 
						|
  case X86::BI__builtin_ia32_vec_set_v4hi:
 | 
						|
  case X86::BI__builtin_ia32_vec_set_v4si:
 | 
						|
  case X86::BI__builtin_ia32_vec_set_v4di:
 | 
						|
  case X86::BI__builtin_ia32_shuf_f32x4_256:
 | 
						|
  case X86::BI__builtin_ia32_shuf_f64x2_256:
 | 
						|
  case X86::BI__builtin_ia32_shuf_i32x4_256:
 | 
						|
  case X86::BI__builtin_ia32_shuf_i64x2_256:
 | 
						|
  case X86::BI__builtin_ia32_insertf64x2_512:
 | 
						|
  case X86::BI__builtin_ia32_inserti64x2_512:
 | 
						|
  case X86::BI__builtin_ia32_insertf32x4:
 | 
						|
  case X86::BI__builtin_ia32_inserti32x4:
 | 
						|
    i = 2; l = 0; u = 3;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_vpermil2pd:
 | 
						|
  case X86::BI__builtin_ia32_vpermil2pd256:
 | 
						|
  case X86::BI__builtin_ia32_vpermil2ps:
 | 
						|
  case X86::BI__builtin_ia32_vpermil2ps256:
 | 
						|
    i = 3; l = 0; u = 3;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_cmpb128_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpw128_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpd128_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpq128_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpb256_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpw256_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpd256_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpq256_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpb512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpw512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpb128_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpw128_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpd128_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpq128_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpb256_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpw256_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpd256_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpq256_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpb512_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpw512_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_ucmpq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_vpcomub:
 | 
						|
  case X86::BI__builtin_ia32_vpcomuw:
 | 
						|
  case X86::BI__builtin_ia32_vpcomud:
 | 
						|
  case X86::BI__builtin_ia32_vpcomuq:
 | 
						|
  case X86::BI__builtin_ia32_vpcomb:
 | 
						|
  case X86::BI__builtin_ia32_vpcomw:
 | 
						|
  case X86::BI__builtin_ia32_vpcomd:
 | 
						|
  case X86::BI__builtin_ia32_vpcomq:
 | 
						|
  case X86::BI__builtin_ia32_vec_set_v8hi:
 | 
						|
  case X86::BI__builtin_ia32_vec_set_v8si:
 | 
						|
    i = 2; l = 0; u = 7;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_vpermilpd256:
 | 
						|
  case X86::BI__builtin_ia32_roundps:
 | 
						|
  case X86::BI__builtin_ia32_roundpd:
 | 
						|
  case X86::BI__builtin_ia32_roundps256:
 | 
						|
  case X86::BI__builtin_ia32_roundpd256:
 | 
						|
  case X86::BI__builtin_ia32_getmantpd128_mask:
 | 
						|
  case X86::BI__builtin_ia32_getmantpd256_mask:
 | 
						|
  case X86::BI__builtin_ia32_getmantps128_mask:
 | 
						|
  case X86::BI__builtin_ia32_getmantps256_mask:
 | 
						|
  case X86::BI__builtin_ia32_getmantpd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_getmantps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_vec_ext_v16qi:
 | 
						|
  case X86::BI__builtin_ia32_vec_ext_v16hi:
 | 
						|
    i = 1; l = 0; u = 15;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_pblendd128:
 | 
						|
  case X86::BI__builtin_ia32_blendps:
 | 
						|
  case X86::BI__builtin_ia32_blendpd256:
 | 
						|
  case X86::BI__builtin_ia32_shufpd256:
 | 
						|
  case X86::BI__builtin_ia32_roundss:
 | 
						|
  case X86::BI__builtin_ia32_roundsd:
 | 
						|
  case X86::BI__builtin_ia32_rangepd128_mask:
 | 
						|
  case X86::BI__builtin_ia32_rangepd256_mask:
 | 
						|
  case X86::BI__builtin_ia32_rangepd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_rangeps128_mask:
 | 
						|
  case X86::BI__builtin_ia32_rangeps256_mask:
 | 
						|
  case X86::BI__builtin_ia32_rangeps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_getmantsd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_getmantss_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_vec_set_v16qi:
 | 
						|
  case X86::BI__builtin_ia32_vec_set_v16hi:
 | 
						|
    i = 2; l = 0; u = 15;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_vec_ext_v32qi:
 | 
						|
    i = 1; l = 0; u = 31;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_cmpps:
 | 
						|
  case X86::BI__builtin_ia32_cmpss:
 | 
						|
  case X86::BI__builtin_ia32_cmppd:
 | 
						|
  case X86::BI__builtin_ia32_cmpsd:
 | 
						|
  case X86::BI__builtin_ia32_cmpps256:
 | 
						|
  case X86::BI__builtin_ia32_cmppd256:
 | 
						|
  case X86::BI__builtin_ia32_cmpps128_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmppd128_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpps256_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmppd256_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmppd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpsd_mask:
 | 
						|
  case X86::BI__builtin_ia32_cmpss_mask:
 | 
						|
  case X86::BI__builtin_ia32_vec_set_v32qi:
 | 
						|
    i = 2; l = 0; u = 31;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_permdf256:
 | 
						|
  case X86::BI__builtin_ia32_permdi256:
 | 
						|
  case X86::BI__builtin_ia32_permdf512:
 | 
						|
  case X86::BI__builtin_ia32_permdi512:
 | 
						|
  case X86::BI__builtin_ia32_vpermilps:
 | 
						|
  case X86::BI__builtin_ia32_vpermilps256:
 | 
						|
  case X86::BI__builtin_ia32_vpermilpd512:
 | 
						|
  case X86::BI__builtin_ia32_vpermilps512:
 | 
						|
  case X86::BI__builtin_ia32_pshufd:
 | 
						|
  case X86::BI__builtin_ia32_pshufd256:
 | 
						|
  case X86::BI__builtin_ia32_pshufd512:
 | 
						|
  case X86::BI__builtin_ia32_pshufhw:
 | 
						|
  case X86::BI__builtin_ia32_pshufhw256:
 | 
						|
  case X86::BI__builtin_ia32_pshufhw512:
 | 
						|
  case X86::BI__builtin_ia32_pshuflw:
 | 
						|
  case X86::BI__builtin_ia32_pshuflw256:
 | 
						|
  case X86::BI__builtin_ia32_pshuflw512:
 | 
						|
  case X86::BI__builtin_ia32_vcvtps2ph:
 | 
						|
  case X86::BI__builtin_ia32_vcvtps2ph_mask:
 | 
						|
  case X86::BI__builtin_ia32_vcvtps2ph256:
 | 
						|
  case X86::BI__builtin_ia32_vcvtps2ph256_mask:
 | 
						|
  case X86::BI__builtin_ia32_vcvtps2ph512_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscaleps_128_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscalepd_128_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscaleps_256_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscalepd_256_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscaleps_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscalepd_mask:
 | 
						|
  case X86::BI__builtin_ia32_reducepd128_mask:
 | 
						|
  case X86::BI__builtin_ia32_reducepd256_mask:
 | 
						|
  case X86::BI__builtin_ia32_reducepd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_reduceps128_mask:
 | 
						|
  case X86::BI__builtin_ia32_reduceps256_mask:
 | 
						|
  case X86::BI__builtin_ia32_reduceps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_prold512:
 | 
						|
  case X86::BI__builtin_ia32_prolq512:
 | 
						|
  case X86::BI__builtin_ia32_prold128:
 | 
						|
  case X86::BI__builtin_ia32_prold256:
 | 
						|
  case X86::BI__builtin_ia32_prolq128:
 | 
						|
  case X86::BI__builtin_ia32_prolq256:
 | 
						|
  case X86::BI__builtin_ia32_prord512:
 | 
						|
  case X86::BI__builtin_ia32_prorq512:
 | 
						|
  case X86::BI__builtin_ia32_prord128:
 | 
						|
  case X86::BI__builtin_ia32_prord256:
 | 
						|
  case X86::BI__builtin_ia32_prorq128:
 | 
						|
  case X86::BI__builtin_ia32_prorq256:
 | 
						|
  case X86::BI__builtin_ia32_fpclasspd128_mask:
 | 
						|
  case X86::BI__builtin_ia32_fpclasspd256_mask:
 | 
						|
  case X86::BI__builtin_ia32_fpclassps128_mask:
 | 
						|
  case X86::BI__builtin_ia32_fpclassps256_mask:
 | 
						|
  case X86::BI__builtin_ia32_fpclassps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_fpclasspd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_fpclasssd_mask:
 | 
						|
  case X86::BI__builtin_ia32_fpclassss_mask:
 | 
						|
  case X86::BI__builtin_ia32_pslldqi128_byteshift:
 | 
						|
  case X86::BI__builtin_ia32_pslldqi256_byteshift:
 | 
						|
  case X86::BI__builtin_ia32_pslldqi512_byteshift:
 | 
						|
  case X86::BI__builtin_ia32_psrldqi128_byteshift:
 | 
						|
  case X86::BI__builtin_ia32_psrldqi256_byteshift:
 | 
						|
  case X86::BI__builtin_ia32_psrldqi512_byteshift:
 | 
						|
  case X86::BI__builtin_ia32_kshiftliqi:
 | 
						|
  case X86::BI__builtin_ia32_kshiftlihi:
 | 
						|
  case X86::BI__builtin_ia32_kshiftlisi:
 | 
						|
  case X86::BI__builtin_ia32_kshiftlidi:
 | 
						|
  case X86::BI__builtin_ia32_kshiftriqi:
 | 
						|
  case X86::BI__builtin_ia32_kshiftrihi:
 | 
						|
  case X86::BI__builtin_ia32_kshiftrisi:
 | 
						|
  case X86::BI__builtin_ia32_kshiftridi:
 | 
						|
    i = 1; l = 0; u = 255;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_vperm2f128_pd256:
 | 
						|
  case X86::BI__builtin_ia32_vperm2f128_ps256:
 | 
						|
  case X86::BI__builtin_ia32_vperm2f128_si256:
 | 
						|
  case X86::BI__builtin_ia32_permti256:
 | 
						|
  case X86::BI__builtin_ia32_pblendw128:
 | 
						|
  case X86::BI__builtin_ia32_pblendw256:
 | 
						|
  case X86::BI__builtin_ia32_blendps256:
 | 
						|
  case X86::BI__builtin_ia32_pblendd256:
 | 
						|
  case X86::BI__builtin_ia32_palignr128:
 | 
						|
  case X86::BI__builtin_ia32_palignr256:
 | 
						|
  case X86::BI__builtin_ia32_palignr512:
 | 
						|
  case X86::BI__builtin_ia32_alignq512:
 | 
						|
  case X86::BI__builtin_ia32_alignd512:
 | 
						|
  case X86::BI__builtin_ia32_alignd128:
 | 
						|
  case X86::BI__builtin_ia32_alignd256:
 | 
						|
  case X86::BI__builtin_ia32_alignq128:
 | 
						|
  case X86::BI__builtin_ia32_alignq256:
 | 
						|
  case X86::BI__builtin_ia32_vcomisd:
 | 
						|
  case X86::BI__builtin_ia32_vcomiss:
 | 
						|
  case X86::BI__builtin_ia32_shuf_f32x4:
 | 
						|
  case X86::BI__builtin_ia32_shuf_f64x2:
 | 
						|
  case X86::BI__builtin_ia32_shuf_i32x4:
 | 
						|
  case X86::BI__builtin_ia32_shuf_i64x2:
 | 
						|
  case X86::BI__builtin_ia32_shufpd512:
 | 
						|
  case X86::BI__builtin_ia32_shufps:
 | 
						|
  case X86::BI__builtin_ia32_shufps256:
 | 
						|
  case X86::BI__builtin_ia32_shufps512:
 | 
						|
  case X86::BI__builtin_ia32_dbpsadbw128:
 | 
						|
  case X86::BI__builtin_ia32_dbpsadbw256:
 | 
						|
  case X86::BI__builtin_ia32_dbpsadbw512:
 | 
						|
  case X86::BI__builtin_ia32_vpshldd128:
 | 
						|
  case X86::BI__builtin_ia32_vpshldd256:
 | 
						|
  case X86::BI__builtin_ia32_vpshldd512:
 | 
						|
  case X86::BI__builtin_ia32_vpshldq128:
 | 
						|
  case X86::BI__builtin_ia32_vpshldq256:
 | 
						|
  case X86::BI__builtin_ia32_vpshldq512:
 | 
						|
  case X86::BI__builtin_ia32_vpshldw128:
 | 
						|
  case X86::BI__builtin_ia32_vpshldw256:
 | 
						|
  case X86::BI__builtin_ia32_vpshldw512:
 | 
						|
  case X86::BI__builtin_ia32_vpshrdd128:
 | 
						|
  case X86::BI__builtin_ia32_vpshrdd256:
 | 
						|
  case X86::BI__builtin_ia32_vpshrdd512:
 | 
						|
  case X86::BI__builtin_ia32_vpshrdq128:
 | 
						|
  case X86::BI__builtin_ia32_vpshrdq256:
 | 
						|
  case X86::BI__builtin_ia32_vpshrdq512:
 | 
						|
  case X86::BI__builtin_ia32_vpshrdw128:
 | 
						|
  case X86::BI__builtin_ia32_vpshrdw256:
 | 
						|
  case X86::BI__builtin_ia32_vpshrdw512:
 | 
						|
    i = 2; l = 0; u = 255;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_fixupimmpd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmpd512_maskz:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmps512_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmps512_maskz:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmsd_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmsd_maskz:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmss_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmss_maskz:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmpd128_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmpd128_maskz:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmpd256_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmpd256_maskz:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmps128_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmps128_maskz:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmps256_mask:
 | 
						|
  case X86::BI__builtin_ia32_fixupimmps256_maskz:
 | 
						|
  case X86::BI__builtin_ia32_pternlogd512_mask:
 | 
						|
  case X86::BI__builtin_ia32_pternlogd512_maskz:
 | 
						|
  case X86::BI__builtin_ia32_pternlogq512_mask:
 | 
						|
  case X86::BI__builtin_ia32_pternlogq512_maskz:
 | 
						|
  case X86::BI__builtin_ia32_pternlogd128_mask:
 | 
						|
  case X86::BI__builtin_ia32_pternlogd128_maskz:
 | 
						|
  case X86::BI__builtin_ia32_pternlogd256_mask:
 | 
						|
  case X86::BI__builtin_ia32_pternlogd256_maskz:
 | 
						|
  case X86::BI__builtin_ia32_pternlogq128_mask:
 | 
						|
  case X86::BI__builtin_ia32_pternlogq128_maskz:
 | 
						|
  case X86::BI__builtin_ia32_pternlogq256_mask:
 | 
						|
  case X86::BI__builtin_ia32_pternlogq256_maskz:
 | 
						|
    i = 3; l = 0; u = 255;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_gatherpfdpd:
 | 
						|
  case X86::BI__builtin_ia32_gatherpfdps:
 | 
						|
  case X86::BI__builtin_ia32_gatherpfqpd:
 | 
						|
  case X86::BI__builtin_ia32_gatherpfqps:
 | 
						|
  case X86::BI__builtin_ia32_scatterpfdpd:
 | 
						|
  case X86::BI__builtin_ia32_scatterpfdps:
 | 
						|
  case X86::BI__builtin_ia32_scatterpfqpd:
 | 
						|
  case X86::BI__builtin_ia32_scatterpfqps:
 | 
						|
    i = 4; l = 2; u = 3;
 | 
						|
    break;
 | 
						|
  case X86::BI__builtin_ia32_reducesd_mask:
 | 
						|
  case X86::BI__builtin_ia32_reducess_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscalesd_round_mask:
 | 
						|
  case X86::BI__builtin_ia32_rndscaless_round_mask:
 | 
						|
    i = 4; l = 0; u = 255;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Note that we don't force a hard error on the range check here, allowing
 | 
						|
  // template-generated or macro-generated dead code to potentially have out-of-
 | 
						|
  // range values. These need to code generate, but don't need to necessarily
 | 
						|
  // make any sense. We use a warning that defaults to an error.
 | 
						|
  return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
 | 
						|
}
 | 
						|
 | 
						|
/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
 | 
						|
/// parameter with the FormatAttr's correct format_idx and firstDataArg.
 | 
						|
/// Returns true when the format fits the function and the FormatStringInfo has
 | 
						|
/// been populated.
 | 
						|
bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
 | 
						|
                               FormatStringInfo *FSI) {
 | 
						|
  FSI->HasVAListArg = Format->getFirstArg() == 0;
 | 
						|
  FSI->FormatIdx = Format->getFormatIdx() - 1;
 | 
						|
  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
 | 
						|
 | 
						|
  // The way the format attribute works in GCC, the implicit this argument
 | 
						|
  // of member functions is counted. However, it doesn't appear in our own
 | 
						|
  // lists, so decrement format_idx in that case.
 | 
						|
  if (IsCXXMember) {
 | 
						|
    if(FSI->FormatIdx == 0)
 | 
						|
      return false;
 | 
						|
    --FSI->FormatIdx;
 | 
						|
    if (FSI->FirstDataArg != 0)
 | 
						|
      --FSI->FirstDataArg;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Checks if a the given expression evaluates to null.
 | 
						|
///
 | 
						|
/// Returns true if the value evaluates to null.
 | 
						|
static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
 | 
						|
  // If the expression has non-null type, it doesn't evaluate to null.
 | 
						|
  if (auto nullability
 | 
						|
        = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
 | 
						|
    if (*nullability == NullabilityKind::NonNull)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // As a special case, transparent unions initialized with zero are
 | 
						|
  // considered null for the purposes of the nonnull attribute.
 | 
						|
  if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
 | 
						|
    if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
 | 
						|
      if (const CompoundLiteralExpr *CLE =
 | 
						|
          dyn_cast<CompoundLiteralExpr>(Expr))
 | 
						|
        if (const InitListExpr *ILE =
 | 
						|
            dyn_cast<InitListExpr>(CLE->getInitializer()))
 | 
						|
          Expr = ILE->getInit(0);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Result;
 | 
						|
  return (!Expr->isValueDependent() &&
 | 
						|
          Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
 | 
						|
          !Result);
 | 
						|
}
 | 
						|
 | 
						|
static void CheckNonNullArgument(Sema &S,
 | 
						|
                                 const Expr *ArgExpr,
 | 
						|
                                 SourceLocation CallSiteLoc) {
 | 
						|
  if (CheckNonNullExpr(S, ArgExpr))
 | 
						|
    S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
 | 
						|
                          S.PDiag(diag::warn_null_arg)
 | 
						|
                              << ArgExpr->getSourceRange());
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
 | 
						|
  FormatStringInfo FSI;
 | 
						|
  if ((GetFormatStringType(Format) == FST_NSString) &&
 | 
						|
      getFormatStringInfo(Format, false, &FSI)) {
 | 
						|
    Idx = FSI.FormatIdx;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose use of %s directive in an NSString which is being passed
 | 
						|
/// as formatting string to formatting method.
 | 
						|
static void
 | 
						|
DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
 | 
						|
                                        const NamedDecl *FDecl,
 | 
						|
                                        Expr **Args,
 | 
						|
                                        unsigned NumArgs) {
 | 
						|
  unsigned Idx = 0;
 | 
						|
  bool Format = false;
 | 
						|
  ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
 | 
						|
  if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
 | 
						|
    Idx = 2;
 | 
						|
    Format = true;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
 | 
						|
      if (S.GetFormatNSStringIdx(I, Idx)) {
 | 
						|
        Format = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  if (!Format || NumArgs <= Idx)
 | 
						|
    return;
 | 
						|
  const Expr *FormatExpr = Args[Idx];
 | 
						|
  if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
 | 
						|
    FormatExpr = CSCE->getSubExpr();
 | 
						|
  const StringLiteral *FormatString;
 | 
						|
  if (const ObjCStringLiteral *OSL =
 | 
						|
      dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
 | 
						|
    FormatString = OSL->getString();
 | 
						|
  else
 | 
						|
    FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
 | 
						|
  if (!FormatString)
 | 
						|
    return;
 | 
						|
  if (S.FormatStringHasSArg(FormatString)) {
 | 
						|
    S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
 | 
						|
      << "%s" << 1 << 1;
 | 
						|
    S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
 | 
						|
      << FDecl->getDeclName();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether the given type has a non-null nullability annotation.
 | 
						|
static bool isNonNullType(ASTContext &ctx, QualType type) {
 | 
						|
  if (auto nullability = type->getNullability(ctx))
 | 
						|
    return *nullability == NullabilityKind::NonNull;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void CheckNonNullArguments(Sema &S,
 | 
						|
                                  const NamedDecl *FDecl,
 | 
						|
                                  const FunctionProtoType *Proto,
 | 
						|
                                  ArrayRef<const Expr *> Args,
 | 
						|
                                  SourceLocation CallSiteLoc) {
 | 
						|
  assert((FDecl || Proto) && "Need a function declaration or prototype");
 | 
						|
 | 
						|
  // Already checked by by constant evaluator.
 | 
						|
  if (S.isConstantEvaluated())
 | 
						|
    return;
 | 
						|
  // Check the attributes attached to the method/function itself.
 | 
						|
  llvm::SmallBitVector NonNullArgs;
 | 
						|
  if (FDecl) {
 | 
						|
    // Handle the nonnull attribute on the function/method declaration itself.
 | 
						|
    for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
 | 
						|
      if (!NonNull->args_size()) {
 | 
						|
        // Easy case: all pointer arguments are nonnull.
 | 
						|
        for (const auto *Arg : Args)
 | 
						|
          if (S.isValidPointerAttrType(Arg->getType()))
 | 
						|
            CheckNonNullArgument(S, Arg, CallSiteLoc);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      for (const ParamIdx &Idx : NonNull->args()) {
 | 
						|
        unsigned IdxAST = Idx.getASTIndex();
 | 
						|
        if (IdxAST >= Args.size())
 | 
						|
          continue;
 | 
						|
        if (NonNullArgs.empty())
 | 
						|
          NonNullArgs.resize(Args.size());
 | 
						|
        NonNullArgs.set(IdxAST);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
 | 
						|
    // Handle the nonnull attribute on the parameters of the
 | 
						|
    // function/method.
 | 
						|
    ArrayRef<ParmVarDecl*> parms;
 | 
						|
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
 | 
						|
      parms = FD->parameters();
 | 
						|
    else
 | 
						|
      parms = cast<ObjCMethodDecl>(FDecl)->parameters();
 | 
						|
 | 
						|
    unsigned ParamIndex = 0;
 | 
						|
    for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
 | 
						|
         I != E; ++I, ++ParamIndex) {
 | 
						|
      const ParmVarDecl *PVD = *I;
 | 
						|
      if (PVD->hasAttr<NonNullAttr>() ||
 | 
						|
          isNonNullType(S.Context, PVD->getType())) {
 | 
						|
        if (NonNullArgs.empty())
 | 
						|
          NonNullArgs.resize(Args.size());
 | 
						|
 | 
						|
        NonNullArgs.set(ParamIndex);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // If we have a non-function, non-method declaration but no
 | 
						|
    // function prototype, try to dig out the function prototype.
 | 
						|
    if (!Proto) {
 | 
						|
      if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
 | 
						|
        QualType type = VD->getType().getNonReferenceType();
 | 
						|
        if (auto pointerType = type->getAs<PointerType>())
 | 
						|
          type = pointerType->getPointeeType();
 | 
						|
        else if (auto blockType = type->getAs<BlockPointerType>())
 | 
						|
          type = blockType->getPointeeType();
 | 
						|
        // FIXME: data member pointers?
 | 
						|
 | 
						|
        // Dig out the function prototype, if there is one.
 | 
						|
        Proto = type->getAs<FunctionProtoType>();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Fill in non-null argument information from the nullability
 | 
						|
    // information on the parameter types (if we have them).
 | 
						|
    if (Proto) {
 | 
						|
      unsigned Index = 0;
 | 
						|
      for (auto paramType : Proto->getParamTypes()) {
 | 
						|
        if (isNonNullType(S.Context, paramType)) {
 | 
						|
          if (NonNullArgs.empty())
 | 
						|
            NonNullArgs.resize(Args.size());
 | 
						|
 | 
						|
          NonNullArgs.set(Index);
 | 
						|
        }
 | 
						|
 | 
						|
        ++Index;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for non-null arguments.
 | 
						|
  for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
 | 
						|
       ArgIndex != ArgIndexEnd; ++ArgIndex) {
 | 
						|
    if (NonNullArgs[ArgIndex])
 | 
						|
      CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Handles the checks for format strings, non-POD arguments to vararg
 | 
						|
/// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
 | 
						|
/// attributes.
 | 
						|
void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
 | 
						|
                     const Expr *ThisArg, ArrayRef<const Expr *> Args,
 | 
						|
                     bool IsMemberFunction, SourceLocation Loc,
 | 
						|
                     SourceRange Range, VariadicCallType CallType) {
 | 
						|
  // FIXME: We should check as much as we can in the template definition.
 | 
						|
  if (CurContext->isDependentContext())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Printf and scanf checking.
 | 
						|
  llvm::SmallBitVector CheckedVarArgs;
 | 
						|
  if (FDecl) {
 | 
						|
    for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
 | 
						|
      // Only create vector if there are format attributes.
 | 
						|
      CheckedVarArgs.resize(Args.size());
 | 
						|
 | 
						|
      CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
 | 
						|
                           CheckedVarArgs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Refuse POD arguments that weren't caught by the format string
 | 
						|
  // checks above.
 | 
						|
  auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
 | 
						|
  if (CallType != VariadicDoesNotApply &&
 | 
						|
      (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
 | 
						|
    unsigned NumParams = Proto ? Proto->getNumParams()
 | 
						|
                       : FDecl && isa<FunctionDecl>(FDecl)
 | 
						|
                           ? cast<FunctionDecl>(FDecl)->getNumParams()
 | 
						|
                       : FDecl && isa<ObjCMethodDecl>(FDecl)
 | 
						|
                           ? cast<ObjCMethodDecl>(FDecl)->param_size()
 | 
						|
                       : 0;
 | 
						|
 | 
						|
    for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
 | 
						|
      // Args[ArgIdx] can be null in malformed code.
 | 
						|
      if (const Expr *Arg = Args[ArgIdx]) {
 | 
						|
        if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
 | 
						|
          checkVariadicArgument(Arg, CallType);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (FDecl || Proto) {
 | 
						|
    CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
 | 
						|
 | 
						|
    // Type safety checking.
 | 
						|
    if (FDecl) {
 | 
						|
      for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
 | 
						|
        CheckArgumentWithTypeTag(I, Args, Loc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
 | 
						|
    auto *AA = FDecl->getAttr<AllocAlignAttr>();
 | 
						|
    const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
 | 
						|
    if (!Arg->isValueDependent()) {
 | 
						|
      Expr::EvalResult Align;
 | 
						|
      if (Arg->EvaluateAsInt(Align, Context)) {
 | 
						|
        const llvm::APSInt &I = Align.Val.getInt();
 | 
						|
        if (!I.isPowerOf2())
 | 
						|
          Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
 | 
						|
              << Arg->getSourceRange();
 | 
						|
 | 
						|
        if (I > Sema::MaximumAlignment)
 | 
						|
          Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
 | 
						|
              << Arg->getSourceRange() << Sema::MaximumAlignment;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (FD)
 | 
						|
    diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckConstructorCall - Check a constructor call for correctness and safety
 | 
						|
/// properties not enforced by the C type system.
 | 
						|
void Sema::CheckConstructorCall(FunctionDecl *FDecl,
 | 
						|
                                ArrayRef<const Expr *> Args,
 | 
						|
                                const FunctionProtoType *Proto,
 | 
						|
                                SourceLocation Loc) {
 | 
						|
  VariadicCallType CallType =
 | 
						|
    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
 | 
						|
  checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
 | 
						|
            Loc, SourceRange(), CallType);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckFunctionCall - Check a direct function call for various correctness
 | 
						|
/// and safety properties not strictly enforced by the C type system.
 | 
						|
bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
 | 
						|
                             const FunctionProtoType *Proto) {
 | 
						|
  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
 | 
						|
                              isa<CXXMethodDecl>(FDecl);
 | 
						|
  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
 | 
						|
                          IsMemberOperatorCall;
 | 
						|
  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
 | 
						|
                                                  TheCall->getCallee());
 | 
						|
  Expr** Args = TheCall->getArgs();
 | 
						|
  unsigned NumArgs = TheCall->getNumArgs();
 | 
						|
 | 
						|
  Expr *ImplicitThis = nullptr;
 | 
						|
  if (IsMemberOperatorCall) {
 | 
						|
    // If this is a call to a member operator, hide the first argument
 | 
						|
    // from checkCall.
 | 
						|
    // FIXME: Our choice of AST representation here is less than ideal.
 | 
						|
    ImplicitThis = Args[0];
 | 
						|
    ++Args;
 | 
						|
    --NumArgs;
 | 
						|
  } else if (IsMemberFunction)
 | 
						|
    ImplicitThis =
 | 
						|
        cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
 | 
						|
 | 
						|
  checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
 | 
						|
            IsMemberFunction, TheCall->getRParenLoc(),
 | 
						|
            TheCall->getCallee()->getSourceRange(), CallType);
 | 
						|
 | 
						|
  IdentifierInfo *FnInfo = FDecl->getIdentifier();
 | 
						|
  // None of the checks below are needed for functions that don't have
 | 
						|
  // simple names (e.g., C++ conversion functions).
 | 
						|
  if (!FnInfo)
 | 
						|
    return false;
 | 
						|
 | 
						|
  CheckAbsoluteValueFunction(TheCall, FDecl);
 | 
						|
  CheckMaxUnsignedZero(TheCall, FDecl);
 | 
						|
 | 
						|
  if (getLangOpts().ObjC)
 | 
						|
    DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
 | 
						|
 | 
						|
  unsigned CMId = FDecl->getMemoryFunctionKind();
 | 
						|
 | 
						|
  // Handle memory setting and copying functions.
 | 
						|
  switch (CMId) {
 | 
						|
  case 0:
 | 
						|
    return false;
 | 
						|
  case Builtin::BIstrlcpy: // fallthrough
 | 
						|
  case Builtin::BIstrlcat:
 | 
						|
    CheckStrlcpycatArguments(TheCall, FnInfo);
 | 
						|
    break;
 | 
						|
  case Builtin::BIstrncat:
 | 
						|
    CheckStrncatArguments(TheCall, FnInfo);
 | 
						|
    break;
 | 
						|
  case Builtin::BIfree:
 | 
						|
    CheckFreeArguments(TheCall);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    CheckMemaccessArguments(TheCall, CMId, FnInfo);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
 | 
						|
                               ArrayRef<const Expr *> Args) {
 | 
						|
  VariadicCallType CallType =
 | 
						|
      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
 | 
						|
 | 
						|
  checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
 | 
						|
            /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
 | 
						|
            CallType);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
 | 
						|
                            const FunctionProtoType *Proto) {
 | 
						|
  QualType Ty;
 | 
						|
  if (const auto *V = dyn_cast<VarDecl>(NDecl))
 | 
						|
    Ty = V->getType().getNonReferenceType();
 | 
						|
  else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
 | 
						|
    Ty = F->getType().getNonReferenceType();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
 | 
						|
      !Ty->isFunctionProtoType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  VariadicCallType CallType;
 | 
						|
  if (!Proto || !Proto->isVariadic()) {
 | 
						|
    CallType = VariadicDoesNotApply;
 | 
						|
  } else if (Ty->isBlockPointerType()) {
 | 
						|
    CallType = VariadicBlock;
 | 
						|
  } else { // Ty->isFunctionPointerType()
 | 
						|
    CallType = VariadicFunction;
 | 
						|
  }
 | 
						|
 | 
						|
  checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
 | 
						|
            llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
 | 
						|
            /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
 | 
						|
            TheCall->getCallee()->getSourceRange(), CallType);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
 | 
						|
/// such as function pointers returned from functions.
 | 
						|
bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
 | 
						|
  VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
 | 
						|
                                                  TheCall->getCallee());
 | 
						|
  checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
 | 
						|
            llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
 | 
						|
            /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
 | 
						|
            TheCall->getCallee()->getSourceRange(), CallType);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
 | 
						|
  if (!llvm::isValidAtomicOrderingCABI(Ordering))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
 | 
						|
  switch (Op) {
 | 
						|
  case AtomicExpr::AO__c11_atomic_init:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_init:
 | 
						|
    llvm_unreachable("There is no ordering argument for an init");
 | 
						|
 | 
						|
  case AtomicExpr::AO__c11_atomic_load:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_load:
 | 
						|
  case AtomicExpr::AO__atomic_load_n:
 | 
						|
  case AtomicExpr::AO__atomic_load:
 | 
						|
    return OrderingCABI != llvm::AtomicOrderingCABI::release &&
 | 
						|
           OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
 | 
						|
 | 
						|
  case AtomicExpr::AO__c11_atomic_store:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_store:
 | 
						|
  case AtomicExpr::AO__atomic_store:
 | 
						|
  case AtomicExpr::AO__atomic_store_n:
 | 
						|
    return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
 | 
						|
           OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
 | 
						|
           OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
 | 
						|
 | 
						|
  default:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
 | 
						|
                                         AtomicExpr::AtomicOp Op) {
 | 
						|
  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
 | 
						|
  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | 
						|
  MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
 | 
						|
  return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
 | 
						|
                         DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
 | 
						|
                         Op);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
 | 
						|
                                 SourceLocation RParenLoc, MultiExprArg Args,
 | 
						|
                                 AtomicExpr::AtomicOp Op,
 | 
						|
                                 AtomicArgumentOrder ArgOrder) {
 | 
						|
  // All the non-OpenCL operations take one of the following forms.
 | 
						|
  // The OpenCL operations take the __c11 forms with one extra argument for
 | 
						|
  // synchronization scope.
 | 
						|
  enum {
 | 
						|
    // C    __c11_atomic_init(A *, C)
 | 
						|
    Init,
 | 
						|
 | 
						|
    // C    __c11_atomic_load(A *, int)
 | 
						|
    Load,
 | 
						|
 | 
						|
    // void __atomic_load(A *, CP, int)
 | 
						|
    LoadCopy,
 | 
						|
 | 
						|
    // void __atomic_store(A *, CP, int)
 | 
						|
    Copy,
 | 
						|
 | 
						|
    // C    __c11_atomic_add(A *, M, int)
 | 
						|
    Arithmetic,
 | 
						|
 | 
						|
    // C    __atomic_exchange_n(A *, CP, int)
 | 
						|
    Xchg,
 | 
						|
 | 
						|
    // void __atomic_exchange(A *, C *, CP, int)
 | 
						|
    GNUXchg,
 | 
						|
 | 
						|
    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
 | 
						|
    C11CmpXchg,
 | 
						|
 | 
						|
    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
 | 
						|
    GNUCmpXchg
 | 
						|
  } Form = Init;
 | 
						|
 | 
						|
  const unsigned NumForm = GNUCmpXchg + 1;
 | 
						|
  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
 | 
						|
  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
 | 
						|
  // where:
 | 
						|
  //   C is an appropriate type,
 | 
						|
  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
 | 
						|
  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
 | 
						|
  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
 | 
						|
  //   the int parameters are for orderings.
 | 
						|
 | 
						|
  static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
 | 
						|
      && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
 | 
						|
      "need to update code for modified forms");
 | 
						|
  static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
 | 
						|
                    AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
 | 
						|
                        AtomicExpr::AO__atomic_load,
 | 
						|
                "need to update code for modified C11 atomics");
 | 
						|
  bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
 | 
						|
                  Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
 | 
						|
  bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
 | 
						|
               Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
 | 
						|
               IsOpenCL;
 | 
						|
  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
 | 
						|
             Op == AtomicExpr::AO__atomic_store_n ||
 | 
						|
             Op == AtomicExpr::AO__atomic_exchange_n ||
 | 
						|
             Op == AtomicExpr::AO__atomic_compare_exchange_n;
 | 
						|
  bool IsAddSub = false;
 | 
						|
 | 
						|
  switch (Op) {
 | 
						|
  case AtomicExpr::AO__c11_atomic_init:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_init:
 | 
						|
    Form = Init;
 | 
						|
    break;
 | 
						|
 | 
						|
  case AtomicExpr::AO__c11_atomic_load:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_load:
 | 
						|
  case AtomicExpr::AO__atomic_load_n:
 | 
						|
    Form = Load;
 | 
						|
    break;
 | 
						|
 | 
						|
  case AtomicExpr::AO__atomic_load:
 | 
						|
    Form = LoadCopy;
 | 
						|
    break;
 | 
						|
 | 
						|
  case AtomicExpr::AO__c11_atomic_store:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_store:
 | 
						|
  case AtomicExpr::AO__atomic_store:
 | 
						|
  case AtomicExpr::AO__atomic_store_n:
 | 
						|
    Form = Copy;
 | 
						|
    break;
 | 
						|
 | 
						|
  case AtomicExpr::AO__c11_atomic_fetch_add:
 | 
						|
  case AtomicExpr::AO__c11_atomic_fetch_sub:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_fetch_add:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_fetch_sub:
 | 
						|
  case AtomicExpr::AO__atomic_fetch_add:
 | 
						|
  case AtomicExpr::AO__atomic_fetch_sub:
 | 
						|
  case AtomicExpr::AO__atomic_add_fetch:
 | 
						|
  case AtomicExpr::AO__atomic_sub_fetch:
 | 
						|
    IsAddSub = true;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case AtomicExpr::AO__c11_atomic_fetch_and:
 | 
						|
  case AtomicExpr::AO__c11_atomic_fetch_or:
 | 
						|
  case AtomicExpr::AO__c11_atomic_fetch_xor:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_fetch_and:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_fetch_or:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_fetch_xor:
 | 
						|
  case AtomicExpr::AO__atomic_fetch_and:
 | 
						|
  case AtomicExpr::AO__atomic_fetch_or:
 | 
						|
  case AtomicExpr::AO__atomic_fetch_xor:
 | 
						|
  case AtomicExpr::AO__atomic_fetch_nand:
 | 
						|
  case AtomicExpr::AO__atomic_and_fetch:
 | 
						|
  case AtomicExpr::AO__atomic_or_fetch:
 | 
						|
  case AtomicExpr::AO__atomic_xor_fetch:
 | 
						|
  case AtomicExpr::AO__atomic_nand_fetch:
 | 
						|
  case AtomicExpr::AO__c11_atomic_fetch_min:
 | 
						|
  case AtomicExpr::AO__c11_atomic_fetch_max:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_fetch_min:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_fetch_max:
 | 
						|
  case AtomicExpr::AO__atomic_min_fetch:
 | 
						|
  case AtomicExpr::AO__atomic_max_fetch:
 | 
						|
  case AtomicExpr::AO__atomic_fetch_min:
 | 
						|
  case AtomicExpr::AO__atomic_fetch_max:
 | 
						|
    Form = Arithmetic;
 | 
						|
    break;
 | 
						|
 | 
						|
  case AtomicExpr::AO__c11_atomic_exchange:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_exchange:
 | 
						|
  case AtomicExpr::AO__atomic_exchange_n:
 | 
						|
    Form = Xchg;
 | 
						|
    break;
 | 
						|
 | 
						|
  case AtomicExpr::AO__atomic_exchange:
 | 
						|
    Form = GNUXchg;
 | 
						|
    break;
 | 
						|
 | 
						|
  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
 | 
						|
  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
 | 
						|
  case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
 | 
						|
    Form = C11CmpXchg;
 | 
						|
    break;
 | 
						|
 | 
						|
  case AtomicExpr::AO__atomic_compare_exchange:
 | 
						|
  case AtomicExpr::AO__atomic_compare_exchange_n:
 | 
						|
    Form = GNUCmpXchg;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned AdjustedNumArgs = NumArgs[Form];
 | 
						|
  if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
 | 
						|
    ++AdjustedNumArgs;
 | 
						|
  // Check we have the right number of arguments.
 | 
						|
  if (Args.size() < AdjustedNumArgs) {
 | 
						|
    Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
 | 
						|
        << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
 | 
						|
        << ExprRange;
 | 
						|
    return ExprError();
 | 
						|
  } else if (Args.size() > AdjustedNumArgs) {
 | 
						|
    Diag(Args[AdjustedNumArgs]->getBeginLoc(),
 | 
						|
         diag::err_typecheck_call_too_many_args)
 | 
						|
        << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
 | 
						|
        << ExprRange;
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Inspect the first argument of the atomic operation.
 | 
						|
  Expr *Ptr = Args[0];
 | 
						|
  ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
 | 
						|
  if (ConvertedPtr.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  Ptr = ConvertedPtr.get();
 | 
						|
  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
 | 
						|
  if (!pointerType) {
 | 
						|
    Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
 | 
						|
        << Ptr->getType() << Ptr->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // For a __c11 builtin, this should be a pointer to an _Atomic type.
 | 
						|
  QualType AtomTy = pointerType->getPointeeType(); // 'A'
 | 
						|
  QualType ValType = AtomTy; // 'C'
 | 
						|
  if (IsC11) {
 | 
						|
    if (!AtomTy->isAtomicType()) {
 | 
						|
      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
 | 
						|
          << Ptr->getType() << Ptr->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
    if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
 | 
						|
        AtomTy.getAddressSpace() == LangAS::opencl_constant) {
 | 
						|
      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
 | 
						|
          << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
 | 
						|
          << Ptr->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
    ValType = AtomTy->castAs<AtomicType>()->getValueType();
 | 
						|
  } else if (Form != Load && Form != LoadCopy) {
 | 
						|
    if (ValType.isConstQualified()) {
 | 
						|
      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
 | 
						|
          << Ptr->getType() << Ptr->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For an arithmetic operation, the implied arithmetic must be well-formed.
 | 
						|
  if (Form == Arithmetic) {
 | 
						|
    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
 | 
						|
    if (IsAddSub && !ValType->isIntegerType()
 | 
						|
        && !ValType->isPointerType()) {
 | 
						|
      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
 | 
						|
          << IsC11 << Ptr->getType() << Ptr->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
    if (!IsAddSub && !ValType->isIntegerType()) {
 | 
						|
      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
 | 
						|
          << IsC11 << Ptr->getType() << Ptr->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
    if (IsC11 && ValType->isPointerType() &&
 | 
						|
        RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
 | 
						|
                            diag::err_incomplete_type)) {
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
 | 
						|
    // For __atomic_*_n operations, the value type must be a scalar integral or
 | 
						|
    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
 | 
						|
    Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
 | 
						|
        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
 | 
						|
      !AtomTy->isScalarType()) {
 | 
						|
    // For GNU atomics, require a trivially-copyable type. This is not part of
 | 
						|
    // the GNU atomics specification, but we enforce it for sanity.
 | 
						|
    Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
 | 
						|
        << Ptr->getType() << Ptr->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  switch (ValType.getObjCLifetime()) {
 | 
						|
  case Qualifiers::OCL_None:
 | 
						|
  case Qualifiers::OCL_ExplicitNone:
 | 
						|
    // okay
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_Weak:
 | 
						|
  case Qualifiers::OCL_Strong:
 | 
						|
  case Qualifiers::OCL_Autoreleasing:
 | 
						|
    // FIXME: Can this happen? By this point, ValType should be known
 | 
						|
    // to be trivially copyable.
 | 
						|
    Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
 | 
						|
        << ValType << Ptr->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // All atomic operations have an overload which takes a pointer to a volatile
 | 
						|
  // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
 | 
						|
  // into the result or the other operands. Similarly atomic_load takes a
 | 
						|
  // pointer to a const 'A'.
 | 
						|
  ValType.removeLocalVolatile();
 | 
						|
  ValType.removeLocalConst();
 | 
						|
  QualType ResultType = ValType;
 | 
						|
  if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
 | 
						|
      Form == Init)
 | 
						|
    ResultType = Context.VoidTy;
 | 
						|
  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
 | 
						|
    ResultType = Context.BoolTy;
 | 
						|
 | 
						|
  // The type of a parameter passed 'by value'. In the GNU atomics, such
 | 
						|
  // arguments are actually passed as pointers.
 | 
						|
  QualType ByValType = ValType; // 'CP'
 | 
						|
  bool IsPassedByAddress = false;
 | 
						|
  if (!IsC11 && !IsN) {
 | 
						|
    ByValType = Ptr->getType();
 | 
						|
    IsPassedByAddress = true;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<Expr *, 5> APIOrderedArgs;
 | 
						|
  if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
 | 
						|
    APIOrderedArgs.push_back(Args[0]);
 | 
						|
    switch (Form) {
 | 
						|
    case Init:
 | 
						|
    case Load:
 | 
						|
      APIOrderedArgs.push_back(Args[1]); // Val1/Order
 | 
						|
      break;
 | 
						|
    case LoadCopy:
 | 
						|
    case Copy:
 | 
						|
    case Arithmetic:
 | 
						|
    case Xchg:
 | 
						|
      APIOrderedArgs.push_back(Args[2]); // Val1
 | 
						|
      APIOrderedArgs.push_back(Args[1]); // Order
 | 
						|
      break;
 | 
						|
    case GNUXchg:
 | 
						|
      APIOrderedArgs.push_back(Args[2]); // Val1
 | 
						|
      APIOrderedArgs.push_back(Args[3]); // Val2
 | 
						|
      APIOrderedArgs.push_back(Args[1]); // Order
 | 
						|
      break;
 | 
						|
    case C11CmpXchg:
 | 
						|
      APIOrderedArgs.push_back(Args[2]); // Val1
 | 
						|
      APIOrderedArgs.push_back(Args[4]); // Val2
 | 
						|
      APIOrderedArgs.push_back(Args[1]); // Order
 | 
						|
      APIOrderedArgs.push_back(Args[3]); // OrderFail
 | 
						|
      break;
 | 
						|
    case GNUCmpXchg:
 | 
						|
      APIOrderedArgs.push_back(Args[2]); // Val1
 | 
						|
      APIOrderedArgs.push_back(Args[4]); // Val2
 | 
						|
      APIOrderedArgs.push_back(Args[5]); // Weak
 | 
						|
      APIOrderedArgs.push_back(Args[1]); // Order
 | 
						|
      APIOrderedArgs.push_back(Args[3]); // OrderFail
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  } else
 | 
						|
    APIOrderedArgs.append(Args.begin(), Args.end());
 | 
						|
 | 
						|
  // The first argument's non-CV pointer type is used to deduce the type of
 | 
						|
  // subsequent arguments, except for:
 | 
						|
  //  - weak flag (always converted to bool)
 | 
						|
  //  - memory order (always converted to int)
 | 
						|
  //  - scope  (always converted to int)
 | 
						|
  for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
 | 
						|
    QualType Ty;
 | 
						|
    if (i < NumVals[Form] + 1) {
 | 
						|
      switch (i) {
 | 
						|
      case 0:
 | 
						|
        // The first argument is always a pointer. It has a fixed type.
 | 
						|
        // It is always dereferenced, a nullptr is undefined.
 | 
						|
        CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
 | 
						|
        // Nothing else to do: we already know all we want about this pointer.
 | 
						|
        continue;
 | 
						|
      case 1:
 | 
						|
        // The second argument is the non-atomic operand. For arithmetic, this
 | 
						|
        // is always passed by value, and for a compare_exchange it is always
 | 
						|
        // passed by address. For the rest, GNU uses by-address and C11 uses
 | 
						|
        // by-value.
 | 
						|
        assert(Form != Load);
 | 
						|
        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
 | 
						|
          Ty = ValType;
 | 
						|
        else if (Form == Copy || Form == Xchg) {
 | 
						|
          if (IsPassedByAddress) {
 | 
						|
            // The value pointer is always dereferenced, a nullptr is undefined.
 | 
						|
            CheckNonNullArgument(*this, APIOrderedArgs[i],
 | 
						|
                                 ExprRange.getBegin());
 | 
						|
          }
 | 
						|
          Ty = ByValType;
 | 
						|
        } else if (Form == Arithmetic)
 | 
						|
          Ty = Context.getPointerDiffType();
 | 
						|
        else {
 | 
						|
          Expr *ValArg = APIOrderedArgs[i];
 | 
						|
          // The value pointer is always dereferenced, a nullptr is undefined.
 | 
						|
          CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
 | 
						|
          LangAS AS = LangAS::Default;
 | 
						|
          // Keep address space of non-atomic pointer type.
 | 
						|
          if (const PointerType *PtrTy =
 | 
						|
                  ValArg->getType()->getAs<PointerType>()) {
 | 
						|
            AS = PtrTy->getPointeeType().getAddressSpace();
 | 
						|
          }
 | 
						|
          Ty = Context.getPointerType(
 | 
						|
              Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case 2:
 | 
						|
        // The third argument to compare_exchange / GNU exchange is the desired
 | 
						|
        // value, either by-value (for the C11 and *_n variant) or as a pointer.
 | 
						|
        if (IsPassedByAddress)
 | 
						|
          CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
 | 
						|
        Ty = ByValType;
 | 
						|
        break;
 | 
						|
      case 3:
 | 
						|
        // The fourth argument to GNU compare_exchange is a 'weak' flag.
 | 
						|
        Ty = Context.BoolTy;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // The order(s) and scope are always converted to int.
 | 
						|
      Ty = Context.IntTy;
 | 
						|
    }
 | 
						|
 | 
						|
    InitializedEntity Entity =
 | 
						|
        InitializedEntity::InitializeParameter(Context, Ty, false);
 | 
						|
    ExprResult Arg = APIOrderedArgs[i];
 | 
						|
    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | 
						|
    if (Arg.isInvalid())
 | 
						|
      return true;
 | 
						|
    APIOrderedArgs[i] = Arg.get();
 | 
						|
  }
 | 
						|
 | 
						|
  // Permute the arguments into a 'consistent' order.
 | 
						|
  SmallVector<Expr*, 5> SubExprs;
 | 
						|
  SubExprs.push_back(Ptr);
 | 
						|
  switch (Form) {
 | 
						|
  case Init:
 | 
						|
    // Note, AtomicExpr::getVal1() has a special case for this atomic.
 | 
						|
    SubExprs.push_back(APIOrderedArgs[1]); // Val1
 | 
						|
    break;
 | 
						|
  case Load:
 | 
						|
    SubExprs.push_back(APIOrderedArgs[1]); // Order
 | 
						|
    break;
 | 
						|
  case LoadCopy:
 | 
						|
  case Copy:
 | 
						|
  case Arithmetic:
 | 
						|
  case Xchg:
 | 
						|
    SubExprs.push_back(APIOrderedArgs[2]); // Order
 | 
						|
    SubExprs.push_back(APIOrderedArgs[1]); // Val1
 | 
						|
    break;
 | 
						|
  case GNUXchg:
 | 
						|
    // Note, AtomicExpr::getVal2() has a special case for this atomic.
 | 
						|
    SubExprs.push_back(APIOrderedArgs[3]); // Order
 | 
						|
    SubExprs.push_back(APIOrderedArgs[1]); // Val1
 | 
						|
    SubExprs.push_back(APIOrderedArgs[2]); // Val2
 | 
						|
    break;
 | 
						|
  case C11CmpXchg:
 | 
						|
    SubExprs.push_back(APIOrderedArgs[3]); // Order
 | 
						|
    SubExprs.push_back(APIOrderedArgs[1]); // Val1
 | 
						|
    SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
 | 
						|
    SubExprs.push_back(APIOrderedArgs[2]); // Val2
 | 
						|
    break;
 | 
						|
  case GNUCmpXchg:
 | 
						|
    SubExprs.push_back(APIOrderedArgs[4]); // Order
 | 
						|
    SubExprs.push_back(APIOrderedArgs[1]); // Val1
 | 
						|
    SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
 | 
						|
    SubExprs.push_back(APIOrderedArgs[2]); // Val2
 | 
						|
    SubExprs.push_back(APIOrderedArgs[3]); // Weak
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SubExprs.size() >= 2 && Form != Init) {
 | 
						|
    if (Optional<llvm::APSInt> Result =
 | 
						|
            SubExprs[1]->getIntegerConstantExpr(Context))
 | 
						|
      if (!isValidOrderingForOp(Result->getSExtValue(), Op))
 | 
						|
        Diag(SubExprs[1]->getBeginLoc(),
 | 
						|
             diag::warn_atomic_op_has_invalid_memory_order)
 | 
						|
            << SubExprs[1]->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
 | 
						|
    auto *Scope = Args[Args.size() - 1];
 | 
						|
    if (Optional<llvm::APSInt> Result =
 | 
						|
            Scope->getIntegerConstantExpr(Context)) {
 | 
						|
      if (!ScopeModel->isValid(Result->getZExtValue()))
 | 
						|
        Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
 | 
						|
            << Scope->getSourceRange();
 | 
						|
    }
 | 
						|
    SubExprs.push_back(Scope);
 | 
						|
  }
 | 
						|
 | 
						|
  AtomicExpr *AE = new (Context)
 | 
						|
      AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
 | 
						|
 | 
						|
  if ((Op == AtomicExpr::AO__c11_atomic_load ||
 | 
						|
       Op == AtomicExpr::AO__c11_atomic_store ||
 | 
						|
       Op == AtomicExpr::AO__opencl_atomic_load ||
 | 
						|
       Op == AtomicExpr::AO__opencl_atomic_store ) &&
 | 
						|
      Context.AtomicUsesUnsupportedLibcall(AE))
 | 
						|
    Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
 | 
						|
        << ((Op == AtomicExpr::AO__c11_atomic_load ||
 | 
						|
             Op == AtomicExpr::AO__opencl_atomic_load)
 | 
						|
                ? 0
 | 
						|
                : 1);
 | 
						|
 | 
						|
  if (ValType->isExtIntType()) {
 | 
						|
    Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  return AE;
 | 
						|
}
 | 
						|
 | 
						|
/// checkBuiltinArgument - Given a call to a builtin function, perform
 | 
						|
/// normal type-checking on the given argument, updating the call in
 | 
						|
/// place.  This is useful when a builtin function requires custom
 | 
						|
/// type-checking for some of its arguments but not necessarily all of
 | 
						|
/// them.
 | 
						|
///
 | 
						|
/// Returns true on error.
 | 
						|
static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
 | 
						|
  FunctionDecl *Fn = E->getDirectCallee();
 | 
						|
  assert(Fn && "builtin call without direct callee!");
 | 
						|
 | 
						|
  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
 | 
						|
  InitializedEntity Entity =
 | 
						|
    InitializedEntity::InitializeParameter(S.Context, Param);
 | 
						|
 | 
						|
  ExprResult Arg = E->getArg(0);
 | 
						|
  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | 
						|
  if (Arg.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  E->setArg(ArgIndex, Arg.get());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// We have a call to a function like __sync_fetch_and_add, which is an
 | 
						|
/// overloaded function based on the pointer type of its first argument.
 | 
						|
/// The main BuildCallExpr routines have already promoted the types of
 | 
						|
/// arguments because all of these calls are prototyped as void(...).
 | 
						|
///
 | 
						|
/// This function goes through and does final semantic checking for these
 | 
						|
/// builtins, as well as generating any warnings.
 | 
						|
ExprResult
 | 
						|
Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
 | 
						|
  CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
 | 
						|
  Expr *Callee = TheCall->getCallee();
 | 
						|
  DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
 | 
						|
  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | 
						|
 | 
						|
  // Ensure that we have at least one argument to do type inference from.
 | 
						|
  if (TheCall->getNumArgs() < 1) {
 | 
						|
    Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
 | 
						|
        << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Inspect the first argument of the atomic builtin.  This should always be
 | 
						|
  // a pointer type, whose element is an integral scalar or pointer type.
 | 
						|
  // Because it is a pointer type, we don't have to worry about any implicit
 | 
						|
  // casts here.
 | 
						|
  // FIXME: We don't allow floating point scalars as input.
 | 
						|
  Expr *FirstArg = TheCall->getArg(0);
 | 
						|
  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
 | 
						|
  if (FirstArgResult.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  FirstArg = FirstArgResult.get();
 | 
						|
  TheCall->setArg(0, FirstArg);
 | 
						|
 | 
						|
  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
 | 
						|
  if (!pointerType) {
 | 
						|
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
 | 
						|
        << FirstArg->getType() << FirstArg->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ValType = pointerType->getPointeeType();
 | 
						|
  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
 | 
						|
      !ValType->isBlockPointerType()) {
 | 
						|
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
 | 
						|
        << FirstArg->getType() << FirstArg->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (ValType.isConstQualified()) {
 | 
						|
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
 | 
						|
        << FirstArg->getType() << FirstArg->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  switch (ValType.getObjCLifetime()) {
 | 
						|
  case Qualifiers::OCL_None:
 | 
						|
  case Qualifiers::OCL_ExplicitNone:
 | 
						|
    // okay
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_Weak:
 | 
						|
  case Qualifiers::OCL_Strong:
 | 
						|
  case Qualifiers::OCL_Autoreleasing:
 | 
						|
    Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
 | 
						|
        << ValType << FirstArg->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Strip any qualifiers off ValType.
 | 
						|
  ValType = ValType.getUnqualifiedType();
 | 
						|
 | 
						|
  // The majority of builtins return a value, but a few have special return
 | 
						|
  // types, so allow them to override appropriately below.
 | 
						|
  QualType ResultType = ValType;
 | 
						|
 | 
						|
  // We need to figure out which concrete builtin this maps onto.  For example,
 | 
						|
  // __sync_fetch_and_add with a 2 byte object turns into
 | 
						|
  // __sync_fetch_and_add_2.
 | 
						|
#define BUILTIN_ROW(x) \
 | 
						|
  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
 | 
						|
    Builtin::BI##x##_8, Builtin::BI##x##_16 }
 | 
						|
 | 
						|
  static const unsigned BuiltinIndices[][5] = {
 | 
						|
    BUILTIN_ROW(__sync_fetch_and_add),
 | 
						|
    BUILTIN_ROW(__sync_fetch_and_sub),
 | 
						|
    BUILTIN_ROW(__sync_fetch_and_or),
 | 
						|
    BUILTIN_ROW(__sync_fetch_and_and),
 | 
						|
    BUILTIN_ROW(__sync_fetch_and_xor),
 | 
						|
    BUILTIN_ROW(__sync_fetch_and_nand),
 | 
						|
 | 
						|
    BUILTIN_ROW(__sync_add_and_fetch),
 | 
						|
    BUILTIN_ROW(__sync_sub_and_fetch),
 | 
						|
    BUILTIN_ROW(__sync_and_and_fetch),
 | 
						|
    BUILTIN_ROW(__sync_or_and_fetch),
 | 
						|
    BUILTIN_ROW(__sync_xor_and_fetch),
 | 
						|
    BUILTIN_ROW(__sync_nand_and_fetch),
 | 
						|
 | 
						|
    BUILTIN_ROW(__sync_val_compare_and_swap),
 | 
						|
    BUILTIN_ROW(__sync_bool_compare_and_swap),
 | 
						|
    BUILTIN_ROW(__sync_lock_test_and_set),
 | 
						|
    BUILTIN_ROW(__sync_lock_release),
 | 
						|
    BUILTIN_ROW(__sync_swap)
 | 
						|
  };
 | 
						|
#undef BUILTIN_ROW
 | 
						|
 | 
						|
  // Determine the index of the size.
 | 
						|
  unsigned SizeIndex;
 | 
						|
  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
 | 
						|
  case 1: SizeIndex = 0; break;
 | 
						|
  case 2: SizeIndex = 1; break;
 | 
						|
  case 4: SizeIndex = 2; break;
 | 
						|
  case 8: SizeIndex = 3; break;
 | 
						|
  case 16: SizeIndex = 4; break;
 | 
						|
  default:
 | 
						|
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
 | 
						|
        << FirstArg->getType() << FirstArg->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Each of these builtins has one pointer argument, followed by some number of
 | 
						|
  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
 | 
						|
  // that we ignore.  Find out which row of BuiltinIndices to read from as well
 | 
						|
  // as the number of fixed args.
 | 
						|
  unsigned BuiltinID = FDecl->getBuiltinID();
 | 
						|
  unsigned BuiltinIndex, NumFixed = 1;
 | 
						|
  bool WarnAboutSemanticsChange = false;
 | 
						|
  switch (BuiltinID) {
 | 
						|
  default: llvm_unreachable("Unknown overloaded atomic builtin!");
 | 
						|
  case Builtin::BI__sync_fetch_and_add:
 | 
						|
  case Builtin::BI__sync_fetch_and_add_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_add_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_add_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_add_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_add_16:
 | 
						|
    BuiltinIndex = 0;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_fetch_and_sub:
 | 
						|
  case Builtin::BI__sync_fetch_and_sub_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_sub_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_sub_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_sub_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_sub_16:
 | 
						|
    BuiltinIndex = 1;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_fetch_and_or:
 | 
						|
  case Builtin::BI__sync_fetch_and_or_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_or_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_or_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_or_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_or_16:
 | 
						|
    BuiltinIndex = 2;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_fetch_and_and:
 | 
						|
  case Builtin::BI__sync_fetch_and_and_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_and_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_and_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_and_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_and_16:
 | 
						|
    BuiltinIndex = 3;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_fetch_and_xor:
 | 
						|
  case Builtin::BI__sync_fetch_and_xor_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_xor_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_xor_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_xor_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_xor_16:
 | 
						|
    BuiltinIndex = 4;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_fetch_and_nand:
 | 
						|
  case Builtin::BI__sync_fetch_and_nand_1:
 | 
						|
  case Builtin::BI__sync_fetch_and_nand_2:
 | 
						|
  case Builtin::BI__sync_fetch_and_nand_4:
 | 
						|
  case Builtin::BI__sync_fetch_and_nand_8:
 | 
						|
  case Builtin::BI__sync_fetch_and_nand_16:
 | 
						|
    BuiltinIndex = 5;
 | 
						|
    WarnAboutSemanticsChange = true;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_add_and_fetch:
 | 
						|
  case Builtin::BI__sync_add_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_add_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_add_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_add_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_add_and_fetch_16:
 | 
						|
    BuiltinIndex = 6;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_sub_and_fetch:
 | 
						|
  case Builtin::BI__sync_sub_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_sub_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_sub_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_sub_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_sub_and_fetch_16:
 | 
						|
    BuiltinIndex = 7;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_and_and_fetch:
 | 
						|
  case Builtin::BI__sync_and_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_and_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_and_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_and_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_and_and_fetch_16:
 | 
						|
    BuiltinIndex = 8;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_or_and_fetch:
 | 
						|
  case Builtin::BI__sync_or_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_or_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_or_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_or_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_or_and_fetch_16:
 | 
						|
    BuiltinIndex = 9;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_xor_and_fetch:
 | 
						|
  case Builtin::BI__sync_xor_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_xor_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_xor_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_xor_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_xor_and_fetch_16:
 | 
						|
    BuiltinIndex = 10;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_nand_and_fetch:
 | 
						|
  case Builtin::BI__sync_nand_and_fetch_1:
 | 
						|
  case Builtin::BI__sync_nand_and_fetch_2:
 | 
						|
  case Builtin::BI__sync_nand_and_fetch_4:
 | 
						|
  case Builtin::BI__sync_nand_and_fetch_8:
 | 
						|
  case Builtin::BI__sync_nand_and_fetch_16:
 | 
						|
    BuiltinIndex = 11;
 | 
						|
    WarnAboutSemanticsChange = true;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap:
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap_1:
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap_2:
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap_4:
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap_8:
 | 
						|
  case Builtin::BI__sync_val_compare_and_swap_16:
 | 
						|
    BuiltinIndex = 12;
 | 
						|
    NumFixed = 2;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap:
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap_1:
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap_2:
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap_4:
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap_8:
 | 
						|
  case Builtin::BI__sync_bool_compare_and_swap_16:
 | 
						|
    BuiltinIndex = 13;
 | 
						|
    NumFixed = 2;
 | 
						|
    ResultType = Context.BoolTy;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_lock_test_and_set:
 | 
						|
  case Builtin::BI__sync_lock_test_and_set_1:
 | 
						|
  case Builtin::BI__sync_lock_test_and_set_2:
 | 
						|
  case Builtin::BI__sync_lock_test_and_set_4:
 | 
						|
  case Builtin::BI__sync_lock_test_and_set_8:
 | 
						|
  case Builtin::BI__sync_lock_test_and_set_16:
 | 
						|
    BuiltinIndex = 14;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_lock_release:
 | 
						|
  case Builtin::BI__sync_lock_release_1:
 | 
						|
  case Builtin::BI__sync_lock_release_2:
 | 
						|
  case Builtin::BI__sync_lock_release_4:
 | 
						|
  case Builtin::BI__sync_lock_release_8:
 | 
						|
  case Builtin::BI__sync_lock_release_16:
 | 
						|
    BuiltinIndex = 15;
 | 
						|
    NumFixed = 0;
 | 
						|
    ResultType = Context.VoidTy;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Builtin::BI__sync_swap:
 | 
						|
  case Builtin::BI__sync_swap_1:
 | 
						|
  case Builtin::BI__sync_swap_2:
 | 
						|
  case Builtin::BI__sync_swap_4:
 | 
						|
  case Builtin::BI__sync_swap_8:
 | 
						|
  case Builtin::BI__sync_swap_16:
 | 
						|
    BuiltinIndex = 16;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we know how many fixed arguments we expect, first check that we
 | 
						|
  // have at least that many.
 | 
						|
  if (TheCall->getNumArgs() < 1+NumFixed) {
 | 
						|
    Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
 | 
						|
        << 0 << 1 + NumFixed << TheCall->getNumArgs()
 | 
						|
        << Callee->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
 | 
						|
      << Callee->getSourceRange();
 | 
						|
 | 
						|
  if (WarnAboutSemanticsChange) {
 | 
						|
    Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
 | 
						|
        << Callee->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the decl for the concrete builtin from this, we can tell what the
 | 
						|
  // concrete integer type we should convert to is.
 | 
						|
  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
 | 
						|
  const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
 | 
						|
  FunctionDecl *NewBuiltinDecl;
 | 
						|
  if (NewBuiltinID == BuiltinID)
 | 
						|
    NewBuiltinDecl = FDecl;
 | 
						|
  else {
 | 
						|
    // Perform builtin lookup to avoid redeclaring it.
 | 
						|
    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
 | 
						|
    LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
 | 
						|
    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
 | 
						|
    assert(Res.getFoundDecl());
 | 
						|
    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
 | 
						|
    if (!NewBuiltinDecl)
 | 
						|
      return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // The first argument --- the pointer --- has a fixed type; we
 | 
						|
  // deduce the types of the rest of the arguments accordingly.  Walk
 | 
						|
  // the remaining arguments, converting them to the deduced value type.
 | 
						|
  for (unsigned i = 0; i != NumFixed; ++i) {
 | 
						|
    ExprResult Arg = TheCall->getArg(i+1);
 | 
						|
 | 
						|
    // GCC does an implicit conversion to the pointer or integer ValType.  This
 | 
						|
    // can fail in some cases (1i -> int**), check for this error case now.
 | 
						|
    // Initialize the argument.
 | 
						|
    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
 | 
						|
                                                   ValType, /*consume*/ false);
 | 
						|
    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | 
						|
    if (Arg.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // Okay, we have something that *can* be converted to the right type.  Check
 | 
						|
    // to see if there is a potentially weird extension going on here.  This can
 | 
						|
    // happen when you do an atomic operation on something like an char* and
 | 
						|
    // pass in 42.  The 42 gets converted to char.  This is even more strange
 | 
						|
    // for things like 45.123 -> char, etc.
 | 
						|
    // FIXME: Do this check.
 | 
						|
    TheCall->setArg(i+1, Arg.get());
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a new DeclRefExpr to refer to the new decl.
 | 
						|
  DeclRefExpr *NewDRE = DeclRefExpr::Create(
 | 
						|
      Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
 | 
						|
      /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
 | 
						|
      DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
 | 
						|
 | 
						|
  // Set the callee in the CallExpr.
 | 
						|
  // FIXME: This loses syntactic information.
 | 
						|
  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
 | 
						|
  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
 | 
						|
                                              CK_BuiltinFnToFnPtr);
 | 
						|
  TheCall->setCallee(PromotedCall.get());
 | 
						|
 | 
						|
  // Change the result type of the call to match the original value type. This
 | 
						|
  // is arbitrary, but the codegen for these builtins ins design to handle it
 | 
						|
  // gracefully.
 | 
						|
  TheCall->setType(ResultType);
 | 
						|
 | 
						|
  // Prohibit use of _ExtInt with atomic builtins.
 | 
						|
  // The arguments would have already been converted to the first argument's
 | 
						|
  // type, so only need to check the first argument.
 | 
						|
  const auto *ExtIntValType = ValType->getAs<ExtIntType>();
 | 
						|
  if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
 | 
						|
    Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  return TheCallResult;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinNontemporalOverloaded - We have a call to
 | 
						|
/// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
 | 
						|
/// overloaded function based on the pointer type of its last argument.
 | 
						|
///
 | 
						|
/// This function goes through and does final semantic checking for these
 | 
						|
/// builtins.
 | 
						|
ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
 | 
						|
  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
 | 
						|
  DeclRefExpr *DRE =
 | 
						|
      cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | 
						|
  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | 
						|
  unsigned BuiltinID = FDecl->getBuiltinID();
 | 
						|
  assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
 | 
						|
          BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
 | 
						|
         "Unexpected nontemporal load/store builtin!");
 | 
						|
  bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
 | 
						|
  unsigned numArgs = isStore ? 2 : 1;
 | 
						|
 | 
						|
  // Ensure that we have the proper number of arguments.
 | 
						|
  if (checkArgCount(*this, TheCall, numArgs))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Inspect the last argument of the nontemporal builtin.  This should always
 | 
						|
  // be a pointer type, from which we imply the type of the memory access.
 | 
						|
  // Because it is a pointer type, we don't have to worry about any implicit
 | 
						|
  // casts here.
 | 
						|
  Expr *PointerArg = TheCall->getArg(numArgs - 1);
 | 
						|
  ExprResult PointerArgResult =
 | 
						|
      DefaultFunctionArrayLvalueConversion(PointerArg);
 | 
						|
 | 
						|
  if (PointerArgResult.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  PointerArg = PointerArgResult.get();
 | 
						|
  TheCall->setArg(numArgs - 1, PointerArg);
 | 
						|
 | 
						|
  const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
 | 
						|
  if (!pointerType) {
 | 
						|
    Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
 | 
						|
        << PointerArg->getType() << PointerArg->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ValType = pointerType->getPointeeType();
 | 
						|
 | 
						|
  // Strip any qualifiers off ValType.
 | 
						|
  ValType = ValType.getUnqualifiedType();
 | 
						|
  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
 | 
						|
      !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
 | 
						|
      !ValType->isVectorType()) {
 | 
						|
    Diag(DRE->getBeginLoc(),
 | 
						|
         diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
 | 
						|
        << PointerArg->getType() << PointerArg->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isStore) {
 | 
						|
    TheCall->setType(ValType);
 | 
						|
    return TheCallResult;
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult ValArg = TheCall->getArg(0);
 | 
						|
  InitializedEntity Entity = InitializedEntity::InitializeParameter(
 | 
						|
      Context, ValType, /*consume*/ false);
 | 
						|
  ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
 | 
						|
  if (ValArg.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  TheCall->setArg(0, ValArg.get());
 | 
						|
  TheCall->setType(Context.VoidTy);
 | 
						|
  return TheCallResult;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckObjCString - Checks that the argument to the builtin
 | 
						|
/// CFString constructor is correct
 | 
						|
/// Note: It might also make sense to do the UTF-16 conversion here (would
 | 
						|
/// simplify the backend).
 | 
						|
bool Sema::CheckObjCString(Expr *Arg) {
 | 
						|
  Arg = Arg->IgnoreParenCasts();
 | 
						|
  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
 | 
						|
 | 
						|
  if (!Literal || !Literal->isAscii()) {
 | 
						|
    Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
 | 
						|
        << Arg->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Literal->containsNonAsciiOrNull()) {
 | 
						|
    StringRef String = Literal->getString();
 | 
						|
    unsigned NumBytes = String.size();
 | 
						|
    SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
 | 
						|
    const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
 | 
						|
    llvm::UTF16 *ToPtr = &ToBuf[0];
 | 
						|
 | 
						|
    llvm::ConversionResult Result =
 | 
						|
        llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
 | 
						|
                                 ToPtr + NumBytes, llvm::strictConversion);
 | 
						|
    // Check for conversion failure.
 | 
						|
    if (Result != llvm::conversionOK)
 | 
						|
      Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
 | 
						|
          << Arg->getSourceRange();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckObjCString - Checks that the format string argument to the os_log()
 | 
						|
/// and os_trace() functions is correct, and converts it to const char *.
 | 
						|
ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
 | 
						|
  Arg = Arg->IgnoreParenCasts();
 | 
						|
  auto *Literal = dyn_cast<StringLiteral>(Arg);
 | 
						|
  if (!Literal) {
 | 
						|
    if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
 | 
						|
      Literal = ObjcLiteral->getString();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
 | 
						|
    return ExprError(
 | 
						|
        Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
 | 
						|
        << Arg->getSourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult Result(Literal);
 | 
						|
  QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
 | 
						|
  InitializedEntity Entity =
 | 
						|
      InitializedEntity::InitializeParameter(Context, ResultTy, false);
 | 
						|
  Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Check that the user is calling the appropriate va_start builtin for the
 | 
						|
/// target and calling convention.
 | 
						|
static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
 | 
						|
  const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
 | 
						|
  bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
 | 
						|
  bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
 | 
						|
                    TT.getArch() == llvm::Triple::aarch64_32);
 | 
						|
  bool IsWindows = TT.isOSWindows();
 | 
						|
  bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
 | 
						|
  if (IsX64 || IsAArch64) {
 | 
						|
    CallingConv CC = CC_C;
 | 
						|
    if (const FunctionDecl *FD = S.getCurFunctionDecl())
 | 
						|
      CC = FD->getType()->castAs<FunctionType>()->getCallConv();
 | 
						|
    if (IsMSVAStart) {
 | 
						|
      // Don't allow this in System V ABI functions.
 | 
						|
      if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
 | 
						|
        return S.Diag(Fn->getBeginLoc(),
 | 
						|
                      diag::err_ms_va_start_used_in_sysv_function);
 | 
						|
    } else {
 | 
						|
      // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
 | 
						|
      // On x64 Windows, don't allow this in System V ABI functions.
 | 
						|
      // (Yes, that means there's no corresponding way to support variadic
 | 
						|
      // System V ABI functions on Windows.)
 | 
						|
      if ((IsWindows && CC == CC_X86_64SysV) ||
 | 
						|
          (!IsWindows && CC == CC_Win64))
 | 
						|
        return S.Diag(Fn->getBeginLoc(),
 | 
						|
                      diag::err_va_start_used_in_wrong_abi_function)
 | 
						|
               << !IsWindows;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsMSVAStart)
 | 
						|
    return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
 | 
						|
                                             ParmVarDecl **LastParam = nullptr) {
 | 
						|
  // Determine whether the current function, block, or obj-c method is variadic
 | 
						|
  // and get its parameter list.
 | 
						|
  bool IsVariadic = false;
 | 
						|
  ArrayRef<ParmVarDecl *> Params;
 | 
						|
  DeclContext *Caller = S.CurContext;
 | 
						|
  if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
 | 
						|
    IsVariadic = Block->isVariadic();
 | 
						|
    Params = Block->parameters();
 | 
						|
  } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
 | 
						|
    IsVariadic = FD->isVariadic();
 | 
						|
    Params = FD->parameters();
 | 
						|
  } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
 | 
						|
    IsVariadic = MD->isVariadic();
 | 
						|
    // FIXME: This isn't correct for methods (results in bogus warning).
 | 
						|
    Params = MD->parameters();
 | 
						|
  } else if (isa<CapturedDecl>(Caller)) {
 | 
						|
    // We don't support va_start in a CapturedDecl.
 | 
						|
    S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
 | 
						|
    return true;
 | 
						|
  } else {
 | 
						|
    // This must be some other declcontext that parses exprs.
 | 
						|
    S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IsVariadic) {
 | 
						|
    S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LastParam)
 | 
						|
    *LastParam = Params.empty() ? nullptr : Params.back();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
 | 
						|
/// for validity.  Emit an error and return true on failure; return false
 | 
						|
/// on success.
 | 
						|
bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
 | 
						|
  Expr *Fn = TheCall->getCallee();
 | 
						|
 | 
						|
  if (checkVAStartABI(*this, BuiltinID, Fn))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (checkArgCount(*this, TheCall, 2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Type-check the first argument normally.
 | 
						|
  if (checkBuiltinArgument(*this, TheCall, 0))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check that the current function is variadic, and get its last parameter.
 | 
						|
  ParmVarDecl *LastParam;
 | 
						|
  if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Verify that the second argument to the builtin is the last argument of the
 | 
						|
  // current function or method.
 | 
						|
  bool SecondArgIsLastNamedArgument = false;
 | 
						|
  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
 | 
						|
 | 
						|
  // These are valid if SecondArgIsLastNamedArgument is false after the next
 | 
						|
  // block.
 | 
						|
  QualType Type;
 | 
						|
  SourceLocation ParamLoc;
 | 
						|
  bool IsCRegister = false;
 | 
						|
 | 
						|
  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
 | 
						|
    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
 | 
						|
      SecondArgIsLastNamedArgument = PV == LastParam;
 | 
						|
 | 
						|
      Type = PV->getType();
 | 
						|
      ParamLoc = PV->getLocation();
 | 
						|
      IsCRegister =
 | 
						|
          PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!SecondArgIsLastNamedArgument)
 | 
						|
    Diag(TheCall->getArg(1)->getBeginLoc(),
 | 
						|
         diag::warn_second_arg_of_va_start_not_last_named_param);
 | 
						|
  else if (IsCRegister || Type->isReferenceType() ||
 | 
						|
           Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
 | 
						|
             // Promotable integers are UB, but enumerations need a bit of
 | 
						|
             // extra checking to see what their promotable type actually is.
 | 
						|
             if (!Type->isPromotableIntegerType())
 | 
						|
               return false;
 | 
						|
             if (!Type->isEnumeralType())
 | 
						|
               return true;
 | 
						|
             const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
 | 
						|
             return !(ED &&
 | 
						|
                      Context.typesAreCompatible(ED->getPromotionType(), Type));
 | 
						|
           }()) {
 | 
						|
    unsigned Reason = 0;
 | 
						|
    if (Type->isReferenceType())  Reason = 1;
 | 
						|
    else if (IsCRegister)         Reason = 2;
 | 
						|
    Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
 | 
						|
    Diag(ParamLoc, diag::note_parameter_type) << Type;
 | 
						|
  }
 | 
						|
 | 
						|
  TheCall->setType(Context.VoidTy);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
 | 
						|
  // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
 | 
						|
  //                 const char *named_addr);
 | 
						|
 | 
						|
  Expr *Func = Call->getCallee();
 | 
						|
 | 
						|
  if (Call->getNumArgs() < 3)
 | 
						|
    return Diag(Call->getEndLoc(),
 | 
						|
                diag::err_typecheck_call_too_few_args_at_least)
 | 
						|
           << 0 /*function call*/ << 3 << Call->getNumArgs();
 | 
						|
 | 
						|
  // Type-check the first argument normally.
 | 
						|
  if (checkBuiltinArgument(*this, Call, 0))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check that the current function is variadic.
 | 
						|
  if (checkVAStartIsInVariadicFunction(*this, Func))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // __va_start on Windows does not validate the parameter qualifiers
 | 
						|
 | 
						|
  const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
 | 
						|
  const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
 | 
						|
 | 
						|
  const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
 | 
						|
  const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
 | 
						|
 | 
						|
  const QualType &ConstCharPtrTy =
 | 
						|
      Context.getPointerType(Context.CharTy.withConst());
 | 
						|
  if (!Arg1Ty->isPointerType() ||
 | 
						|
      Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
 | 
						|
    Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | 
						|
        << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
 | 
						|
        << 0                                      /* qualifier difference */
 | 
						|
        << 3                                      /* parameter mismatch */
 | 
						|
        << 2 << Arg1->getType() << ConstCharPtrTy;
 | 
						|
 | 
						|
  const QualType SizeTy = Context.getSizeType();
 | 
						|
  if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
 | 
						|
    Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | 
						|
        << Arg2->getType() << SizeTy << 1 /* different class */
 | 
						|
        << 0                              /* qualifier difference */
 | 
						|
        << 3                              /* parameter mismatch */
 | 
						|
        << 3 << Arg2->getType() << SizeTy;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
 | 
						|
/// friends.  This is declared to take (...), so we have to check everything.
 | 
						|
bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
 | 
						|
  if (checkArgCount(*this, TheCall, 2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ExprResult OrigArg0 = TheCall->getArg(0);
 | 
						|
  ExprResult OrigArg1 = TheCall->getArg(1);
 | 
						|
 | 
						|
  // Do standard promotions between the two arguments, returning their common
 | 
						|
  // type.
 | 
						|
  QualType Res = UsualArithmeticConversions(
 | 
						|
      OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
 | 
						|
  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Make sure any conversions are pushed back into the call; this is
 | 
						|
  // type safe since unordered compare builtins are declared as "_Bool
 | 
						|
  // foo(...)".
 | 
						|
  TheCall->setArg(0, OrigArg0.get());
 | 
						|
  TheCall->setArg(1, OrigArg1.get());
 | 
						|
 | 
						|
  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the common type isn't a real floating type, then the arguments were
 | 
						|
  // invalid for this operation.
 | 
						|
  if (Res.isNull() || !Res->isRealFloatingType())
 | 
						|
    return Diag(OrigArg0.get()->getBeginLoc(),
 | 
						|
                diag::err_typecheck_call_invalid_ordered_compare)
 | 
						|
           << OrigArg0.get()->getType() << OrigArg1.get()->getType()
 | 
						|
           << SourceRange(OrigArg0.get()->getBeginLoc(),
 | 
						|
                          OrigArg1.get()->getEndLoc());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
 | 
						|
/// __builtin_isnan and friends.  This is declared to take (...), so we have
 | 
						|
/// to check everything. We expect the last argument to be a floating point
 | 
						|
/// value.
 | 
						|
bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
 | 
						|
  if (checkArgCount(*this, TheCall, NumArgs))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
 | 
						|
  // on all preceding parameters just being int.  Try all of those.
 | 
						|
  for (unsigned i = 0; i < NumArgs - 1; ++i) {
 | 
						|
    Expr *Arg = TheCall->getArg(i);
 | 
						|
 | 
						|
    if (Arg->isTypeDependent())
 | 
						|
      return false;
 | 
						|
 | 
						|
    ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
 | 
						|
 | 
						|
    if (Res.isInvalid())
 | 
						|
      return true;
 | 
						|
    TheCall->setArg(i, Res.get());
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *OrigArg = TheCall->getArg(NumArgs-1);
 | 
						|
 | 
						|
  if (OrigArg->isTypeDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Usual Unary Conversions will convert half to float, which we want for
 | 
						|
  // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
 | 
						|
  // type how it is, but do normal L->Rvalue conversions.
 | 
						|
  if (Context.getTargetInfo().useFP16ConversionIntrinsics())
 | 
						|
    OrigArg = UsualUnaryConversions(OrigArg).get();
 | 
						|
  else
 | 
						|
    OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
 | 
						|
  TheCall->setArg(NumArgs - 1, OrigArg);
 | 
						|
 | 
						|
  // This operation requires a non-_Complex floating-point number.
 | 
						|
  if (!OrigArg->getType()->isRealFloatingType())
 | 
						|
    return Diag(OrigArg->getBeginLoc(),
 | 
						|
                diag::err_typecheck_call_invalid_unary_fp)
 | 
						|
           << OrigArg->getType() << OrigArg->getSourceRange();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Perform semantic analysis for a call to __builtin_complex.
 | 
						|
bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
 | 
						|
  if (checkArgCount(*this, TheCall, 2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  bool Dependent = false;
 | 
						|
  for (unsigned I = 0; I != 2; ++I) {
 | 
						|
    Expr *Arg = TheCall->getArg(I);
 | 
						|
    QualType T = Arg->getType();
 | 
						|
    if (T->isDependentType()) {
 | 
						|
      Dependent = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Despite supporting _Complex int, GCC requires a real floating point type
 | 
						|
    // for the operands of __builtin_complex.
 | 
						|
    if (!T->isRealFloatingType()) {
 | 
						|
      return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
 | 
						|
             << Arg->getType() << Arg->getSourceRange();
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult Converted = DefaultLvalueConversion(Arg);
 | 
						|
    if (Converted.isInvalid())
 | 
						|
      return true;
 | 
						|
    TheCall->setArg(I, Converted.get());
 | 
						|
  }
 | 
						|
 | 
						|
  if (Dependent) {
 | 
						|
    TheCall->setType(Context.DependentTy);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *Real = TheCall->getArg(0);
 | 
						|
  Expr *Imag = TheCall->getArg(1);
 | 
						|
  if (!Context.hasSameType(Real->getType(), Imag->getType())) {
 | 
						|
    return Diag(Real->getBeginLoc(),
 | 
						|
                diag::err_typecheck_call_different_arg_types)
 | 
						|
           << Real->getType() << Imag->getType()
 | 
						|
           << Real->getSourceRange() << Imag->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
 | 
						|
  // don't allow this builtin to form those types either.
 | 
						|
  // FIXME: Should we allow these types?
 | 
						|
  if (Real->getType()->isFloat16Type())
 | 
						|
    return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
 | 
						|
           << "_Float16";
 | 
						|
  if (Real->getType()->isHalfType())
 | 
						|
    return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
 | 
						|
           << "half";
 | 
						|
 | 
						|
  TheCall->setType(Context.getComplexType(Real->getType()));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Customized Sema Checking for VSX builtins that have the following signature:
 | 
						|
// vector [...] builtinName(vector [...], vector [...], const int);
 | 
						|
// Which takes the same type of vectors (any legal vector type) for the first
 | 
						|
// two arguments and takes compile time constant for the third argument.
 | 
						|
// Example builtins are :
 | 
						|
// vector double vec_xxpermdi(vector double, vector double, int);
 | 
						|
// vector short vec_xxsldwi(vector short, vector short, int);
 | 
						|
bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
 | 
						|
  unsigned ExpectedNumArgs = 3;
 | 
						|
  if (checkArgCount(*this, TheCall, ExpectedNumArgs))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check the third argument is a compile time constant
 | 
						|
  if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
 | 
						|
    return Diag(TheCall->getBeginLoc(),
 | 
						|
                diag::err_vsx_builtin_nonconstant_argument)
 | 
						|
           << 3 /* argument index */ << TheCall->getDirectCallee()
 | 
						|
           << SourceRange(TheCall->getArg(2)->getBeginLoc(),
 | 
						|
                          TheCall->getArg(2)->getEndLoc());
 | 
						|
 | 
						|
  QualType Arg1Ty = TheCall->getArg(0)->getType();
 | 
						|
  QualType Arg2Ty = TheCall->getArg(1)->getType();
 | 
						|
 | 
						|
  // Check the type of argument 1 and argument 2 are vectors.
 | 
						|
  SourceLocation BuiltinLoc = TheCall->getBeginLoc();
 | 
						|
  if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
 | 
						|
      (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
 | 
						|
    return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
 | 
						|
           << TheCall->getDirectCallee()
 | 
						|
           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
 | 
						|
                          TheCall->getArg(1)->getEndLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the first two arguments are the same type.
 | 
						|
  if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
 | 
						|
    return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
 | 
						|
           << TheCall->getDirectCallee()
 | 
						|
           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
 | 
						|
                          TheCall->getArg(1)->getEndLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  // When default clang type checking is turned off and the customized type
 | 
						|
  // checking is used, the returning type of the function must be explicitly
 | 
						|
  // set. Otherwise it is _Bool by default.
 | 
						|
  TheCall->setType(Arg1Ty);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
 | 
						|
// This is declared to take (...), so we have to check everything.
 | 
						|
ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
 | 
						|
  if (TheCall->getNumArgs() < 2)
 | 
						|
    return ExprError(Diag(TheCall->getEndLoc(),
 | 
						|
                          diag::err_typecheck_call_too_few_args_at_least)
 | 
						|
                     << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | 
						|
                     << TheCall->getSourceRange());
 | 
						|
 | 
						|
  // Determine which of the following types of shufflevector we're checking:
 | 
						|
  // 1) unary, vector mask: (lhs, mask)
 | 
						|
  // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
 | 
						|
  QualType resType = TheCall->getArg(0)->getType();
 | 
						|
  unsigned numElements = 0;
 | 
						|
 | 
						|
  if (!TheCall->getArg(0)->isTypeDependent() &&
 | 
						|
      !TheCall->getArg(1)->isTypeDependent()) {
 | 
						|
    QualType LHSType = TheCall->getArg(0)->getType();
 | 
						|
    QualType RHSType = TheCall->getArg(1)->getType();
 | 
						|
 | 
						|
    if (!LHSType->isVectorType() || !RHSType->isVectorType())
 | 
						|
      return ExprError(
 | 
						|
          Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
 | 
						|
          << TheCall->getDirectCallee()
 | 
						|
          << SourceRange(TheCall->getArg(0)->getBeginLoc(),
 | 
						|
                         TheCall->getArg(1)->getEndLoc()));
 | 
						|
 | 
						|
    numElements = LHSType->castAs<VectorType>()->getNumElements();
 | 
						|
    unsigned numResElements = TheCall->getNumArgs() - 2;
 | 
						|
 | 
						|
    // Check to see if we have a call with 2 vector arguments, the unary shuffle
 | 
						|
    // with mask.  If so, verify that RHS is an integer vector type with the
 | 
						|
    // same number of elts as lhs.
 | 
						|
    if (TheCall->getNumArgs() == 2) {
 | 
						|
      if (!RHSType->hasIntegerRepresentation() ||
 | 
						|
          RHSType->castAs<VectorType>()->getNumElements() != numElements)
 | 
						|
        return ExprError(Diag(TheCall->getBeginLoc(),
 | 
						|
                              diag::err_vec_builtin_incompatible_vector)
 | 
						|
                         << TheCall->getDirectCallee()
 | 
						|
                         << SourceRange(TheCall->getArg(1)->getBeginLoc(),
 | 
						|
                                        TheCall->getArg(1)->getEndLoc()));
 | 
						|
    } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
 | 
						|
      return ExprError(Diag(TheCall->getBeginLoc(),
 | 
						|
                            diag::err_vec_builtin_incompatible_vector)
 | 
						|
                       << TheCall->getDirectCallee()
 | 
						|
                       << SourceRange(TheCall->getArg(0)->getBeginLoc(),
 | 
						|
                                      TheCall->getArg(1)->getEndLoc()));
 | 
						|
    } else if (numElements != numResElements) {
 | 
						|
      QualType eltType = LHSType->castAs<VectorType>()->getElementType();
 | 
						|
      resType = Context.getVectorType(eltType, numResElements,
 | 
						|
                                      VectorType::GenericVector);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
 | 
						|
    if (TheCall->getArg(i)->isTypeDependent() ||
 | 
						|
        TheCall->getArg(i)->isValueDependent())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Optional<llvm::APSInt> Result;
 | 
						|
    if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
 | 
						|
      return ExprError(Diag(TheCall->getBeginLoc(),
 | 
						|
                            diag::err_shufflevector_nonconstant_argument)
 | 
						|
                       << TheCall->getArg(i)->getSourceRange());
 | 
						|
 | 
						|
    // Allow -1 which will be translated to undef in the IR.
 | 
						|
    if (Result->isSigned() && Result->isAllOnesValue())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Result->getActiveBits() > 64 ||
 | 
						|
        Result->getZExtValue() >= numElements * 2)
 | 
						|
      return ExprError(Diag(TheCall->getBeginLoc(),
 | 
						|
                            diag::err_shufflevector_argument_too_large)
 | 
						|
                       << TheCall->getArg(i)->getSourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<Expr*, 32> exprs;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
 | 
						|
    exprs.push_back(TheCall->getArg(i));
 | 
						|
    TheCall->setArg(i, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  return new (Context) ShuffleVectorExpr(Context, exprs, resType,
 | 
						|
                                         TheCall->getCallee()->getBeginLoc(),
 | 
						|
                                         TheCall->getRParenLoc());
 | 
						|
}
 | 
						|
 | 
						|
/// SemaConvertVectorExpr - Handle __builtin_convertvector
 | 
						|
ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
 | 
						|
                                       SourceLocation BuiltinLoc,
 | 
						|
                                       SourceLocation RParenLoc) {
 | 
						|
  ExprValueKind VK = VK_RValue;
 | 
						|
  ExprObjectKind OK = OK_Ordinary;
 | 
						|
  QualType DstTy = TInfo->getType();
 | 
						|
  QualType SrcTy = E->getType();
 | 
						|
 | 
						|
  if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
 | 
						|
    return ExprError(Diag(BuiltinLoc,
 | 
						|
                          diag::err_convertvector_non_vector)
 | 
						|
                     << E->getSourceRange());
 | 
						|
  if (!DstTy->isVectorType() && !DstTy->isDependentType())
 | 
						|
    return ExprError(Diag(BuiltinLoc,
 | 
						|
                          diag::err_convertvector_non_vector_type));
 | 
						|
 | 
						|
  if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
 | 
						|
    unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
 | 
						|
    unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
 | 
						|
    if (SrcElts != DstElts)
 | 
						|
      return ExprError(Diag(BuiltinLoc,
 | 
						|
                            diag::err_convertvector_incompatible_vector)
 | 
						|
                       << E->getSourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  return new (Context)
 | 
						|
      ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
 | 
						|
// This is declared to take (const void*, ...) and can take two
 | 
						|
// optional constant int args.
 | 
						|
bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
 | 
						|
  unsigned NumArgs = TheCall->getNumArgs();
 | 
						|
 | 
						|
  if (NumArgs > 3)
 | 
						|
    return Diag(TheCall->getEndLoc(),
 | 
						|
                diag::err_typecheck_call_too_many_args_at_most)
 | 
						|
           << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
 | 
						|
 | 
						|
  // Argument 0 is checked for us and the remaining arguments must be
 | 
						|
  // constant integers.
 | 
						|
  for (unsigned i = 1; i != NumArgs; ++i)
 | 
						|
    if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinAssume - Handle __assume (MS Extension).
 | 
						|
// __assume does not evaluate its arguments, and should warn if its argument
 | 
						|
// has side effects.
 | 
						|
bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
 | 
						|
  Expr *Arg = TheCall->getArg(0);
 | 
						|
  if (Arg->isInstantiationDependent()) return false;
 | 
						|
 | 
						|
  if (Arg->HasSideEffects(Context))
 | 
						|
    Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
 | 
						|
        << Arg->getSourceRange()
 | 
						|
        << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Handle __builtin_alloca_with_align. This is declared
 | 
						|
/// as (size_t, size_t) where the second size_t must be a power of 2 greater
 | 
						|
/// than 8.
 | 
						|
bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
 | 
						|
  // The alignment must be a constant integer.
 | 
						|
  Expr *Arg = TheCall->getArg(1);
 | 
						|
 | 
						|
  // We can't check the value of a dependent argument.
 | 
						|
  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
 | 
						|
    if (const auto *UE =
 | 
						|
            dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
 | 
						|
      if (UE->getKind() == UETT_AlignOf ||
 | 
						|
          UE->getKind() == UETT_PreferredAlignOf)
 | 
						|
        Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
 | 
						|
            << Arg->getSourceRange();
 | 
						|
 | 
						|
    llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
 | 
						|
 | 
						|
    if (!Result.isPowerOf2())
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
 | 
						|
             << Arg->getSourceRange();
 | 
						|
 | 
						|
    if (Result < Context.getCharWidth())
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
 | 
						|
             << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
 | 
						|
 | 
						|
    if (Result > std::numeric_limits<int32_t>::max())
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
 | 
						|
             << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Handle __builtin_assume_aligned. This is declared
 | 
						|
/// as (const void*, size_t, ...) and can take one optional constant int arg.
 | 
						|
bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
 | 
						|
  unsigned NumArgs = TheCall->getNumArgs();
 | 
						|
 | 
						|
  if (NumArgs > 3)
 | 
						|
    return Diag(TheCall->getEndLoc(),
 | 
						|
                diag::err_typecheck_call_too_many_args_at_most)
 | 
						|
           << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
 | 
						|
 | 
						|
  // The alignment must be a constant integer.
 | 
						|
  Expr *Arg = TheCall->getArg(1);
 | 
						|
 | 
						|
  // We can't check the value of a dependent argument.
 | 
						|
  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
 | 
						|
    llvm::APSInt Result;
 | 
						|
    if (SemaBuiltinConstantArg(TheCall, 1, Result))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (!Result.isPowerOf2())
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
 | 
						|
             << Arg->getSourceRange();
 | 
						|
 | 
						|
    if (Result > Sema::MaximumAlignment)
 | 
						|
      Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
 | 
						|
          << Arg->getSourceRange() << Sema::MaximumAlignment;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumArgs > 2) {
 | 
						|
    ExprResult Arg(TheCall->getArg(2));
 | 
						|
    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
 | 
						|
      Context.getSizeType(), false);
 | 
						|
    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | 
						|
    if (Arg.isInvalid()) return true;
 | 
						|
    TheCall->setArg(2, Arg.get());
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
 | 
						|
  unsigned BuiltinID =
 | 
						|
      cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
 | 
						|
  bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
 | 
						|
 | 
						|
  unsigned NumArgs = TheCall->getNumArgs();
 | 
						|
  unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
 | 
						|
  if (NumArgs < NumRequiredArgs) {
 | 
						|
    return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
 | 
						|
           << 0 /* function call */ << NumRequiredArgs << NumArgs
 | 
						|
           << TheCall->getSourceRange();
 | 
						|
  }
 | 
						|
  if (NumArgs >= NumRequiredArgs + 0x100) {
 | 
						|
    return Diag(TheCall->getEndLoc(),
 | 
						|
                diag::err_typecheck_call_too_many_args_at_most)
 | 
						|
           << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
 | 
						|
           << TheCall->getSourceRange();
 | 
						|
  }
 | 
						|
  unsigned i = 0;
 | 
						|
 | 
						|
  // For formatting call, check buffer arg.
 | 
						|
  if (!IsSizeCall) {
 | 
						|
    ExprResult Arg(TheCall->getArg(i));
 | 
						|
    InitializedEntity Entity = InitializedEntity::InitializeParameter(
 | 
						|
        Context, Context.VoidPtrTy, false);
 | 
						|
    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | 
						|
    if (Arg.isInvalid())
 | 
						|
      return true;
 | 
						|
    TheCall->setArg(i, Arg.get());
 | 
						|
    i++;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check string literal arg.
 | 
						|
  unsigned FormatIdx = i;
 | 
						|
  {
 | 
						|
    ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
 | 
						|
    if (Arg.isInvalid())
 | 
						|
      return true;
 | 
						|
    TheCall->setArg(i, Arg.get());
 | 
						|
    i++;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure variadic args are scalar.
 | 
						|
  unsigned FirstDataArg = i;
 | 
						|
  while (i < NumArgs) {
 | 
						|
    ExprResult Arg = DefaultVariadicArgumentPromotion(
 | 
						|
        TheCall->getArg(i), VariadicFunction, nullptr);
 | 
						|
    if (Arg.isInvalid())
 | 
						|
      return true;
 | 
						|
    CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
 | 
						|
    if (ArgSize.getQuantity() >= 0x100) {
 | 
						|
      return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
 | 
						|
             << i << (int)ArgSize.getQuantity() << 0xff
 | 
						|
             << TheCall->getSourceRange();
 | 
						|
    }
 | 
						|
    TheCall->setArg(i, Arg.get());
 | 
						|
    i++;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check formatting specifiers. NOTE: We're only doing this for the non-size
 | 
						|
  // call to avoid duplicate diagnostics.
 | 
						|
  if (!IsSizeCall) {
 | 
						|
    llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
 | 
						|
    ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
 | 
						|
    bool Success = CheckFormatArguments(
 | 
						|
        Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
 | 
						|
        VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
 | 
						|
        CheckedVarArgs);
 | 
						|
    if (!Success)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsSizeCall) {
 | 
						|
    TheCall->setType(Context.getSizeType());
 | 
						|
  } else {
 | 
						|
    TheCall->setType(Context.VoidPtrTy);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
 | 
						|
/// TheCall is a constant expression.
 | 
						|
bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
 | 
						|
                                  llvm::APSInt &Result) {
 | 
						|
  Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | 
						|
  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | 
						|
 | 
						|
  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
 | 
						|
 | 
						|
  Optional<llvm::APSInt> R;
 | 
						|
  if (!(R = Arg->getIntegerConstantExpr(Context)))
 | 
						|
    return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
 | 
						|
           << FDecl->getDeclName() << Arg->getSourceRange();
 | 
						|
  Result = *R;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
 | 
						|
/// TheCall is a constant expression in the range [Low, High].
 | 
						|
bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
 | 
						|
                                       int Low, int High, bool RangeIsError) {
 | 
						|
  if (isConstantEvaluated())
 | 
						|
    return false;
 | 
						|
  llvm::APSInt Result;
 | 
						|
 | 
						|
  // We can't check the value of a dependent argument.
 | 
						|
  Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
  if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check constant-ness first.
 | 
						|
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
 | 
						|
    if (RangeIsError)
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
 | 
						|
             << Result.toString(10) << Low << High << Arg->getSourceRange();
 | 
						|
    else
 | 
						|
      // Defer the warning until we know if the code will be emitted so that
 | 
						|
      // dead code can ignore this.
 | 
						|
      DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
 | 
						|
                          PDiag(diag::warn_argument_invalid_range)
 | 
						|
                              << Result.toString(10) << Low << High
 | 
						|
                              << Arg->getSourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
 | 
						|
/// TheCall is a constant expression is a multiple of Num..
 | 
						|
bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
 | 
						|
                                          unsigned Num) {
 | 
						|
  llvm::APSInt Result;
 | 
						|
 | 
						|
  // We can't check the value of a dependent argument.
 | 
						|
  Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
  if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check constant-ness first.
 | 
						|
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Result.getSExtValue() % Num != 0)
 | 
						|
    return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
 | 
						|
           << Num << Arg->getSourceRange();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
 | 
						|
/// constant expression representing a power of 2.
 | 
						|
bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
 | 
						|
  llvm::APSInt Result;
 | 
						|
 | 
						|
  // We can't check the value of a dependent argument.
 | 
						|
  Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
  if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check constant-ness first.
 | 
						|
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
 | 
						|
  // and only if x is a power of 2.
 | 
						|
  if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
 | 
						|
         << Arg->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
static bool IsShiftedByte(llvm::APSInt Value) {
 | 
						|
  if (Value.isNegative())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if it's a shifted byte, by shifting it down
 | 
						|
  while (true) {
 | 
						|
    // If the value fits in the bottom byte, the check passes.
 | 
						|
    if (Value < 0x100)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, if the value has _any_ bits in the bottom byte, the check
 | 
						|
    // fails.
 | 
						|
    if ((Value & 0xFF) != 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If the bottom 8 bits are all 0, but something above that is nonzero,
 | 
						|
    // then shifting the value right by 8 bits won't affect whether it's a
 | 
						|
    // shifted byte or not. So do that, and go round again.
 | 
						|
    Value >>= 8;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
 | 
						|
/// a constant expression representing an arbitrary byte value shifted left by
 | 
						|
/// a multiple of 8 bits.
 | 
						|
bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
 | 
						|
                                             unsigned ArgBits) {
 | 
						|
  llvm::APSInt Result;
 | 
						|
 | 
						|
  // We can't check the value of a dependent argument.
 | 
						|
  Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
  if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check constant-ness first.
 | 
						|
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Truncate to the given size.
 | 
						|
  Result = Result.getLoBits(ArgBits);
 | 
						|
  Result.setIsUnsigned(true);
 | 
						|
 | 
						|
  if (IsShiftedByte(Result))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
 | 
						|
         << Arg->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
 | 
						|
/// TheCall is a constant expression representing either a shifted byte value,
 | 
						|
/// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
 | 
						|
/// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
 | 
						|
/// Arm MVE intrinsics.
 | 
						|
bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
 | 
						|
                                                   int ArgNum,
 | 
						|
                                                   unsigned ArgBits) {
 | 
						|
  llvm::APSInt Result;
 | 
						|
 | 
						|
  // We can't check the value of a dependent argument.
 | 
						|
  Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
  if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check constant-ness first.
 | 
						|
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Truncate to the given size.
 | 
						|
  Result = Result.getLoBits(ArgBits);
 | 
						|
  Result.setIsUnsigned(true);
 | 
						|
 | 
						|
  // Check to see if it's in either of the required forms.
 | 
						|
  if (IsShiftedByte(Result) ||
 | 
						|
      (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return Diag(TheCall->getBeginLoc(),
 | 
						|
              diag::err_argument_not_shifted_byte_or_xxff)
 | 
						|
         << Arg->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
 | 
						|
bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
 | 
						|
  if (BuiltinID == AArch64::BI__builtin_arm_irg) {
 | 
						|
    if (checkArgCount(*this, TheCall, 2))
 | 
						|
      return true;
 | 
						|
    Expr *Arg0 = TheCall->getArg(0);
 | 
						|
    Expr *Arg1 = TheCall->getArg(1);
 | 
						|
 | 
						|
    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
 | 
						|
    if (FirstArg.isInvalid())
 | 
						|
      return true;
 | 
						|
    QualType FirstArgType = FirstArg.get()->getType();
 | 
						|
    if (!FirstArgType->isAnyPointerType())
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
 | 
						|
               << "first" << FirstArgType << Arg0->getSourceRange();
 | 
						|
    TheCall->setArg(0, FirstArg.get());
 | 
						|
 | 
						|
    ExprResult SecArg = DefaultLvalueConversion(Arg1);
 | 
						|
    if (SecArg.isInvalid())
 | 
						|
      return true;
 | 
						|
    QualType SecArgType = SecArg.get()->getType();
 | 
						|
    if (!SecArgType->isIntegerType())
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
 | 
						|
               << "second" << SecArgType << Arg1->getSourceRange();
 | 
						|
 | 
						|
    // Derive the return type from the pointer argument.
 | 
						|
    TheCall->setType(FirstArgType);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BuiltinID == AArch64::BI__builtin_arm_addg) {
 | 
						|
    if (checkArgCount(*this, TheCall, 2))
 | 
						|
      return true;
 | 
						|
 | 
						|
    Expr *Arg0 = TheCall->getArg(0);
 | 
						|
    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
 | 
						|
    if (FirstArg.isInvalid())
 | 
						|
      return true;
 | 
						|
    QualType FirstArgType = FirstArg.get()->getType();
 | 
						|
    if (!FirstArgType->isAnyPointerType())
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
 | 
						|
               << "first" << FirstArgType << Arg0->getSourceRange();
 | 
						|
    TheCall->setArg(0, FirstArg.get());
 | 
						|
 | 
						|
    // Derive the return type from the pointer argument.
 | 
						|
    TheCall->setType(FirstArgType);
 | 
						|
 | 
						|
    // Second arg must be an constant in range [0,15]
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
 | 
						|
    if (checkArgCount(*this, TheCall, 2))
 | 
						|
      return true;
 | 
						|
    Expr *Arg0 = TheCall->getArg(0);
 | 
						|
    Expr *Arg1 = TheCall->getArg(1);
 | 
						|
 | 
						|
    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
 | 
						|
    if (FirstArg.isInvalid())
 | 
						|
      return true;
 | 
						|
    QualType FirstArgType = FirstArg.get()->getType();
 | 
						|
    if (!FirstArgType->isAnyPointerType())
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
 | 
						|
               << "first" << FirstArgType << Arg0->getSourceRange();
 | 
						|
 | 
						|
    QualType SecArgType = Arg1->getType();
 | 
						|
    if (!SecArgType->isIntegerType())
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
 | 
						|
               << "second" << SecArgType << Arg1->getSourceRange();
 | 
						|
    TheCall->setType(Context.IntTy);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
 | 
						|
      BuiltinID == AArch64::BI__builtin_arm_stg) {
 | 
						|
    if (checkArgCount(*this, TheCall, 1))
 | 
						|
      return true;
 | 
						|
    Expr *Arg0 = TheCall->getArg(0);
 | 
						|
    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
 | 
						|
    if (FirstArg.isInvalid())
 | 
						|
      return true;
 | 
						|
 | 
						|
    QualType FirstArgType = FirstArg.get()->getType();
 | 
						|
    if (!FirstArgType->isAnyPointerType())
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
 | 
						|
               << "first" << FirstArgType << Arg0->getSourceRange();
 | 
						|
    TheCall->setArg(0, FirstArg.get());
 | 
						|
 | 
						|
    // Derive the return type from the pointer argument.
 | 
						|
    if (BuiltinID == AArch64::BI__builtin_arm_ldg)
 | 
						|
      TheCall->setType(FirstArgType);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BuiltinID == AArch64::BI__builtin_arm_subp) {
 | 
						|
    Expr *ArgA = TheCall->getArg(0);
 | 
						|
    Expr *ArgB = TheCall->getArg(1);
 | 
						|
 | 
						|
    ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
 | 
						|
    ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
 | 
						|
 | 
						|
    if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
 | 
						|
      return true;
 | 
						|
 | 
						|
    QualType ArgTypeA = ArgExprA.get()->getType();
 | 
						|
    QualType ArgTypeB = ArgExprB.get()->getType();
 | 
						|
 | 
						|
    auto isNull = [&] (Expr *E) -> bool {
 | 
						|
      return E->isNullPointerConstant(
 | 
						|
                        Context, Expr::NPC_ValueDependentIsNotNull); };
 | 
						|
 | 
						|
    // argument should be either a pointer or null
 | 
						|
    if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
 | 
						|
        << "first" << ArgTypeA << ArgA->getSourceRange();
 | 
						|
 | 
						|
    if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
 | 
						|
        << "second" << ArgTypeB << ArgB->getSourceRange();
 | 
						|
 | 
						|
    // Ensure Pointee types are compatible
 | 
						|
    if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
 | 
						|
        ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
 | 
						|
      QualType pointeeA = ArgTypeA->getPointeeType();
 | 
						|
      QualType pointeeB = ArgTypeB->getPointeeType();
 | 
						|
      if (!Context.typesAreCompatible(
 | 
						|
             Context.getCanonicalType(pointeeA).getUnqualifiedType(),
 | 
						|
             Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
 | 
						|
        return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
 | 
						|
          << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
 | 
						|
          << ArgB->getSourceRange();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // at least one argument should be pointer type
 | 
						|
    if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
 | 
						|
        <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
 | 
						|
 | 
						|
    if (isNull(ArgA)) // adopt type of the other pointer
 | 
						|
      ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
 | 
						|
 | 
						|
    if (isNull(ArgB))
 | 
						|
      ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
 | 
						|
 | 
						|
    TheCall->setArg(0, ArgExprA.get());
 | 
						|
    TheCall->setArg(1, ArgExprB.get());
 | 
						|
    TheCall->setType(Context.LongLongTy);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  assert(false && "Unhandled ARM MTE intrinsic");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
 | 
						|
/// TheCall is an ARM/AArch64 special register string literal.
 | 
						|
bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
 | 
						|
                                    int ArgNum, unsigned ExpectedFieldNum,
 | 
						|
                                    bool AllowName) {
 | 
						|
  bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
 | 
						|
                      BuiltinID == ARM::BI__builtin_arm_wsr64 ||
 | 
						|
                      BuiltinID == ARM::BI__builtin_arm_rsr ||
 | 
						|
                      BuiltinID == ARM::BI__builtin_arm_rsrp ||
 | 
						|
                      BuiltinID == ARM::BI__builtin_arm_wsr ||
 | 
						|
                      BuiltinID == ARM::BI__builtin_arm_wsrp;
 | 
						|
  bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
 | 
						|
                          BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
 | 
						|
                          BuiltinID == AArch64::BI__builtin_arm_rsr ||
 | 
						|
                          BuiltinID == AArch64::BI__builtin_arm_rsrp ||
 | 
						|
                          BuiltinID == AArch64::BI__builtin_arm_wsr ||
 | 
						|
                          BuiltinID == AArch64::BI__builtin_arm_wsrp;
 | 
						|
  assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
 | 
						|
 | 
						|
  // We can't check the value of a dependent argument.
 | 
						|
  Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
  if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the argument is a string literal.
 | 
						|
  if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
 | 
						|
    return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
 | 
						|
           << Arg->getSourceRange();
 | 
						|
 | 
						|
  // Check the type of special register given.
 | 
						|
  StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
 | 
						|
  SmallVector<StringRef, 6> Fields;
 | 
						|
  Reg.split(Fields, ":");
 | 
						|
 | 
						|
  if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
 | 
						|
    return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
 | 
						|
           << Arg->getSourceRange();
 | 
						|
 | 
						|
  // If the string is the name of a register then we cannot check that it is
 | 
						|
  // valid here but if the string is of one the forms described in ACLE then we
 | 
						|
  // can check that the supplied fields are integers and within the valid
 | 
						|
  // ranges.
 | 
						|
  if (Fields.size() > 1) {
 | 
						|
    bool FiveFields = Fields.size() == 5;
 | 
						|
 | 
						|
    bool ValidString = true;
 | 
						|
    if (IsARMBuiltin) {
 | 
						|
      ValidString &= Fields[0].startswith_lower("cp") ||
 | 
						|
                     Fields[0].startswith_lower("p");
 | 
						|
      if (ValidString)
 | 
						|
        Fields[0] =
 | 
						|
          Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
 | 
						|
 | 
						|
      ValidString &= Fields[2].startswith_lower("c");
 | 
						|
      if (ValidString)
 | 
						|
        Fields[2] = Fields[2].drop_front(1);
 | 
						|
 | 
						|
      if (FiveFields) {
 | 
						|
        ValidString &= Fields[3].startswith_lower("c");
 | 
						|
        if (ValidString)
 | 
						|
          Fields[3] = Fields[3].drop_front(1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<int, 5> Ranges;
 | 
						|
    if (FiveFields)
 | 
						|
      Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
 | 
						|
    else
 | 
						|
      Ranges.append({15, 7, 15});
 | 
						|
 | 
						|
    for (unsigned i=0; i<Fields.size(); ++i) {
 | 
						|
      int IntField;
 | 
						|
      ValidString &= !Fields[i].getAsInteger(10, IntField);
 | 
						|
      ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ValidString)
 | 
						|
      return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
 | 
						|
             << Arg->getSourceRange();
 | 
						|
  } else if (IsAArch64Builtin && Fields.size() == 1) {
 | 
						|
    // If the register name is one of those that appear in the condition below
 | 
						|
    // and the special register builtin being used is one of the write builtins,
 | 
						|
    // then we require that the argument provided for writing to the register
 | 
						|
    // is an integer constant expression. This is because it will be lowered to
 | 
						|
    // an MSR (immediate) instruction, so we need to know the immediate at
 | 
						|
    // compile time.
 | 
						|
    if (TheCall->getNumArgs() != 2)
 | 
						|
      return false;
 | 
						|
 | 
						|
    std::string RegLower = Reg.lower();
 | 
						|
    if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
 | 
						|
        RegLower != "pan" && RegLower != "uao")
 | 
						|
      return false;
 | 
						|
 | 
						|
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
 | 
						|
/// Emit an error and return true on failure; return false on success.
 | 
						|
/// TypeStr is a string containing the type descriptor of the value returned by
 | 
						|
/// the builtin and the descriptors of the expected type of the arguments.
 | 
						|
bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) {
 | 
						|
 | 
						|
  assert((TypeStr[0] != '\0') &&
 | 
						|
         "Invalid types in PPC MMA builtin declaration");
 | 
						|
 | 
						|
  unsigned Mask = 0;
 | 
						|
  unsigned ArgNum = 0;
 | 
						|
 | 
						|
  // The first type in TypeStr is the type of the value returned by the
 | 
						|
  // builtin. So we first read that type and change the type of TheCall.
 | 
						|
  QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
 | 
						|
  TheCall->setType(type);
 | 
						|
 | 
						|
  while (*TypeStr != '\0') {
 | 
						|
    Mask = 0;
 | 
						|
    QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
 | 
						|
    if (ArgNum >= TheCall->getNumArgs()) {
 | 
						|
      ArgNum++;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Expr *Arg = TheCall->getArg(ArgNum);
 | 
						|
    QualType ArgType = Arg->getType();
 | 
						|
 | 
						|
    if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) ||
 | 
						|
        (!ExpectedType->isVoidPointerType() &&
 | 
						|
           ArgType.getCanonicalType() != ExpectedType))
 | 
						|
      return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
 | 
						|
             << ArgType << ExpectedType << 1 << 0 << 0;
 | 
						|
 | 
						|
    // If the value of the Mask is not 0, we have a constraint in the size of
 | 
						|
    // the integer argument so here we ensure the argument is a constant that
 | 
						|
    // is in the valid range.
 | 
						|
    if (Mask != 0 &&
 | 
						|
        SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
 | 
						|
      return true;
 | 
						|
 | 
						|
    ArgNum++;
 | 
						|
  }
 | 
						|
 | 
						|
  // In case we exited early from the previous loop, there are other types to
 | 
						|
  // read from TypeStr. So we need to read them all to ensure we have the right
 | 
						|
  // number of arguments in TheCall and if it is not the case, to display a
 | 
						|
  // better error message.
 | 
						|
  while (*TypeStr != '\0') {
 | 
						|
    (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
 | 
						|
    ArgNum++;
 | 
						|
  }
 | 
						|
  if (checkArgCount(*this, TheCall, ArgNum))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
 | 
						|
/// This checks that the target supports __builtin_longjmp and
 | 
						|
/// that val is a constant 1.
 | 
						|
bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
 | 
						|
  if (!Context.getTargetInfo().hasSjLjLowering())
 | 
						|
    return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
 | 
						|
           << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
 | 
						|
 | 
						|
  Expr *Arg = TheCall->getArg(1);
 | 
						|
  llvm::APSInt Result;
 | 
						|
 | 
						|
  // TODO: This is less than ideal. Overload this to take a value.
 | 
						|
  if (SemaBuiltinConstantArg(TheCall, 1, Result))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Result != 1)
 | 
						|
    return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
 | 
						|
           << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
 | 
						|
/// This checks that the target supports __builtin_setjmp.
 | 
						|
bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
 | 
						|
  if (!Context.getTargetInfo().hasSjLjLowering())
 | 
						|
    return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
 | 
						|
           << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class UncoveredArgHandler {
 | 
						|
  enum { Unknown = -1, AllCovered = -2 };
 | 
						|
 | 
						|
  signed FirstUncoveredArg = Unknown;
 | 
						|
  SmallVector<const Expr *, 4> DiagnosticExprs;
 | 
						|
 | 
						|
public:
 | 
						|
  UncoveredArgHandler() = default;
 | 
						|
 | 
						|
  bool hasUncoveredArg() const {
 | 
						|
    return (FirstUncoveredArg >= 0);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getUncoveredArg() const {
 | 
						|
    assert(hasUncoveredArg() && "no uncovered argument");
 | 
						|
    return FirstUncoveredArg;
 | 
						|
  }
 | 
						|
 | 
						|
  void setAllCovered() {
 | 
						|
    // A string has been found with all arguments covered, so clear out
 | 
						|
    // the diagnostics.
 | 
						|
    DiagnosticExprs.clear();
 | 
						|
    FirstUncoveredArg = AllCovered;
 | 
						|
  }
 | 
						|
 | 
						|
  void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
 | 
						|
    assert(NewFirstUncoveredArg >= 0 && "Outside range");
 | 
						|
 | 
						|
    // Don't update if a previous string covers all arguments.
 | 
						|
    if (FirstUncoveredArg == AllCovered)
 | 
						|
      return;
 | 
						|
 | 
						|
    // UncoveredArgHandler tracks the highest uncovered argument index
 | 
						|
    // and with it all the strings that match this index.
 | 
						|
    if (NewFirstUncoveredArg == FirstUncoveredArg)
 | 
						|
      DiagnosticExprs.push_back(StrExpr);
 | 
						|
    else if (NewFirstUncoveredArg > FirstUncoveredArg) {
 | 
						|
      DiagnosticExprs.clear();
 | 
						|
      DiagnosticExprs.push_back(StrExpr);
 | 
						|
      FirstUncoveredArg = NewFirstUncoveredArg;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
 | 
						|
};
 | 
						|
 | 
						|
enum StringLiteralCheckType {
 | 
						|
  SLCT_NotALiteral,
 | 
						|
  SLCT_UncheckedLiteral,
 | 
						|
  SLCT_CheckedLiteral
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
 | 
						|
                                     BinaryOperatorKind BinOpKind,
 | 
						|
                                     bool AddendIsRight) {
 | 
						|
  unsigned BitWidth = Offset.getBitWidth();
 | 
						|
  unsigned AddendBitWidth = Addend.getBitWidth();
 | 
						|
  // There might be negative interim results.
 | 
						|
  if (Addend.isUnsigned()) {
 | 
						|
    Addend = Addend.zext(++AddendBitWidth);
 | 
						|
    Addend.setIsSigned(true);
 | 
						|
  }
 | 
						|
  // Adjust the bit width of the APSInts.
 | 
						|
  if (AddendBitWidth > BitWidth) {
 | 
						|
    Offset = Offset.sext(AddendBitWidth);
 | 
						|
    BitWidth = AddendBitWidth;
 | 
						|
  } else if (BitWidth > AddendBitWidth) {
 | 
						|
    Addend = Addend.sext(BitWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Ov = false;
 | 
						|
  llvm::APSInt ResOffset = Offset;
 | 
						|
  if (BinOpKind == BO_Add)
 | 
						|
    ResOffset = Offset.sadd_ov(Addend, Ov);
 | 
						|
  else {
 | 
						|
    assert(AddendIsRight && BinOpKind == BO_Sub &&
 | 
						|
           "operator must be add or sub with addend on the right");
 | 
						|
    ResOffset = Offset.ssub_ov(Addend, Ov);
 | 
						|
  }
 | 
						|
 | 
						|
  // We add an offset to a pointer here so we should support an offset as big as
 | 
						|
  // possible.
 | 
						|
  if (Ov) {
 | 
						|
    assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
 | 
						|
           "index (intermediate) result too big");
 | 
						|
    Offset = Offset.sext(2 * BitWidth);
 | 
						|
    sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Offset = ResOffset;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// This is a wrapper class around StringLiteral to support offsetted string
 | 
						|
// literals as format strings. It takes the offset into account when returning
 | 
						|
// the string and its length or the source locations to display notes correctly.
 | 
						|
class FormatStringLiteral {
 | 
						|
  const StringLiteral *FExpr;
 | 
						|
  int64_t Offset;
 | 
						|
 | 
						|
 public:
 | 
						|
  FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
 | 
						|
      : FExpr(fexpr), Offset(Offset) {}
 | 
						|
 | 
						|
  StringRef getString() const {
 | 
						|
    return FExpr->getString().drop_front(Offset);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getByteLength() const {
 | 
						|
    return FExpr->getByteLength() - getCharByteWidth() * Offset;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getLength() const { return FExpr->getLength() - Offset; }
 | 
						|
  unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
 | 
						|
 | 
						|
  StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
 | 
						|
 | 
						|
  QualType getType() const { return FExpr->getType(); }
 | 
						|
 | 
						|
  bool isAscii() const { return FExpr->isAscii(); }
 | 
						|
  bool isWide() const { return FExpr->isWide(); }
 | 
						|
  bool isUTF8() const { return FExpr->isUTF8(); }
 | 
						|
  bool isUTF16() const { return FExpr->isUTF16(); }
 | 
						|
  bool isUTF32() const { return FExpr->isUTF32(); }
 | 
						|
  bool isPascal() const { return FExpr->isPascal(); }
 | 
						|
 | 
						|
  SourceLocation getLocationOfByte(
 | 
						|
      unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
 | 
						|
      const TargetInfo &Target, unsigned *StartToken = nullptr,
 | 
						|
      unsigned *StartTokenByteOffset = nullptr) const {
 | 
						|
    return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
 | 
						|
                                    StartToken, StartTokenByteOffset);
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation getBeginLoc() const LLVM_READONLY {
 | 
						|
    return FExpr->getBeginLoc().getLocWithOffset(Offset);
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace
 | 
						|
 | 
						|
static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
 | 
						|
                              const Expr *OrigFormatExpr,
 | 
						|
                              ArrayRef<const Expr *> Args,
 | 
						|
                              bool HasVAListArg, unsigned format_idx,
 | 
						|
                              unsigned firstDataArg,
 | 
						|
                              Sema::FormatStringType Type,
 | 
						|
                              bool inFunctionCall,
 | 
						|
                              Sema::VariadicCallType CallType,
 | 
						|
                              llvm::SmallBitVector &CheckedVarArgs,
 | 
						|
                              UncoveredArgHandler &UncoveredArg,
 | 
						|
                              bool IgnoreStringsWithoutSpecifiers);
 | 
						|
 | 
						|
// Determine if an expression is a string literal or constant string.
 | 
						|
// If this function returns false on the arguments to a function expecting a
 | 
						|
// format string, we will usually need to emit a warning.
 | 
						|
// True string literals are then checked by CheckFormatString.
 | 
						|
static StringLiteralCheckType
 | 
						|
checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
 | 
						|
                      bool HasVAListArg, unsigned format_idx,
 | 
						|
                      unsigned firstDataArg, Sema::FormatStringType Type,
 | 
						|
                      Sema::VariadicCallType CallType, bool InFunctionCall,
 | 
						|
                      llvm::SmallBitVector &CheckedVarArgs,
 | 
						|
                      UncoveredArgHandler &UncoveredArg,
 | 
						|
                      llvm::APSInt Offset,
 | 
						|
                      bool IgnoreStringsWithoutSpecifiers = false) {
 | 
						|
  if (S.isConstantEvaluated())
 | 
						|
    return SLCT_NotALiteral;
 | 
						|
 tryAgain:
 | 
						|
  assert(Offset.isSigned() && "invalid offset");
 | 
						|
 | 
						|
  if (E->isTypeDependent() || E->isValueDependent())
 | 
						|
    return SLCT_NotALiteral;
 | 
						|
 | 
						|
  E = E->IgnoreParenCasts();
 | 
						|
 | 
						|
  if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
 | 
						|
    // Technically -Wformat-nonliteral does not warn about this case.
 | 
						|
    // The behavior of printf and friends in this case is implementation
 | 
						|
    // dependent.  Ideally if the format string cannot be null then
 | 
						|
    // it should have a 'nonnull' attribute in the function prototype.
 | 
						|
    return SLCT_UncheckedLiteral;
 | 
						|
 | 
						|
  switch (E->getStmtClass()) {
 | 
						|
  case Stmt::BinaryConditionalOperatorClass:
 | 
						|
  case Stmt::ConditionalOperatorClass: {
 | 
						|
    // The expression is a literal if both sub-expressions were, and it was
 | 
						|
    // completely checked only if both sub-expressions were checked.
 | 
						|
    const AbstractConditionalOperator *C =
 | 
						|
        cast<AbstractConditionalOperator>(E);
 | 
						|
 | 
						|
    // Determine whether it is necessary to check both sub-expressions, for
 | 
						|
    // example, because the condition expression is a constant that can be
 | 
						|
    // evaluated at compile time.
 | 
						|
    bool CheckLeft = true, CheckRight = true;
 | 
						|
 | 
						|
    bool Cond;
 | 
						|
    if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
 | 
						|
                                                 S.isConstantEvaluated())) {
 | 
						|
      if (Cond)
 | 
						|
        CheckRight = false;
 | 
						|
      else
 | 
						|
        CheckLeft = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // We need to maintain the offsets for the right and the left hand side
 | 
						|
    // separately to check if every possible indexed expression is a valid
 | 
						|
    // string literal. They might have different offsets for different string
 | 
						|
    // literals in the end.
 | 
						|
    StringLiteralCheckType Left;
 | 
						|
    if (!CheckLeft)
 | 
						|
      Left = SLCT_UncheckedLiteral;
 | 
						|
    else {
 | 
						|
      Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
 | 
						|
                                   HasVAListArg, format_idx, firstDataArg,
 | 
						|
                                   Type, CallType, InFunctionCall,
 | 
						|
                                   CheckedVarArgs, UncoveredArg, Offset,
 | 
						|
                                   IgnoreStringsWithoutSpecifiers);
 | 
						|
      if (Left == SLCT_NotALiteral || !CheckRight) {
 | 
						|
        return Left;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    StringLiteralCheckType Right = checkFormatStringExpr(
 | 
						|
        S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
 | 
						|
        Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
 | 
						|
        IgnoreStringsWithoutSpecifiers);
 | 
						|
 | 
						|
    return (CheckLeft && Left < Right) ? Left : Right;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::ImplicitCastExprClass:
 | 
						|
    E = cast<ImplicitCastExpr>(E)->getSubExpr();
 | 
						|
    goto tryAgain;
 | 
						|
 | 
						|
  case Stmt::OpaqueValueExprClass:
 | 
						|
    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
 | 
						|
      E = src;
 | 
						|
      goto tryAgain;
 | 
						|
    }
 | 
						|
    return SLCT_NotALiteral;
 | 
						|
 | 
						|
  case Stmt::PredefinedExprClass:
 | 
						|
    // While __func__, etc., are technically not string literals, they
 | 
						|
    // cannot contain format specifiers and thus are not a security
 | 
						|
    // liability.
 | 
						|
    return SLCT_UncheckedLiteral;
 | 
						|
 | 
						|
  case Stmt::DeclRefExprClass: {
 | 
						|
    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
 | 
						|
 | 
						|
    // As an exception, do not flag errors for variables binding to
 | 
						|
    // const string literals.
 | 
						|
    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
 | 
						|
      bool isConstant = false;
 | 
						|
      QualType T = DR->getType();
 | 
						|
 | 
						|
      if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
 | 
						|
        isConstant = AT->getElementType().isConstant(S.Context);
 | 
						|
      } else if (const PointerType *PT = T->getAs<PointerType>()) {
 | 
						|
        isConstant = T.isConstant(S.Context) &&
 | 
						|
                     PT->getPointeeType().isConstant(S.Context);
 | 
						|
      } else if (T->isObjCObjectPointerType()) {
 | 
						|
        // In ObjC, there is usually no "const ObjectPointer" type,
 | 
						|
        // so don't check if the pointee type is constant.
 | 
						|
        isConstant = T.isConstant(S.Context);
 | 
						|
      }
 | 
						|
 | 
						|
      if (isConstant) {
 | 
						|
        if (const Expr *Init = VD->getAnyInitializer()) {
 | 
						|
          // Look through initializers like const char c[] = { "foo" }
 | 
						|
          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
 | 
						|
            if (InitList->isStringLiteralInit())
 | 
						|
              Init = InitList->getInit(0)->IgnoreParenImpCasts();
 | 
						|
          }
 | 
						|
          return checkFormatStringExpr(S, Init, Args,
 | 
						|
                                       HasVAListArg, format_idx,
 | 
						|
                                       firstDataArg, Type, CallType,
 | 
						|
                                       /*InFunctionCall*/ false, CheckedVarArgs,
 | 
						|
                                       UncoveredArg, Offset);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // For vprintf* functions (i.e., HasVAListArg==true), we add a
 | 
						|
      // special check to see if the format string is a function parameter
 | 
						|
      // of the function calling the printf function.  If the function
 | 
						|
      // has an attribute indicating it is a printf-like function, then we
 | 
						|
      // should suppress warnings concerning non-literals being used in a call
 | 
						|
      // to a vprintf function.  For example:
 | 
						|
      //
 | 
						|
      // void
 | 
						|
      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
 | 
						|
      //      va_list ap;
 | 
						|
      //      va_start(ap, fmt);
 | 
						|
      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
 | 
						|
      //      ...
 | 
						|
      // }
 | 
						|
      if (HasVAListArg) {
 | 
						|
        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
 | 
						|
          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
 | 
						|
            int PVIndex = PV->getFunctionScopeIndex() + 1;
 | 
						|
            for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
 | 
						|
              // adjust for implicit parameter
 | 
						|
              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
 | 
						|
                if (MD->isInstance())
 | 
						|
                  ++PVIndex;
 | 
						|
              // We also check if the formats are compatible.
 | 
						|
              // We can't pass a 'scanf' string to a 'printf' function.
 | 
						|
              if (PVIndex == PVFormat->getFormatIdx() &&
 | 
						|
                  Type == S.GetFormatStringType(PVFormat))
 | 
						|
                return SLCT_UncheckedLiteral;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return SLCT_NotALiteral;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::CallExprClass:
 | 
						|
  case Stmt::CXXMemberCallExprClass: {
 | 
						|
    const CallExpr *CE = cast<CallExpr>(E);
 | 
						|
    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
 | 
						|
      bool IsFirst = true;
 | 
						|
      StringLiteralCheckType CommonResult;
 | 
						|
      for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
 | 
						|
        const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
 | 
						|
        StringLiteralCheckType Result = checkFormatStringExpr(
 | 
						|
            S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
 | 
						|
            CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
 | 
						|
            IgnoreStringsWithoutSpecifiers);
 | 
						|
        if (IsFirst) {
 | 
						|
          CommonResult = Result;
 | 
						|
          IsFirst = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!IsFirst)
 | 
						|
        return CommonResult;
 | 
						|
 | 
						|
      if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
 | 
						|
        unsigned BuiltinID = FD->getBuiltinID();
 | 
						|
        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
 | 
						|
            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
 | 
						|
          const Expr *Arg = CE->getArg(0);
 | 
						|
          return checkFormatStringExpr(S, Arg, Args,
 | 
						|
                                       HasVAListArg, format_idx,
 | 
						|
                                       firstDataArg, Type, CallType,
 | 
						|
                                       InFunctionCall, CheckedVarArgs,
 | 
						|
                                       UncoveredArg, Offset,
 | 
						|
                                       IgnoreStringsWithoutSpecifiers);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return SLCT_NotALiteral;
 | 
						|
  }
 | 
						|
  case Stmt::ObjCMessageExprClass: {
 | 
						|
    const auto *ME = cast<ObjCMessageExpr>(E);
 | 
						|
    if (const auto *MD = ME->getMethodDecl()) {
 | 
						|
      if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
 | 
						|
        // As a special case heuristic, if we're using the method -[NSBundle
 | 
						|
        // localizedStringForKey:value:table:], ignore any key strings that lack
 | 
						|
        // format specifiers. The idea is that if the key doesn't have any
 | 
						|
        // format specifiers then its probably just a key to map to the
 | 
						|
        // localized strings. If it does have format specifiers though, then its
 | 
						|
        // likely that the text of the key is the format string in the
 | 
						|
        // programmer's language, and should be checked.
 | 
						|
        const ObjCInterfaceDecl *IFace;
 | 
						|
        if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
 | 
						|
            IFace->getIdentifier()->isStr("NSBundle") &&
 | 
						|
            MD->getSelector().isKeywordSelector(
 | 
						|
                {"localizedStringForKey", "value", "table"})) {
 | 
						|
          IgnoreStringsWithoutSpecifiers = true;
 | 
						|
        }
 | 
						|
 | 
						|
        const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
 | 
						|
        return checkFormatStringExpr(
 | 
						|
            S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
 | 
						|
            CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
 | 
						|
            IgnoreStringsWithoutSpecifiers);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return SLCT_NotALiteral;
 | 
						|
  }
 | 
						|
  case Stmt::ObjCStringLiteralClass:
 | 
						|
  case Stmt::StringLiteralClass: {
 | 
						|
    const StringLiteral *StrE = nullptr;
 | 
						|
 | 
						|
    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
 | 
						|
      StrE = ObjCFExpr->getString();
 | 
						|
    else
 | 
						|
      StrE = cast<StringLiteral>(E);
 | 
						|
 | 
						|
    if (StrE) {
 | 
						|
      if (Offset.isNegative() || Offset > StrE->getLength()) {
 | 
						|
        // TODO: It would be better to have an explicit warning for out of
 | 
						|
        // bounds literals.
 | 
						|
        return SLCT_NotALiteral;
 | 
						|
      }
 | 
						|
      FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
 | 
						|
      CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
 | 
						|
                        firstDataArg, Type, InFunctionCall, CallType,
 | 
						|
                        CheckedVarArgs, UncoveredArg,
 | 
						|
                        IgnoreStringsWithoutSpecifiers);
 | 
						|
      return SLCT_CheckedLiteral;
 | 
						|
    }
 | 
						|
 | 
						|
    return SLCT_NotALiteral;
 | 
						|
  }
 | 
						|
  case Stmt::BinaryOperatorClass: {
 | 
						|
    const BinaryOperator *BinOp = cast<BinaryOperator>(E);
 | 
						|
 | 
						|
    // A string literal + an int offset is still a string literal.
 | 
						|
    if (BinOp->isAdditiveOp()) {
 | 
						|
      Expr::EvalResult LResult, RResult;
 | 
						|
 | 
						|
      bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
 | 
						|
          LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
 | 
						|
      bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
 | 
						|
          RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
 | 
						|
 | 
						|
      if (LIsInt != RIsInt) {
 | 
						|
        BinaryOperatorKind BinOpKind = BinOp->getOpcode();
 | 
						|
 | 
						|
        if (LIsInt) {
 | 
						|
          if (BinOpKind == BO_Add) {
 | 
						|
            sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
 | 
						|
            E = BinOp->getRHS();
 | 
						|
            goto tryAgain;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
 | 
						|
          E = BinOp->getLHS();
 | 
						|
          goto tryAgain;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return SLCT_NotALiteral;
 | 
						|
  }
 | 
						|
  case Stmt::UnaryOperatorClass: {
 | 
						|
    const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
 | 
						|
    auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
 | 
						|
    if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
 | 
						|
      Expr::EvalResult IndexResult;
 | 
						|
      if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
 | 
						|
                                       Expr::SE_NoSideEffects,
 | 
						|
                                       S.isConstantEvaluated())) {
 | 
						|
        sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
 | 
						|
                   /*RHS is int*/ true);
 | 
						|
        E = ASE->getBase();
 | 
						|
        goto tryAgain;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return SLCT_NotALiteral;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    return SLCT_NotALiteral;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
 | 
						|
  return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
 | 
						|
      .Case("scanf", FST_Scanf)
 | 
						|
      .Cases("printf", "printf0", FST_Printf)
 | 
						|
      .Cases("NSString", "CFString", FST_NSString)
 | 
						|
      .Case("strftime", FST_Strftime)
 | 
						|
      .Case("strfmon", FST_Strfmon)
 | 
						|
      .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
 | 
						|
      .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
 | 
						|
      .Case("os_trace", FST_OSLog)
 | 
						|
      .Case("os_log", FST_OSLog)
 | 
						|
      .Default(FST_Unknown);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckFormatArguments - Check calls to printf and scanf (and similar
 | 
						|
/// functions) for correct use of format strings.
 | 
						|
/// Returns true if a format string has been fully checked.
 | 
						|
bool Sema::CheckFormatArguments(const FormatAttr *Format,
 | 
						|
                                ArrayRef<const Expr *> Args,
 | 
						|
                                bool IsCXXMember,
 | 
						|
                                VariadicCallType CallType,
 | 
						|
                                SourceLocation Loc, SourceRange Range,
 | 
						|
                                llvm::SmallBitVector &CheckedVarArgs) {
 | 
						|
  FormatStringInfo FSI;
 | 
						|
  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
 | 
						|
    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
 | 
						|
                                FSI.FirstDataArg, GetFormatStringType(Format),
 | 
						|
                                CallType, Loc, Range, CheckedVarArgs);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
 | 
						|
                                bool HasVAListArg, unsigned format_idx,
 | 
						|
                                unsigned firstDataArg, FormatStringType Type,
 | 
						|
                                VariadicCallType CallType,
 | 
						|
                                SourceLocation Loc, SourceRange Range,
 | 
						|
                                llvm::SmallBitVector &CheckedVarArgs) {
 | 
						|
  // CHECK: printf/scanf-like function is called with no format string.
 | 
						|
  if (format_idx >= Args.size()) {
 | 
						|
    Diag(Loc, diag::warn_missing_format_string) << Range;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
 | 
						|
 | 
						|
  // CHECK: format string is not a string literal.
 | 
						|
  //
 | 
						|
  // Dynamically generated format strings are difficult to
 | 
						|
  // automatically vet at compile time.  Requiring that format strings
 | 
						|
  // are string literals: (1) permits the checking of format strings by
 | 
						|
  // the compiler and thereby (2) can practically remove the source of
 | 
						|
  // many format string exploits.
 | 
						|
 | 
						|
  // Format string can be either ObjC string (e.g. @"%d") or
 | 
						|
  // C string (e.g. "%d")
 | 
						|
  // ObjC string uses the same format specifiers as C string, so we can use
 | 
						|
  // the same format string checking logic for both ObjC and C strings.
 | 
						|
  UncoveredArgHandler UncoveredArg;
 | 
						|
  StringLiteralCheckType CT =
 | 
						|
      checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
 | 
						|
                            format_idx, firstDataArg, Type, CallType,
 | 
						|
                            /*IsFunctionCall*/ true, CheckedVarArgs,
 | 
						|
                            UncoveredArg,
 | 
						|
                            /*no string offset*/ llvm::APSInt(64, false) = 0);
 | 
						|
 | 
						|
  // Generate a diagnostic where an uncovered argument is detected.
 | 
						|
  if (UncoveredArg.hasUncoveredArg()) {
 | 
						|
    unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
 | 
						|
    assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
 | 
						|
    UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CT != SLCT_NotALiteral)
 | 
						|
    // Literal format string found, check done!
 | 
						|
    return CT == SLCT_CheckedLiteral;
 | 
						|
 | 
						|
  // Strftime is particular as it always uses a single 'time' argument,
 | 
						|
  // so it is safe to pass a non-literal string.
 | 
						|
  if (Type == FST_Strftime)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not emit diag when the string param is a macro expansion and the
 | 
						|
  // format is either NSString or CFString. This is a hack to prevent
 | 
						|
  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
 | 
						|
  // which are usually used in place of NS and CF string literals.
 | 
						|
  SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
 | 
						|
  if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If there are no arguments specified, warn with -Wformat-security, otherwise
 | 
						|
  // warn only with -Wformat-nonliteral.
 | 
						|
  if (Args.size() == firstDataArg) {
 | 
						|
    Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
 | 
						|
      << OrigFormatExpr->getSourceRange();
 | 
						|
    switch (Type) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case FST_Kprintf:
 | 
						|
    case FST_FreeBSDKPrintf:
 | 
						|
    case FST_Printf:
 | 
						|
      Diag(FormatLoc, diag::note_format_security_fixit)
 | 
						|
        << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
 | 
						|
      break;
 | 
						|
    case FST_NSString:
 | 
						|
      Diag(FormatLoc, diag::note_format_security_fixit)
 | 
						|
        << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Diag(FormatLoc, diag::warn_format_nonliteral)
 | 
						|
      << OrigFormatExpr->getSourceRange();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
 | 
						|
protected:
 | 
						|
  Sema &S;
 | 
						|
  const FormatStringLiteral *FExpr;
 | 
						|
  const Expr *OrigFormatExpr;
 | 
						|
  const Sema::FormatStringType FSType;
 | 
						|
  const unsigned FirstDataArg;
 | 
						|
  const unsigned NumDataArgs;
 | 
						|
  const char *Beg; // Start of format string.
 | 
						|
  const bool HasVAListArg;
 | 
						|
  ArrayRef<const Expr *> Args;
 | 
						|
  unsigned FormatIdx;
 | 
						|
  llvm::SmallBitVector CoveredArgs;
 | 
						|
  bool usesPositionalArgs = false;
 | 
						|
  bool atFirstArg = true;
 | 
						|
  bool inFunctionCall;
 | 
						|
  Sema::VariadicCallType CallType;
 | 
						|
  llvm::SmallBitVector &CheckedVarArgs;
 | 
						|
  UncoveredArgHandler &UncoveredArg;
 | 
						|
 | 
						|
public:
 | 
						|
  CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
 | 
						|
                     const Expr *origFormatExpr,
 | 
						|
                     const Sema::FormatStringType type, unsigned firstDataArg,
 | 
						|
                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
 | 
						|
                     ArrayRef<const Expr *> Args, unsigned formatIdx,
 | 
						|
                     bool inFunctionCall, Sema::VariadicCallType callType,
 | 
						|
                     llvm::SmallBitVector &CheckedVarArgs,
 | 
						|
                     UncoveredArgHandler &UncoveredArg)
 | 
						|
      : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
 | 
						|
        FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
 | 
						|
        HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
 | 
						|
        inFunctionCall(inFunctionCall), CallType(callType),
 | 
						|
        CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
 | 
						|
    CoveredArgs.resize(numDataArgs);
 | 
						|
    CoveredArgs.reset();
 | 
						|
  }
 | 
						|
 | 
						|
  void DoneProcessing();
 | 
						|
 | 
						|
  void HandleIncompleteSpecifier(const char *startSpecifier,
 | 
						|
                                 unsigned specifierLen) override;
 | 
						|
 | 
						|
  void HandleInvalidLengthModifier(
 | 
						|
                           const analyze_format_string::FormatSpecifier &FS,
 | 
						|
                           const analyze_format_string::ConversionSpecifier &CS,
 | 
						|
                           const char *startSpecifier, unsigned specifierLen,
 | 
						|
                           unsigned DiagID);
 | 
						|
 | 
						|
  void HandleNonStandardLengthModifier(
 | 
						|
                    const analyze_format_string::FormatSpecifier &FS,
 | 
						|
                    const char *startSpecifier, unsigned specifierLen);
 | 
						|
 | 
						|
  void HandleNonStandardConversionSpecifier(
 | 
						|
                    const analyze_format_string::ConversionSpecifier &CS,
 | 
						|
                    const char *startSpecifier, unsigned specifierLen);
 | 
						|
 | 
						|
  void HandlePosition(const char *startPos, unsigned posLen) override;
 | 
						|
 | 
						|
  void HandleInvalidPosition(const char *startSpecifier,
 | 
						|
                             unsigned specifierLen,
 | 
						|
                             analyze_format_string::PositionContext p) override;
 | 
						|
 | 
						|
  void HandleZeroPosition(const char *startPos, unsigned posLen) override;
 | 
						|
 | 
						|
  void HandleNullChar(const char *nullCharacter) override;
 | 
						|
 | 
						|
  template <typename Range>
 | 
						|
  static void
 | 
						|
  EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
 | 
						|
                       const PartialDiagnostic &PDiag, SourceLocation StringLoc,
 | 
						|
                       bool IsStringLocation, Range StringRange,
 | 
						|
                       ArrayRef<FixItHint> Fixit = None);
 | 
						|
 | 
						|
protected:
 | 
						|
  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
 | 
						|
                                        const char *startSpec,
 | 
						|
                                        unsigned specifierLen,
 | 
						|
                                        const char *csStart, unsigned csLen);
 | 
						|
 | 
						|
  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
 | 
						|
                                         const char *startSpec,
 | 
						|
                                         unsigned specifierLen);
 | 
						|
 | 
						|
  SourceRange getFormatStringRange();
 | 
						|
  CharSourceRange getSpecifierRange(const char *startSpecifier,
 | 
						|
                                    unsigned specifierLen);
 | 
						|
  SourceLocation getLocationOfByte(const char *x);
 | 
						|
 | 
						|
  const Expr *getDataArg(unsigned i) const;
 | 
						|
 | 
						|
  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
 | 
						|
                    const analyze_format_string::ConversionSpecifier &CS,
 | 
						|
                    const char *startSpecifier, unsigned specifierLen,
 | 
						|
                    unsigned argIndex);
 | 
						|
 | 
						|
  template <typename Range>
 | 
						|
  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
 | 
						|
                            bool IsStringLocation, Range StringRange,
 | 
						|
                            ArrayRef<FixItHint> Fixit = None);
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
SourceRange CheckFormatHandler::getFormatStringRange() {
 | 
						|
  return OrigFormatExpr->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
CharSourceRange CheckFormatHandler::
 | 
						|
getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
 | 
						|
  SourceLocation Start = getLocationOfByte(startSpecifier);
 | 
						|
  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
 | 
						|
 | 
						|
  // Advance the end SourceLocation by one due to half-open ranges.
 | 
						|
  End = End.getLocWithOffset(1);
 | 
						|
 | 
						|
  return CharSourceRange::getCharRange(Start, End);
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
 | 
						|
  return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
 | 
						|
                                  S.getLangOpts(), S.Context.getTargetInfo());
 | 
						|
}
 | 
						|
 | 
						|
void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
 | 
						|
                                                   unsigned specifierLen){
 | 
						|
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
 | 
						|
                       getLocationOfByte(startSpecifier),
 | 
						|
                       /*IsStringLocation*/true,
 | 
						|
                       getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
}
 | 
						|
 | 
						|
void CheckFormatHandler::HandleInvalidLengthModifier(
 | 
						|
    const analyze_format_string::FormatSpecifier &FS,
 | 
						|
    const analyze_format_string::ConversionSpecifier &CS,
 | 
						|
    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
 | 
						|
  using namespace analyze_format_string;
 | 
						|
 | 
						|
  const LengthModifier &LM = FS.getLengthModifier();
 | 
						|
  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
 | 
						|
 | 
						|
  // See if we know how to fix this length modifier.
 | 
						|
  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
 | 
						|
  if (FixedLM) {
 | 
						|
    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
 | 
						|
                         getLocationOfByte(LM.getStart()),
 | 
						|
                         /*IsStringLocation*/true,
 | 
						|
                         getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
 | 
						|
    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
 | 
						|
      << FixedLM->toString()
 | 
						|
      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
 | 
						|
 | 
						|
  } else {
 | 
						|
    FixItHint Hint;
 | 
						|
    if (DiagID == diag::warn_format_nonsensical_length)
 | 
						|
      Hint = FixItHint::CreateRemoval(LMRange);
 | 
						|
 | 
						|
    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
 | 
						|
                         getLocationOfByte(LM.getStart()),
 | 
						|
                         /*IsStringLocation*/true,
 | 
						|
                         getSpecifierRange(startSpecifier, specifierLen),
 | 
						|
                         Hint);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CheckFormatHandler::HandleNonStandardLengthModifier(
 | 
						|
    const analyze_format_string::FormatSpecifier &FS,
 | 
						|
    const char *startSpecifier, unsigned specifierLen) {
 | 
						|
  using namespace analyze_format_string;
 | 
						|
 | 
						|
  const LengthModifier &LM = FS.getLengthModifier();
 | 
						|
  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
 | 
						|
 | 
						|
  // See if we know how to fix this length modifier.
 | 
						|
  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
 | 
						|
  if (FixedLM) {
 | 
						|
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | 
						|
                           << LM.toString() << 0,
 | 
						|
                         getLocationOfByte(LM.getStart()),
 | 
						|
                         /*IsStringLocation*/true,
 | 
						|
                         getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
 | 
						|
    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
 | 
						|
      << FixedLM->toString()
 | 
						|
      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
 | 
						|
 | 
						|
  } else {
 | 
						|
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | 
						|
                           << LM.toString() << 0,
 | 
						|
                         getLocationOfByte(LM.getStart()),
 | 
						|
                         /*IsStringLocation*/true,
 | 
						|
                         getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CheckFormatHandler::HandleNonStandardConversionSpecifier(
 | 
						|
    const analyze_format_string::ConversionSpecifier &CS,
 | 
						|
    const char *startSpecifier, unsigned specifierLen) {
 | 
						|
  using namespace analyze_format_string;
 | 
						|
 | 
						|
  // See if we know how to fix this conversion specifier.
 | 
						|
  Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
 | 
						|
  if (FixedCS) {
 | 
						|
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | 
						|
                          << CS.toString() << /*conversion specifier*/1,
 | 
						|
                         getLocationOfByte(CS.getStart()),
 | 
						|
                         /*IsStringLocation*/true,
 | 
						|
                         getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
 | 
						|
    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
 | 
						|
    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
 | 
						|
      << FixedCS->toString()
 | 
						|
      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
 | 
						|
  } else {
 | 
						|
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | 
						|
                          << CS.toString() << /*conversion specifier*/1,
 | 
						|
                         getLocationOfByte(CS.getStart()),
 | 
						|
                         /*IsStringLocation*/true,
 | 
						|
                         getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CheckFormatHandler::HandlePosition(const char *startPos,
 | 
						|
                                        unsigned posLen) {
 | 
						|
  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
 | 
						|
                               getLocationOfByte(startPos),
 | 
						|
                               /*IsStringLocation*/true,
 | 
						|
                               getSpecifierRange(startPos, posLen));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
 | 
						|
                                     analyze_format_string::PositionContext p) {
 | 
						|
  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
 | 
						|
                         << (unsigned) p,
 | 
						|
                       getLocationOfByte(startPos), /*IsStringLocation*/true,
 | 
						|
                       getSpecifierRange(startPos, posLen));
 | 
						|
}
 | 
						|
 | 
						|
void CheckFormatHandler::HandleZeroPosition(const char *startPos,
 | 
						|
                                            unsigned posLen) {
 | 
						|
  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
 | 
						|
                               getLocationOfByte(startPos),
 | 
						|
                               /*IsStringLocation*/true,
 | 
						|
                               getSpecifierRange(startPos, posLen));
 | 
						|
}
 | 
						|
 | 
						|
void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
 | 
						|
  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
 | 
						|
    // The presence of a null character is likely an error.
 | 
						|
    EmitFormatDiagnostic(
 | 
						|
      S.PDiag(diag::warn_printf_format_string_contains_null_char),
 | 
						|
      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
 | 
						|
      getFormatStringRange());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Note that this may return NULL if there was an error parsing or building
 | 
						|
// one of the argument expressions.
 | 
						|
const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
 | 
						|
  return Args[FirstDataArg + i];
 | 
						|
}
 | 
						|
 | 
						|
void CheckFormatHandler::DoneProcessing() {
 | 
						|
  // Does the number of data arguments exceed the number of
 | 
						|
  // format conversions in the format string?
 | 
						|
  if (!HasVAListArg) {
 | 
						|
      // Find any arguments that weren't covered.
 | 
						|
    CoveredArgs.flip();
 | 
						|
    signed notCoveredArg = CoveredArgs.find_first();
 | 
						|
    if (notCoveredArg >= 0) {
 | 
						|
      assert((unsigned)notCoveredArg < NumDataArgs);
 | 
						|
      UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
 | 
						|
    } else {
 | 
						|
      UncoveredArg.setAllCovered();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
 | 
						|
                                   const Expr *ArgExpr) {
 | 
						|
  assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
 | 
						|
         "Invalid state");
 | 
						|
 | 
						|
  if (!ArgExpr)
 | 
						|
    return;
 | 
						|
 | 
						|
  SourceLocation Loc = ArgExpr->getBeginLoc();
 | 
						|
 | 
						|
  if (S.getSourceManager().isInSystemMacro(Loc))
 | 
						|
    return;
 | 
						|
 | 
						|
  PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
 | 
						|
  for (auto E : DiagnosticExprs)
 | 
						|
    PDiag << E->getSourceRange();
 | 
						|
 | 
						|
  CheckFormatHandler::EmitFormatDiagnostic(
 | 
						|
                                  S, IsFunctionCall, DiagnosticExprs[0],
 | 
						|
                                  PDiag, Loc, /*IsStringLocation*/false,
 | 
						|
                                  DiagnosticExprs[0]->getSourceRange());
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
 | 
						|
                                                     SourceLocation Loc,
 | 
						|
                                                     const char *startSpec,
 | 
						|
                                                     unsigned specifierLen,
 | 
						|
                                                     const char *csStart,
 | 
						|
                                                     unsigned csLen) {
 | 
						|
  bool keepGoing = true;
 | 
						|
  if (argIndex < NumDataArgs) {
 | 
						|
    // Consider the argument coverered, even though the specifier doesn't
 | 
						|
    // make sense.
 | 
						|
    CoveredArgs.set(argIndex);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // If argIndex exceeds the number of data arguments we
 | 
						|
    // don't issue a warning because that is just a cascade of warnings (and
 | 
						|
    // they may have intended '%%' anyway). We don't want to continue processing
 | 
						|
    // the format string after this point, however, as we will like just get
 | 
						|
    // gibberish when trying to match arguments.
 | 
						|
    keepGoing = false;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef Specifier(csStart, csLen);
 | 
						|
 | 
						|
  // If the specifier in non-printable, it could be the first byte of a UTF-8
 | 
						|
  // sequence. In that case, print the UTF-8 code point. If not, print the byte
 | 
						|
  // hex value.
 | 
						|
  std::string CodePointStr;
 | 
						|
  if (!llvm::sys::locale::isPrint(*csStart)) {
 | 
						|
    llvm::UTF32 CodePoint;
 | 
						|
    const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
 | 
						|
    const llvm::UTF8 *E =
 | 
						|
        reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
 | 
						|
    llvm::ConversionResult Result =
 | 
						|
        llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
 | 
						|
 | 
						|
    if (Result != llvm::conversionOK) {
 | 
						|
      unsigned char FirstChar = *csStart;
 | 
						|
      CodePoint = (llvm::UTF32)FirstChar;
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::raw_string_ostream OS(CodePointStr);
 | 
						|
    if (CodePoint < 256)
 | 
						|
      OS << "\\x" << llvm::format("%02x", CodePoint);
 | 
						|
    else if (CodePoint <= 0xFFFF)
 | 
						|
      OS << "\\u" << llvm::format("%04x", CodePoint);
 | 
						|
    else
 | 
						|
      OS << "\\U" << llvm::format("%08x", CodePoint);
 | 
						|
    OS.flush();
 | 
						|
    Specifier = CodePointStr;
 | 
						|
  }
 | 
						|
 | 
						|
  EmitFormatDiagnostic(
 | 
						|
      S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
 | 
						|
      /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
 | 
						|
 | 
						|
  return keepGoing;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
 | 
						|
                                                      const char *startSpec,
 | 
						|
                                                      unsigned specifierLen) {
 | 
						|
  EmitFormatDiagnostic(
 | 
						|
    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
 | 
						|
    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
CheckFormatHandler::CheckNumArgs(
 | 
						|
  const analyze_format_string::FormatSpecifier &FS,
 | 
						|
  const analyze_format_string::ConversionSpecifier &CS,
 | 
						|
  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
 | 
						|
 | 
						|
  if (argIndex >= NumDataArgs) {
 | 
						|
    PartialDiagnostic PDiag = FS.usesPositionalArg()
 | 
						|
      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
 | 
						|
           << (argIndex+1) << NumDataArgs)
 | 
						|
      : S.PDiag(diag::warn_printf_insufficient_data_args);
 | 
						|
    EmitFormatDiagnostic(
 | 
						|
      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
 | 
						|
      getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
 | 
						|
    // Since more arguments than conversion tokens are given, by extension
 | 
						|
    // all arguments are covered, so mark this as so.
 | 
						|
    UncoveredArg.setAllCovered();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template<typename Range>
 | 
						|
void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
 | 
						|
                                              SourceLocation Loc,
 | 
						|
                                              bool IsStringLocation,
 | 
						|
                                              Range StringRange,
 | 
						|
                                              ArrayRef<FixItHint> FixIt) {
 | 
						|
  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
 | 
						|
                       Loc, IsStringLocation, StringRange, FixIt);
 | 
						|
}
 | 
						|
 | 
						|
/// If the format string is not within the function call, emit a note
 | 
						|
/// so that the function call and string are in diagnostic messages.
 | 
						|
///
 | 
						|
/// \param InFunctionCall if true, the format string is within the function
 | 
						|
/// call and only one diagnostic message will be produced.  Otherwise, an
 | 
						|
/// extra note will be emitted pointing to location of the format string.
 | 
						|
///
 | 
						|
/// \param ArgumentExpr the expression that is passed as the format string
 | 
						|
/// argument in the function call.  Used for getting locations when two
 | 
						|
/// diagnostics are emitted.
 | 
						|
///
 | 
						|
/// \param PDiag the callee should already have provided any strings for the
 | 
						|
/// diagnostic message.  This function only adds locations and fixits
 | 
						|
/// to diagnostics.
 | 
						|
///
 | 
						|
/// \param Loc primary location for diagnostic.  If two diagnostics are
 | 
						|
/// required, one will be at Loc and a new SourceLocation will be created for
 | 
						|
/// the other one.
 | 
						|
///
 | 
						|
/// \param IsStringLocation if true, Loc points to the format string should be
 | 
						|
/// used for the note.  Otherwise, Loc points to the argument list and will
 | 
						|
/// be used with PDiag.
 | 
						|
///
 | 
						|
/// \param StringRange some or all of the string to highlight.  This is
 | 
						|
/// templated so it can accept either a CharSourceRange or a SourceRange.
 | 
						|
///
 | 
						|
/// \param FixIt optional fix it hint for the format string.
 | 
						|
template <typename Range>
 | 
						|
void CheckFormatHandler::EmitFormatDiagnostic(
 | 
						|
    Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
 | 
						|
    const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
 | 
						|
    Range StringRange, ArrayRef<FixItHint> FixIt) {
 | 
						|
  if (InFunctionCall) {
 | 
						|
    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
 | 
						|
    D << StringRange;
 | 
						|
    D << FixIt;
 | 
						|
  } else {
 | 
						|
    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
 | 
						|
      << ArgumentExpr->getSourceRange();
 | 
						|
 | 
						|
    const Sema::SemaDiagnosticBuilder &Note =
 | 
						|
      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
 | 
						|
             diag::note_format_string_defined);
 | 
						|
 | 
						|
    Note << StringRange;
 | 
						|
    Note << FixIt;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===--- CHECK: Printf format string checking ------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class CheckPrintfHandler : public CheckFormatHandler {
 | 
						|
public:
 | 
						|
  CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
 | 
						|
                     const Expr *origFormatExpr,
 | 
						|
                     const Sema::FormatStringType type, unsigned firstDataArg,
 | 
						|
                     unsigned numDataArgs, bool isObjC, const char *beg,
 | 
						|
                     bool hasVAListArg, ArrayRef<const Expr *> Args,
 | 
						|
                     unsigned formatIdx, bool inFunctionCall,
 | 
						|
                     Sema::VariadicCallType CallType,
 | 
						|
                     llvm::SmallBitVector &CheckedVarArgs,
 | 
						|
                     UncoveredArgHandler &UncoveredArg)
 | 
						|
      : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
 | 
						|
                           numDataArgs, beg, hasVAListArg, Args, formatIdx,
 | 
						|
                           inFunctionCall, CallType, CheckedVarArgs,
 | 
						|
                           UncoveredArg) {}
 | 
						|
 | 
						|
  bool isObjCContext() const { return FSType == Sema::FST_NSString; }
 | 
						|
 | 
						|
  /// Returns true if '%@' specifiers are allowed in the format string.
 | 
						|
  bool allowsObjCArg() const {
 | 
						|
    return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
 | 
						|
           FSType == Sema::FST_OSTrace;
 | 
						|
  }
 | 
						|
 | 
						|
  bool HandleInvalidPrintfConversionSpecifier(
 | 
						|
                                      const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                                      const char *startSpecifier,
 | 
						|
                                      unsigned specifierLen) override;
 | 
						|
 | 
						|
  void handleInvalidMaskType(StringRef MaskType) override;
 | 
						|
 | 
						|
  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                             const char *startSpecifier,
 | 
						|
                             unsigned specifierLen) override;
 | 
						|
  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                       const char *StartSpecifier,
 | 
						|
                       unsigned SpecifierLen,
 | 
						|
                       const Expr *E);
 | 
						|
 | 
						|
  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
 | 
						|
                    const char *startSpecifier, unsigned specifierLen);
 | 
						|
  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                           const analyze_printf::OptionalAmount &Amt,
 | 
						|
                           unsigned type,
 | 
						|
                           const char *startSpecifier, unsigned specifierLen);
 | 
						|
  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                  const analyze_printf::OptionalFlag &flag,
 | 
						|
                  const char *startSpecifier, unsigned specifierLen);
 | 
						|
  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                         const analyze_printf::OptionalFlag &ignoredFlag,
 | 
						|
                         const analyze_printf::OptionalFlag &flag,
 | 
						|
                         const char *startSpecifier, unsigned specifierLen);
 | 
						|
  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
 | 
						|
                           const Expr *E);
 | 
						|
 | 
						|
  void HandleEmptyObjCModifierFlag(const char *startFlag,
 | 
						|
                                   unsigned flagLen) override;
 | 
						|
 | 
						|
  void HandleInvalidObjCModifierFlag(const char *startFlag,
 | 
						|
                                            unsigned flagLen) override;
 | 
						|
 | 
						|
  void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
 | 
						|
                                           const char *flagsEnd,
 | 
						|
                                           const char *conversionPosition)
 | 
						|
                                             override;
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
 | 
						|
                                      const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                                      const char *startSpecifier,
 | 
						|
                                      unsigned specifierLen) {
 | 
						|
  const analyze_printf::PrintfConversionSpecifier &CS =
 | 
						|
    FS.getConversionSpecifier();
 | 
						|
 | 
						|
  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
 | 
						|
                                          getLocationOfByte(CS.getStart()),
 | 
						|
                                          startSpecifier, specifierLen,
 | 
						|
                                          CS.getStart(), CS.getLength());
 | 
						|
}
 | 
						|
 | 
						|
void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
 | 
						|
  S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
 | 
						|
}
 | 
						|
 | 
						|
bool CheckPrintfHandler::HandleAmount(
 | 
						|
                               const analyze_format_string::OptionalAmount &Amt,
 | 
						|
                               unsigned k, const char *startSpecifier,
 | 
						|
                               unsigned specifierLen) {
 | 
						|
  if (Amt.hasDataArgument()) {
 | 
						|
    if (!HasVAListArg) {
 | 
						|
      unsigned argIndex = Amt.getArgIndex();
 | 
						|
      if (argIndex >= NumDataArgs) {
 | 
						|
        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
 | 
						|
                               << k,
 | 
						|
                             getLocationOfByte(Amt.getStart()),
 | 
						|
                             /*IsStringLocation*/true,
 | 
						|
                             getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
        // Don't do any more checking.  We will just emit
 | 
						|
        // spurious errors.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Type check the data argument.  It should be an 'int'.
 | 
						|
      // Although not in conformance with C99, we also allow the argument to be
 | 
						|
      // an 'unsigned int' as that is a reasonably safe case.  GCC also
 | 
						|
      // doesn't emit a warning for that case.
 | 
						|
      CoveredArgs.set(argIndex);
 | 
						|
      const Expr *Arg = getDataArg(argIndex);
 | 
						|
      if (!Arg)
 | 
						|
        return false;
 | 
						|
 | 
						|
      QualType T = Arg->getType();
 | 
						|
 | 
						|
      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
 | 
						|
      assert(AT.isValid());
 | 
						|
 | 
						|
      if (!AT.matchesType(S.Context, T)) {
 | 
						|
        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
 | 
						|
                               << k << AT.getRepresentativeTypeName(S.Context)
 | 
						|
                               << T << Arg->getSourceRange(),
 | 
						|
                             getLocationOfByte(Amt.getStart()),
 | 
						|
                             /*IsStringLocation*/true,
 | 
						|
                             getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
        // Don't do any more checking.  We will just emit
 | 
						|
        // spurious errors.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void CheckPrintfHandler::HandleInvalidAmount(
 | 
						|
                                      const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                                      const analyze_printf::OptionalAmount &Amt,
 | 
						|
                                      unsigned type,
 | 
						|
                                      const char *startSpecifier,
 | 
						|
                                      unsigned specifierLen) {
 | 
						|
  const analyze_printf::PrintfConversionSpecifier &CS =
 | 
						|
    FS.getConversionSpecifier();
 | 
						|
 | 
						|
  FixItHint fixit =
 | 
						|
    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
 | 
						|
      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
 | 
						|
                                 Amt.getConstantLength()))
 | 
						|
      : FixItHint();
 | 
						|
 | 
						|
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
 | 
						|
                         << type << CS.toString(),
 | 
						|
                       getLocationOfByte(Amt.getStart()),
 | 
						|
                       /*IsStringLocation*/true,
 | 
						|
                       getSpecifierRange(startSpecifier, specifierLen),
 | 
						|
                       fixit);
 | 
						|
}
 | 
						|
 | 
						|
void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                                    const analyze_printf::OptionalFlag &flag,
 | 
						|
                                    const char *startSpecifier,
 | 
						|
                                    unsigned specifierLen) {
 | 
						|
  // Warn about pointless flag with a fixit removal.
 | 
						|
  const analyze_printf::PrintfConversionSpecifier &CS =
 | 
						|
    FS.getConversionSpecifier();
 | 
						|
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
 | 
						|
                         << flag.toString() << CS.toString(),
 | 
						|
                       getLocationOfByte(flag.getPosition()),
 | 
						|
                       /*IsStringLocation*/true,
 | 
						|
                       getSpecifierRange(startSpecifier, specifierLen),
 | 
						|
                       FixItHint::CreateRemoval(
 | 
						|
                         getSpecifierRange(flag.getPosition(), 1)));
 | 
						|
}
 | 
						|
 | 
						|
void CheckPrintfHandler::HandleIgnoredFlag(
 | 
						|
                                const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                                const analyze_printf::OptionalFlag &ignoredFlag,
 | 
						|
                                const analyze_printf::OptionalFlag &flag,
 | 
						|
                                const char *startSpecifier,
 | 
						|
                                unsigned specifierLen) {
 | 
						|
  // Warn about ignored flag with a fixit removal.
 | 
						|
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
 | 
						|
                         << ignoredFlag.toString() << flag.toString(),
 | 
						|
                       getLocationOfByte(ignoredFlag.getPosition()),
 | 
						|
                       /*IsStringLocation*/true,
 | 
						|
                       getSpecifierRange(startSpecifier, specifierLen),
 | 
						|
                       FixItHint::CreateRemoval(
 | 
						|
                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
 | 
						|
}
 | 
						|
 | 
						|
void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
 | 
						|
                                                     unsigned flagLen) {
 | 
						|
  // Warn about an empty flag.
 | 
						|
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
 | 
						|
                       getLocationOfByte(startFlag),
 | 
						|
                       /*IsStringLocation*/true,
 | 
						|
                       getSpecifierRange(startFlag, flagLen));
 | 
						|
}
 | 
						|
 | 
						|
void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
 | 
						|
                                                       unsigned flagLen) {
 | 
						|
  // Warn about an invalid flag.
 | 
						|
  auto Range = getSpecifierRange(startFlag, flagLen);
 | 
						|
  StringRef flag(startFlag, flagLen);
 | 
						|
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
 | 
						|
                      getLocationOfByte(startFlag),
 | 
						|
                      /*IsStringLocation*/true,
 | 
						|
                      Range, FixItHint::CreateRemoval(Range));
 | 
						|
}
 | 
						|
 | 
						|
void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
 | 
						|
    const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
 | 
						|
    // Warn about using '[...]' without a '@' conversion.
 | 
						|
    auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
 | 
						|
    auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
 | 
						|
    EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
 | 
						|
                         getLocationOfByte(conversionPosition),
 | 
						|
                         /*IsStringLocation*/true,
 | 
						|
                         Range, FixItHint::CreateRemoval(Range));
 | 
						|
}
 | 
						|
 | 
						|
// Determines if the specified is a C++ class or struct containing
 | 
						|
// a member with the specified name and kind (e.g. a CXXMethodDecl named
 | 
						|
// "c_str()").
 | 
						|
template<typename MemberKind>
 | 
						|
static llvm::SmallPtrSet<MemberKind*, 1>
 | 
						|
CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
 | 
						|
  const RecordType *RT = Ty->getAs<RecordType>();
 | 
						|
  llvm::SmallPtrSet<MemberKind*, 1> Results;
 | 
						|
 | 
						|
  if (!RT)
 | 
						|
    return Results;
 | 
						|
  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
  if (!RD || !RD->getDefinition())
 | 
						|
    return Results;
 | 
						|
 | 
						|
  LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
 | 
						|
                 Sema::LookupMemberName);
 | 
						|
  R.suppressDiagnostics();
 | 
						|
 | 
						|
  // We just need to include all members of the right kind turned up by the
 | 
						|
  // filter, at this point.
 | 
						|
  if (S.LookupQualifiedName(R, RT->getDecl()))
 | 
						|
    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | 
						|
      NamedDecl *decl = (*I)->getUnderlyingDecl();
 | 
						|
      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
 | 
						|
        Results.insert(FK);
 | 
						|
    }
 | 
						|
  return Results;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if we could call '.c_str()' on an object.
 | 
						|
///
 | 
						|
/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
 | 
						|
/// allow the call, or if it would be ambiguous).
 | 
						|
bool Sema::hasCStrMethod(const Expr *E) {
 | 
						|
  using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
 | 
						|
 | 
						|
  MethodSet Results =
 | 
						|
      CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
 | 
						|
  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
 | 
						|
       MI != ME; ++MI)
 | 
						|
    if ((*MI)->getMinRequiredArguments() == 0)
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Check if a (w)string was passed when a (w)char* was needed, and offer a
 | 
						|
// better diagnostic if so. AT is assumed to be valid.
 | 
						|
// Returns true when a c_str() conversion method is found.
 | 
						|
bool CheckPrintfHandler::checkForCStrMembers(
 | 
						|
    const analyze_printf::ArgType &AT, const Expr *E) {
 | 
						|
  using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
 | 
						|
 | 
						|
  MethodSet Results =
 | 
						|
      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
 | 
						|
 | 
						|
  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
 | 
						|
       MI != ME; ++MI) {
 | 
						|
    const CXXMethodDecl *Method = *MI;
 | 
						|
    if (Method->getMinRequiredArguments() == 0 &&
 | 
						|
        AT.matchesType(S.Context, Method->getReturnType())) {
 | 
						|
      // FIXME: Suggest parens if the expression needs them.
 | 
						|
      SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
 | 
						|
      S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
 | 
						|
          << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
 | 
						|
                                            &FS,
 | 
						|
                                          const char *startSpecifier,
 | 
						|
                                          unsigned specifierLen) {
 | 
						|
  using namespace analyze_format_string;
 | 
						|
  using namespace analyze_printf;
 | 
						|
 | 
						|
  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
 | 
						|
 | 
						|
  if (FS.consumesDataArgument()) {
 | 
						|
    if (atFirstArg) {
 | 
						|
        atFirstArg = false;
 | 
						|
        usesPositionalArgs = FS.usesPositionalArg();
 | 
						|
    }
 | 
						|
    else if (usesPositionalArgs != FS.usesPositionalArg()) {
 | 
						|
      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
 | 
						|
                                        startSpecifier, specifierLen);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // First check if the field width, precision, and conversion specifier
 | 
						|
  // have matching data arguments.
 | 
						|
  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
 | 
						|
                    startSpecifier, specifierLen)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
 | 
						|
                    startSpecifier, specifierLen)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CS.consumesDataArgument()) {
 | 
						|
    // FIXME: Technically specifying a precision or field width here
 | 
						|
    // makes no sense.  Worth issuing a warning at some point.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Consume the argument.
 | 
						|
  unsigned argIndex = FS.getArgIndex();
 | 
						|
  if (argIndex < NumDataArgs) {
 | 
						|
    // The check to see if the argIndex is valid will come later.
 | 
						|
    // We set the bit here because we may exit early from this
 | 
						|
    // function if we encounter some other error.
 | 
						|
    CoveredArgs.set(argIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  // FreeBSD kernel extensions.
 | 
						|
  if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
 | 
						|
      CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
 | 
						|
    // We need at least two arguments.
 | 
						|
    if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Claim the second argument.
 | 
						|
    CoveredArgs.set(argIndex + 1);
 | 
						|
 | 
						|
    // Type check the first argument (int for %b, pointer for %D)
 | 
						|
    const Expr *Ex = getDataArg(argIndex);
 | 
						|
    const analyze_printf::ArgType &AT =
 | 
						|
      (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
 | 
						|
        ArgType(S.Context.IntTy) : ArgType::CPointerTy;
 | 
						|
    if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
 | 
						|
      EmitFormatDiagnostic(
 | 
						|
          S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
 | 
						|
              << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
 | 
						|
              << false << Ex->getSourceRange(),
 | 
						|
          Ex->getBeginLoc(), /*IsStringLocation*/ false,
 | 
						|
          getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
 | 
						|
    // Type check the second argument (char * for both %b and %D)
 | 
						|
    Ex = getDataArg(argIndex + 1);
 | 
						|
    const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
 | 
						|
    if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
 | 
						|
      EmitFormatDiagnostic(
 | 
						|
          S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
 | 
						|
              << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
 | 
						|
              << false << Ex->getSourceRange(),
 | 
						|
          Ex->getBeginLoc(), /*IsStringLocation*/ false,
 | 
						|
          getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
 | 
						|
     return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for using an Objective-C specific conversion specifier
 | 
						|
  // in a non-ObjC literal.
 | 
						|
  if (!allowsObjCArg() && CS.isObjCArg()) {
 | 
						|
    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
 | 
						|
                                                  specifierLen);
 | 
						|
  }
 | 
						|
 | 
						|
  // %P can only be used with os_log.
 | 
						|
  if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
 | 
						|
    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
 | 
						|
                                                  specifierLen);
 | 
						|
  }
 | 
						|
 | 
						|
  // %n is not allowed with os_log.
 | 
						|
  if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
 | 
						|
    EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
 | 
						|
                         getLocationOfByte(CS.getStart()),
 | 
						|
                         /*IsStringLocation*/ false,
 | 
						|
                         getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Only scalars are allowed for os_trace.
 | 
						|
  if (FSType == Sema::FST_OSTrace &&
 | 
						|
      (CS.getKind() == ConversionSpecifier::PArg ||
 | 
						|
       CS.getKind() == ConversionSpecifier::sArg ||
 | 
						|
       CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
 | 
						|
    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
 | 
						|
                                                  specifierLen);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for use of public/private annotation outside of os_log().
 | 
						|
  if (FSType != Sema::FST_OSLog) {
 | 
						|
    if (FS.isPublic().isSet()) {
 | 
						|
      EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
 | 
						|
                               << "public",
 | 
						|
                           getLocationOfByte(FS.isPublic().getPosition()),
 | 
						|
                           /*IsStringLocation*/ false,
 | 
						|
                           getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
    }
 | 
						|
    if (FS.isPrivate().isSet()) {
 | 
						|
      EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
 | 
						|
                               << "private",
 | 
						|
                           getLocationOfByte(FS.isPrivate().getPosition()),
 | 
						|
                           /*IsStringLocation*/ false,
 | 
						|
                           getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for invalid use of field width
 | 
						|
  if (!FS.hasValidFieldWidth()) {
 | 
						|
    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
 | 
						|
        startSpecifier, specifierLen);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for invalid use of precision
 | 
						|
  if (!FS.hasValidPrecision()) {
 | 
						|
    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
 | 
						|
        startSpecifier, specifierLen);
 | 
						|
  }
 | 
						|
 | 
						|
  // Precision is mandatory for %P specifier.
 | 
						|
  if (CS.getKind() == ConversionSpecifier::PArg &&
 | 
						|
      FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
 | 
						|
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
 | 
						|
                         getLocationOfByte(startSpecifier),
 | 
						|
                         /*IsStringLocation*/ false,
 | 
						|
                         getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
  }
 | 
						|
 | 
						|
  // Check each flag does not conflict with any other component.
 | 
						|
  if (!FS.hasValidThousandsGroupingPrefix())
 | 
						|
    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
 | 
						|
  if (!FS.hasValidLeadingZeros())
 | 
						|
    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
 | 
						|
  if (!FS.hasValidPlusPrefix())
 | 
						|
    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
 | 
						|
  if (!FS.hasValidSpacePrefix())
 | 
						|
    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
 | 
						|
  if (!FS.hasValidAlternativeForm())
 | 
						|
    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
 | 
						|
  if (!FS.hasValidLeftJustified())
 | 
						|
    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
 | 
						|
 | 
						|
  // Check that flags are not ignored by another flag
 | 
						|
  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
 | 
						|
    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
 | 
						|
        startSpecifier, specifierLen);
 | 
						|
  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
 | 
						|
    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
 | 
						|
            startSpecifier, specifierLen);
 | 
						|
 | 
						|
  // Check the length modifier is valid with the given conversion specifier.
 | 
						|
  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
 | 
						|
                                 S.getLangOpts()))
 | 
						|
    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | 
						|
                                diag::warn_format_nonsensical_length);
 | 
						|
  else if (!FS.hasStandardLengthModifier())
 | 
						|
    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
 | 
						|
  else if (!FS.hasStandardLengthConversionCombination())
 | 
						|
    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | 
						|
                                diag::warn_format_non_standard_conversion_spec);
 | 
						|
 | 
						|
  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
 | 
						|
    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
 | 
						|
 | 
						|
  // The remaining checks depend on the data arguments.
 | 
						|
  if (HasVAListArg)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const Expr *Arg = getDataArg(argIndex);
 | 
						|
  if (!Arg)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
 | 
						|
}
 | 
						|
 | 
						|
static bool requiresParensToAddCast(const Expr *E) {
 | 
						|
  // FIXME: We should have a general way to reason about operator
 | 
						|
  // precedence and whether parens are actually needed here.
 | 
						|
  // Take care of a few common cases where they aren't.
 | 
						|
  const Expr *Inside = E->IgnoreImpCasts();
 | 
						|
  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
 | 
						|
    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
 | 
						|
 | 
						|
  switch (Inside->getStmtClass()) {
 | 
						|
  case Stmt::ArraySubscriptExprClass:
 | 
						|
  case Stmt::CallExprClass:
 | 
						|
  case Stmt::CharacterLiteralClass:
 | 
						|
  case Stmt::CXXBoolLiteralExprClass:
 | 
						|
  case Stmt::DeclRefExprClass:
 | 
						|
  case Stmt::FloatingLiteralClass:
 | 
						|
  case Stmt::IntegerLiteralClass:
 | 
						|
  case Stmt::MemberExprClass:
 | 
						|
  case Stmt::ObjCArrayLiteralClass:
 | 
						|
  case Stmt::ObjCBoolLiteralExprClass:
 | 
						|
  case Stmt::ObjCBoxedExprClass:
 | 
						|
  case Stmt::ObjCDictionaryLiteralClass:
 | 
						|
  case Stmt::ObjCEncodeExprClass:
 | 
						|
  case Stmt::ObjCIvarRefExprClass:
 | 
						|
  case Stmt::ObjCMessageExprClass:
 | 
						|
  case Stmt::ObjCPropertyRefExprClass:
 | 
						|
  case Stmt::ObjCStringLiteralClass:
 | 
						|
  case Stmt::ObjCSubscriptRefExprClass:
 | 
						|
  case Stmt::ParenExprClass:
 | 
						|
  case Stmt::StringLiteralClass:
 | 
						|
  case Stmt::UnaryOperatorClass:
 | 
						|
    return false;
 | 
						|
  default:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static std::pair<QualType, StringRef>
 | 
						|
shouldNotPrintDirectly(const ASTContext &Context,
 | 
						|
                       QualType IntendedTy,
 | 
						|
                       const Expr *E) {
 | 
						|
  // Use a 'while' to peel off layers of typedefs.
 | 
						|
  QualType TyTy = IntendedTy;
 | 
						|
  while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
 | 
						|
    StringRef Name = UserTy->getDecl()->getName();
 | 
						|
    QualType CastTy = llvm::StringSwitch<QualType>(Name)
 | 
						|
      .Case("CFIndex", Context.getNSIntegerType())
 | 
						|
      .Case("NSInteger", Context.getNSIntegerType())
 | 
						|
      .Case("NSUInteger", Context.getNSUIntegerType())
 | 
						|
      .Case("SInt32", Context.IntTy)
 | 
						|
      .Case("UInt32", Context.UnsignedIntTy)
 | 
						|
      .Default(QualType());
 | 
						|
 | 
						|
    if (!CastTy.isNull())
 | 
						|
      return std::make_pair(CastTy, Name);
 | 
						|
 | 
						|
    TyTy = UserTy->desugar();
 | 
						|
  }
 | 
						|
 | 
						|
  // Strip parens if necessary.
 | 
						|
  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
 | 
						|
    return shouldNotPrintDirectly(Context,
 | 
						|
                                  PE->getSubExpr()->getType(),
 | 
						|
                                  PE->getSubExpr());
 | 
						|
 | 
						|
  // If this is a conditional expression, then its result type is constructed
 | 
						|
  // via usual arithmetic conversions and thus there might be no necessary
 | 
						|
  // typedef sugar there.  Recurse to operands to check for NSInteger &
 | 
						|
  // Co. usage condition.
 | 
						|
  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
 | 
						|
    QualType TrueTy, FalseTy;
 | 
						|
    StringRef TrueName, FalseName;
 | 
						|
 | 
						|
    std::tie(TrueTy, TrueName) =
 | 
						|
      shouldNotPrintDirectly(Context,
 | 
						|
                             CO->getTrueExpr()->getType(),
 | 
						|
                             CO->getTrueExpr());
 | 
						|
    std::tie(FalseTy, FalseName) =
 | 
						|
      shouldNotPrintDirectly(Context,
 | 
						|
                             CO->getFalseExpr()->getType(),
 | 
						|
                             CO->getFalseExpr());
 | 
						|
 | 
						|
    if (TrueTy == FalseTy)
 | 
						|
      return std::make_pair(TrueTy, TrueName);
 | 
						|
    else if (TrueTy.isNull())
 | 
						|
      return std::make_pair(FalseTy, FalseName);
 | 
						|
    else if (FalseTy.isNull())
 | 
						|
      return std::make_pair(TrueTy, TrueName);
 | 
						|
  }
 | 
						|
 | 
						|
  return std::make_pair(QualType(), StringRef());
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if \p ICE is an implicit argument promotion of an arithmetic
 | 
						|
/// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
 | 
						|
/// type do not count.
 | 
						|
static bool
 | 
						|
isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
 | 
						|
  QualType From = ICE->getSubExpr()->getType();
 | 
						|
  QualType To = ICE->getType();
 | 
						|
  // It's an integer promotion if the destination type is the promoted
 | 
						|
  // source type.
 | 
						|
  if (ICE->getCastKind() == CK_IntegralCast &&
 | 
						|
      From->isPromotableIntegerType() &&
 | 
						|
      S.Context.getPromotedIntegerType(From) == To)
 | 
						|
    return true;
 | 
						|
  // Look through vector types, since we do default argument promotion for
 | 
						|
  // those in OpenCL.
 | 
						|
  if (const auto *VecTy = From->getAs<ExtVectorType>())
 | 
						|
    From = VecTy->getElementType();
 | 
						|
  if (const auto *VecTy = To->getAs<ExtVectorType>())
 | 
						|
    To = VecTy->getElementType();
 | 
						|
  // It's a floating promotion if the source type is a lower rank.
 | 
						|
  return ICE->getCastKind() == CK_FloatingCast &&
 | 
						|
         S.Context.getFloatingTypeOrder(From, To) < 0;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
 | 
						|
                                    const char *StartSpecifier,
 | 
						|
                                    unsigned SpecifierLen,
 | 
						|
                                    const Expr *E) {
 | 
						|
  using namespace analyze_format_string;
 | 
						|
  using namespace analyze_printf;
 | 
						|
 | 
						|
  // Now type check the data expression that matches the
 | 
						|
  // format specifier.
 | 
						|
  const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
 | 
						|
  if (!AT.isValid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  QualType ExprTy = E->getType();
 | 
						|
  while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
 | 
						|
    ExprTy = TET->getUnderlyingExpr()->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Diagnose attempts to print a boolean value as a character. Unlike other
 | 
						|
  // -Wformat diagnostics, this is fine from a type perspective, but it still
 | 
						|
  // doesn't make sense.
 | 
						|
  if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
 | 
						|
      E->isKnownToHaveBooleanValue()) {
 | 
						|
    const CharSourceRange &CSR =
 | 
						|
        getSpecifierRange(StartSpecifier, SpecifierLen);
 | 
						|
    SmallString<4> FSString;
 | 
						|
    llvm::raw_svector_ostream os(FSString);
 | 
						|
    FS.toString(os);
 | 
						|
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
 | 
						|
                             << FSString,
 | 
						|
                         E->getExprLoc(), false, CSR);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
 | 
						|
  if (Match == analyze_printf::ArgType::Match)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Look through argument promotions for our error message's reported type.
 | 
						|
  // This includes the integral and floating promotions, but excludes array
 | 
						|
  // and function pointer decay (seeing that an argument intended to be a
 | 
						|
  // string has type 'char [6]' is probably more confusing than 'char *') and
 | 
						|
  // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
 | 
						|
  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | 
						|
    if (isArithmeticArgumentPromotion(S, ICE)) {
 | 
						|
      E = ICE->getSubExpr();
 | 
						|
      ExprTy = E->getType();
 | 
						|
 | 
						|
      // Check if we didn't match because of an implicit cast from a 'char'
 | 
						|
      // or 'short' to an 'int'.  This is done because printf is a varargs
 | 
						|
      // function.
 | 
						|
      if (ICE->getType() == S.Context.IntTy ||
 | 
						|
          ICE->getType() == S.Context.UnsignedIntTy) {
 | 
						|
        // All further checking is done on the subexpression
 | 
						|
        const analyze_printf::ArgType::MatchKind ImplicitMatch =
 | 
						|
            AT.matchesType(S.Context, ExprTy);
 | 
						|
        if (ImplicitMatch == analyze_printf::ArgType::Match)
 | 
						|
          return true;
 | 
						|
        if (ImplicitMatch == ArgType::NoMatchPedantic ||
 | 
						|
            ImplicitMatch == ArgType::NoMatchTypeConfusion)
 | 
						|
          Match = ImplicitMatch;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
 | 
						|
    // Special case for 'a', which has type 'int' in C.
 | 
						|
    // Note, however, that we do /not/ want to treat multibyte constants like
 | 
						|
    // 'MooV' as characters! This form is deprecated but still exists.
 | 
						|
    if (ExprTy == S.Context.IntTy)
 | 
						|
      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
 | 
						|
        ExprTy = S.Context.CharTy;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look through enums to their underlying type.
 | 
						|
  bool IsEnum = false;
 | 
						|
  if (auto EnumTy = ExprTy->getAs<EnumType>()) {
 | 
						|
    ExprTy = EnumTy->getDecl()->getIntegerType();
 | 
						|
    IsEnum = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // %C in an Objective-C context prints a unichar, not a wchar_t.
 | 
						|
  // If the argument is an integer of some kind, believe the %C and suggest
 | 
						|
  // a cast instead of changing the conversion specifier.
 | 
						|
  QualType IntendedTy = ExprTy;
 | 
						|
  if (isObjCContext() &&
 | 
						|
      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
 | 
						|
    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
 | 
						|
        !ExprTy->isCharType()) {
 | 
						|
      // 'unichar' is defined as a typedef of unsigned short, but we should
 | 
						|
      // prefer using the typedef if it is visible.
 | 
						|
      IntendedTy = S.Context.UnsignedShortTy;
 | 
						|
 | 
						|
      // While we are here, check if the value is an IntegerLiteral that happens
 | 
						|
      // to be within the valid range.
 | 
						|
      if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
 | 
						|
        const llvm::APInt &V = IL->getValue();
 | 
						|
        if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
 | 
						|
      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
 | 
						|
                          Sema::LookupOrdinaryName);
 | 
						|
      if (S.LookupName(Result, S.getCurScope())) {
 | 
						|
        NamedDecl *ND = Result.getFoundDecl();
 | 
						|
        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
 | 
						|
          if (TD->getUnderlyingType() == IntendedTy)
 | 
						|
            IntendedTy = S.Context.getTypedefType(TD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Special-case some of Darwin's platform-independence types by suggesting
 | 
						|
  // casts to primitive types that are known to be large enough.
 | 
						|
  bool ShouldNotPrintDirectly = false; StringRef CastTyName;
 | 
						|
  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
 | 
						|
    QualType CastTy;
 | 
						|
    std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
 | 
						|
    if (!CastTy.isNull()) {
 | 
						|
      // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
 | 
						|
      // (long in ASTContext). Only complain to pedants.
 | 
						|
      if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
 | 
						|
          (AT.isSizeT() || AT.isPtrdiffT()) &&
 | 
						|
          AT.matchesType(S.Context, CastTy))
 | 
						|
        Match = ArgType::NoMatchPedantic;
 | 
						|
      IntendedTy = CastTy;
 | 
						|
      ShouldNotPrintDirectly = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We may be able to offer a FixItHint if it is a supported type.
 | 
						|
  PrintfSpecifier fixedFS = FS;
 | 
						|
  bool Success =
 | 
						|
      fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
 | 
						|
 | 
						|
  if (Success) {
 | 
						|
    // Get the fix string from the fixed format specifier
 | 
						|
    SmallString<16> buf;
 | 
						|
    llvm::raw_svector_ostream os(buf);
 | 
						|
    fixedFS.toString(os);
 | 
						|
 | 
						|
    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
 | 
						|
 | 
						|
    if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
 | 
						|
      unsigned Diag;
 | 
						|
      switch (Match) {
 | 
						|
      case ArgType::Match: llvm_unreachable("expected non-matching");
 | 
						|
      case ArgType::NoMatchPedantic:
 | 
						|
        Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
 | 
						|
        break;
 | 
						|
      case ArgType::NoMatchTypeConfusion:
 | 
						|
        Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
 | 
						|
        break;
 | 
						|
      case ArgType::NoMatch:
 | 
						|
        Diag = diag::warn_format_conversion_argument_type_mismatch;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // In this case, the specifier is wrong and should be changed to match
 | 
						|
      // the argument.
 | 
						|
      EmitFormatDiagnostic(S.PDiag(Diag)
 | 
						|
                               << AT.getRepresentativeTypeName(S.Context)
 | 
						|
                               << IntendedTy << IsEnum << E->getSourceRange(),
 | 
						|
                           E->getBeginLoc(),
 | 
						|
                           /*IsStringLocation*/ false, SpecRange,
 | 
						|
                           FixItHint::CreateReplacement(SpecRange, os.str()));
 | 
						|
    } else {
 | 
						|
      // The canonical type for formatting this value is different from the
 | 
						|
      // actual type of the expression. (This occurs, for example, with Darwin's
 | 
						|
      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
 | 
						|
      // should be printed as 'long' for 64-bit compatibility.)
 | 
						|
      // Rather than emitting a normal format/argument mismatch, we want to
 | 
						|
      // add a cast to the recommended type (and correct the format string
 | 
						|
      // if necessary).
 | 
						|
      SmallString<16> CastBuf;
 | 
						|
      llvm::raw_svector_ostream CastFix(CastBuf);
 | 
						|
      CastFix << "(";
 | 
						|
      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
 | 
						|
      CastFix << ")";
 | 
						|
 | 
						|
      SmallVector<FixItHint,4> Hints;
 | 
						|
      if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
 | 
						|
        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
 | 
						|
 | 
						|
      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
 | 
						|
        // If there's already a cast present, just replace it.
 | 
						|
        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
 | 
						|
        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
 | 
						|
 | 
						|
      } else if (!requiresParensToAddCast(E)) {
 | 
						|
        // If the expression has high enough precedence,
 | 
						|
        // just write the C-style cast.
 | 
						|
        Hints.push_back(
 | 
						|
            FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
 | 
						|
      } else {
 | 
						|
        // Otherwise, add parens around the expression as well as the cast.
 | 
						|
        CastFix << "(";
 | 
						|
        Hints.push_back(
 | 
						|
            FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
 | 
						|
 | 
						|
        SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
 | 
						|
        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
 | 
						|
      }
 | 
						|
 | 
						|
      if (ShouldNotPrintDirectly) {
 | 
						|
        // The expression has a type that should not be printed directly.
 | 
						|
        // We extract the name from the typedef because we don't want to show
 | 
						|
        // the underlying type in the diagnostic.
 | 
						|
        StringRef Name;
 | 
						|
        if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
 | 
						|
          Name = TypedefTy->getDecl()->getName();
 | 
						|
        else
 | 
						|
          Name = CastTyName;
 | 
						|
        unsigned Diag = Match == ArgType::NoMatchPedantic
 | 
						|
                            ? diag::warn_format_argument_needs_cast_pedantic
 | 
						|
                            : diag::warn_format_argument_needs_cast;
 | 
						|
        EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
 | 
						|
                                           << E->getSourceRange(),
 | 
						|
                             E->getBeginLoc(), /*IsStringLocation=*/false,
 | 
						|
                             SpecRange, Hints);
 | 
						|
      } else {
 | 
						|
        // In this case, the expression could be printed using a different
 | 
						|
        // specifier, but we've decided that the specifier is probably correct
 | 
						|
        // and we should cast instead. Just use the normal warning message.
 | 
						|
        EmitFormatDiagnostic(
 | 
						|
            S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
 | 
						|
                << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
 | 
						|
                << E->getSourceRange(),
 | 
						|
            E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
 | 
						|
                                                   SpecifierLen);
 | 
						|
    // Since the warning for passing non-POD types to variadic functions
 | 
						|
    // was deferred until now, we emit a warning for non-POD
 | 
						|
    // arguments here.
 | 
						|
    switch (S.isValidVarArgType(ExprTy)) {
 | 
						|
    case Sema::VAK_Valid:
 | 
						|
    case Sema::VAK_ValidInCXX11: {
 | 
						|
      unsigned Diag;
 | 
						|
      switch (Match) {
 | 
						|
      case ArgType::Match: llvm_unreachable("expected non-matching");
 | 
						|
      case ArgType::NoMatchPedantic:
 | 
						|
        Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
 | 
						|
        break;
 | 
						|
      case ArgType::NoMatchTypeConfusion:
 | 
						|
        Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
 | 
						|
        break;
 | 
						|
      case ArgType::NoMatch:
 | 
						|
        Diag = diag::warn_format_conversion_argument_type_mismatch;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      EmitFormatDiagnostic(
 | 
						|
          S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
 | 
						|
                        << IsEnum << CSR << E->getSourceRange(),
 | 
						|
          E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Sema::VAK_Undefined:
 | 
						|
    case Sema::VAK_MSVCUndefined:
 | 
						|
      EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
 | 
						|
                               << S.getLangOpts().CPlusPlus11 << ExprTy
 | 
						|
                               << CallType
 | 
						|
                               << AT.getRepresentativeTypeName(S.Context) << CSR
 | 
						|
                               << E->getSourceRange(),
 | 
						|
                           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
 | 
						|
      checkForCStrMembers(AT, E);
 | 
						|
      break;
 | 
						|
 | 
						|
    case Sema::VAK_Invalid:
 | 
						|
      if (ExprTy->isObjCObjectType())
 | 
						|
        EmitFormatDiagnostic(
 | 
						|
            S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
 | 
						|
                << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
 | 
						|
                << AT.getRepresentativeTypeName(S.Context) << CSR
 | 
						|
                << E->getSourceRange(),
 | 
						|
            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
 | 
						|
      else
 | 
						|
        // FIXME: If this is an initializer list, suggest removing the braces
 | 
						|
        // or inserting a cast to the target type.
 | 
						|
        S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
 | 
						|
            << isa<InitListExpr>(E) << ExprTy << CallType
 | 
						|
            << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
 | 
						|
           "format string specifier index out of range");
 | 
						|
    CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===--- CHECK: Scanf format string checking ------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class CheckScanfHandler : public CheckFormatHandler {
 | 
						|
public:
 | 
						|
  CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
 | 
						|
                    const Expr *origFormatExpr, Sema::FormatStringType type,
 | 
						|
                    unsigned firstDataArg, unsigned numDataArgs,
 | 
						|
                    const char *beg, bool hasVAListArg,
 | 
						|
                    ArrayRef<const Expr *> Args, unsigned formatIdx,
 | 
						|
                    bool inFunctionCall, Sema::VariadicCallType CallType,
 | 
						|
                    llvm::SmallBitVector &CheckedVarArgs,
 | 
						|
                    UncoveredArgHandler &UncoveredArg)
 | 
						|
      : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
 | 
						|
                           numDataArgs, beg, hasVAListArg, Args, formatIdx,
 | 
						|
                           inFunctionCall, CallType, CheckedVarArgs,
 | 
						|
                           UncoveredArg) {}
 | 
						|
 | 
						|
  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
 | 
						|
                            const char *startSpecifier,
 | 
						|
                            unsigned specifierLen) override;
 | 
						|
 | 
						|
  bool HandleInvalidScanfConversionSpecifier(
 | 
						|
          const analyze_scanf::ScanfSpecifier &FS,
 | 
						|
          const char *startSpecifier,
 | 
						|
          unsigned specifierLen) override;
 | 
						|
 | 
						|
  void HandleIncompleteScanList(const char *start, const char *end) override;
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
void CheckScanfHandler::HandleIncompleteScanList(const char *start,
 | 
						|
                                                 const char *end) {
 | 
						|
  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
 | 
						|
                       getLocationOfByte(end), /*IsStringLocation*/true,
 | 
						|
                       getSpecifierRange(start, end - start));
 | 
						|
}
 | 
						|
 | 
						|
bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
 | 
						|
                                        const analyze_scanf::ScanfSpecifier &FS,
 | 
						|
                                        const char *startSpecifier,
 | 
						|
                                        unsigned specifierLen) {
 | 
						|
  const analyze_scanf::ScanfConversionSpecifier &CS =
 | 
						|
    FS.getConversionSpecifier();
 | 
						|
 | 
						|
  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
 | 
						|
                                          getLocationOfByte(CS.getStart()),
 | 
						|
                                          startSpecifier, specifierLen,
 | 
						|
                                          CS.getStart(), CS.getLength());
 | 
						|
}
 | 
						|
 | 
						|
bool CheckScanfHandler::HandleScanfSpecifier(
 | 
						|
                                       const analyze_scanf::ScanfSpecifier &FS,
 | 
						|
                                       const char *startSpecifier,
 | 
						|
                                       unsigned specifierLen) {
 | 
						|
  using namespace analyze_scanf;
 | 
						|
  using namespace analyze_format_string;
 | 
						|
 | 
						|
  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
 | 
						|
 | 
						|
  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
 | 
						|
  // be used to decide if we are using positional arguments consistently.
 | 
						|
  if (FS.consumesDataArgument()) {
 | 
						|
    if (atFirstArg) {
 | 
						|
      atFirstArg = false;
 | 
						|
      usesPositionalArgs = FS.usesPositionalArg();
 | 
						|
    }
 | 
						|
    else if (usesPositionalArgs != FS.usesPositionalArg()) {
 | 
						|
      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
 | 
						|
                                        startSpecifier, specifierLen);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if the field with is non-zero.
 | 
						|
  const OptionalAmount &Amt = FS.getFieldWidth();
 | 
						|
  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
 | 
						|
    if (Amt.getConstantAmount() == 0) {
 | 
						|
      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
 | 
						|
                                                   Amt.getConstantLength());
 | 
						|
      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
 | 
						|
                           getLocationOfByte(Amt.getStart()),
 | 
						|
                           /*IsStringLocation*/true, R,
 | 
						|
                           FixItHint::CreateRemoval(R));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FS.consumesDataArgument()) {
 | 
						|
    // FIXME: Technically specifying a precision or field width here
 | 
						|
    // makes no sense.  Worth issuing a warning at some point.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Consume the argument.
 | 
						|
  unsigned argIndex = FS.getArgIndex();
 | 
						|
  if (argIndex < NumDataArgs) {
 | 
						|
      // The check to see if the argIndex is valid will come later.
 | 
						|
      // We set the bit here because we may exit early from this
 | 
						|
      // function if we encounter some other error.
 | 
						|
    CoveredArgs.set(argIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the length modifier is valid with the given conversion specifier.
 | 
						|
  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
 | 
						|
                                 S.getLangOpts()))
 | 
						|
    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | 
						|
                                diag::warn_format_nonsensical_length);
 | 
						|
  else if (!FS.hasStandardLengthModifier())
 | 
						|
    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
 | 
						|
  else if (!FS.hasStandardLengthConversionCombination())
 | 
						|
    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | 
						|
                                diag::warn_format_non_standard_conversion_spec);
 | 
						|
 | 
						|
  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
 | 
						|
    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
 | 
						|
 | 
						|
  // The remaining checks depend on the data arguments.
 | 
						|
  if (HasVAListArg)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the argument type matches the format specifier.
 | 
						|
  const Expr *Ex = getDataArg(argIndex);
 | 
						|
  if (!Ex)
 | 
						|
    return true;
 | 
						|
 | 
						|
  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
 | 
						|
 | 
						|
  if (!AT.isValid()) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  analyze_format_string::ArgType::MatchKind Match =
 | 
						|
      AT.matchesType(S.Context, Ex->getType());
 | 
						|
  bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
 | 
						|
  if (Match == analyze_format_string::ArgType::Match)
 | 
						|
    return true;
 | 
						|
 | 
						|
  ScanfSpecifier fixedFS = FS;
 | 
						|
  bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
 | 
						|
                                 S.getLangOpts(), S.Context);
 | 
						|
 | 
						|
  unsigned Diag =
 | 
						|
      Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
 | 
						|
               : diag::warn_format_conversion_argument_type_mismatch;
 | 
						|
 | 
						|
  if (Success) {
 | 
						|
    // Get the fix string from the fixed format specifier.
 | 
						|
    SmallString<128> buf;
 | 
						|
    llvm::raw_svector_ostream os(buf);
 | 
						|
    fixedFS.toString(os);
 | 
						|
 | 
						|
    EmitFormatDiagnostic(
 | 
						|
        S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
 | 
						|
                      << Ex->getType() << false << Ex->getSourceRange(),
 | 
						|
        Ex->getBeginLoc(),
 | 
						|
        /*IsStringLocation*/ false,
 | 
						|
        getSpecifierRange(startSpecifier, specifierLen),
 | 
						|
        FixItHint::CreateReplacement(
 | 
						|
            getSpecifierRange(startSpecifier, specifierLen), os.str()));
 | 
						|
  } else {
 | 
						|
    EmitFormatDiagnostic(S.PDiag(Diag)
 | 
						|
                             << AT.getRepresentativeTypeName(S.Context)
 | 
						|
                             << Ex->getType() << false << Ex->getSourceRange(),
 | 
						|
                         Ex->getBeginLoc(),
 | 
						|
                         /*IsStringLocation*/ false,
 | 
						|
                         getSpecifierRange(startSpecifier, specifierLen));
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
 | 
						|
                              const Expr *OrigFormatExpr,
 | 
						|
                              ArrayRef<const Expr *> Args,
 | 
						|
                              bool HasVAListArg, unsigned format_idx,
 | 
						|
                              unsigned firstDataArg,
 | 
						|
                              Sema::FormatStringType Type,
 | 
						|
                              bool inFunctionCall,
 | 
						|
                              Sema::VariadicCallType CallType,
 | 
						|
                              llvm::SmallBitVector &CheckedVarArgs,
 | 
						|
                              UncoveredArgHandler &UncoveredArg,
 | 
						|
                              bool IgnoreStringsWithoutSpecifiers) {
 | 
						|
  // CHECK: is the format string a wide literal?
 | 
						|
  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
 | 
						|
    CheckFormatHandler::EmitFormatDiagnostic(
 | 
						|
        S, inFunctionCall, Args[format_idx],
 | 
						|
        S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
 | 
						|
        /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Str - The format string.  NOTE: this is NOT null-terminated!
 | 
						|
  StringRef StrRef = FExpr->getString();
 | 
						|
  const char *Str = StrRef.data();
 | 
						|
  // Account for cases where the string literal is truncated in a declaration.
 | 
						|
  const ConstantArrayType *T =
 | 
						|
    S.Context.getAsConstantArrayType(FExpr->getType());
 | 
						|
  assert(T && "String literal not of constant array type!");
 | 
						|
  size_t TypeSize = T->getSize().getZExtValue();
 | 
						|
  size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
 | 
						|
  const unsigned numDataArgs = Args.size() - firstDataArg;
 | 
						|
 | 
						|
  if (IgnoreStringsWithoutSpecifiers &&
 | 
						|
      !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
 | 
						|
          Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Emit a warning if the string literal is truncated and does not contain an
 | 
						|
  // embedded null character.
 | 
						|
  if (TypeSize <= StrRef.size() &&
 | 
						|
      StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
 | 
						|
    CheckFormatHandler::EmitFormatDiagnostic(
 | 
						|
        S, inFunctionCall, Args[format_idx],
 | 
						|
        S.PDiag(diag::warn_printf_format_string_not_null_terminated),
 | 
						|
        FExpr->getBeginLoc(),
 | 
						|
        /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // CHECK: empty format string?
 | 
						|
  if (StrLen == 0 && numDataArgs > 0) {
 | 
						|
    CheckFormatHandler::EmitFormatDiagnostic(
 | 
						|
        S, inFunctionCall, Args[format_idx],
 | 
						|
        S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
 | 
						|
        /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
 | 
						|
      Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
 | 
						|
      Type == Sema::FST_OSTrace) {
 | 
						|
    CheckPrintfHandler H(
 | 
						|
        S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
 | 
						|
        (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
 | 
						|
        HasVAListArg, Args, format_idx, inFunctionCall, CallType,
 | 
						|
        CheckedVarArgs, UncoveredArg);
 | 
						|
 | 
						|
    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
 | 
						|
                                                  S.getLangOpts(),
 | 
						|
                                                  S.Context.getTargetInfo(),
 | 
						|
                                            Type == Sema::FST_FreeBSDKPrintf))
 | 
						|
      H.DoneProcessing();
 | 
						|
  } else if (Type == Sema::FST_Scanf) {
 | 
						|
    CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
 | 
						|
                        numDataArgs, Str, HasVAListArg, Args, format_idx,
 | 
						|
                        inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
 | 
						|
 | 
						|
    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
 | 
						|
                                                 S.getLangOpts(),
 | 
						|
                                                 S.Context.getTargetInfo()))
 | 
						|
      H.DoneProcessing();
 | 
						|
  } // TODO: handle other formats
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
 | 
						|
  // Str - The format string.  NOTE: this is NOT null-terminated!
 | 
						|
  StringRef StrRef = FExpr->getString();
 | 
						|
  const char *Str = StrRef.data();
 | 
						|
  // Account for cases where the string literal is truncated in a declaration.
 | 
						|
  const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
 | 
						|
  assert(T && "String literal not of constant array type!");
 | 
						|
  size_t TypeSize = T->getSize().getZExtValue();
 | 
						|
  size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
 | 
						|
  return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
 | 
						|
                                                         getLangOpts(),
 | 
						|
                                                         Context.getTargetInfo());
 | 
						|
}
 | 
						|
 | 
						|
//===--- CHECK: Warn on use of wrong absolute value function. -------------===//
 | 
						|
 | 
						|
// Returns the related absolute value function that is larger, of 0 if one
 | 
						|
// does not exist.
 | 
						|
static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
 | 
						|
  switch (AbsFunction) {
 | 
						|
  default:
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Builtin::BI__builtin_abs:
 | 
						|
    return Builtin::BI__builtin_labs;
 | 
						|
  case Builtin::BI__builtin_labs:
 | 
						|
    return Builtin::BI__builtin_llabs;
 | 
						|
  case Builtin::BI__builtin_llabs:
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Builtin::BI__builtin_fabsf:
 | 
						|
    return Builtin::BI__builtin_fabs;
 | 
						|
  case Builtin::BI__builtin_fabs:
 | 
						|
    return Builtin::BI__builtin_fabsl;
 | 
						|
  case Builtin::BI__builtin_fabsl:
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Builtin::BI__builtin_cabsf:
 | 
						|
    return Builtin::BI__builtin_cabs;
 | 
						|
  case Builtin::BI__builtin_cabs:
 | 
						|
    return Builtin::BI__builtin_cabsl;
 | 
						|
  case Builtin::BI__builtin_cabsl:
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Builtin::BIabs:
 | 
						|
    return Builtin::BIlabs;
 | 
						|
  case Builtin::BIlabs:
 | 
						|
    return Builtin::BIllabs;
 | 
						|
  case Builtin::BIllabs:
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Builtin::BIfabsf:
 | 
						|
    return Builtin::BIfabs;
 | 
						|
  case Builtin::BIfabs:
 | 
						|
    return Builtin::BIfabsl;
 | 
						|
  case Builtin::BIfabsl:
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Builtin::BIcabsf:
 | 
						|
   return Builtin::BIcabs;
 | 
						|
  case Builtin::BIcabs:
 | 
						|
    return Builtin::BIcabsl;
 | 
						|
  case Builtin::BIcabsl:
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Returns the argument type of the absolute value function.
 | 
						|
static QualType getAbsoluteValueArgumentType(ASTContext &Context,
 | 
						|
                                             unsigned AbsType) {
 | 
						|
  if (AbsType == 0)
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
 | 
						|
  QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
 | 
						|
  if (Error != ASTContext::GE_None)
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
 | 
						|
  if (!FT)
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  if (FT->getNumParams() != 1)
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  return FT->getParamType(0);
 | 
						|
}
 | 
						|
 | 
						|
// Returns the best absolute value function, or zero, based on type and
 | 
						|
// current absolute value function.
 | 
						|
static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
 | 
						|
                                   unsigned AbsFunctionKind) {
 | 
						|
  unsigned BestKind = 0;
 | 
						|
  uint64_t ArgSize = Context.getTypeSize(ArgType);
 | 
						|
  for (unsigned Kind = AbsFunctionKind; Kind != 0;
 | 
						|
       Kind = getLargerAbsoluteValueFunction(Kind)) {
 | 
						|
    QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
 | 
						|
    if (Context.getTypeSize(ParamType) >= ArgSize) {
 | 
						|
      if (BestKind == 0)
 | 
						|
        BestKind = Kind;
 | 
						|
      else if (Context.hasSameType(ParamType, ArgType)) {
 | 
						|
        BestKind = Kind;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return BestKind;
 | 
						|
}
 | 
						|
 | 
						|
enum AbsoluteValueKind {
 | 
						|
  AVK_Integer,
 | 
						|
  AVK_Floating,
 | 
						|
  AVK_Complex
 | 
						|
};
 | 
						|
 | 
						|
static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
 | 
						|
  if (T->isIntegralOrEnumerationType())
 | 
						|
    return AVK_Integer;
 | 
						|
  if (T->isRealFloatingType())
 | 
						|
    return AVK_Floating;
 | 
						|
  if (T->isAnyComplexType())
 | 
						|
    return AVK_Complex;
 | 
						|
 | 
						|
  llvm_unreachable("Type not integer, floating, or complex");
 | 
						|
}
 | 
						|
 | 
						|
// Changes the absolute value function to a different type.  Preserves whether
 | 
						|
// the function is a builtin.
 | 
						|
static unsigned changeAbsFunction(unsigned AbsKind,
 | 
						|
                                  AbsoluteValueKind ValueKind) {
 | 
						|
  switch (ValueKind) {
 | 
						|
  case AVK_Integer:
 | 
						|
    switch (AbsKind) {
 | 
						|
    default:
 | 
						|
      return 0;
 | 
						|
    case Builtin::BI__builtin_fabsf:
 | 
						|
    case Builtin::BI__builtin_fabs:
 | 
						|
    case Builtin::BI__builtin_fabsl:
 | 
						|
    case Builtin::BI__builtin_cabsf:
 | 
						|
    case Builtin::BI__builtin_cabs:
 | 
						|
    case Builtin::BI__builtin_cabsl:
 | 
						|
      return Builtin::BI__builtin_abs;
 | 
						|
    case Builtin::BIfabsf:
 | 
						|
    case Builtin::BIfabs:
 | 
						|
    case Builtin::BIfabsl:
 | 
						|
    case Builtin::BIcabsf:
 | 
						|
    case Builtin::BIcabs:
 | 
						|
    case Builtin::BIcabsl:
 | 
						|
      return Builtin::BIabs;
 | 
						|
    }
 | 
						|
  case AVK_Floating:
 | 
						|
    switch (AbsKind) {
 | 
						|
    default:
 | 
						|
      return 0;
 | 
						|
    case Builtin::BI__builtin_abs:
 | 
						|
    case Builtin::BI__builtin_labs:
 | 
						|
    case Builtin::BI__builtin_llabs:
 | 
						|
    case Builtin::BI__builtin_cabsf:
 | 
						|
    case Builtin::BI__builtin_cabs:
 | 
						|
    case Builtin::BI__builtin_cabsl:
 | 
						|
      return Builtin::BI__builtin_fabsf;
 | 
						|
    case Builtin::BIabs:
 | 
						|
    case Builtin::BIlabs:
 | 
						|
    case Builtin::BIllabs:
 | 
						|
    case Builtin::BIcabsf:
 | 
						|
    case Builtin::BIcabs:
 | 
						|
    case Builtin::BIcabsl:
 | 
						|
      return Builtin::BIfabsf;
 | 
						|
    }
 | 
						|
  case AVK_Complex:
 | 
						|
    switch (AbsKind) {
 | 
						|
    default:
 | 
						|
      return 0;
 | 
						|
    case Builtin::BI__builtin_abs:
 | 
						|
    case Builtin::BI__builtin_labs:
 | 
						|
    case Builtin::BI__builtin_llabs:
 | 
						|
    case Builtin::BI__builtin_fabsf:
 | 
						|
    case Builtin::BI__builtin_fabs:
 | 
						|
    case Builtin::BI__builtin_fabsl:
 | 
						|
      return Builtin::BI__builtin_cabsf;
 | 
						|
    case Builtin::BIabs:
 | 
						|
    case Builtin::BIlabs:
 | 
						|
    case Builtin::BIllabs:
 | 
						|
    case Builtin::BIfabsf:
 | 
						|
    case Builtin::BIfabs:
 | 
						|
    case Builtin::BIfabsl:
 | 
						|
      return Builtin::BIcabsf;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unable to convert function");
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
 | 
						|
  const IdentifierInfo *FnInfo = FDecl->getIdentifier();
 | 
						|
  if (!FnInfo)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  switch (FDecl->getBuiltinID()) {
 | 
						|
  default:
 | 
						|
    return 0;
 | 
						|
  case Builtin::BI__builtin_abs:
 | 
						|
  case Builtin::BI__builtin_fabs:
 | 
						|
  case Builtin::BI__builtin_fabsf:
 | 
						|
  case Builtin::BI__builtin_fabsl:
 | 
						|
  case Builtin::BI__builtin_labs:
 | 
						|
  case Builtin::BI__builtin_llabs:
 | 
						|
  case Builtin::BI__builtin_cabs:
 | 
						|
  case Builtin::BI__builtin_cabsf:
 | 
						|
  case Builtin::BI__builtin_cabsl:
 | 
						|
  case Builtin::BIabs:
 | 
						|
  case Builtin::BIlabs:
 | 
						|
  case Builtin::BIllabs:
 | 
						|
  case Builtin::BIfabs:
 | 
						|
  case Builtin::BIfabsf:
 | 
						|
  case Builtin::BIfabsl:
 | 
						|
  case Builtin::BIcabs:
 | 
						|
  case Builtin::BIcabsf:
 | 
						|
  case Builtin::BIcabsl:
 | 
						|
    return FDecl->getBuiltinID();
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unknown Builtin type");
 | 
						|
}
 | 
						|
 | 
						|
// If the replacement is valid, emit a note with replacement function.
 | 
						|
// Additionally, suggest including the proper header if not already included.
 | 
						|
static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
 | 
						|
                            unsigned AbsKind, QualType ArgType) {
 | 
						|
  bool EmitHeaderHint = true;
 | 
						|
  const char *HeaderName = nullptr;
 | 
						|
  const char *FunctionName = nullptr;
 | 
						|
  if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
 | 
						|
    FunctionName = "std::abs";
 | 
						|
    if (ArgType->isIntegralOrEnumerationType()) {
 | 
						|
      HeaderName = "cstdlib";
 | 
						|
    } else if (ArgType->isRealFloatingType()) {
 | 
						|
      HeaderName = "cmath";
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("Invalid Type");
 | 
						|
    }
 | 
						|
 | 
						|
    // Lookup all std::abs
 | 
						|
    if (NamespaceDecl *Std = S.getStdNamespace()) {
 | 
						|
      LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
 | 
						|
      R.suppressDiagnostics();
 | 
						|
      S.LookupQualifiedName(R, Std);
 | 
						|
 | 
						|
      for (const auto *I : R) {
 | 
						|
        const FunctionDecl *FDecl = nullptr;
 | 
						|
        if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
 | 
						|
          FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
 | 
						|
        } else {
 | 
						|
          FDecl = dyn_cast<FunctionDecl>(I);
 | 
						|
        }
 | 
						|
        if (!FDecl)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Found std::abs(), check that they are the right ones.
 | 
						|
        if (FDecl->getNumParams() != 1)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Check that the parameter type can handle the argument.
 | 
						|
        QualType ParamType = FDecl->getParamDecl(0)->getType();
 | 
						|
        if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
 | 
						|
            S.Context.getTypeSize(ArgType) <=
 | 
						|
                S.Context.getTypeSize(ParamType)) {
 | 
						|
          // Found a function, don't need the header hint.
 | 
						|
          EmitHeaderHint = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
 | 
						|
    HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
 | 
						|
 | 
						|
    if (HeaderName) {
 | 
						|
      DeclarationName DN(&S.Context.Idents.get(FunctionName));
 | 
						|
      LookupResult R(S, DN, Loc, Sema::LookupAnyName);
 | 
						|
      R.suppressDiagnostics();
 | 
						|
      S.LookupName(R, S.getCurScope());
 | 
						|
 | 
						|
      if (R.isSingleResult()) {
 | 
						|
        FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
 | 
						|
        if (FD && FD->getBuiltinID() == AbsKind) {
 | 
						|
          EmitHeaderHint = false;
 | 
						|
        } else {
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      } else if (!R.empty()) {
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(Loc, diag::note_replace_abs_function)
 | 
						|
      << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
 | 
						|
 | 
						|
  if (!HeaderName)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!EmitHeaderHint)
 | 
						|
    return;
 | 
						|
 | 
						|
  S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
 | 
						|
                                                    << FunctionName;
 | 
						|
}
 | 
						|
 | 
						|
template <std::size_t StrLen>
 | 
						|
static bool IsStdFunction(const FunctionDecl *FDecl,
 | 
						|
                          const char (&Str)[StrLen]) {
 | 
						|
  if (!FDecl)
 | 
						|
    return false;
 | 
						|
  if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
 | 
						|
    return false;
 | 
						|
  if (!FDecl->isInStdNamespace())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Warn when using the wrong abs() function.
 | 
						|
void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
 | 
						|
                                      const FunctionDecl *FDecl) {
 | 
						|
  if (Call->getNumArgs() != 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
 | 
						|
  bool IsStdAbs = IsStdFunction(FDecl, "abs");
 | 
						|
  if (AbsKind == 0 && !IsStdAbs)
 | 
						|
    return;
 | 
						|
 | 
						|
  QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
 | 
						|
  QualType ParamType = Call->getArg(0)->getType();
 | 
						|
 | 
						|
  // Unsigned types cannot be negative.  Suggest removing the absolute value
 | 
						|
  // function call.
 | 
						|
  if (ArgType->isUnsignedIntegerType()) {
 | 
						|
    const char *FunctionName =
 | 
						|
        IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
 | 
						|
    Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
 | 
						|
    Diag(Call->getExprLoc(), diag::note_remove_abs)
 | 
						|
        << FunctionName
 | 
						|
        << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Taking the absolute value of a pointer is very suspicious, they probably
 | 
						|
  // wanted to index into an array, dereference a pointer, call a function, etc.
 | 
						|
  if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
 | 
						|
    unsigned DiagType = 0;
 | 
						|
    if (ArgType->isFunctionType())
 | 
						|
      DiagType = 1;
 | 
						|
    else if (ArgType->isArrayType())
 | 
						|
      DiagType = 2;
 | 
						|
 | 
						|
    Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // std::abs has overloads which prevent most of the absolute value problems
 | 
						|
  // from occurring.
 | 
						|
  if (IsStdAbs)
 | 
						|
    return;
 | 
						|
 | 
						|
  AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
 | 
						|
  AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
 | 
						|
 | 
						|
  // The argument and parameter are the same kind.  Check if they are the right
 | 
						|
  // size.
 | 
						|
  if (ArgValueKind == ParamValueKind) {
 | 
						|
    if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
 | 
						|
      return;
 | 
						|
 | 
						|
    unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
 | 
						|
    Diag(Call->getExprLoc(), diag::warn_abs_too_small)
 | 
						|
        << FDecl << ArgType << ParamType;
 | 
						|
 | 
						|
    if (NewAbsKind == 0)
 | 
						|
      return;
 | 
						|
 | 
						|
    emitReplacement(*this, Call->getExprLoc(),
 | 
						|
                    Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // ArgValueKind != ParamValueKind
 | 
						|
  // The wrong type of absolute value function was used.  Attempt to find the
 | 
						|
  // proper one.
 | 
						|
  unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
 | 
						|
  NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
 | 
						|
  if (NewAbsKind == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
 | 
						|
      << FDecl << ParamValueKind << ArgValueKind;
 | 
						|
 | 
						|
  emitReplacement(*this, Call->getExprLoc(),
 | 
						|
                  Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
 | 
						|
}
 | 
						|
 | 
						|
//===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
 | 
						|
void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
 | 
						|
                                const FunctionDecl *FDecl) {
 | 
						|
  if (!Call || !FDecl) return;
 | 
						|
 | 
						|
  // Ignore template specializations and macros.
 | 
						|
  if (inTemplateInstantiation()) return;
 | 
						|
  if (Call->getExprLoc().isMacroID()) return;
 | 
						|
 | 
						|
  // Only care about the one template argument, two function parameter std::max
 | 
						|
  if (Call->getNumArgs() != 2) return;
 | 
						|
  if (!IsStdFunction(FDecl, "max")) return;
 | 
						|
  const auto * ArgList = FDecl->getTemplateSpecializationArgs();
 | 
						|
  if (!ArgList) return;
 | 
						|
  if (ArgList->size() != 1) return;
 | 
						|
 | 
						|
  // Check that template type argument is unsigned integer.
 | 
						|
  const auto& TA = ArgList->get(0);
 | 
						|
  if (TA.getKind() != TemplateArgument::Type) return;
 | 
						|
  QualType ArgType = TA.getAsType();
 | 
						|
  if (!ArgType->isUnsignedIntegerType()) return;
 | 
						|
 | 
						|
  // See if either argument is a literal zero.
 | 
						|
  auto IsLiteralZeroArg = [](const Expr* E) -> bool {
 | 
						|
    const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
 | 
						|
    if (!MTE) return false;
 | 
						|
    const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
 | 
						|
    if (!Num) return false;
 | 
						|
    if (Num->getValue() != 0) return false;
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  const Expr *FirstArg = Call->getArg(0);
 | 
						|
  const Expr *SecondArg = Call->getArg(1);
 | 
						|
  const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
 | 
						|
  const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
 | 
						|
 | 
						|
  // Only warn when exactly one argument is zero.
 | 
						|
  if (IsFirstArgZero == IsSecondArgZero) return;
 | 
						|
 | 
						|
  SourceRange FirstRange = FirstArg->getSourceRange();
 | 
						|
  SourceRange SecondRange = SecondArg->getSourceRange();
 | 
						|
 | 
						|
  SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
 | 
						|
 | 
						|
  Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
 | 
						|
      << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
 | 
						|
 | 
						|
  // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
 | 
						|
  SourceRange RemovalRange;
 | 
						|
  if (IsFirstArgZero) {
 | 
						|
    RemovalRange = SourceRange(FirstRange.getBegin(),
 | 
						|
                               SecondRange.getBegin().getLocWithOffset(-1));
 | 
						|
  } else {
 | 
						|
    RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
 | 
						|
                               SecondRange.getEnd());
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(Call->getExprLoc(), diag::note_remove_max_call)
 | 
						|
        << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
 | 
						|
        << FixItHint::CreateRemoval(RemovalRange);
 | 
						|
}
 | 
						|
 | 
						|
//===--- CHECK: Standard memory functions ---------------------------------===//
 | 
						|
 | 
						|
/// Takes the expression passed to the size_t parameter of functions
 | 
						|
/// such as memcmp, strncat, etc and warns if it's a comparison.
 | 
						|
///
 | 
						|
/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
 | 
						|
static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
 | 
						|
                                           IdentifierInfo *FnName,
 | 
						|
                                           SourceLocation FnLoc,
 | 
						|
                                           SourceLocation RParenLoc) {
 | 
						|
  const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
 | 
						|
  if (!Size)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
 | 
						|
  if (!Size->isComparisonOp() && !Size->isLogicalOp())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SourceRange SizeRange = Size->getSourceRange();
 | 
						|
  S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
 | 
						|
      << SizeRange << FnName;
 | 
						|
  S.Diag(FnLoc, diag::note_memsize_comparison_paren)
 | 
						|
      << FnName
 | 
						|
      << FixItHint::CreateInsertion(
 | 
						|
             S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
 | 
						|
      << FixItHint::CreateRemoval(RParenLoc);
 | 
						|
  S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
 | 
						|
      << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
 | 
						|
      << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
 | 
						|
                                    ")");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether the given type is or contains a dynamic class type
 | 
						|
/// (e.g., whether it has a vtable).
 | 
						|
static const CXXRecordDecl *getContainedDynamicClass(QualType T,
 | 
						|
                                                     bool &IsContained) {
 | 
						|
  // Look through array types while ignoring qualifiers.
 | 
						|
  const Type *Ty = T->getBaseElementTypeUnsafe();
 | 
						|
  IsContained = false;
 | 
						|
 | 
						|
  const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
 | 
						|
  RD = RD ? RD->getDefinition() : nullptr;
 | 
						|
  if (!RD || RD->isInvalidDecl())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (RD->isDynamicClass())
 | 
						|
    return RD;
 | 
						|
 | 
						|
  // Check all the fields.  If any bases were dynamic, the class is dynamic.
 | 
						|
  // It's impossible for a class to transitively contain itself by value, so
 | 
						|
  // infinite recursion is impossible.
 | 
						|
  for (auto *FD : RD->fields()) {
 | 
						|
    bool SubContained;
 | 
						|
    if (const CXXRecordDecl *ContainedRD =
 | 
						|
            getContainedDynamicClass(FD->getType(), SubContained)) {
 | 
						|
      IsContained = true;
 | 
						|
      return ContainedRD;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
 | 
						|
  if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
 | 
						|
    if (Unary->getKind() == UETT_SizeOf)
 | 
						|
      return Unary;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// If E is a sizeof expression, returns its argument expression,
 | 
						|
/// otherwise returns NULL.
 | 
						|
static const Expr *getSizeOfExprArg(const Expr *E) {
 | 
						|
  if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
 | 
						|
    if (!SizeOf->isArgumentType())
 | 
						|
      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// If E is a sizeof expression, returns its argument type.
 | 
						|
static QualType getSizeOfArgType(const Expr *E) {
 | 
						|
  if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
 | 
						|
    return SizeOf->getTypeOfArgument();
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct SearchNonTrivialToInitializeField
 | 
						|
    : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
 | 
						|
  using Super =
 | 
						|
      DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
 | 
						|
 | 
						|
  SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
 | 
						|
 | 
						|
  void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
 | 
						|
                     SourceLocation SL) {
 | 
						|
    if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
 | 
						|
      asDerived().visitArray(PDIK, AT, SL);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Super::visitWithKind(PDIK, FT, SL);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitARCStrong(QualType FT, SourceLocation SL) {
 | 
						|
    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
 | 
						|
  }
 | 
						|
  void visitARCWeak(QualType FT, SourceLocation SL) {
 | 
						|
    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
 | 
						|
  }
 | 
						|
  void visitStruct(QualType FT, SourceLocation SL) {
 | 
						|
    for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
 | 
						|
      visit(FD->getType(), FD->getLocation());
 | 
						|
  }
 | 
						|
  void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
 | 
						|
                  const ArrayType *AT, SourceLocation SL) {
 | 
						|
    visit(getContext().getBaseElementType(AT), SL);
 | 
						|
  }
 | 
						|
  void visitTrivial(QualType FT, SourceLocation SL) {}
 | 
						|
 | 
						|
  static void diag(QualType RT, const Expr *E, Sema &S) {
 | 
						|
    SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
 | 
						|
  }
 | 
						|
 | 
						|
  ASTContext &getContext() { return S.getASTContext(); }
 | 
						|
 | 
						|
  const Expr *E;
 | 
						|
  Sema &S;
 | 
						|
};
 | 
						|
 | 
						|
struct SearchNonTrivialToCopyField
 | 
						|
    : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
 | 
						|
  using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
 | 
						|
 | 
						|
  SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
 | 
						|
 | 
						|
  void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
 | 
						|
                     SourceLocation SL) {
 | 
						|
    if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
 | 
						|
      asDerived().visitArray(PCK, AT, SL);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Super::visitWithKind(PCK, FT, SL);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitARCStrong(QualType FT, SourceLocation SL) {
 | 
						|
    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
 | 
						|
  }
 | 
						|
  void visitARCWeak(QualType FT, SourceLocation SL) {
 | 
						|
    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
 | 
						|
  }
 | 
						|
  void visitStruct(QualType FT, SourceLocation SL) {
 | 
						|
    for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
 | 
						|
      visit(FD->getType(), FD->getLocation());
 | 
						|
  }
 | 
						|
  void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
 | 
						|
                  SourceLocation SL) {
 | 
						|
    visit(getContext().getBaseElementType(AT), SL);
 | 
						|
  }
 | 
						|
  void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
 | 
						|
                SourceLocation SL) {}
 | 
						|
  void visitTrivial(QualType FT, SourceLocation SL) {}
 | 
						|
  void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
 | 
						|
 | 
						|
  static void diag(QualType RT, const Expr *E, Sema &S) {
 | 
						|
    SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
 | 
						|
  }
 | 
						|
 | 
						|
  ASTContext &getContext() { return S.getASTContext(); }
 | 
						|
 | 
						|
  const Expr *E;
 | 
						|
  Sema &S;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
 | 
						|
static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
 | 
						|
  SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
 | 
						|
    if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
 | 
						|
      return false;
 | 
						|
 | 
						|
    return doesExprLikelyComputeSize(BO->getLHS()) ||
 | 
						|
           doesExprLikelyComputeSize(BO->getRHS());
 | 
						|
  }
 | 
						|
 | 
						|
  return getAsSizeOfExpr(SizeofExpr) != nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
 | 
						|
///
 | 
						|
/// \code
 | 
						|
///   #define MACRO 0
 | 
						|
///   foo(MACRO);
 | 
						|
///   foo(0);
 | 
						|
/// \endcode
 | 
						|
///
 | 
						|
/// This should return true for the first call to foo, but not for the second
 | 
						|
/// (regardless of whether foo is a macro or function).
 | 
						|
static bool isArgumentExpandedFromMacro(SourceManager &SM,
 | 
						|
                                        SourceLocation CallLoc,
 | 
						|
                                        SourceLocation ArgLoc) {
 | 
						|
  if (!CallLoc.isMacroID())
 | 
						|
    return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
 | 
						|
 | 
						|
  return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
 | 
						|
         SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
 | 
						|
/// last two arguments transposed.
 | 
						|
static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
 | 
						|
  if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
 | 
						|
    return;
 | 
						|
 | 
						|
  const Expr *SizeArg =
 | 
						|
    Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
 | 
						|
 | 
						|
  auto isLiteralZero = [](const Expr *E) {
 | 
						|
    return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
 | 
						|
  };
 | 
						|
 | 
						|
  // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
 | 
						|
  SourceLocation CallLoc = Call->getRParenLoc();
 | 
						|
  SourceManager &SM = S.getSourceManager();
 | 
						|
  if (isLiteralZero(SizeArg) &&
 | 
						|
      !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
 | 
						|
 | 
						|
    SourceLocation DiagLoc = SizeArg->getExprLoc();
 | 
						|
 | 
						|
    // Some platforms #define bzero to __builtin_memset. See if this is the
 | 
						|
    // case, and if so, emit a better diagnostic.
 | 
						|
    if (BId == Builtin::BIbzero ||
 | 
						|
        (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
 | 
						|
                                    CallLoc, SM, S.getLangOpts()) == "bzero")) {
 | 
						|
      S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
 | 
						|
      S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
 | 
						|
    } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
 | 
						|
      S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
 | 
						|
      S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the second argument to a memset is a sizeof expression and the third
 | 
						|
  // isn't, this is also likely an error. This should catch
 | 
						|
  // 'memset(buf, sizeof(buf), 0xff)'.
 | 
						|
  if (BId == Builtin::BImemset &&
 | 
						|
      doesExprLikelyComputeSize(Call->getArg(1)) &&
 | 
						|
      !doesExprLikelyComputeSize(Call->getArg(2))) {
 | 
						|
    SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
 | 
						|
    S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
 | 
						|
    S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check for dangerous or invalid arguments to memset().
 | 
						|
///
 | 
						|
/// This issues warnings on known problematic, dangerous or unspecified
 | 
						|
/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
 | 
						|
/// function calls.
 | 
						|
///
 | 
						|
/// \param Call The call expression to diagnose.
 | 
						|
void Sema::CheckMemaccessArguments(const CallExpr *Call,
 | 
						|
                                   unsigned BId,
 | 
						|
                                   IdentifierInfo *FnName) {
 | 
						|
  assert(BId != 0);
 | 
						|
 | 
						|
  // It is possible to have a non-standard definition of memset.  Validate
 | 
						|
  // we have enough arguments, and if not, abort further checking.
 | 
						|
  unsigned ExpectedNumArgs =
 | 
						|
      (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
 | 
						|
  if (Call->getNumArgs() < ExpectedNumArgs)
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
 | 
						|
                      BId == Builtin::BIstrndup ? 1 : 2);
 | 
						|
  unsigned LenArg =
 | 
						|
      (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
 | 
						|
  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
 | 
						|
                                     Call->getBeginLoc(), Call->getRParenLoc()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Catch cases like 'memset(buf, sizeof(buf), 0)'.
 | 
						|
  CheckMemaccessSize(*this, BId, Call);
 | 
						|
 | 
						|
  // We have special checking when the length is a sizeof expression.
 | 
						|
  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
 | 
						|
  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
 | 
						|
  llvm::FoldingSetNodeID SizeOfArgID;
 | 
						|
 | 
						|
  // Although widely used, 'bzero' is not a standard function. Be more strict
 | 
						|
  // with the argument types before allowing diagnostics and only allow the
 | 
						|
  // form bzero(ptr, sizeof(...)).
 | 
						|
  QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
 | 
						|
  if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
 | 
						|
    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
 | 
						|
    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
 | 
						|
 | 
						|
    QualType DestTy = Dest->getType();
 | 
						|
    QualType PointeeTy;
 | 
						|
    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
 | 
						|
      PointeeTy = DestPtrTy->getPointeeType();
 | 
						|
 | 
						|
      // Never warn about void type pointers. This can be used to suppress
 | 
						|
      // false positives.
 | 
						|
      if (PointeeTy->isVoidType())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
 | 
						|
      // actually comparing the expressions for equality. Because computing the
 | 
						|
      // expression IDs can be expensive, we only do this if the diagnostic is
 | 
						|
      // enabled.
 | 
						|
      if (SizeOfArg &&
 | 
						|
          !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
 | 
						|
                           SizeOfArg->getExprLoc())) {
 | 
						|
        // We only compute IDs for expressions if the warning is enabled, and
 | 
						|
        // cache the sizeof arg's ID.
 | 
						|
        if (SizeOfArgID == llvm::FoldingSetNodeID())
 | 
						|
          SizeOfArg->Profile(SizeOfArgID, Context, true);
 | 
						|
        llvm::FoldingSetNodeID DestID;
 | 
						|
        Dest->Profile(DestID, Context, true);
 | 
						|
        if (DestID == SizeOfArgID) {
 | 
						|
          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
 | 
						|
          //       over sizeof(src) as well.
 | 
						|
          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
 | 
						|
          StringRef ReadableName = FnName->getName();
 | 
						|
 | 
						|
          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
 | 
						|
            if (UnaryOp->getOpcode() == UO_AddrOf)
 | 
						|
              ActionIdx = 1; // If its an address-of operator, just remove it.
 | 
						|
          if (!PointeeTy->isIncompleteType() &&
 | 
						|
              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
 | 
						|
            ActionIdx = 2; // If the pointee's size is sizeof(char),
 | 
						|
                           // suggest an explicit length.
 | 
						|
 | 
						|
          // If the function is defined as a builtin macro, do not show macro
 | 
						|
          // expansion.
 | 
						|
          SourceLocation SL = SizeOfArg->getExprLoc();
 | 
						|
          SourceRange DSR = Dest->getSourceRange();
 | 
						|
          SourceRange SSR = SizeOfArg->getSourceRange();
 | 
						|
          SourceManager &SM = getSourceManager();
 | 
						|
 | 
						|
          if (SM.isMacroArgExpansion(SL)) {
 | 
						|
            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
 | 
						|
            SL = SM.getSpellingLoc(SL);
 | 
						|
            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
 | 
						|
                             SM.getSpellingLoc(DSR.getEnd()));
 | 
						|
            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
 | 
						|
                             SM.getSpellingLoc(SSR.getEnd()));
 | 
						|
          }
 | 
						|
 | 
						|
          DiagRuntimeBehavior(SL, SizeOfArg,
 | 
						|
                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
 | 
						|
                                << ReadableName
 | 
						|
                                << PointeeTy
 | 
						|
                                << DestTy
 | 
						|
                                << DSR
 | 
						|
                                << SSR);
 | 
						|
          DiagRuntimeBehavior(SL, SizeOfArg,
 | 
						|
                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
 | 
						|
                                << ActionIdx
 | 
						|
                                << SSR);
 | 
						|
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Also check for cases where the sizeof argument is the exact same
 | 
						|
      // type as the memory argument, and where it points to a user-defined
 | 
						|
      // record type.
 | 
						|
      if (SizeOfArgTy != QualType()) {
 | 
						|
        if (PointeeTy->isRecordType() &&
 | 
						|
            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
 | 
						|
          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
 | 
						|
                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
 | 
						|
                                << FnName << SizeOfArgTy << ArgIdx
 | 
						|
                                << PointeeTy << Dest->getSourceRange()
 | 
						|
                                << LenExpr->getSourceRange());
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (DestTy->isArrayType()) {
 | 
						|
      PointeeTy = DestTy;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PointeeTy == QualType())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Always complain about dynamic classes.
 | 
						|
    bool IsContained;
 | 
						|
    if (const CXXRecordDecl *ContainedRD =
 | 
						|
            getContainedDynamicClass(PointeeTy, IsContained)) {
 | 
						|
 | 
						|
      unsigned OperationType = 0;
 | 
						|
      const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
 | 
						|
      // "overwritten" if we're warning about the destination for any call
 | 
						|
      // but memcmp; otherwise a verb appropriate to the call.
 | 
						|
      if (ArgIdx != 0 || IsCmp) {
 | 
						|
        if (BId == Builtin::BImemcpy)
 | 
						|
          OperationType = 1;
 | 
						|
        else if(BId == Builtin::BImemmove)
 | 
						|
          OperationType = 2;
 | 
						|
        else if (IsCmp)
 | 
						|
          OperationType = 3;
 | 
						|
      }
 | 
						|
 | 
						|
      DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
 | 
						|
                          PDiag(diag::warn_dyn_class_memaccess)
 | 
						|
                              << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
 | 
						|
                              << IsContained << ContainedRD << OperationType
 | 
						|
                              << Call->getCallee()->getSourceRange());
 | 
						|
    } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
 | 
						|
             BId != Builtin::BImemset)
 | 
						|
      DiagRuntimeBehavior(
 | 
						|
        Dest->getExprLoc(), Dest,
 | 
						|
        PDiag(diag::warn_arc_object_memaccess)
 | 
						|
          << ArgIdx << FnName << PointeeTy
 | 
						|
          << Call->getCallee()->getSourceRange());
 | 
						|
    else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
 | 
						|
      if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
 | 
						|
          RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
 | 
						|
        DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
 | 
						|
                            PDiag(diag::warn_cstruct_memaccess)
 | 
						|
                                << ArgIdx << FnName << PointeeTy << 0);
 | 
						|
        SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
 | 
						|
      } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
 | 
						|
                 RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
 | 
						|
        DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
 | 
						|
                            PDiag(diag::warn_cstruct_memaccess)
 | 
						|
                                << ArgIdx << FnName << PointeeTy << 1);
 | 
						|
        SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
 | 
						|
      } else {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    } else
 | 
						|
      continue;
 | 
						|
 | 
						|
    DiagRuntimeBehavior(
 | 
						|
      Dest->getExprLoc(), Dest,
 | 
						|
      PDiag(diag::note_bad_memaccess_silence)
 | 
						|
        << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// A little helper routine: ignore addition and subtraction of integer literals.
 | 
						|
// This intentionally does not ignore all integer constant expressions because
 | 
						|
// we don't want to remove sizeof().
 | 
						|
static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
 | 
						|
  Ex = Ex->IgnoreParenCasts();
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
 | 
						|
    if (!BO || !BO->isAdditiveOp())
 | 
						|
      break;
 | 
						|
 | 
						|
    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
 | 
						|
    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
 | 
						|
 | 
						|
    if (isa<IntegerLiteral>(RHS))
 | 
						|
      Ex = LHS;
 | 
						|
    else if (isa<IntegerLiteral>(LHS))
 | 
						|
      Ex = RHS;
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Ex;
 | 
						|
}
 | 
						|
 | 
						|
static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
 | 
						|
                                                      ASTContext &Context) {
 | 
						|
  // Only handle constant-sized or VLAs, but not flexible members.
 | 
						|
  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
 | 
						|
    // Only issue the FIXIT for arrays of size > 1.
 | 
						|
    if (CAT->getSize().getSExtValue() <= 1)
 | 
						|
      return false;
 | 
						|
  } else if (!Ty->isVariableArrayType()) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Warn if the user has made the 'size' argument to strlcpy or strlcat
 | 
						|
// be the size of the source, instead of the destination.
 | 
						|
void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
 | 
						|
                                    IdentifierInfo *FnName) {
 | 
						|
 | 
						|
  // Don't crash if the user has the wrong number of arguments
 | 
						|
  unsigned NumArgs = Call->getNumArgs();
 | 
						|
  if ((NumArgs != 3) && (NumArgs != 4))
 | 
						|
    return;
 | 
						|
 | 
						|
  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
 | 
						|
  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
 | 
						|
  const Expr *CompareWithSrc = nullptr;
 | 
						|
 | 
						|
  if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
 | 
						|
                                     Call->getBeginLoc(), Call->getRParenLoc()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Look for 'strlcpy(dst, x, sizeof(x))'
 | 
						|
  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
 | 
						|
    CompareWithSrc = Ex;
 | 
						|
  else {
 | 
						|
    // Look for 'strlcpy(dst, x, strlen(x))'
 | 
						|
    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
 | 
						|
      if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
 | 
						|
          SizeCall->getNumArgs() == 1)
 | 
						|
        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CompareWithSrc)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Determine if the argument to sizeof/strlen is equal to the source
 | 
						|
  // argument.  In principle there's all kinds of things you could do
 | 
						|
  // here, for instance creating an == expression and evaluating it with
 | 
						|
  // EvaluateAsBooleanCondition, but this uses a more direct technique:
 | 
						|
  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
 | 
						|
  if (!SrcArgDRE)
 | 
						|
    return;
 | 
						|
 | 
						|
  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
 | 
						|
  if (!CompareWithSrcDRE ||
 | 
						|
      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  const Expr *OriginalSizeArg = Call->getArg(2);
 | 
						|
  Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
 | 
						|
      << OriginalSizeArg->getSourceRange() << FnName;
 | 
						|
 | 
						|
  // Output a FIXIT hint if the destination is an array (rather than a
 | 
						|
  // pointer to an array).  This could be enhanced to handle some
 | 
						|
  // pointers if we know the actual size, like if DstArg is 'array+2'
 | 
						|
  // we could say 'sizeof(array)-2'.
 | 
						|
  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
 | 
						|
  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallString<128> sizeString;
 | 
						|
  llvm::raw_svector_ostream OS(sizeString);
 | 
						|
  OS << "sizeof(";
 | 
						|
  DstArg->printPretty(OS, nullptr, getPrintingPolicy());
 | 
						|
  OS << ")";
 | 
						|
 | 
						|
  Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
 | 
						|
      << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
 | 
						|
                                      OS.str());
 | 
						|
}
 | 
						|
 | 
						|
/// Check if two expressions refer to the same declaration.
 | 
						|
static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
 | 
						|
  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
 | 
						|
    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
 | 
						|
      return D1->getDecl() == D2->getDecl();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static const Expr *getStrlenExprArg(const Expr *E) {
 | 
						|
  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
 | 
						|
    const FunctionDecl *FD = CE->getDirectCallee();
 | 
						|
    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
 | 
						|
      return nullptr;
 | 
						|
    return CE->getArg(0)->IgnoreParenCasts();
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Warn on anti-patterns as the 'size' argument to strncat.
 | 
						|
// The correct size argument should look like following:
 | 
						|
//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
 | 
						|
void Sema::CheckStrncatArguments(const CallExpr *CE,
 | 
						|
                                 IdentifierInfo *FnName) {
 | 
						|
  // Don't crash if the user has the wrong number of arguments.
 | 
						|
  if (CE->getNumArgs() < 3)
 | 
						|
    return;
 | 
						|
  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
 | 
						|
  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
 | 
						|
  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
 | 
						|
 | 
						|
  if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
 | 
						|
                                     CE->getRParenLoc()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Identify common expressions, which are wrongly used as the size argument
 | 
						|
  // to strncat and may lead to buffer overflows.
 | 
						|
  unsigned PatternType = 0;
 | 
						|
  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
 | 
						|
    // - sizeof(dst)
 | 
						|
    if (referToTheSameDecl(SizeOfArg, DstArg))
 | 
						|
      PatternType = 1;
 | 
						|
    // - sizeof(src)
 | 
						|
    else if (referToTheSameDecl(SizeOfArg, SrcArg))
 | 
						|
      PatternType = 2;
 | 
						|
  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
 | 
						|
    if (BE->getOpcode() == BO_Sub) {
 | 
						|
      const Expr *L = BE->getLHS()->IgnoreParenCasts();
 | 
						|
      const Expr *R = BE->getRHS()->IgnoreParenCasts();
 | 
						|
      // - sizeof(dst) - strlen(dst)
 | 
						|
      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
 | 
						|
          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
 | 
						|
        PatternType = 1;
 | 
						|
      // - sizeof(src) - (anything)
 | 
						|
      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
 | 
						|
        PatternType = 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (PatternType == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Generate the diagnostic.
 | 
						|
  SourceLocation SL = LenArg->getBeginLoc();
 | 
						|
  SourceRange SR = LenArg->getSourceRange();
 | 
						|
  SourceManager &SM = getSourceManager();
 | 
						|
 | 
						|
  // If the function is defined as a builtin macro, do not show macro expansion.
 | 
						|
  if (SM.isMacroArgExpansion(SL)) {
 | 
						|
    SL = SM.getSpellingLoc(SL);
 | 
						|
    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
 | 
						|
                     SM.getSpellingLoc(SR.getEnd()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if the destination is an array (rather than a pointer to an array).
 | 
						|
  QualType DstTy = DstArg->getType();
 | 
						|
  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
 | 
						|
                                                                    Context);
 | 
						|
  if (!isKnownSizeArray) {
 | 
						|
    if (PatternType == 1)
 | 
						|
      Diag(SL, diag::warn_strncat_wrong_size) << SR;
 | 
						|
    else
 | 
						|
      Diag(SL, diag::warn_strncat_src_size) << SR;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (PatternType == 1)
 | 
						|
    Diag(SL, diag::warn_strncat_large_size) << SR;
 | 
						|
  else
 | 
						|
    Diag(SL, diag::warn_strncat_src_size) << SR;
 | 
						|
 | 
						|
  SmallString<128> sizeString;
 | 
						|
  llvm::raw_svector_ostream OS(sizeString);
 | 
						|
  OS << "sizeof(";
 | 
						|
  DstArg->printPretty(OS, nullptr, getPrintingPolicy());
 | 
						|
  OS << ") - ";
 | 
						|
  OS << "strlen(";
 | 
						|
  DstArg->printPretty(OS, nullptr, getPrintingPolicy());
 | 
						|
  OS << ") - 1";
 | 
						|
 | 
						|
  Diag(SL, diag::note_strncat_wrong_size)
 | 
						|
    << FixItHint::CreateReplacement(SR, OS.str());
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
 | 
						|
                                const UnaryOperator *UnaryExpr,
 | 
						|
                                const VarDecl *Var) {
 | 
						|
  StorageClass Class = Var->getStorageClass();
 | 
						|
  if (Class == StorageClass::SC_Extern ||
 | 
						|
      Class == StorageClass::SC_PrivateExtern ||
 | 
						|
      Var->getType()->isReferenceType())
 | 
						|
    return;
 | 
						|
 | 
						|
  S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
 | 
						|
      << CalleeName << Var;
 | 
						|
}
 | 
						|
 | 
						|
void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
 | 
						|
                                const UnaryOperator *UnaryExpr, const Decl *D) {
 | 
						|
  if (const auto *Field = dyn_cast<FieldDecl>(D))
 | 
						|
    S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
 | 
						|
        << CalleeName << Field;
 | 
						|
}
 | 
						|
 | 
						|
void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
 | 
						|
                                 const UnaryOperator *UnaryExpr) {
 | 
						|
  if (UnaryExpr->getOpcode() != UnaryOperator::Opcode::UO_AddrOf)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr()))
 | 
						|
    if (const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()))
 | 
						|
      return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, Var);
 | 
						|
 | 
						|
  if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
 | 
						|
    return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
 | 
						|
                                      Lvalue->getMemberDecl());
 | 
						|
}
 | 
						|
 | 
						|
void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
 | 
						|
                                  const DeclRefExpr *Lvalue) {
 | 
						|
  if (!Lvalue->getType()->isArrayType())
 | 
						|
    return;
 | 
						|
 | 
						|
  const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
 | 
						|
  if (Var == nullptr)
 | 
						|
    return;
 | 
						|
 | 
						|
  S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
 | 
						|
      << CalleeName << Var;
 | 
						|
}
 | 
						|
} // namespace
 | 
						|
 | 
						|
/// Alerts the user that they are attempting to free a non-malloc'd object.
 | 
						|
void Sema::CheckFreeArguments(const CallExpr *E) {
 | 
						|
  const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
 | 
						|
  const std::string CalleeName =
 | 
						|
      dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
 | 
						|
 | 
						|
  if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
 | 
						|
    return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
 | 
						|
 | 
						|
  if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
 | 
						|
    return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
 | 
						|
                         SourceLocation ReturnLoc,
 | 
						|
                         bool isObjCMethod,
 | 
						|
                         const AttrVec *Attrs,
 | 
						|
                         const FunctionDecl *FD) {
 | 
						|
  // Check if the return value is null but should not be.
 | 
						|
  if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
 | 
						|
       (!isObjCMethod && isNonNullType(Context, lhsType))) &&
 | 
						|
      CheckNonNullExpr(*this, RetValExp))
 | 
						|
    Diag(ReturnLoc, diag::warn_null_ret)
 | 
						|
      << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
 | 
						|
 | 
						|
  // C++11 [basic.stc.dynamic.allocation]p4:
 | 
						|
  //   If an allocation function declared with a non-throwing
 | 
						|
  //   exception-specification fails to allocate storage, it shall return
 | 
						|
  //   a null pointer. Any other allocation function that fails to allocate
 | 
						|
  //   storage shall indicate failure only by throwing an exception [...]
 | 
						|
  if (FD) {
 | 
						|
    OverloadedOperatorKind Op = FD->getOverloadedOperator();
 | 
						|
    if (Op == OO_New || Op == OO_Array_New) {
 | 
						|
      const FunctionProtoType *Proto
 | 
						|
        = FD->getType()->castAs<FunctionProtoType>();
 | 
						|
      if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
 | 
						|
          CheckNonNullExpr(*this, RetValExp))
 | 
						|
        Diag(ReturnLoc, diag::warn_operator_new_returns_null)
 | 
						|
          << FD << getLangOpts().CPlusPlus11;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // PPC MMA non-pointer types are not allowed as return type. Checking the type
 | 
						|
  // here prevent the user from using a PPC MMA type as trailing return type.
 | 
						|
  if (Context.getTargetInfo().getTriple().isPPC64())
 | 
						|
    CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
 | 
						|
}
 | 
						|
 | 
						|
//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
 | 
						|
 | 
						|
/// Check for comparisons of floating point operands using != and ==.
 | 
						|
/// Issue a warning if these are no self-comparisons, as they are not likely
 | 
						|
/// to do what the programmer intended.
 | 
						|
void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
 | 
						|
  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
 | 
						|
  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  // Special case: check for x == x (which is OK).
 | 
						|
  // Do not emit warnings for such cases.
 | 
						|
  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
 | 
						|
    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
 | 
						|
      if (DRL->getDecl() == DRR->getDecl())
 | 
						|
        return;
 | 
						|
 | 
						|
  // Special case: check for comparisons against literals that can be exactly
 | 
						|
  //  represented by APFloat.  In such cases, do not emit a warning.  This
 | 
						|
  //  is a heuristic: often comparison against such literals are used to
 | 
						|
  //  detect if a value in a variable has not changed.  This clearly can
 | 
						|
  //  lead to false negatives.
 | 
						|
  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
 | 
						|
    if (FLL->isExact())
 | 
						|
      return;
 | 
						|
  } else
 | 
						|
    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
 | 
						|
      if (FLR->isExact())
 | 
						|
        return;
 | 
						|
 | 
						|
  // Check for comparisons with builtin types.
 | 
						|
  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
 | 
						|
    if (CL->getBuiltinCallee())
 | 
						|
      return;
 | 
						|
 | 
						|
  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
 | 
						|
    if (CR->getBuiltinCallee())
 | 
						|
      return;
 | 
						|
 | 
						|
  // Emit the diagnostic.
 | 
						|
  Diag(Loc, diag::warn_floatingpoint_eq)
 | 
						|
    << LHS->getSourceRange() << RHS->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
 | 
						|
//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Structure recording the 'active' range of an integer-valued
 | 
						|
/// expression.
 | 
						|
struct IntRange {
 | 
						|
  /// The number of bits active in the int. Note that this includes exactly one
 | 
						|
  /// sign bit if !NonNegative.
 | 
						|
  unsigned Width;
 | 
						|
 | 
						|
  /// True if the int is known not to have negative values. If so, all leading
 | 
						|
  /// bits before Width are known zero, otherwise they are known to be the
 | 
						|
  /// same as the MSB within Width.
 | 
						|
  bool NonNegative;
 | 
						|
 | 
						|
  IntRange(unsigned Width, bool NonNegative)
 | 
						|
      : Width(Width), NonNegative(NonNegative) {}
 | 
						|
 | 
						|
  /// Number of bits excluding the sign bit.
 | 
						|
  unsigned valueBits() const {
 | 
						|
    return NonNegative ? Width : Width - 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns the range of the bool type.
 | 
						|
  static IntRange forBoolType() {
 | 
						|
    return IntRange(1, true);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns the range of an opaque value of the given integral type.
 | 
						|
  static IntRange forValueOfType(ASTContext &C, QualType T) {
 | 
						|
    return forValueOfCanonicalType(C,
 | 
						|
                          T->getCanonicalTypeInternal().getTypePtr());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns the range of an opaque value of a canonical integral type.
 | 
						|
  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
 | 
						|
    assert(T->isCanonicalUnqualified());
 | 
						|
 | 
						|
    if (const VectorType *VT = dyn_cast<VectorType>(T))
 | 
						|
      T = VT->getElementType().getTypePtr();
 | 
						|
    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
 | 
						|
      T = CT->getElementType().getTypePtr();
 | 
						|
    if (const AtomicType *AT = dyn_cast<AtomicType>(T))
 | 
						|
      T = AT->getValueType().getTypePtr();
 | 
						|
 | 
						|
    if (!C.getLangOpts().CPlusPlus) {
 | 
						|
      // For enum types in C code, use the underlying datatype.
 | 
						|
      if (const EnumType *ET = dyn_cast<EnumType>(T))
 | 
						|
        T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
 | 
						|
    } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
 | 
						|
      // For enum types in C++, use the known bit width of the enumerators.
 | 
						|
      EnumDecl *Enum = ET->getDecl();
 | 
						|
      // In C++11, enums can have a fixed underlying type. Use this type to
 | 
						|
      // compute the range.
 | 
						|
      if (Enum->isFixed()) {
 | 
						|
        return IntRange(C.getIntWidth(QualType(T, 0)),
 | 
						|
                        !ET->isSignedIntegerOrEnumerationType());
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned NumPositive = Enum->getNumPositiveBits();
 | 
						|
      unsigned NumNegative = Enum->getNumNegativeBits();
 | 
						|
 | 
						|
      if (NumNegative == 0)
 | 
						|
        return IntRange(NumPositive, true/*NonNegative*/);
 | 
						|
      else
 | 
						|
        return IntRange(std::max(NumPositive + 1, NumNegative),
 | 
						|
                        false/*NonNegative*/);
 | 
						|
    }
 | 
						|
 | 
						|
    if (const auto *EIT = dyn_cast<ExtIntType>(T))
 | 
						|
      return IntRange(EIT->getNumBits(), EIT->isUnsigned());
 | 
						|
 | 
						|
    const BuiltinType *BT = cast<BuiltinType>(T);
 | 
						|
    assert(BT->isInteger());
 | 
						|
 | 
						|
    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns the "target" range of a canonical integral type, i.e.
 | 
						|
  /// the range of values expressible in the type.
 | 
						|
  ///
 | 
						|
  /// This matches forValueOfCanonicalType except that enums have the
 | 
						|
  /// full range of their type, not the range of their enumerators.
 | 
						|
  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
 | 
						|
    assert(T->isCanonicalUnqualified());
 | 
						|
 | 
						|
    if (const VectorType *VT = dyn_cast<VectorType>(T))
 | 
						|
      T = VT->getElementType().getTypePtr();
 | 
						|
    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
 | 
						|
      T = CT->getElementType().getTypePtr();
 | 
						|
    if (const AtomicType *AT = dyn_cast<AtomicType>(T))
 | 
						|
      T = AT->getValueType().getTypePtr();
 | 
						|
    if (const EnumType *ET = dyn_cast<EnumType>(T))
 | 
						|
      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
 | 
						|
 | 
						|
    if (const auto *EIT = dyn_cast<ExtIntType>(T))
 | 
						|
      return IntRange(EIT->getNumBits(), EIT->isUnsigned());
 | 
						|
 | 
						|
    const BuiltinType *BT = cast<BuiltinType>(T);
 | 
						|
    assert(BT->isInteger());
 | 
						|
 | 
						|
    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns the supremum of two ranges: i.e. their conservative merge.
 | 
						|
  static IntRange join(IntRange L, IntRange R) {
 | 
						|
    bool Unsigned = L.NonNegative && R.NonNegative;
 | 
						|
    return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
 | 
						|
                    L.NonNegative && R.NonNegative);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return the range of a bitwise-AND of the two ranges.
 | 
						|
  static IntRange bit_and(IntRange L, IntRange R) {
 | 
						|
    unsigned Bits = std::max(L.Width, R.Width);
 | 
						|
    bool NonNegative = false;
 | 
						|
    if (L.NonNegative) {
 | 
						|
      Bits = std::min(Bits, L.Width);
 | 
						|
      NonNegative = true;
 | 
						|
    }
 | 
						|
    if (R.NonNegative) {
 | 
						|
      Bits = std::min(Bits, R.Width);
 | 
						|
      NonNegative = true;
 | 
						|
    }
 | 
						|
    return IntRange(Bits, NonNegative);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return the range of a sum of the two ranges.
 | 
						|
  static IntRange sum(IntRange L, IntRange R) {
 | 
						|
    bool Unsigned = L.NonNegative && R.NonNegative;
 | 
						|
    return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
 | 
						|
                    Unsigned);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return the range of a difference of the two ranges.
 | 
						|
  static IntRange difference(IntRange L, IntRange R) {
 | 
						|
    // We need a 1-bit-wider range if:
 | 
						|
    //   1) LHS can be negative: least value can be reduced.
 | 
						|
    //   2) RHS can be negative: greatest value can be increased.
 | 
						|
    bool CanWiden = !L.NonNegative || !R.NonNegative;
 | 
						|
    bool Unsigned = L.NonNegative && R.Width == 0;
 | 
						|
    return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
 | 
						|
                        !Unsigned,
 | 
						|
                    Unsigned);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return the range of a product of the two ranges.
 | 
						|
  static IntRange product(IntRange L, IntRange R) {
 | 
						|
    // If both LHS and RHS can be negative, we can form
 | 
						|
    //   -2^L * -2^R = 2^(L + R)
 | 
						|
    // which requires L + R + 1 value bits to represent.
 | 
						|
    bool CanWiden = !L.NonNegative && !R.NonNegative;
 | 
						|
    bool Unsigned = L.NonNegative && R.NonNegative;
 | 
						|
    return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
 | 
						|
                    Unsigned);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return the range of a remainder operation between the two ranges.
 | 
						|
  static IntRange rem(IntRange L, IntRange R) {
 | 
						|
    // The result of a remainder can't be larger than the result of
 | 
						|
    // either side. The sign of the result is the sign of the LHS.
 | 
						|
    bool Unsigned = L.NonNegative;
 | 
						|
    return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
 | 
						|
                    Unsigned);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
 | 
						|
                              unsigned MaxWidth) {
 | 
						|
  if (value.isSigned() && value.isNegative())
 | 
						|
    return IntRange(value.getMinSignedBits(), false);
 | 
						|
 | 
						|
  if (value.getBitWidth() > MaxWidth)
 | 
						|
    value = value.trunc(MaxWidth);
 | 
						|
 | 
						|
  // isNonNegative() just checks the sign bit without considering
 | 
						|
  // signedness.
 | 
						|
  return IntRange(value.getActiveBits(), true);
 | 
						|
}
 | 
						|
 | 
						|
static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
 | 
						|
                              unsigned MaxWidth) {
 | 
						|
  if (result.isInt())
 | 
						|
    return GetValueRange(C, result.getInt(), MaxWidth);
 | 
						|
 | 
						|
  if (result.isVector()) {
 | 
						|
    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
 | 
						|
    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
 | 
						|
      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
 | 
						|
      R = IntRange::join(R, El);
 | 
						|
    }
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  if (result.isComplexInt()) {
 | 
						|
    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
 | 
						|
    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
 | 
						|
    return IntRange::join(R, I);
 | 
						|
  }
 | 
						|
 | 
						|
  // This can happen with lossless casts to intptr_t of "based" lvalues.
 | 
						|
  // Assume it might use arbitrary bits.
 | 
						|
  // FIXME: The only reason we need to pass the type in here is to get
 | 
						|
  // the sign right on this one case.  It would be nice if APValue
 | 
						|
  // preserved this.
 | 
						|
  assert(result.isLValue() || result.isAddrLabelDiff());
 | 
						|
  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
 | 
						|
}
 | 
						|
 | 
						|
static QualType GetExprType(const Expr *E) {
 | 
						|
  QualType Ty = E->getType();
 | 
						|
  if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
 | 
						|
    Ty = AtomicRHS->getValueType();
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
/// Pseudo-evaluate the given integer expression, estimating the
 | 
						|
/// range of values it might take.
 | 
						|
///
 | 
						|
/// \param MaxWidth The width to which the value will be truncated.
 | 
						|
/// \param Approximate If \c true, return a likely range for the result: in
 | 
						|
///        particular, assume that aritmetic on narrower types doesn't leave
 | 
						|
///        those types. If \c false, return a range including all possible
 | 
						|
///        result values.
 | 
						|
static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
 | 
						|
                             bool InConstantContext, bool Approximate) {
 | 
						|
  E = E->IgnoreParens();
 | 
						|
 | 
						|
  // Try a full evaluation first.
 | 
						|
  Expr::EvalResult result;
 | 
						|
  if (E->EvaluateAsRValue(result, C, InConstantContext))
 | 
						|
    return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
 | 
						|
 | 
						|
  // I think we only want to look through implicit casts here; if the
 | 
						|
  // user has an explicit widening cast, we should treat the value as
 | 
						|
  // being of the new, wider type.
 | 
						|
  if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
 | 
						|
    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
 | 
						|
      return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
 | 
						|
                          Approximate);
 | 
						|
 | 
						|
    IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
 | 
						|
 | 
						|
    bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
 | 
						|
                         CE->getCastKind() == CK_BooleanToSignedIntegral;
 | 
						|
 | 
						|
    // Assume that non-integer casts can span the full range of the type.
 | 
						|
    if (!isIntegerCast)
 | 
						|
      return OutputTypeRange;
 | 
						|
 | 
						|
    IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
 | 
						|
                                     std::min(MaxWidth, OutputTypeRange.Width),
 | 
						|
                                     InConstantContext, Approximate);
 | 
						|
 | 
						|
    // Bail out if the subexpr's range is as wide as the cast type.
 | 
						|
    if (SubRange.Width >= OutputTypeRange.Width)
 | 
						|
      return OutputTypeRange;
 | 
						|
 | 
						|
    // Otherwise, we take the smaller width, and we're non-negative if
 | 
						|
    // either the output type or the subexpr is.
 | 
						|
    return IntRange(SubRange.Width,
 | 
						|
                    SubRange.NonNegative || OutputTypeRange.NonNegative);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
 | 
						|
    // If we can fold the condition, just take that operand.
 | 
						|
    bool CondResult;
 | 
						|
    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
 | 
						|
      return GetExprRange(C,
 | 
						|
                          CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
 | 
						|
                          MaxWidth, InConstantContext, Approximate);
 | 
						|
 | 
						|
    // Otherwise, conservatively merge.
 | 
						|
    // GetExprRange requires an integer expression, but a throw expression
 | 
						|
    // results in a void type.
 | 
						|
    Expr *E = CO->getTrueExpr();
 | 
						|
    IntRange L = E->getType()->isVoidType()
 | 
						|
                     ? IntRange{0, true}
 | 
						|
                     : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
 | 
						|
    E = CO->getFalseExpr();
 | 
						|
    IntRange R = E->getType()->isVoidType()
 | 
						|
                     ? IntRange{0, true}
 | 
						|
                     : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
 | 
						|
    return IntRange::join(L, R);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
 | 
						|
    IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
 | 
						|
 | 
						|
    switch (BO->getOpcode()) {
 | 
						|
    case BO_Cmp:
 | 
						|
      llvm_unreachable("builtin <=> should have class type");
 | 
						|
 | 
						|
    // Boolean-valued operations are single-bit and positive.
 | 
						|
    case BO_LAnd:
 | 
						|
    case BO_LOr:
 | 
						|
    case BO_LT:
 | 
						|
    case BO_GT:
 | 
						|
    case BO_LE:
 | 
						|
    case BO_GE:
 | 
						|
    case BO_EQ:
 | 
						|
    case BO_NE:
 | 
						|
      return IntRange::forBoolType();
 | 
						|
 | 
						|
    // The type of the assignments is the type of the LHS, so the RHS
 | 
						|
    // is not necessarily the same type.
 | 
						|
    case BO_MulAssign:
 | 
						|
    case BO_DivAssign:
 | 
						|
    case BO_RemAssign:
 | 
						|
    case BO_AddAssign:
 | 
						|
    case BO_SubAssign:
 | 
						|
    case BO_XorAssign:
 | 
						|
    case BO_OrAssign:
 | 
						|
      // TODO: bitfields?
 | 
						|
      return IntRange::forValueOfType(C, GetExprType(E));
 | 
						|
 | 
						|
    // Simple assignments just pass through the RHS, which will have
 | 
						|
    // been coerced to the LHS type.
 | 
						|
    case BO_Assign:
 | 
						|
      // TODO: bitfields?
 | 
						|
      return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
 | 
						|
                          Approximate);
 | 
						|
 | 
						|
    // Operations with opaque sources are black-listed.
 | 
						|
    case BO_PtrMemD:
 | 
						|
    case BO_PtrMemI:
 | 
						|
      return IntRange::forValueOfType(C, GetExprType(E));
 | 
						|
 | 
						|
    // Bitwise-and uses the *infinum* of the two source ranges.
 | 
						|
    case BO_And:
 | 
						|
    case BO_AndAssign:
 | 
						|
      Combine = IntRange::bit_and;
 | 
						|
      break;
 | 
						|
 | 
						|
    // Left shift gets black-listed based on a judgement call.
 | 
						|
    case BO_Shl:
 | 
						|
      // ...except that we want to treat '1 << (blah)' as logically
 | 
						|
      // positive.  It's an important idiom.
 | 
						|
      if (IntegerLiteral *I
 | 
						|
            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
 | 
						|
        if (I->getValue() == 1) {
 | 
						|
          IntRange R = IntRange::forValueOfType(C, GetExprType(E));
 | 
						|
          return IntRange(R.Width, /*NonNegative*/ true);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
 | 
						|
    case BO_ShlAssign:
 | 
						|
      return IntRange::forValueOfType(C, GetExprType(E));
 | 
						|
 | 
						|
    // Right shift by a constant can narrow its left argument.
 | 
						|
    case BO_Shr:
 | 
						|
    case BO_ShrAssign: {
 | 
						|
      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
 | 
						|
                                Approximate);
 | 
						|
 | 
						|
      // If the shift amount is a positive constant, drop the width by
 | 
						|
      // that much.
 | 
						|
      if (Optional<llvm::APSInt> shift =
 | 
						|
              BO->getRHS()->getIntegerConstantExpr(C)) {
 | 
						|
        if (shift->isNonNegative()) {
 | 
						|
          unsigned zext = shift->getZExtValue();
 | 
						|
          if (zext >= L.Width)
 | 
						|
            L.Width = (L.NonNegative ? 0 : 1);
 | 
						|
          else
 | 
						|
            L.Width -= zext;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return L;
 | 
						|
    }
 | 
						|
 | 
						|
    // Comma acts as its right operand.
 | 
						|
    case BO_Comma:
 | 
						|
      return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
 | 
						|
                          Approximate);
 | 
						|
 | 
						|
    case BO_Add:
 | 
						|
      if (!Approximate)
 | 
						|
        Combine = IntRange::sum;
 | 
						|
      break;
 | 
						|
 | 
						|
    case BO_Sub:
 | 
						|
      if (BO->getLHS()->getType()->isPointerType())
 | 
						|
        return IntRange::forValueOfType(C, GetExprType(E));
 | 
						|
      if (!Approximate)
 | 
						|
        Combine = IntRange::difference;
 | 
						|
      break;
 | 
						|
 | 
						|
    case BO_Mul:
 | 
						|
      if (!Approximate)
 | 
						|
        Combine = IntRange::product;
 | 
						|
      break;
 | 
						|
 | 
						|
    // The width of a division result is mostly determined by the size
 | 
						|
    // of the LHS.
 | 
						|
    case BO_Div: {
 | 
						|
      // Don't 'pre-truncate' the operands.
 | 
						|
      unsigned opWidth = C.getIntWidth(GetExprType(E));
 | 
						|
      IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
 | 
						|
                                Approximate);
 | 
						|
 | 
						|
      // If the divisor is constant, use that.
 | 
						|
      if (Optional<llvm::APSInt> divisor =
 | 
						|
              BO->getRHS()->getIntegerConstantExpr(C)) {
 | 
						|
        unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
 | 
						|
        if (log2 >= L.Width)
 | 
						|
          L.Width = (L.NonNegative ? 0 : 1);
 | 
						|
        else
 | 
						|
          L.Width = std::min(L.Width - log2, MaxWidth);
 | 
						|
        return L;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, just use the LHS's width.
 | 
						|
      // FIXME: This is wrong if the LHS could be its minimal value and the RHS
 | 
						|
      // could be -1.
 | 
						|
      IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
 | 
						|
                                Approximate);
 | 
						|
      return IntRange(L.Width, L.NonNegative && R.NonNegative);
 | 
						|
    }
 | 
						|
 | 
						|
    case BO_Rem:
 | 
						|
      Combine = IntRange::rem;
 | 
						|
      break;
 | 
						|
 | 
						|
    // The default behavior is okay for these.
 | 
						|
    case BO_Xor:
 | 
						|
    case BO_Or:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Combine the two ranges, but limit the result to the type in which we
 | 
						|
    // performed the computation.
 | 
						|
    QualType T = GetExprType(E);
 | 
						|
    unsigned opWidth = C.getIntWidth(T);
 | 
						|
    IntRange L =
 | 
						|
        GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
 | 
						|
    IntRange R =
 | 
						|
        GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
 | 
						|
    IntRange C = Combine(L, R);
 | 
						|
    C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
 | 
						|
    C.Width = std::min(C.Width, MaxWidth);
 | 
						|
    return C;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
 | 
						|
    switch (UO->getOpcode()) {
 | 
						|
    // Boolean-valued operations are white-listed.
 | 
						|
    case UO_LNot:
 | 
						|
      return IntRange::forBoolType();
 | 
						|
 | 
						|
    // Operations with opaque sources are black-listed.
 | 
						|
    case UO_Deref:
 | 
						|
    case UO_AddrOf: // should be impossible
 | 
						|
      return IntRange::forValueOfType(C, GetExprType(E));
 | 
						|
 | 
						|
    default:
 | 
						|
      return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
 | 
						|
                          Approximate);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
 | 
						|
    return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
 | 
						|
                        Approximate);
 | 
						|
 | 
						|
  if (const auto *BitField = E->getSourceBitField())
 | 
						|
    return IntRange(BitField->getBitWidthValue(C),
 | 
						|
                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
 | 
						|
 | 
						|
  return IntRange::forValueOfType(C, GetExprType(E));
 | 
						|
}
 | 
						|
 | 
						|
static IntRange GetExprRange(ASTContext &C, const Expr *E,
 | 
						|
                             bool InConstantContext, bool Approximate) {
 | 
						|
  return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
 | 
						|
                      Approximate);
 | 
						|
}
 | 
						|
 | 
						|
/// Checks whether the given value, which currently has the given
 | 
						|
/// source semantics, has the same value when coerced through the
 | 
						|
/// target semantics.
 | 
						|
static bool IsSameFloatAfterCast(const llvm::APFloat &value,
 | 
						|
                                 const llvm::fltSemantics &Src,
 | 
						|
                                 const llvm::fltSemantics &Tgt) {
 | 
						|
  llvm::APFloat truncated = value;
 | 
						|
 | 
						|
  bool ignored;
 | 
						|
  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
 | 
						|
  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
 | 
						|
 | 
						|
  return truncated.bitwiseIsEqual(value);
 | 
						|
}
 | 
						|
 | 
						|
/// Checks whether the given value, which currently has the given
 | 
						|
/// source semantics, has the same value when coerced through the
 | 
						|
/// target semantics.
 | 
						|
///
 | 
						|
/// The value might be a vector of floats (or a complex number).
 | 
						|
static bool IsSameFloatAfterCast(const APValue &value,
 | 
						|
                                 const llvm::fltSemantics &Src,
 | 
						|
                                 const llvm::fltSemantics &Tgt) {
 | 
						|
  if (value.isFloat())
 | 
						|
    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
 | 
						|
 | 
						|
  if (value.isVector()) {
 | 
						|
    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
 | 
						|
      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(value.isComplexFloat());
 | 
						|
  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
 | 
						|
          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
 | 
						|
}
 | 
						|
 | 
						|
static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
 | 
						|
                                       bool IsListInit = false);
 | 
						|
 | 
						|
static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
 | 
						|
  // Suppress cases where we are comparing against an enum constant.
 | 
						|
  if (const DeclRefExpr *DR =
 | 
						|
      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
 | 
						|
    if (isa<EnumConstantDecl>(DR->getDecl()))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Suppress cases where the value is expanded from a macro, unless that macro
 | 
						|
  // is how a language represents a boolean literal. This is the case in both C
 | 
						|
  // and Objective-C.
 | 
						|
  SourceLocation BeginLoc = E->getBeginLoc();
 | 
						|
  if (BeginLoc.isMacroID()) {
 | 
						|
    StringRef MacroName = Lexer::getImmediateMacroName(
 | 
						|
        BeginLoc, S.getSourceManager(), S.getLangOpts());
 | 
						|
    return MacroName != "YES" && MacroName != "NO" &&
 | 
						|
           MacroName != "true" && MacroName != "false";
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isKnownToHaveUnsignedValue(Expr *E) {
 | 
						|
  return E->getType()->isIntegerType() &&
 | 
						|
         (!E->getType()->isSignedIntegerType() ||
 | 
						|
          !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// The promoted range of values of a type. In general this has the
 | 
						|
/// following structure:
 | 
						|
///
 | 
						|
///     |-----------| . . . |-----------|
 | 
						|
///     ^           ^       ^           ^
 | 
						|
///    Min       HoleMin  HoleMax      Max
 | 
						|
///
 | 
						|
/// ... where there is only a hole if a signed type is promoted to unsigned
 | 
						|
/// (in which case Min and Max are the smallest and largest representable
 | 
						|
/// values).
 | 
						|
struct PromotedRange {
 | 
						|
  // Min, or HoleMax if there is a hole.
 | 
						|
  llvm::APSInt PromotedMin;
 | 
						|
  // Max, or HoleMin if there is a hole.
 | 
						|
  llvm::APSInt PromotedMax;
 | 
						|
 | 
						|
  PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
 | 
						|
    if (R.Width == 0)
 | 
						|
      PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
 | 
						|
    else if (R.Width >= BitWidth && !Unsigned) {
 | 
						|
      // Promotion made the type *narrower*. This happens when promoting
 | 
						|
      // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
 | 
						|
      // Treat all values of 'signed int' as being in range for now.
 | 
						|
      PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
 | 
						|
      PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
 | 
						|
    } else {
 | 
						|
      PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
 | 
						|
                        .extOrTrunc(BitWidth);
 | 
						|
      PromotedMin.setIsUnsigned(Unsigned);
 | 
						|
 | 
						|
      PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
 | 
						|
                        .extOrTrunc(BitWidth);
 | 
						|
      PromotedMax.setIsUnsigned(Unsigned);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine whether this range is contiguous (has no hole).
 | 
						|
  bool isContiguous() const { return PromotedMin <= PromotedMax; }
 | 
						|
 | 
						|
  // Where a constant value is within the range.
 | 
						|
  enum ComparisonResult {
 | 
						|
    LT = 0x1,
 | 
						|
    LE = 0x2,
 | 
						|
    GT = 0x4,
 | 
						|
    GE = 0x8,
 | 
						|
    EQ = 0x10,
 | 
						|
    NE = 0x20,
 | 
						|
    InRangeFlag = 0x40,
 | 
						|
 | 
						|
    Less = LE | LT | NE,
 | 
						|
    Min = LE | InRangeFlag,
 | 
						|
    InRange = InRangeFlag,
 | 
						|
    Max = GE | InRangeFlag,
 | 
						|
    Greater = GE | GT | NE,
 | 
						|
 | 
						|
    OnlyValue = LE | GE | EQ | InRangeFlag,
 | 
						|
    InHole = NE
 | 
						|
  };
 | 
						|
 | 
						|
  ComparisonResult compare(const llvm::APSInt &Value) const {
 | 
						|
    assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
 | 
						|
           Value.isUnsigned() == PromotedMin.isUnsigned());
 | 
						|
    if (!isContiguous()) {
 | 
						|
      assert(Value.isUnsigned() && "discontiguous range for signed compare");
 | 
						|
      if (Value.isMinValue()) return Min;
 | 
						|
      if (Value.isMaxValue()) return Max;
 | 
						|
      if (Value >= PromotedMin) return InRange;
 | 
						|
      if (Value <= PromotedMax) return InRange;
 | 
						|
      return InHole;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
 | 
						|
    case -1: return Less;
 | 
						|
    case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
 | 
						|
    case 1:
 | 
						|
      switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
 | 
						|
      case -1: return InRange;
 | 
						|
      case 0: return Max;
 | 
						|
      case 1: return Greater;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    llvm_unreachable("impossible compare result");
 | 
						|
  }
 | 
						|
 | 
						|
  static llvm::Optional<StringRef>
 | 
						|
  constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
 | 
						|
    if (Op == BO_Cmp) {
 | 
						|
      ComparisonResult LTFlag = LT, GTFlag = GT;
 | 
						|
      if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
 | 
						|
 | 
						|
      if (R & EQ) return StringRef("'std::strong_ordering::equal'");
 | 
						|
      if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
 | 
						|
      if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
 | 
						|
      return llvm::None;
 | 
						|
    }
 | 
						|
 | 
						|
    ComparisonResult TrueFlag, FalseFlag;
 | 
						|
    if (Op == BO_EQ) {
 | 
						|
      TrueFlag = EQ;
 | 
						|
      FalseFlag = NE;
 | 
						|
    } else if (Op == BO_NE) {
 | 
						|
      TrueFlag = NE;
 | 
						|
      FalseFlag = EQ;
 | 
						|
    } else {
 | 
						|
      if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
 | 
						|
        TrueFlag = LT;
 | 
						|
        FalseFlag = GE;
 | 
						|
      } else {
 | 
						|
        TrueFlag = GT;
 | 
						|
        FalseFlag = LE;
 | 
						|
      }
 | 
						|
      if (Op == BO_GE || Op == BO_LE)
 | 
						|
        std::swap(TrueFlag, FalseFlag);
 | 
						|
    }
 | 
						|
    if (R & TrueFlag)
 | 
						|
      return StringRef("true");
 | 
						|
    if (R & FalseFlag)
 | 
						|
      return StringRef("false");
 | 
						|
    return llvm::None;
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
static bool HasEnumType(Expr *E) {
 | 
						|
  // Strip off implicit integral promotions.
 | 
						|
  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | 
						|
    if (ICE->getCastKind() != CK_IntegralCast &&
 | 
						|
        ICE->getCastKind() != CK_NoOp)
 | 
						|
      break;
 | 
						|
    E = ICE->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  return E->getType()->isEnumeralType();
 | 
						|
}
 | 
						|
 | 
						|
static int classifyConstantValue(Expr *Constant) {
 | 
						|
  // The values of this enumeration are used in the diagnostics
 | 
						|
  // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
 | 
						|
  enum ConstantValueKind {
 | 
						|
    Miscellaneous = 0,
 | 
						|
    LiteralTrue,
 | 
						|
    LiteralFalse
 | 
						|
  };
 | 
						|
  if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
 | 
						|
    return BL->getValue() ? ConstantValueKind::LiteralTrue
 | 
						|
                          : ConstantValueKind::LiteralFalse;
 | 
						|
  return ConstantValueKind::Miscellaneous;
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
 | 
						|
                                        Expr *Constant, Expr *Other,
 | 
						|
                                        const llvm::APSInt &Value,
 | 
						|
                                        bool RhsConstant) {
 | 
						|
  if (S.inTemplateInstantiation())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Expr *OriginalOther = Other;
 | 
						|
 | 
						|
  Constant = Constant->IgnoreParenImpCasts();
 | 
						|
  Other = Other->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  // Suppress warnings on tautological comparisons between values of the same
 | 
						|
  // enumeration type. There are only two ways we could warn on this:
 | 
						|
  //  - If the constant is outside the range of representable values of
 | 
						|
  //    the enumeration. In such a case, we should warn about the cast
 | 
						|
  //    to enumeration type, not about the comparison.
 | 
						|
  //  - If the constant is the maximum / minimum in-range value. For an
 | 
						|
  //    enumeratin type, such comparisons can be meaningful and useful.
 | 
						|
  if (Constant->getType()->isEnumeralType() &&
 | 
						|
      S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  IntRange OtherValueRange = GetExprRange(
 | 
						|
      S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
 | 
						|
 | 
						|
  QualType OtherT = Other->getType();
 | 
						|
  if (const auto *AT = OtherT->getAs<AtomicType>())
 | 
						|
    OtherT = AT->getValueType();
 | 
						|
  IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
 | 
						|
 | 
						|
  // Special case for ObjC BOOL on targets where its a typedef for a signed char
 | 
						|
  // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
 | 
						|
  bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
 | 
						|
                              S.NSAPIObj->isObjCBOOLType(OtherT) &&
 | 
						|
                              OtherT->isSpecificBuiltinType(BuiltinType::SChar);
 | 
						|
 | 
						|
  // Whether we're treating Other as being a bool because of the form of
 | 
						|
  // expression despite it having another type (typically 'int' in C).
 | 
						|
  bool OtherIsBooleanDespiteType =
 | 
						|
      !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
 | 
						|
  if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
 | 
						|
    OtherTypeRange = OtherValueRange = IntRange::forBoolType();
 | 
						|
 | 
						|
  // Check if all values in the range of possible values of this expression
 | 
						|
  // lead to the same comparison outcome.
 | 
						|
  PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
 | 
						|
                                        Value.isUnsigned());
 | 
						|
  auto Cmp = OtherPromotedValueRange.compare(Value);
 | 
						|
  auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
 | 
						|
  if (!Result)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Also consider the range determined by the type alone. This allows us to
 | 
						|
  // classify the warning under the proper diagnostic group.
 | 
						|
  bool TautologicalTypeCompare = false;
 | 
						|
  {
 | 
						|
    PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
 | 
						|
                                         Value.isUnsigned());
 | 
						|
    auto TypeCmp = OtherPromotedTypeRange.compare(Value);
 | 
						|
    if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
 | 
						|
                                                       RhsConstant)) {
 | 
						|
      TautologicalTypeCompare = true;
 | 
						|
      Cmp = TypeCmp;
 | 
						|
      Result = TypeResult;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't warn if the non-constant operand actually always evaluates to the
 | 
						|
  // same value.
 | 
						|
  if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Suppress the diagnostic for an in-range comparison if the constant comes
 | 
						|
  // from a macro or enumerator. We don't want to diagnose
 | 
						|
  //
 | 
						|
  //   some_long_value <= INT_MAX
 | 
						|
  //
 | 
						|
  // when sizeof(int) == sizeof(long).
 | 
						|
  bool InRange = Cmp & PromotedRange::InRangeFlag;
 | 
						|
  if (InRange && IsEnumConstOrFromMacro(S, Constant))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A comparison of an unsigned bit-field against 0 is really a type problem,
 | 
						|
  // even though at the type level the bit-field might promote to 'signed int'.
 | 
						|
  if (Other->refersToBitField() && InRange && Value == 0 &&
 | 
						|
      Other->getType()->isUnsignedIntegerOrEnumerationType())
 | 
						|
    TautologicalTypeCompare = true;
 | 
						|
 | 
						|
  // If this is a comparison to an enum constant, include that
 | 
						|
  // constant in the diagnostic.
 | 
						|
  const EnumConstantDecl *ED = nullptr;
 | 
						|
  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
 | 
						|
    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
 | 
						|
 | 
						|
  // Should be enough for uint128 (39 decimal digits)
 | 
						|
  SmallString<64> PrettySourceValue;
 | 
						|
  llvm::raw_svector_ostream OS(PrettySourceValue);
 | 
						|
  if (ED) {
 | 
						|
    OS << '\'' << *ED << "' (" << Value << ")";
 | 
						|
  } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
 | 
						|
               Constant->IgnoreParenImpCasts())) {
 | 
						|
    OS << (BL->getValue() ? "YES" : "NO");
 | 
						|
  } else {
 | 
						|
    OS << Value;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!TautologicalTypeCompare) {
 | 
						|
    S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
 | 
						|
        << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
 | 
						|
        << E->getOpcodeStr() << OS.str() << *Result
 | 
						|
        << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsObjCSignedCharBool) {
 | 
						|
    S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
 | 
						|
                          S.PDiag(diag::warn_tautological_compare_objc_bool)
 | 
						|
                              << OS.str() << *Result);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We use a somewhat different formatting for the in-range cases and
 | 
						|
  // cases involving boolean values for historical reasons. We should pick a
 | 
						|
  // consistent way of presenting these diagnostics.
 | 
						|
  if (!InRange || Other->isKnownToHaveBooleanValue()) {
 | 
						|
 | 
						|
    S.DiagRuntimeBehavior(
 | 
						|
        E->getOperatorLoc(), E,
 | 
						|
        S.PDiag(!InRange ? diag::warn_out_of_range_compare
 | 
						|
                         : diag::warn_tautological_bool_compare)
 | 
						|
            << OS.str() << classifyConstantValue(Constant) << OtherT
 | 
						|
            << OtherIsBooleanDespiteType << *Result
 | 
						|
            << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
 | 
						|
  } else {
 | 
						|
    unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
 | 
						|
                        ? (HasEnumType(OriginalOther)
 | 
						|
                               ? diag::warn_unsigned_enum_always_true_comparison
 | 
						|
                               : diag::warn_unsigned_always_true_comparison)
 | 
						|
                        : diag::warn_tautological_constant_compare;
 | 
						|
 | 
						|
    S.Diag(E->getOperatorLoc(), Diag)
 | 
						|
        << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
 | 
						|
        << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze the operands of the given comparison.  Implements the
 | 
						|
/// fallback case from AnalyzeComparison.
 | 
						|
static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
 | 
						|
  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
 | 
						|
  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
 | 
						|
}
 | 
						|
 | 
						|
/// Implements -Wsign-compare.
 | 
						|
///
 | 
						|
/// \param E the binary operator to check for warnings
 | 
						|
static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
 | 
						|
  // The type the comparison is being performed in.
 | 
						|
  QualType T = E->getLHS()->getType();
 | 
						|
 | 
						|
  // Only analyze comparison operators where both sides have been converted to
 | 
						|
  // the same type.
 | 
						|
  if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
 | 
						|
    return AnalyzeImpConvsInComparison(S, E);
 | 
						|
 | 
						|
  // Don't analyze value-dependent comparisons directly.
 | 
						|
  if (E->isValueDependent())
 | 
						|
    return AnalyzeImpConvsInComparison(S, E);
 | 
						|
 | 
						|
  Expr *LHS = E->getLHS();
 | 
						|
  Expr *RHS = E->getRHS();
 | 
						|
 | 
						|
  if (T->isIntegralType(S.Context)) {
 | 
						|
    Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
 | 
						|
    Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
 | 
						|
 | 
						|
    // We don't care about expressions whose result is a constant.
 | 
						|
    if (RHSValue && LHSValue)
 | 
						|
      return AnalyzeImpConvsInComparison(S, E);
 | 
						|
 | 
						|
    // We only care about expressions where just one side is literal
 | 
						|
    if ((bool)RHSValue ^ (bool)LHSValue) {
 | 
						|
      // Is the constant on the RHS or LHS?
 | 
						|
      const bool RhsConstant = (bool)RHSValue;
 | 
						|
      Expr *Const = RhsConstant ? RHS : LHS;
 | 
						|
      Expr *Other = RhsConstant ? LHS : RHS;
 | 
						|
      const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
 | 
						|
 | 
						|
      // Check whether an integer constant comparison results in a value
 | 
						|
      // of 'true' or 'false'.
 | 
						|
      if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
 | 
						|
        return AnalyzeImpConvsInComparison(S, E);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!T->hasUnsignedIntegerRepresentation()) {
 | 
						|
    // We don't do anything special if this isn't an unsigned integral
 | 
						|
    // comparison:  we're only interested in integral comparisons, and
 | 
						|
    // signed comparisons only happen in cases we don't care to warn about.
 | 
						|
    return AnalyzeImpConvsInComparison(S, E);
 | 
						|
  }
 | 
						|
 | 
						|
  LHS = LHS->IgnoreParenImpCasts();
 | 
						|
  RHS = RHS->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  if (!S.getLangOpts().CPlusPlus) {
 | 
						|
    // Avoid warning about comparison of integers with different signs when
 | 
						|
    // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
 | 
						|
    // the type of `E`.
 | 
						|
    if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
 | 
						|
      LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
 | 
						|
    if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
 | 
						|
      RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if one of the (unmodified) operands is of different
 | 
						|
  // signedness.
 | 
						|
  Expr *signedOperand, *unsignedOperand;
 | 
						|
  if (LHS->getType()->hasSignedIntegerRepresentation()) {
 | 
						|
    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
 | 
						|
           "unsigned comparison between two signed integer expressions?");
 | 
						|
    signedOperand = LHS;
 | 
						|
    unsignedOperand = RHS;
 | 
						|
  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
 | 
						|
    signedOperand = RHS;
 | 
						|
    unsignedOperand = LHS;
 | 
						|
  } else {
 | 
						|
    return AnalyzeImpConvsInComparison(S, E);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, calculate the effective range of the signed operand.
 | 
						|
  IntRange signedRange = GetExprRange(
 | 
						|
      S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
 | 
						|
 | 
						|
  // Go ahead and analyze implicit conversions in the operands.  Note
 | 
						|
  // that we skip the implicit conversions on both sides.
 | 
						|
  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
 | 
						|
  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
 | 
						|
 | 
						|
  // If the signed range is non-negative, -Wsign-compare won't fire.
 | 
						|
  if (signedRange.NonNegative)
 | 
						|
    return;
 | 
						|
 | 
						|
  // For (in)equality comparisons, if the unsigned operand is a
 | 
						|
  // constant which cannot collide with a overflowed signed operand,
 | 
						|
  // then reinterpreting the signed operand as unsigned will not
 | 
						|
  // change the result of the comparison.
 | 
						|
  if (E->isEqualityOp()) {
 | 
						|
    unsigned comparisonWidth = S.Context.getIntWidth(T);
 | 
						|
    IntRange unsignedRange =
 | 
						|
        GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
 | 
						|
                     /*Approximate*/ true);
 | 
						|
 | 
						|
    // We should never be unable to prove that the unsigned operand is
 | 
						|
    // non-negative.
 | 
						|
    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
 | 
						|
 | 
						|
    if (unsignedRange.Width < comparisonWidth)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
 | 
						|
                        S.PDiag(diag::warn_mixed_sign_comparison)
 | 
						|
                            << LHS->getType() << RHS->getType()
 | 
						|
                            << LHS->getSourceRange() << RHS->getSourceRange());
 | 
						|
}
 | 
						|
 | 
						|
/// Analyzes an attempt to assign the given value to a bitfield.
 | 
						|
///
 | 
						|
/// Returns true if there was something fishy about the attempt.
 | 
						|
static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
 | 
						|
                                      SourceLocation InitLoc) {
 | 
						|
  assert(Bitfield->isBitField());
 | 
						|
  if (Bitfield->isInvalidDecl())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // White-list bool bitfields.
 | 
						|
  QualType BitfieldType = Bitfield->getType();
 | 
						|
  if (BitfieldType->isBooleanType())
 | 
						|
     return false;
 | 
						|
 | 
						|
  if (BitfieldType->isEnumeralType()) {
 | 
						|
    EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
 | 
						|
    // If the underlying enum type was not explicitly specified as an unsigned
 | 
						|
    // type and the enum contain only positive values, MSVC++ will cause an
 | 
						|
    // inconsistency by storing this as a signed type.
 | 
						|
    if (S.getLangOpts().CPlusPlus11 &&
 | 
						|
        !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
 | 
						|
        BitfieldEnumDecl->getNumPositiveBits() > 0 &&
 | 
						|
        BitfieldEnumDecl->getNumNegativeBits() == 0) {
 | 
						|
      S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
 | 
						|
          << BitfieldEnumDecl;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Bitfield->getType()->isBooleanType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ignore value- or type-dependent expressions.
 | 
						|
  if (Bitfield->getBitWidth()->isValueDependent() ||
 | 
						|
      Bitfield->getBitWidth()->isTypeDependent() ||
 | 
						|
      Init->isValueDependent() ||
 | 
						|
      Init->isTypeDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Expr *OriginalInit = Init->IgnoreParenImpCasts();
 | 
						|
  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
 | 
						|
 | 
						|
  Expr::EvalResult Result;
 | 
						|
  if (!OriginalInit->EvaluateAsInt(Result, S.Context,
 | 
						|
                                   Expr::SE_AllowSideEffects)) {
 | 
						|
    // The RHS is not constant.  If the RHS has an enum type, make sure the
 | 
						|
    // bitfield is wide enough to hold all the values of the enum without
 | 
						|
    // truncation.
 | 
						|
    if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
 | 
						|
      EnumDecl *ED = EnumTy->getDecl();
 | 
						|
      bool SignedBitfield = BitfieldType->isSignedIntegerType();
 | 
						|
 | 
						|
      // Enum types are implicitly signed on Windows, so check if there are any
 | 
						|
      // negative enumerators to see if the enum was intended to be signed or
 | 
						|
      // not.
 | 
						|
      bool SignedEnum = ED->getNumNegativeBits() > 0;
 | 
						|
 | 
						|
      // Check for surprising sign changes when assigning enum values to a
 | 
						|
      // bitfield of different signedness.  If the bitfield is signed and we
 | 
						|
      // have exactly the right number of bits to store this unsigned enum,
 | 
						|
      // suggest changing the enum to an unsigned type. This typically happens
 | 
						|
      // on Windows where unfixed enums always use an underlying type of 'int'.
 | 
						|
      unsigned DiagID = 0;
 | 
						|
      if (SignedEnum && !SignedBitfield) {
 | 
						|
        DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
 | 
						|
      } else if (SignedBitfield && !SignedEnum &&
 | 
						|
                 ED->getNumPositiveBits() == FieldWidth) {
 | 
						|
        DiagID = diag::warn_signed_bitfield_enum_conversion;
 | 
						|
      }
 | 
						|
 | 
						|
      if (DiagID) {
 | 
						|
        S.Diag(InitLoc, DiagID) << Bitfield << ED;
 | 
						|
        TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
 | 
						|
        SourceRange TypeRange =
 | 
						|
            TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
 | 
						|
        S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
 | 
						|
            << SignedEnum << TypeRange;
 | 
						|
      }
 | 
						|
 | 
						|
      // Compute the required bitwidth. If the enum has negative values, we need
 | 
						|
      // one more bit than the normal number of positive bits to represent the
 | 
						|
      // sign bit.
 | 
						|
      unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
 | 
						|
                                                  ED->getNumNegativeBits())
 | 
						|
                                       : ED->getNumPositiveBits();
 | 
						|
 | 
						|
      // Check the bitwidth.
 | 
						|
      if (BitsNeeded > FieldWidth) {
 | 
						|
        Expr *WidthExpr = Bitfield->getBitWidth();
 | 
						|
        S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
 | 
						|
            << Bitfield << ED;
 | 
						|
        S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
 | 
						|
            << BitsNeeded << ED << WidthExpr->getSourceRange();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::APSInt Value = Result.Val.getInt();
 | 
						|
 | 
						|
  unsigned OriginalWidth = Value.getBitWidth();
 | 
						|
 | 
						|
  if (!Value.isSigned() || Value.isNegative())
 | 
						|
    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
 | 
						|
      if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
 | 
						|
        OriginalWidth = Value.getMinSignedBits();
 | 
						|
 | 
						|
  if (OriginalWidth <= FieldWidth)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Compute the value which the bitfield will contain.
 | 
						|
  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
 | 
						|
  TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
 | 
						|
 | 
						|
  // Check whether the stored value is equal to the original value.
 | 
						|
  TruncatedValue = TruncatedValue.extend(OriginalWidth);
 | 
						|
  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Special-case bitfields of width 1: booleans are naturally 0/1, and
 | 
						|
  // therefore don't strictly fit into a signed bitfield of width 1.
 | 
						|
  if (FieldWidth == 1 && Value == 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  std::string PrettyValue = Value.toString(10);
 | 
						|
  std::string PrettyTrunc = TruncatedValue.toString(10);
 | 
						|
 | 
						|
  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
 | 
						|
    << PrettyValue << PrettyTrunc << OriginalInit->getType()
 | 
						|
    << Init->getSourceRange();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze the given simple or compound assignment for warning-worthy
 | 
						|
/// operations.
 | 
						|
static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
 | 
						|
  // Just recurse on the LHS.
 | 
						|
  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
 | 
						|
 | 
						|
  // We want to recurse on the RHS as normal unless we're assigning to
 | 
						|
  // a bitfield.
 | 
						|
  if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
 | 
						|
    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
 | 
						|
                                  E->getOperatorLoc())) {
 | 
						|
      // Recurse, ignoring any implicit conversions on the RHS.
 | 
						|
      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
 | 
						|
                                        E->getOperatorLoc());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
 | 
						|
 | 
						|
  // Diagnose implicitly sequentially-consistent atomic assignment.
 | 
						|
  if (E->getLHS()->getType()->isAtomicType())
 | 
						|
    S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
 | 
						|
static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
 | 
						|
                            SourceLocation CContext, unsigned diag,
 | 
						|
                            bool pruneControlFlow = false) {
 | 
						|
  if (pruneControlFlow) {
 | 
						|
    S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | 
						|
                          S.PDiag(diag)
 | 
						|
                              << SourceType << T << E->getSourceRange()
 | 
						|
                              << SourceRange(CContext));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  S.Diag(E->getExprLoc(), diag)
 | 
						|
    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
 | 
						|
static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
 | 
						|
                            SourceLocation CContext,
 | 
						|
                            unsigned diag, bool pruneControlFlow = false) {
 | 
						|
  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
 | 
						|
}
 | 
						|
 | 
						|
static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
 | 
						|
  return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
 | 
						|
      S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
 | 
						|
}
 | 
						|
 | 
						|
static void adornObjCBoolConversionDiagWithTernaryFixit(
 | 
						|
    Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
 | 
						|
  Expr *Ignored = SourceExpr->IgnoreImplicit();
 | 
						|
  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
 | 
						|
    Ignored = OVE->getSourceExpr();
 | 
						|
  bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
 | 
						|
                     isa<BinaryOperator>(Ignored) ||
 | 
						|
                     isa<CXXOperatorCallExpr>(Ignored);
 | 
						|
  SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
 | 
						|
  if (NeedsParens)
 | 
						|
    Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
 | 
						|
            << FixItHint::CreateInsertion(EndLoc, ")");
 | 
						|
  Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose an implicit cast from a floating point value to an integer value.
 | 
						|
static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
 | 
						|
                                    SourceLocation CContext) {
 | 
						|
  const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
 | 
						|
  const bool PruneWarnings = S.inTemplateInstantiation();
 | 
						|
 | 
						|
  Expr *InnerE = E->IgnoreParenImpCasts();
 | 
						|
  // We also want to warn on, e.g., "int i = -1.234"
 | 
						|
  if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
 | 
						|
    if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
 | 
						|
      InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  const bool IsLiteral =
 | 
						|
      isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
 | 
						|
 | 
						|
  llvm::APFloat Value(0.0);
 | 
						|
  bool IsConstant =
 | 
						|
    E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
 | 
						|
  if (!IsConstant) {
 | 
						|
    if (isObjCSignedCharBool(S, T)) {
 | 
						|
      return adornObjCBoolConversionDiagWithTernaryFixit(
 | 
						|
          S, E,
 | 
						|
          S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
 | 
						|
              << E->getType());
 | 
						|
    }
 | 
						|
 | 
						|
    return DiagnoseImpCast(S, E, T, CContext,
 | 
						|
                           diag::warn_impcast_float_integer, PruneWarnings);
 | 
						|
  }
 | 
						|
 | 
						|
  bool isExact = false;
 | 
						|
 | 
						|
  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
 | 
						|
                            T->hasUnsignedIntegerRepresentation());
 | 
						|
  llvm::APFloat::opStatus Result = Value.convertToInteger(
 | 
						|
      IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
 | 
						|
 | 
						|
  // FIXME: Force the precision of the source value down so we don't print
 | 
						|
  // digits which are usually useless (we don't really care here if we
 | 
						|
  // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
 | 
						|
  // would automatically print the shortest representation, but it's a bit
 | 
						|
  // tricky to implement.
 | 
						|
  SmallString<16> PrettySourceValue;
 | 
						|
  unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
 | 
						|
  precision = (precision * 59 + 195) / 196;
 | 
						|
  Value.toString(PrettySourceValue, precision);
 | 
						|
 | 
						|
  if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
 | 
						|
    return adornObjCBoolConversionDiagWithTernaryFixit(
 | 
						|
        S, E,
 | 
						|
        S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
 | 
						|
            << PrettySourceValue);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Result == llvm::APFloat::opOK && isExact) {
 | 
						|
    if (IsLiteral) return;
 | 
						|
    return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
 | 
						|
                           PruneWarnings);
 | 
						|
  }
 | 
						|
 | 
						|
  // Conversion of a floating-point value to a non-bool integer where the
 | 
						|
  // integral part cannot be represented by the integer type is undefined.
 | 
						|
  if (!IsBool && Result == llvm::APFloat::opInvalidOp)
 | 
						|
    return DiagnoseImpCast(
 | 
						|
        S, E, T, CContext,
 | 
						|
        IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
 | 
						|
                  : diag::warn_impcast_float_to_integer_out_of_range,
 | 
						|
        PruneWarnings);
 | 
						|
 | 
						|
  unsigned DiagID = 0;
 | 
						|
  if (IsLiteral) {
 | 
						|
    // Warn on floating point literal to integer.
 | 
						|
    DiagID = diag::warn_impcast_literal_float_to_integer;
 | 
						|
  } else if (IntegerValue == 0) {
 | 
						|
    if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
 | 
						|
      return DiagnoseImpCast(S, E, T, CContext,
 | 
						|
                             diag::warn_impcast_float_integer, PruneWarnings);
 | 
						|
    }
 | 
						|
    // Warn on non-zero to zero conversion.
 | 
						|
    DiagID = diag::warn_impcast_float_to_integer_zero;
 | 
						|
  } else {
 | 
						|
    if (IntegerValue.isUnsigned()) {
 | 
						|
      if (!IntegerValue.isMaxValue()) {
 | 
						|
        return DiagnoseImpCast(S, E, T, CContext,
 | 
						|
                               diag::warn_impcast_float_integer, PruneWarnings);
 | 
						|
      }
 | 
						|
    } else {  // IntegerValue.isSigned()
 | 
						|
      if (!IntegerValue.isMaxSignedValue() &&
 | 
						|
          !IntegerValue.isMinSignedValue()) {
 | 
						|
        return DiagnoseImpCast(S, E, T, CContext,
 | 
						|
                               diag::warn_impcast_float_integer, PruneWarnings);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Warn on evaluatable floating point expression to integer conversion.
 | 
						|
    DiagID = diag::warn_impcast_float_to_integer;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallString<16> PrettyTargetValue;
 | 
						|
  if (IsBool)
 | 
						|
    PrettyTargetValue = Value.isZero() ? "false" : "true";
 | 
						|
  else
 | 
						|
    IntegerValue.toString(PrettyTargetValue);
 | 
						|
 | 
						|
  if (PruneWarnings) {
 | 
						|
    S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | 
						|
                          S.PDiag(DiagID)
 | 
						|
                              << E->getType() << T.getUnqualifiedType()
 | 
						|
                              << PrettySourceValue << PrettyTargetValue
 | 
						|
                              << E->getSourceRange() << SourceRange(CContext));
 | 
						|
  } else {
 | 
						|
    S.Diag(E->getExprLoc(), DiagID)
 | 
						|
        << E->getType() << T.getUnqualifiedType() << PrettySourceValue
 | 
						|
        << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze the given compound assignment for the possible losing of
 | 
						|
/// floating-point precision.
 | 
						|
static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
 | 
						|
  assert(isa<CompoundAssignOperator>(E) &&
 | 
						|
         "Must be compound assignment operation");
 | 
						|
  // Recurse on the LHS and RHS in here
 | 
						|
  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
 | 
						|
  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
 | 
						|
 | 
						|
  if (E->getLHS()->getType()->isAtomicType())
 | 
						|
    S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
 | 
						|
 | 
						|
  // Now check the outermost expression
 | 
						|
  const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
 | 
						|
  const auto *RBT = cast<CompoundAssignOperator>(E)
 | 
						|
                        ->getComputationResultType()
 | 
						|
                        ->getAs<BuiltinType>();
 | 
						|
 | 
						|
  // The below checks assume source is floating point.
 | 
						|
  if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
 | 
						|
 | 
						|
  // If source is floating point but target is an integer.
 | 
						|
  if (ResultBT->isInteger())
 | 
						|
    return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
 | 
						|
                           E->getExprLoc(), diag::warn_impcast_float_integer);
 | 
						|
 | 
						|
  if (!ResultBT->isFloatingPoint())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If both source and target are floating points, warn about losing precision.
 | 
						|
  int Order = S.getASTContext().getFloatingTypeSemanticOrder(
 | 
						|
      QualType(ResultBT, 0), QualType(RBT, 0));
 | 
						|
  if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
 | 
						|
    // warn about dropping FP rank.
 | 
						|
    DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
 | 
						|
                    diag::warn_impcast_float_result_precision);
 | 
						|
}
 | 
						|
 | 
						|
static std::string PrettyPrintInRange(const llvm::APSInt &Value,
 | 
						|
                                      IntRange Range) {
 | 
						|
  if (!Range.Width) return "0";
 | 
						|
 | 
						|
  llvm::APSInt ValueInRange = Value;
 | 
						|
  ValueInRange.setIsSigned(!Range.NonNegative);
 | 
						|
  ValueInRange = ValueInRange.trunc(Range.Width);
 | 
						|
  return ValueInRange.toString(10);
 | 
						|
}
 | 
						|
 | 
						|
static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
 | 
						|
  if (!isa<ImplicitCastExpr>(Ex))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Expr *InnerE = Ex->IgnoreParenImpCasts();
 | 
						|
  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
 | 
						|
  const Type *Source =
 | 
						|
    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
 | 
						|
  if (Target->isDependentType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const BuiltinType *FloatCandidateBT =
 | 
						|
    dyn_cast<BuiltinType>(ToBool ? Source : Target);
 | 
						|
  const Type *BoolCandidateType = ToBool ? Target : Source;
 | 
						|
 | 
						|
  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
 | 
						|
          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
 | 
						|
}
 | 
						|
 | 
						|
static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
 | 
						|
                                             SourceLocation CC) {
 | 
						|
  unsigned NumArgs = TheCall->getNumArgs();
 | 
						|
  for (unsigned i = 0; i < NumArgs; ++i) {
 | 
						|
    Expr *CurrA = TheCall->getArg(i);
 | 
						|
    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool IsSwapped = ((i > 0) &&
 | 
						|
        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
 | 
						|
    IsSwapped |= ((i < (NumArgs - 1)) &&
 | 
						|
        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
 | 
						|
    if (IsSwapped) {
 | 
						|
      // Warn on this floating-point to bool conversion.
 | 
						|
      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
 | 
						|
                      CurrA->getType(), CC,
 | 
						|
                      diag::warn_impcast_floating_point_to_bool);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
 | 
						|
                                   SourceLocation CC) {
 | 
						|
  if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
 | 
						|
                        E->getExprLoc()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Don't warn on functions which have return type nullptr_t.
 | 
						|
  if (isa<CallExpr>(E))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
 | 
						|
  const Expr::NullPointerConstantKind NullKind =
 | 
						|
      E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
 | 
						|
  if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Return if target type is a safe conversion.
 | 
						|
  if (T->isAnyPointerType() || T->isBlockPointerType() ||
 | 
						|
      T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
 | 
						|
    return;
 | 
						|
 | 
						|
  SourceLocation Loc = E->getSourceRange().getBegin();
 | 
						|
 | 
						|
  // Venture through the macro stacks to get to the source of macro arguments.
 | 
						|
  // The new location is a better location than the complete location that was
 | 
						|
  // passed in.
 | 
						|
  Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
 | 
						|
  CC = S.SourceMgr.getTopMacroCallerLoc(CC);
 | 
						|
 | 
						|
  // __null is usually wrapped in a macro.  Go up a macro if that is the case.
 | 
						|
  if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
 | 
						|
    StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
 | 
						|
        Loc, S.SourceMgr, S.getLangOpts());
 | 
						|
    if (MacroName == "NULL")
 | 
						|
      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
 | 
						|
  }
 | 
						|
 | 
						|
  // Only warn if the null and context location are in the same macro expansion.
 | 
						|
  if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
 | 
						|
    return;
 | 
						|
 | 
						|
  S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
 | 
						|
      << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
 | 
						|
      << FixItHint::CreateReplacement(Loc,
 | 
						|
                                      S.getFixItZeroLiteralForType(T, Loc));
 | 
						|
}
 | 
						|
 | 
						|
static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
 | 
						|
                                  ObjCArrayLiteral *ArrayLiteral);
 | 
						|
 | 
						|
static void
 | 
						|
checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
 | 
						|
                           ObjCDictionaryLiteral *DictionaryLiteral);
 | 
						|
 | 
						|
/// Check a single element within a collection literal against the
 | 
						|
/// target element type.
 | 
						|
static void checkObjCCollectionLiteralElement(Sema &S,
 | 
						|
                                              QualType TargetElementType,
 | 
						|
                                              Expr *Element,
 | 
						|
                                              unsigned ElementKind) {
 | 
						|
  // Skip a bitcast to 'id' or qualified 'id'.
 | 
						|
  if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
 | 
						|
    if (ICE->getCastKind() == CK_BitCast &&
 | 
						|
        ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
 | 
						|
      Element = ICE->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ElementType = Element->getType();
 | 
						|
  ExprResult ElementResult(Element);
 | 
						|
  if (ElementType->getAs<ObjCObjectPointerType>() &&
 | 
						|
      S.CheckSingleAssignmentConstraints(TargetElementType,
 | 
						|
                                         ElementResult,
 | 
						|
                                         false, false)
 | 
						|
        != Sema::Compatible) {
 | 
						|
    S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
 | 
						|
        << ElementType << ElementKind << TargetElementType
 | 
						|
        << Element->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
 | 
						|
    checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
 | 
						|
  else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
 | 
						|
    checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
 | 
						|
}
 | 
						|
 | 
						|
/// Check an Objective-C array literal being converted to the given
 | 
						|
/// target type.
 | 
						|
static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
 | 
						|
                                  ObjCArrayLiteral *ArrayLiteral) {
 | 
						|
  if (!S.NSArrayDecl)
 | 
						|
    return;
 | 
						|
 | 
						|
  const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
 | 
						|
  if (!TargetObjCPtr)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (TargetObjCPtr->isUnspecialized() ||
 | 
						|
      TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
 | 
						|
        != S.NSArrayDecl->getCanonicalDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  auto TypeArgs = TargetObjCPtr->getTypeArgs();
 | 
						|
  if (TypeArgs.size() != 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  QualType TargetElementType = TypeArgs[0];
 | 
						|
  for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
 | 
						|
    checkObjCCollectionLiteralElement(S, TargetElementType,
 | 
						|
                                      ArrayLiteral->getElement(I),
 | 
						|
                                      0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check an Objective-C dictionary literal being converted to the given
 | 
						|
/// target type.
 | 
						|
static void
 | 
						|
checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
 | 
						|
                           ObjCDictionaryLiteral *DictionaryLiteral) {
 | 
						|
  if (!S.NSDictionaryDecl)
 | 
						|
    return;
 | 
						|
 | 
						|
  const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
 | 
						|
  if (!TargetObjCPtr)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (TargetObjCPtr->isUnspecialized() ||
 | 
						|
      TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
 | 
						|
        != S.NSDictionaryDecl->getCanonicalDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  auto TypeArgs = TargetObjCPtr->getTypeArgs();
 | 
						|
  if (TypeArgs.size() != 2)
 | 
						|
    return;
 | 
						|
 | 
						|
  QualType TargetKeyType = TypeArgs[0];
 | 
						|
  QualType TargetObjectType = TypeArgs[1];
 | 
						|
  for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
 | 
						|
    auto Element = DictionaryLiteral->getKeyValueElement(I);
 | 
						|
    checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
 | 
						|
    checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Helper function to filter out cases for constant width constant conversion.
 | 
						|
// Don't warn on char array initialization or for non-decimal values.
 | 
						|
static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
 | 
						|
                                          SourceLocation CC) {
 | 
						|
  // If initializing from a constant, and the constant starts with '0',
 | 
						|
  // then it is a binary, octal, or hexadecimal.  Allow these constants
 | 
						|
  // to fill all the bits, even if there is a sign change.
 | 
						|
  if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
 | 
						|
    const char FirstLiteralCharacter =
 | 
						|
        S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
 | 
						|
    if (FirstLiteralCharacter == '0')
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the CC location points to a '{', and the type is char, then assume
 | 
						|
  // assume it is an array initialization.
 | 
						|
  if (CC.isValid() && T->isCharType()) {
 | 
						|
    const char FirstContextCharacter =
 | 
						|
        S.getSourceManager().getCharacterData(CC)[0];
 | 
						|
    if (FirstContextCharacter == '{')
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static const IntegerLiteral *getIntegerLiteral(Expr *E) {
 | 
						|
  const auto *IL = dyn_cast<IntegerLiteral>(E);
 | 
						|
  if (!IL) {
 | 
						|
    if (auto *UO = dyn_cast<UnaryOperator>(E)) {
 | 
						|
      if (UO->getOpcode() == UO_Minus)
 | 
						|
        return dyn_cast<IntegerLiteral>(UO->getSubExpr());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return IL;
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
 | 
						|
  E = E->IgnoreParenImpCasts();
 | 
						|
  SourceLocation ExprLoc = E->getExprLoc();
 | 
						|
 | 
						|
  if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
 | 
						|
    BinaryOperator::Opcode Opc = BO->getOpcode();
 | 
						|
    Expr::EvalResult Result;
 | 
						|
    // Do not diagnose unsigned shifts.
 | 
						|
    if (Opc == BO_Shl) {
 | 
						|
      const auto *LHS = getIntegerLiteral(BO->getLHS());
 | 
						|
      const auto *RHS = getIntegerLiteral(BO->getRHS());
 | 
						|
      if (LHS && LHS->getValue() == 0)
 | 
						|
        S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
 | 
						|
      else if (!E->isValueDependent() && LHS && RHS &&
 | 
						|
               RHS->getValue().isNonNegative() &&
 | 
						|
               E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
 | 
						|
        S.Diag(ExprLoc, diag::warn_left_shift_always)
 | 
						|
            << (Result.Val.getInt() != 0);
 | 
						|
      else if (E->getType()->isSignedIntegerType())
 | 
						|
        S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
 | 
						|
    const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
 | 
						|
    const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
 | 
						|
    if (!LHS || !RHS)
 | 
						|
      return;
 | 
						|
    if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
 | 
						|
        (RHS->getValue() == 0 || RHS->getValue() == 1))
 | 
						|
      // Do not diagnose common idioms.
 | 
						|
      return;
 | 
						|
    if (LHS->getValue() != 0 && RHS->getValue() != 0)
 | 
						|
      S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
 | 
						|
                                    SourceLocation CC,
 | 
						|
                                    bool *ICContext = nullptr,
 | 
						|
                                    bool IsListInit = false) {
 | 
						|
  if (E->isTypeDependent() || E->isValueDependent()) return;
 | 
						|
 | 
						|
  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
 | 
						|
  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
 | 
						|
  if (Source == Target) return;
 | 
						|
  if (Target->isDependentType()) return;
 | 
						|
 | 
						|
  // If the conversion context location is invalid don't complain. We also
 | 
						|
  // don't want to emit a warning if the issue occurs from the expansion of
 | 
						|
  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
 | 
						|
  // delay this check as long as possible. Once we detect we are in that
 | 
						|
  // scenario, we just return.
 | 
						|
  if (CC.isInvalid())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Source->isAtomicType())
 | 
						|
    S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
 | 
						|
 | 
						|
  // Diagnose implicit casts to bool.
 | 
						|
  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
 | 
						|
    if (isa<StringLiteral>(E))
 | 
						|
      // Warn on string literal to bool.  Checks for string literals in logical
 | 
						|
      // and expressions, for instance, assert(0 && "error here"), are
 | 
						|
      // prevented by a check in AnalyzeImplicitConversions().
 | 
						|
      return DiagnoseImpCast(S, E, T, CC,
 | 
						|
                             diag::warn_impcast_string_literal_to_bool);
 | 
						|
    if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
 | 
						|
        isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
 | 
						|
      // This covers the literal expressions that evaluate to Objective-C
 | 
						|
      // objects.
 | 
						|
      return DiagnoseImpCast(S, E, T, CC,
 | 
						|
                             diag::warn_impcast_objective_c_literal_to_bool);
 | 
						|
    }
 | 
						|
    if (Source->isPointerType() || Source->canDecayToPointerType()) {
 | 
						|
      // Warn on pointer to bool conversion that is always true.
 | 
						|
      S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
 | 
						|
                                     SourceRange(CC));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
 | 
						|
  // is a typedef for signed char (macOS), then that constant value has to be 1
 | 
						|
  // or 0.
 | 
						|
  if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
 | 
						|
    Expr::EvalResult Result;
 | 
						|
    if (E->EvaluateAsInt(Result, S.getASTContext(),
 | 
						|
                         Expr::SE_AllowSideEffects)) {
 | 
						|
      if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
 | 
						|
        adornObjCBoolConversionDiagWithTernaryFixit(
 | 
						|
            S, E,
 | 
						|
            S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
 | 
						|
                << Result.Val.getInt().toString(10));
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check implicit casts from Objective-C collection literals to specialized
 | 
						|
  // collection types, e.g., NSArray<NSString *> *.
 | 
						|
  if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
 | 
						|
    checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
 | 
						|
  else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
 | 
						|
    checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
 | 
						|
 | 
						|
  // Strip vector types.
 | 
						|
  if (isa<VectorType>(Source)) {
 | 
						|
    if (!isa<VectorType>(Target)) {
 | 
						|
      if (S.SourceMgr.isInSystemMacro(CC))
 | 
						|
        return;
 | 
						|
      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the vector cast is cast between two vectors of the same size, it is
 | 
						|
    // a bitcast, not a conversion.
 | 
						|
    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
 | 
						|
      return;
 | 
						|
 | 
						|
    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
 | 
						|
    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
 | 
						|
  }
 | 
						|
  if (auto VecTy = dyn_cast<VectorType>(Target))
 | 
						|
    Target = VecTy->getElementType().getTypePtr();
 | 
						|
 | 
						|
  // Strip complex types.
 | 
						|
  if (isa<ComplexType>(Source)) {
 | 
						|
    if (!isa<ComplexType>(Target)) {
 | 
						|
      if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
 | 
						|
        return;
 | 
						|
 | 
						|
      return DiagnoseImpCast(S, E, T, CC,
 | 
						|
                             S.getLangOpts().CPlusPlus
 | 
						|
                                 ? diag::err_impcast_complex_scalar
 | 
						|
                                 : diag::warn_impcast_complex_scalar);
 | 
						|
    }
 | 
						|
 | 
						|
    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
 | 
						|
    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
 | 
						|
  }
 | 
						|
 | 
						|
  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
 | 
						|
  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
 | 
						|
 | 
						|
  // If the source is floating point...
 | 
						|
  if (SourceBT && SourceBT->isFloatingPoint()) {
 | 
						|
    // ...and the target is floating point...
 | 
						|
    if (TargetBT && TargetBT->isFloatingPoint()) {
 | 
						|
      // ...then warn if we're dropping FP rank.
 | 
						|
 | 
						|
      int Order = S.getASTContext().getFloatingTypeSemanticOrder(
 | 
						|
          QualType(SourceBT, 0), QualType(TargetBT, 0));
 | 
						|
      if (Order > 0) {
 | 
						|
        // Don't warn about float constants that are precisely
 | 
						|
        // representable in the target type.
 | 
						|
        Expr::EvalResult result;
 | 
						|
        if (E->EvaluateAsRValue(result, S.Context)) {
 | 
						|
          // Value might be a float, a float vector, or a float complex.
 | 
						|
          if (IsSameFloatAfterCast(result.Val,
 | 
						|
                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
 | 
						|
                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        if (S.SourceMgr.isInSystemMacro(CC))
 | 
						|
          return;
 | 
						|
 | 
						|
        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
 | 
						|
      }
 | 
						|
      // ... or possibly if we're increasing rank, too
 | 
						|
      else if (Order < 0) {
 | 
						|
        if (S.SourceMgr.isInSystemMacro(CC))
 | 
						|
          return;
 | 
						|
 | 
						|
        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the target is integral, always warn.
 | 
						|
    if (TargetBT && TargetBT->isInteger()) {
 | 
						|
      if (S.SourceMgr.isInSystemMacro(CC))
 | 
						|
        return;
 | 
						|
 | 
						|
      DiagnoseFloatingImpCast(S, E, T, CC);
 | 
						|
    }
 | 
						|
 | 
						|
    // Detect the case where a call result is converted from floating-point to
 | 
						|
    // to bool, and the final argument to the call is converted from bool, to
 | 
						|
    // discover this typo:
 | 
						|
    //
 | 
						|
    //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
 | 
						|
    //
 | 
						|
    // FIXME: This is an incredibly special case; is there some more general
 | 
						|
    // way to detect this class of misplaced-parentheses bug?
 | 
						|
    if (Target->isBooleanType() && isa<CallExpr>(E)) {
 | 
						|
      // Check last argument of function call to see if it is an
 | 
						|
      // implicit cast from a type matching the type the result
 | 
						|
      // is being cast to.
 | 
						|
      CallExpr *CEx = cast<CallExpr>(E);
 | 
						|
      if (unsigned NumArgs = CEx->getNumArgs()) {
 | 
						|
        Expr *LastA = CEx->getArg(NumArgs - 1);
 | 
						|
        Expr *InnerE = LastA->IgnoreParenImpCasts();
 | 
						|
        if (isa<ImplicitCastExpr>(LastA) &&
 | 
						|
            InnerE->getType()->isBooleanType()) {
 | 
						|
          // Warn on this floating-point to bool conversion
 | 
						|
          DiagnoseImpCast(S, E, T, CC,
 | 
						|
                          diag::warn_impcast_floating_point_to_bool);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Valid casts involving fixed point types should be accounted for here.
 | 
						|
  if (Source->isFixedPointType()) {
 | 
						|
    if (Target->isUnsaturatedFixedPointType()) {
 | 
						|
      Expr::EvalResult Result;
 | 
						|
      if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
 | 
						|
                                  S.isConstantEvaluated())) {
 | 
						|
        llvm::APFixedPoint Value = Result.Val.getFixedPoint();
 | 
						|
        llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
 | 
						|
        llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
 | 
						|
        if (Value > MaxVal || Value < MinVal) {
 | 
						|
          S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | 
						|
                                S.PDiag(diag::warn_impcast_fixed_point_range)
 | 
						|
                                    << Value.toString() << T
 | 
						|
                                    << E->getSourceRange()
 | 
						|
                                    << clang::SourceRange(CC));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (Target->isIntegerType()) {
 | 
						|
      Expr::EvalResult Result;
 | 
						|
      if (!S.isConstantEvaluated() &&
 | 
						|
          E->EvaluateAsFixedPoint(Result, S.Context,
 | 
						|
                                  Expr::SE_AllowSideEffects)) {
 | 
						|
        llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
 | 
						|
 | 
						|
        bool Overflowed;
 | 
						|
        llvm::APSInt IntResult = FXResult.convertToInt(
 | 
						|
            S.Context.getIntWidth(T),
 | 
						|
            Target->isSignedIntegerOrEnumerationType(), &Overflowed);
 | 
						|
 | 
						|
        if (Overflowed) {
 | 
						|
          S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | 
						|
                                S.PDiag(diag::warn_impcast_fixed_point_range)
 | 
						|
                                    << FXResult.toString() << T
 | 
						|
                                    << E->getSourceRange()
 | 
						|
                                    << clang::SourceRange(CC));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (Target->isUnsaturatedFixedPointType()) {
 | 
						|
    if (Source->isIntegerType()) {
 | 
						|
      Expr::EvalResult Result;
 | 
						|
      if (!S.isConstantEvaluated() &&
 | 
						|
          E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
 | 
						|
        llvm::APSInt Value = Result.Val.getInt();
 | 
						|
 | 
						|
        bool Overflowed;
 | 
						|
        llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
 | 
						|
            Value, S.Context.getFixedPointSemantics(T), &Overflowed);
 | 
						|
 | 
						|
        if (Overflowed) {
 | 
						|
          S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | 
						|
                                S.PDiag(diag::warn_impcast_fixed_point_range)
 | 
						|
                                    << Value.toString(/*Radix=*/10) << T
 | 
						|
                                    << E->getSourceRange()
 | 
						|
                                    << clang::SourceRange(CC));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are casting an integer type to a floating point type without
 | 
						|
  // initialization-list syntax, we might lose accuracy if the floating
 | 
						|
  // point type has a narrower significand than the integer type.
 | 
						|
  if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
 | 
						|
      TargetBT->isFloatingType() && !IsListInit) {
 | 
						|
    // Determine the number of precision bits in the source integer type.
 | 
						|
    IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
 | 
						|
                                        /*Approximate*/ true);
 | 
						|
    unsigned int SourcePrecision = SourceRange.Width;
 | 
						|
 | 
						|
    // Determine the number of precision bits in the
 | 
						|
    // target floating point type.
 | 
						|
    unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
 | 
						|
        S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
 | 
						|
 | 
						|
    if (SourcePrecision > 0 && TargetPrecision > 0 &&
 | 
						|
        SourcePrecision > TargetPrecision) {
 | 
						|
 | 
						|
      if (Optional<llvm::APSInt> SourceInt =
 | 
						|
              E->getIntegerConstantExpr(S.Context)) {
 | 
						|
        // If the source integer is a constant, convert it to the target
 | 
						|
        // floating point type. Issue a warning if the value changes
 | 
						|
        // during the whole conversion.
 | 
						|
        llvm::APFloat TargetFloatValue(
 | 
						|
            S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
 | 
						|
        llvm::APFloat::opStatus ConversionStatus =
 | 
						|
            TargetFloatValue.convertFromAPInt(
 | 
						|
                *SourceInt, SourceBT->isSignedInteger(),
 | 
						|
                llvm::APFloat::rmNearestTiesToEven);
 | 
						|
 | 
						|
        if (ConversionStatus != llvm::APFloat::opOK) {
 | 
						|
          std::string PrettySourceValue = SourceInt->toString(10);
 | 
						|
          SmallString<32> PrettyTargetValue;
 | 
						|
          TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
 | 
						|
 | 
						|
          S.DiagRuntimeBehavior(
 | 
						|
              E->getExprLoc(), E,
 | 
						|
              S.PDiag(diag::warn_impcast_integer_float_precision_constant)
 | 
						|
                  << PrettySourceValue << PrettyTargetValue << E->getType() << T
 | 
						|
                  << E->getSourceRange() << clang::SourceRange(CC));
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Otherwise, the implicit conversion may lose precision.
 | 
						|
        DiagnoseImpCast(S, E, T, CC,
 | 
						|
                        diag::warn_impcast_integer_float_precision);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnoseNullConversion(S, E, T, CC);
 | 
						|
 | 
						|
  S.DiscardMisalignedMemberAddress(Target, E);
 | 
						|
 | 
						|
  if (Target->isBooleanType())
 | 
						|
    DiagnoseIntInBoolContext(S, E);
 | 
						|
 | 
						|
  if (!Source->isIntegerType() || !Target->isIntegerType())
 | 
						|
    return;
 | 
						|
 | 
						|
  // TODO: remove this early return once the false positives for constant->bool
 | 
						|
  // in templates, macros, etc, are reduced or removed.
 | 
						|
  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
 | 
						|
      !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
 | 
						|
    return adornObjCBoolConversionDiagWithTernaryFixit(
 | 
						|
        S, E,
 | 
						|
        S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
 | 
						|
            << E->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  IntRange SourceTypeRange =
 | 
						|
      IntRange::forTargetOfCanonicalType(S.Context, Source);
 | 
						|
  IntRange LikelySourceRange =
 | 
						|
      GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
 | 
						|
  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
 | 
						|
 | 
						|
  if (LikelySourceRange.Width > TargetRange.Width) {
 | 
						|
    // If the source is a constant, use a default-on diagnostic.
 | 
						|
    // TODO: this should happen for bitfield stores, too.
 | 
						|
    Expr::EvalResult Result;
 | 
						|
    if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
 | 
						|
                         S.isConstantEvaluated())) {
 | 
						|
      llvm::APSInt Value(32);
 | 
						|
      Value = Result.Val.getInt();
 | 
						|
 | 
						|
      if (S.SourceMgr.isInSystemMacro(CC))
 | 
						|
        return;
 | 
						|
 | 
						|
      std::string PrettySourceValue = Value.toString(10);
 | 
						|
      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
 | 
						|
 | 
						|
      S.DiagRuntimeBehavior(
 | 
						|
          E->getExprLoc(), E,
 | 
						|
          S.PDiag(diag::warn_impcast_integer_precision_constant)
 | 
						|
              << PrettySourceValue << PrettyTargetValue << E->getType() << T
 | 
						|
              << E->getSourceRange() << SourceRange(CC));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
 | 
						|
    if (S.SourceMgr.isInSystemMacro(CC))
 | 
						|
      return;
 | 
						|
 | 
						|
    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
 | 
						|
      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
 | 
						|
                             /* pruneControlFlow */ true);
 | 
						|
    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TargetRange.Width > SourceTypeRange.Width) {
 | 
						|
    if (auto *UO = dyn_cast<UnaryOperator>(E))
 | 
						|
      if (UO->getOpcode() == UO_Minus)
 | 
						|
        if (Source->isUnsignedIntegerType()) {
 | 
						|
          if (Target->isUnsignedIntegerType())
 | 
						|
            return DiagnoseImpCast(S, E, T, CC,
 | 
						|
                                   diag::warn_impcast_high_order_zero_bits);
 | 
						|
          if (Target->isSignedIntegerType())
 | 
						|
            return DiagnoseImpCast(S, E, T, CC,
 | 
						|
                                   diag::warn_impcast_nonnegative_result);
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  if (TargetRange.Width == LikelySourceRange.Width &&
 | 
						|
      !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
 | 
						|
      Source->isSignedIntegerType()) {
 | 
						|
    // Warn when doing a signed to signed conversion, warn if the positive
 | 
						|
    // source value is exactly the width of the target type, which will
 | 
						|
    // cause a negative value to be stored.
 | 
						|
 | 
						|
    Expr::EvalResult Result;
 | 
						|
    if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
 | 
						|
        !S.SourceMgr.isInSystemMacro(CC)) {
 | 
						|
      llvm::APSInt Value = Result.Val.getInt();
 | 
						|
      if (isSameWidthConstantConversion(S, E, T, CC)) {
 | 
						|
        std::string PrettySourceValue = Value.toString(10);
 | 
						|
        std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
 | 
						|
 | 
						|
        S.DiagRuntimeBehavior(
 | 
						|
            E->getExprLoc(), E,
 | 
						|
            S.PDiag(diag::warn_impcast_integer_precision_constant)
 | 
						|
                << PrettySourceValue << PrettyTargetValue << E->getType() << T
 | 
						|
                << E->getSourceRange() << SourceRange(CC));
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through for non-constants to give a sign conversion warning.
 | 
						|
  }
 | 
						|
 | 
						|
  if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
 | 
						|
      (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
 | 
						|
       LikelySourceRange.Width == TargetRange.Width)) {
 | 
						|
    if (S.SourceMgr.isInSystemMacro(CC))
 | 
						|
      return;
 | 
						|
 | 
						|
    unsigned DiagID = diag::warn_impcast_integer_sign;
 | 
						|
 | 
						|
    // Traditionally, gcc has warned about this under -Wsign-compare.
 | 
						|
    // We also want to warn about it in -Wconversion.
 | 
						|
    // So if -Wconversion is off, use a completely identical diagnostic
 | 
						|
    // in the sign-compare group.
 | 
						|
    // The conditional-checking code will
 | 
						|
    if (ICContext) {
 | 
						|
      DiagID = diag::warn_impcast_integer_sign_conditional;
 | 
						|
      *ICContext = true;
 | 
						|
    }
 | 
						|
 | 
						|
    return DiagnoseImpCast(S, E, T, CC, DiagID);
 | 
						|
  }
 | 
						|
 | 
						|
  // Diagnose conversions between different enumeration types.
 | 
						|
  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
 | 
						|
  // type, to give us better diagnostics.
 | 
						|
  QualType SourceType = E->getType();
 | 
						|
  if (!S.getLangOpts().CPlusPlus) {
 | 
						|
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | 
						|
      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
 | 
						|
        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
 | 
						|
        SourceType = S.Context.getTypeDeclType(Enum);
 | 
						|
        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
 | 
						|
    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
 | 
						|
      if (SourceEnum->getDecl()->hasNameForLinkage() &&
 | 
						|
          TargetEnum->getDecl()->hasNameForLinkage() &&
 | 
						|
          SourceEnum != TargetEnum) {
 | 
						|
        if (S.SourceMgr.isInSystemMacro(CC))
 | 
						|
          return;
 | 
						|
 | 
						|
        return DiagnoseImpCast(S, E, SourceType, T, CC,
 | 
						|
                               diag::warn_impcast_different_enum_types);
 | 
						|
      }
 | 
						|
}
 | 
						|
 | 
						|
static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
 | 
						|
                                     SourceLocation CC, QualType T);
 | 
						|
 | 
						|
static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
 | 
						|
                                    SourceLocation CC, bool &ICContext) {
 | 
						|
  E = E->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
 | 
						|
    return CheckConditionalOperator(S, CO, CC, T);
 | 
						|
 | 
						|
  AnalyzeImplicitConversions(S, E, CC);
 | 
						|
  if (E->getType() != T)
 | 
						|
    return CheckImplicitConversion(S, E, T, CC, &ICContext);
 | 
						|
}
 | 
						|
 | 
						|
static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
 | 
						|
                                     SourceLocation CC, QualType T) {
 | 
						|
  AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
 | 
						|
 | 
						|
  Expr *TrueExpr = E->getTrueExpr();
 | 
						|
  if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
 | 
						|
    TrueExpr = BCO->getCommon();
 | 
						|
 | 
						|
  bool Suspicious = false;
 | 
						|
  CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
 | 
						|
  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
 | 
						|
 | 
						|
  if (T->isBooleanType())
 | 
						|
    DiagnoseIntInBoolContext(S, E);
 | 
						|
 | 
						|
  // If -Wconversion would have warned about either of the candidates
 | 
						|
  // for a signedness conversion to the context type...
 | 
						|
  if (!Suspicious) return;
 | 
						|
 | 
						|
  // ...but it's currently ignored...
 | 
						|
  if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
 | 
						|
    return;
 | 
						|
 | 
						|
  // ...then check whether it would have warned about either of the
 | 
						|
  // candidates for a signedness conversion to the condition type.
 | 
						|
  if (E->getType() == T) return;
 | 
						|
 | 
						|
  Suspicious = false;
 | 
						|
  CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
 | 
						|
                          E->getType(), CC, &Suspicious);
 | 
						|
  if (!Suspicious)
 | 
						|
    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
 | 
						|
                            E->getType(), CC, &Suspicious);
 | 
						|
}
 | 
						|
 | 
						|
/// Check conversion of given expression to boolean.
 | 
						|
/// Input argument E is a logical expression.
 | 
						|
static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
 | 
						|
  if (S.getLangOpts().Bool)
 | 
						|
    return;
 | 
						|
  if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
 | 
						|
    return;
 | 
						|
  CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct AnalyzeImplicitConversionsWorkItem {
 | 
						|
  Expr *E;
 | 
						|
  SourceLocation CC;
 | 
						|
  bool IsListInit;
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
/// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
 | 
						|
/// that should be visited are added to WorkList.
 | 
						|
static void AnalyzeImplicitConversions(
 | 
						|
    Sema &S, AnalyzeImplicitConversionsWorkItem Item,
 | 
						|
    llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
 | 
						|
  Expr *OrigE = Item.E;
 | 
						|
  SourceLocation CC = Item.CC;
 | 
						|
 | 
						|
  QualType T = OrigE->getType();
 | 
						|
  Expr *E = OrigE->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  // Propagate whether we are in a C++ list initialization expression.
 | 
						|
  // If so, we do not issue warnings for implicit int-float conversion
 | 
						|
  // precision loss, because C++11 narrowing already handles it.
 | 
						|
  bool IsListInit = Item.IsListInit ||
 | 
						|
                    (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
 | 
						|
 | 
						|
  if (E->isTypeDependent() || E->isValueDependent())
 | 
						|
    return;
 | 
						|
 | 
						|
  Expr *SourceExpr = E;
 | 
						|
  // Examine, but don't traverse into the source expression of an
 | 
						|
  // OpaqueValueExpr, since it may have multiple parents and we don't want to
 | 
						|
  // emit duplicate diagnostics. Its fine to examine the form or attempt to
 | 
						|
  // evaluate it in the context of checking the specific conversion to T though.
 | 
						|
  if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
 | 
						|
    if (auto *Src = OVE->getSourceExpr())
 | 
						|
      SourceExpr = Src;
 | 
						|
 | 
						|
  if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
 | 
						|
    if (UO->getOpcode() == UO_Not &&
 | 
						|
        UO->getSubExpr()->isKnownToHaveBooleanValue())
 | 
						|
      S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
 | 
						|
          << OrigE->getSourceRange() << T->isBooleanType()
 | 
						|
          << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
 | 
						|
 | 
						|
  // For conditional operators, we analyze the arguments as if they
 | 
						|
  // were being fed directly into the output.
 | 
						|
  if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
 | 
						|
    CheckConditionalOperator(S, CO, CC, T);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check implicit argument conversions for function calls.
 | 
						|
  if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
 | 
						|
    CheckImplicitArgumentConversions(S, Call, CC);
 | 
						|
 | 
						|
  // Go ahead and check any implicit conversions we might have skipped.
 | 
						|
  // The non-canonical typecheck is just an optimization;
 | 
						|
  // CheckImplicitConversion will filter out dead implicit conversions.
 | 
						|
  if (SourceExpr->getType() != T)
 | 
						|
    CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
 | 
						|
 | 
						|
  // Now continue drilling into this expression.
 | 
						|
 | 
						|
  if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
 | 
						|
    // The bound subexpressions in a PseudoObjectExpr are not reachable
 | 
						|
    // as transitive children.
 | 
						|
    // FIXME: Use a more uniform representation for this.
 | 
						|
    for (auto *SE : POE->semantics())
 | 
						|
      if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
 | 
						|
        WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip past explicit casts.
 | 
						|
  if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
 | 
						|
    E = CE->getSubExpr()->IgnoreParenImpCasts();
 | 
						|
    if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
 | 
						|
      S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
 | 
						|
    WorkList.push_back({E, CC, IsListInit});
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | 
						|
    // Do a somewhat different check with comparison operators.
 | 
						|
    if (BO->isComparisonOp())
 | 
						|
      return AnalyzeComparison(S, BO);
 | 
						|
 | 
						|
    // And with simple assignments.
 | 
						|
    if (BO->getOpcode() == BO_Assign)
 | 
						|
      return AnalyzeAssignment(S, BO);
 | 
						|
    // And with compound assignments.
 | 
						|
    if (BO->isAssignmentOp())
 | 
						|
      return AnalyzeCompoundAssignment(S, BO);
 | 
						|
  }
 | 
						|
 | 
						|
  // These break the otherwise-useful invariant below.  Fortunately,
 | 
						|
  // we don't really need to recurse into them, because any internal
 | 
						|
  // expressions should have been analyzed already when they were
 | 
						|
  // built into statements.
 | 
						|
  if (isa<StmtExpr>(E)) return;
 | 
						|
 | 
						|
  // Don't descend into unevaluated contexts.
 | 
						|
  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
 | 
						|
 | 
						|
  // Now just recurse over the expression's children.
 | 
						|
  CC = E->getExprLoc();
 | 
						|
  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
 | 
						|
  bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
 | 
						|
  for (Stmt *SubStmt : E->children()) {
 | 
						|
    Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
 | 
						|
    if (!ChildExpr)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (IsLogicalAndOperator &&
 | 
						|
        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
 | 
						|
      // Ignore checking string literals that are in logical and operators.
 | 
						|
      // This is a common pattern for asserts.
 | 
						|
      continue;
 | 
						|
    WorkList.push_back({ChildExpr, CC, IsListInit});
 | 
						|
  }
 | 
						|
 | 
						|
  if (BO && BO->isLogicalOp()) {
 | 
						|
    Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
 | 
						|
    if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
 | 
						|
      ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
 | 
						|
 | 
						|
    SubExpr = BO->getRHS()->IgnoreParenImpCasts();
 | 
						|
    if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
 | 
						|
      ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
 | 
						|
    if (U->getOpcode() == UO_LNot) {
 | 
						|
      ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
 | 
						|
    } else if (U->getOpcode() != UO_AddrOf) {
 | 
						|
      if (U->getSubExpr()->getType()->isAtomicType())
 | 
						|
        S.Diag(U->getSubExpr()->getBeginLoc(),
 | 
						|
               diag::warn_atomic_implicit_seq_cst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AnalyzeImplicitConversions - Find and report any interesting
 | 
						|
/// implicit conversions in the given expression.  There are a couple
 | 
						|
/// of competing diagnostics here, -Wconversion and -Wsign-compare.
 | 
						|
static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
 | 
						|
                                       bool IsListInit/*= false*/) {
 | 
						|
  llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
 | 
						|
  WorkList.push_back({OrigE, CC, IsListInit});
 | 
						|
  while (!WorkList.empty())
 | 
						|
    AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose integer type and any valid implicit conversion to it.
 | 
						|
static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
 | 
						|
  // Taking into account implicit conversions,
 | 
						|
  // allow any integer.
 | 
						|
  if (!E->getType()->isIntegerType()) {
 | 
						|
    S.Diag(E->getBeginLoc(),
 | 
						|
           diag::err_opencl_enqueue_kernel_invalid_local_size_type);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Potentially emit standard warnings for implicit conversions if enabled
 | 
						|
  // using -Wconversion.
 | 
						|
  CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Helper function for Sema::DiagnoseAlwaysNonNullPointer.
 | 
						|
// Returns true when emitting a warning about taking the address of a reference.
 | 
						|
static bool CheckForReference(Sema &SemaRef, const Expr *E,
 | 
						|
                              const PartialDiagnostic &PD) {
 | 
						|
  E = E->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  const FunctionDecl *FD = nullptr;
 | 
						|
 | 
						|
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
 | 
						|
    if (!DRE->getDecl()->getType()->isReferenceType())
 | 
						|
      return false;
 | 
						|
  } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
 | 
						|
    if (!M->getMemberDecl()->getType()->isReferenceType())
 | 
						|
      return false;
 | 
						|
  } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
 | 
						|
    if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
 | 
						|
      return false;
 | 
						|
    FD = Call->getDirectCallee();
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  SemaRef.Diag(E->getExprLoc(), PD);
 | 
						|
 | 
						|
  // If possible, point to location of function.
 | 
						|
  if (FD) {
 | 
						|
    SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if the SourceLocation is expanded from any macro body.
 | 
						|
// Returns false if the SourceLocation is invalid, is from not in a macro
 | 
						|
// expansion, or is from expanded from a top-level macro argument.
 | 
						|
static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
 | 
						|
  if (Loc.isInvalid())
 | 
						|
    return false;
 | 
						|
 | 
						|
  while (Loc.isMacroID()) {
 | 
						|
    if (SM.isMacroBodyExpansion(Loc))
 | 
						|
      return true;
 | 
						|
    Loc = SM.getImmediateMacroCallerLoc(Loc);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose pointers that are always non-null.
 | 
						|
/// \param E the expression containing the pointer
 | 
						|
/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
 | 
						|
/// compared to a null pointer
 | 
						|
/// \param IsEqual True when the comparison is equal to a null pointer
 | 
						|
/// \param Range Extra SourceRange to highlight in the diagnostic
 | 
						|
void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
 | 
						|
                                        Expr::NullPointerConstantKind NullKind,
 | 
						|
                                        bool IsEqual, SourceRange Range) {
 | 
						|
  if (!E)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Don't warn inside macros.
 | 
						|
  if (E->getExprLoc().isMacroID()) {
 | 
						|
    const SourceManager &SM = getSourceManager();
 | 
						|
    if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
 | 
						|
        IsInAnyMacroBody(SM, Range.getBegin()))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  E = E->IgnoreImpCasts();
 | 
						|
 | 
						|
  const bool IsCompare = NullKind != Expr::NPCK_NotNull;
 | 
						|
 | 
						|
  if (isa<CXXThisExpr>(E)) {
 | 
						|
    unsigned DiagID = IsCompare ? diag::warn_this_null_compare
 | 
						|
                                : diag::warn_this_bool_conversion;
 | 
						|
    Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsAddressOf = false;
 | 
						|
 | 
						|
  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | 
						|
    if (UO->getOpcode() != UO_AddrOf)
 | 
						|
      return;
 | 
						|
    IsAddressOf = true;
 | 
						|
    E = UO->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsAddressOf) {
 | 
						|
    unsigned DiagID = IsCompare
 | 
						|
                          ? diag::warn_address_of_reference_null_compare
 | 
						|
                          : diag::warn_address_of_reference_bool_conversion;
 | 
						|
    PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
 | 
						|
                                         << IsEqual;
 | 
						|
    if (CheckForReference(*this, E, PD)) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
 | 
						|
    bool IsParam = isa<NonNullAttr>(NonnullAttr);
 | 
						|
    std::string Str;
 | 
						|
    llvm::raw_string_ostream S(Str);
 | 
						|
    E->printPretty(S, nullptr, getPrintingPolicy());
 | 
						|
    unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
 | 
						|
                                : diag::warn_cast_nonnull_to_bool;
 | 
						|
    Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
 | 
						|
      << E->getSourceRange() << Range << IsEqual;
 | 
						|
    Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
 | 
						|
  };
 | 
						|
 | 
						|
  // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
 | 
						|
  if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
 | 
						|
    if (auto *Callee = Call->getDirectCallee()) {
 | 
						|
      if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
 | 
						|
        ComplainAboutNonnullParamOrCall(A);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Expect to find a single Decl.  Skip anything more complicated.
 | 
						|
  ValueDecl *D = nullptr;
 | 
						|
  if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
 | 
						|
    D = R->getDecl();
 | 
						|
  } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
 | 
						|
    D = M->getMemberDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // Weak Decls can be null.
 | 
						|
  if (!D || D->isWeak())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check for parameter decl with nonnull attribute
 | 
						|
  if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
 | 
						|
    if (getCurFunction() &&
 | 
						|
        !getCurFunction()->ModifiedNonNullParams.count(PV)) {
 | 
						|
      if (const Attr *A = PV->getAttr<NonNullAttr>()) {
 | 
						|
        ComplainAboutNonnullParamOrCall(A);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
 | 
						|
        // Skip function template not specialized yet.
 | 
						|
        if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
 | 
						|
          return;
 | 
						|
        auto ParamIter = llvm::find(FD->parameters(), PV);
 | 
						|
        assert(ParamIter != FD->param_end());
 | 
						|
        unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
 | 
						|
 | 
						|
        for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
 | 
						|
          if (!NonNull->args_size()) {
 | 
						|
              ComplainAboutNonnullParamOrCall(NonNull);
 | 
						|
              return;
 | 
						|
          }
 | 
						|
 | 
						|
          for (const ParamIdx &ArgNo : NonNull->args()) {
 | 
						|
            if (ArgNo.getASTIndex() == ParamNo) {
 | 
						|
              ComplainAboutNonnullParamOrCall(NonNull);
 | 
						|
              return;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  QualType T = D->getType();
 | 
						|
  const bool IsArray = T->isArrayType();
 | 
						|
  const bool IsFunction = T->isFunctionType();
 | 
						|
 | 
						|
  // Address of function is used to silence the function warning.
 | 
						|
  if (IsAddressOf && IsFunction) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Found nothing.
 | 
						|
  if (!IsAddressOf && !IsFunction && !IsArray)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Pretty print the expression for the diagnostic.
 | 
						|
  std::string Str;
 | 
						|
  llvm::raw_string_ostream S(Str);
 | 
						|
  E->printPretty(S, nullptr, getPrintingPolicy());
 | 
						|
 | 
						|
  unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
 | 
						|
                              : diag::warn_impcast_pointer_to_bool;
 | 
						|
  enum {
 | 
						|
    AddressOf,
 | 
						|
    FunctionPointer,
 | 
						|
    ArrayPointer
 | 
						|
  } DiagType;
 | 
						|
  if (IsAddressOf)
 | 
						|
    DiagType = AddressOf;
 | 
						|
  else if (IsFunction)
 | 
						|
    DiagType = FunctionPointer;
 | 
						|
  else if (IsArray)
 | 
						|
    DiagType = ArrayPointer;
 | 
						|
  else
 | 
						|
    llvm_unreachable("Could not determine diagnostic.");
 | 
						|
  Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
 | 
						|
                                << Range << IsEqual;
 | 
						|
 | 
						|
  if (!IsFunction)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Suggest '&' to silence the function warning.
 | 
						|
  Diag(E->getExprLoc(), diag::note_function_warning_silence)
 | 
						|
      << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
 | 
						|
 | 
						|
  // Check to see if '()' fixit should be emitted.
 | 
						|
  QualType ReturnType;
 | 
						|
  UnresolvedSet<4> NonTemplateOverloads;
 | 
						|
  tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
 | 
						|
  if (ReturnType.isNull())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (IsCompare) {
 | 
						|
    // There are two cases here.  If there is null constant, the only suggest
 | 
						|
    // for a pointer return type.  If the null is 0, then suggest if the return
 | 
						|
    // type is a pointer or an integer type.
 | 
						|
    if (!ReturnType->isPointerType()) {
 | 
						|
      if (NullKind == Expr::NPCK_ZeroExpression ||
 | 
						|
          NullKind == Expr::NPCK_ZeroLiteral) {
 | 
						|
        if (!ReturnType->isIntegerType())
 | 
						|
          return;
 | 
						|
      } else {
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else { // !IsCompare
 | 
						|
    // For function to bool, only suggest if the function pointer has bool
 | 
						|
    // return type.
 | 
						|
    if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  Diag(E->getExprLoc(), diag::note_function_to_function_call)
 | 
						|
      << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnoses "dangerous" implicit conversions within the given
 | 
						|
/// expression (which is a full expression).  Implements -Wconversion
 | 
						|
/// and -Wsign-compare.
 | 
						|
///
 | 
						|
/// \param CC the "context" location of the implicit conversion, i.e.
 | 
						|
///   the most location of the syntactic entity requiring the implicit
 | 
						|
///   conversion
 | 
						|
void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
 | 
						|
  // Don't diagnose in unevaluated contexts.
 | 
						|
  if (isUnevaluatedContext())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Don't diagnose for value- or type-dependent expressions.
 | 
						|
  if (E->isTypeDependent() || E->isValueDependent())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check for array bounds violations in cases where the check isn't triggered
 | 
						|
  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
 | 
						|
  // ArraySubscriptExpr is on the RHS of a variable initialization.
 | 
						|
  CheckArrayAccess(E);
 | 
						|
 | 
						|
  // This is not the right CC for (e.g.) a variable initialization.
 | 
						|
  AnalyzeImplicitConversions(*this, E, CC);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
 | 
						|
/// Input argument E is a logical expression.
 | 
						|
void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
 | 
						|
  ::CheckBoolLikeConversion(*this, E, CC);
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose when expression is an integer constant expression and its evaluation
 | 
						|
/// results in integer overflow
 | 
						|
void Sema::CheckForIntOverflow (Expr *E) {
 | 
						|
  // Use a work list to deal with nested struct initializers.
 | 
						|
  SmallVector<Expr *, 2> Exprs(1, E);
 | 
						|
 | 
						|
  do {
 | 
						|
    Expr *OriginalE = Exprs.pop_back_val();
 | 
						|
    Expr *E = OriginalE->IgnoreParenCasts();
 | 
						|
 | 
						|
    if (isa<BinaryOperator>(E)) {
 | 
						|
      E->EvaluateForOverflow(Context);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
 | 
						|
      Exprs.append(InitList->inits().begin(), InitList->inits().end());
 | 
						|
    else if (isa<ObjCBoxedExpr>(OriginalE))
 | 
						|
      E->EvaluateForOverflow(Context);
 | 
						|
    else if (auto Call = dyn_cast<CallExpr>(E))
 | 
						|
      Exprs.append(Call->arg_begin(), Call->arg_end());
 | 
						|
    else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
 | 
						|
      Exprs.append(Message->arg_begin(), Message->arg_end());
 | 
						|
  } while (!Exprs.empty());
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Visitor for expressions which looks for unsequenced operations on the
 | 
						|
/// same object.
 | 
						|
class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
 | 
						|
  using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
 | 
						|
 | 
						|
  /// A tree of sequenced regions within an expression. Two regions are
 | 
						|
  /// unsequenced if one is an ancestor or a descendent of the other. When we
 | 
						|
  /// finish processing an expression with sequencing, such as a comma
 | 
						|
  /// expression, we fold its tree nodes into its parent, since they are
 | 
						|
  /// unsequenced with respect to nodes we will visit later.
 | 
						|
  class SequenceTree {
 | 
						|
    struct Value {
 | 
						|
      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
 | 
						|
      unsigned Parent : 31;
 | 
						|
      unsigned Merged : 1;
 | 
						|
    };
 | 
						|
    SmallVector<Value, 8> Values;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// A region within an expression which may be sequenced with respect
 | 
						|
    /// to some other region.
 | 
						|
    class Seq {
 | 
						|
      friend class SequenceTree;
 | 
						|
 | 
						|
      unsigned Index;
 | 
						|
 | 
						|
      explicit Seq(unsigned N) : Index(N) {}
 | 
						|
 | 
						|
    public:
 | 
						|
      Seq() : Index(0) {}
 | 
						|
    };
 | 
						|
 | 
						|
    SequenceTree() { Values.push_back(Value(0)); }
 | 
						|
    Seq root() const { return Seq(0); }
 | 
						|
 | 
						|
    /// Create a new sequence of operations, which is an unsequenced
 | 
						|
    /// subset of \p Parent. This sequence of operations is sequenced with
 | 
						|
    /// respect to other children of \p Parent.
 | 
						|
    Seq allocate(Seq Parent) {
 | 
						|
      Values.push_back(Value(Parent.Index));
 | 
						|
      return Seq(Values.size() - 1);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Merge a sequence of operations into its parent.
 | 
						|
    void merge(Seq S) {
 | 
						|
      Values[S.Index].Merged = true;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Determine whether two operations are unsequenced. This operation
 | 
						|
    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
 | 
						|
    /// should have been merged into its parent as appropriate.
 | 
						|
    bool isUnsequenced(Seq Cur, Seq Old) {
 | 
						|
      unsigned C = representative(Cur.Index);
 | 
						|
      unsigned Target = representative(Old.Index);
 | 
						|
      while (C >= Target) {
 | 
						|
        if (C == Target)
 | 
						|
          return true;
 | 
						|
        C = Values[C].Parent;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// Pick a representative for a sequence.
 | 
						|
    unsigned representative(unsigned K) {
 | 
						|
      if (Values[K].Merged)
 | 
						|
        // Perform path compression as we go.
 | 
						|
        return Values[K].Parent = representative(Values[K].Parent);
 | 
						|
      return K;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// An object for which we can track unsequenced uses.
 | 
						|
  using Object = const NamedDecl *;
 | 
						|
 | 
						|
  /// Different flavors of object usage which we track. We only track the
 | 
						|
  /// least-sequenced usage of each kind.
 | 
						|
  enum UsageKind {
 | 
						|
    /// A read of an object. Multiple unsequenced reads are OK.
 | 
						|
    UK_Use,
 | 
						|
 | 
						|
    /// A modification of an object which is sequenced before the value
 | 
						|
    /// computation of the expression, such as ++n in C++.
 | 
						|
    UK_ModAsValue,
 | 
						|
 | 
						|
    /// A modification of an object which is not sequenced before the value
 | 
						|
    /// computation of the expression, such as n++.
 | 
						|
    UK_ModAsSideEffect,
 | 
						|
 | 
						|
    UK_Count = UK_ModAsSideEffect + 1
 | 
						|
  };
 | 
						|
 | 
						|
  /// Bundle together a sequencing region and the expression corresponding
 | 
						|
  /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
 | 
						|
  struct Usage {
 | 
						|
    const Expr *UsageExpr;
 | 
						|
    SequenceTree::Seq Seq;
 | 
						|
 | 
						|
    Usage() : UsageExpr(nullptr), Seq() {}
 | 
						|
  };
 | 
						|
 | 
						|
  struct UsageInfo {
 | 
						|
    Usage Uses[UK_Count];
 | 
						|
 | 
						|
    /// Have we issued a diagnostic for this object already?
 | 
						|
    bool Diagnosed;
 | 
						|
 | 
						|
    UsageInfo() : Uses(), Diagnosed(false) {}
 | 
						|
  };
 | 
						|
  using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
 | 
						|
 | 
						|
  Sema &SemaRef;
 | 
						|
 | 
						|
  /// Sequenced regions within the expression.
 | 
						|
  SequenceTree Tree;
 | 
						|
 | 
						|
  /// Declaration modifications and references which we have seen.
 | 
						|
  UsageInfoMap UsageMap;
 | 
						|
 | 
						|
  /// The region we are currently within.
 | 
						|
  SequenceTree::Seq Region;
 | 
						|
 | 
						|
  /// Filled in with declarations which were modified as a side-effect
 | 
						|
  /// (that is, post-increment operations).
 | 
						|
  SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
 | 
						|
 | 
						|
  /// Expressions to check later. We defer checking these to reduce
 | 
						|
  /// stack usage.
 | 
						|
  SmallVectorImpl<const Expr *> &WorkList;
 | 
						|
 | 
						|
  /// RAII object wrapping the visitation of a sequenced subexpression of an
 | 
						|
  /// expression. At the end of this process, the side-effects of the evaluation
 | 
						|
  /// become sequenced with respect to the value computation of the result, so
 | 
						|
  /// we downgrade any UK_ModAsSideEffect within the evaluation to
 | 
						|
  /// UK_ModAsValue.
 | 
						|
  struct SequencedSubexpression {
 | 
						|
    SequencedSubexpression(SequenceChecker &Self)
 | 
						|
      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
 | 
						|
      Self.ModAsSideEffect = &ModAsSideEffect;
 | 
						|
    }
 | 
						|
 | 
						|
    ~SequencedSubexpression() {
 | 
						|
      for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
 | 
						|
        // Add a new usage with usage kind UK_ModAsValue, and then restore
 | 
						|
        // the previous usage with UK_ModAsSideEffect (thus clearing it if
 | 
						|
        // the previous one was empty).
 | 
						|
        UsageInfo &UI = Self.UsageMap[M.first];
 | 
						|
        auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
 | 
						|
        Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
 | 
						|
        SideEffectUsage = M.second;
 | 
						|
      }
 | 
						|
      Self.ModAsSideEffect = OldModAsSideEffect;
 | 
						|
    }
 | 
						|
 | 
						|
    SequenceChecker &Self;
 | 
						|
    SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
 | 
						|
    SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
 | 
						|
  };
 | 
						|
 | 
						|
  /// RAII object wrapping the visitation of a subexpression which we might
 | 
						|
  /// choose to evaluate as a constant. If any subexpression is evaluated and
 | 
						|
  /// found to be non-constant, this allows us to suppress the evaluation of
 | 
						|
  /// the outer expression.
 | 
						|
  class EvaluationTracker {
 | 
						|
  public:
 | 
						|
    EvaluationTracker(SequenceChecker &Self)
 | 
						|
        : Self(Self), Prev(Self.EvalTracker) {
 | 
						|
      Self.EvalTracker = this;
 | 
						|
    }
 | 
						|
 | 
						|
    ~EvaluationTracker() {
 | 
						|
      Self.EvalTracker = Prev;
 | 
						|
      if (Prev)
 | 
						|
        Prev->EvalOK &= EvalOK;
 | 
						|
    }
 | 
						|
 | 
						|
    bool evaluate(const Expr *E, bool &Result) {
 | 
						|
      if (!EvalOK || E->isValueDependent())
 | 
						|
        return false;
 | 
						|
      EvalOK = E->EvaluateAsBooleanCondition(
 | 
						|
          Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
 | 
						|
      return EvalOK;
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    SequenceChecker &Self;
 | 
						|
    EvaluationTracker *Prev;
 | 
						|
    bool EvalOK = true;
 | 
						|
  } *EvalTracker = nullptr;
 | 
						|
 | 
						|
  /// Find the object which is produced by the specified expression,
 | 
						|
  /// if any.
 | 
						|
  Object getObject(const Expr *E, bool Mod) const {
 | 
						|
    E = E->IgnoreParenCasts();
 | 
						|
    if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | 
						|
      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
 | 
						|
        return getObject(UO->getSubExpr(), Mod);
 | 
						|
    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | 
						|
      if (BO->getOpcode() == BO_Comma)
 | 
						|
        return getObject(BO->getRHS(), Mod);
 | 
						|
      if (Mod && BO->isAssignmentOp())
 | 
						|
        return getObject(BO->getLHS(), Mod);
 | 
						|
    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
 | 
						|
      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
 | 
						|
      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
 | 
						|
        return ME->getMemberDecl();
 | 
						|
    } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | 
						|
      // FIXME: If this is a reference, map through to its value.
 | 
						|
      return DRE->getDecl();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Note that an object \p O was modified or used by an expression
 | 
						|
  /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
 | 
						|
  /// the object \p O as obtained via the \p UsageMap.
 | 
						|
  void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
 | 
						|
    // Get the old usage for the given object and usage kind.
 | 
						|
    Usage &U = UI.Uses[UK];
 | 
						|
    if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
 | 
						|
      // If we have a modification as side effect and are in a sequenced
 | 
						|
      // subexpression, save the old Usage so that we can restore it later
 | 
						|
      // in SequencedSubexpression::~SequencedSubexpression.
 | 
						|
      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
 | 
						|
        ModAsSideEffect->push_back(std::make_pair(O, U));
 | 
						|
      // Then record the new usage with the current sequencing region.
 | 
						|
      U.UsageExpr = UsageExpr;
 | 
						|
      U.Seq = Region;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// Check whether a modification or use of an object \p O in an expression
 | 
						|
  /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
 | 
						|
  /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
 | 
						|
  /// \p IsModMod is true when we are checking for a mod-mod unsequenced
 | 
						|
  /// usage and false we are checking for a mod-use unsequenced usage.
 | 
						|
  void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
 | 
						|
                  UsageKind OtherKind, bool IsModMod) {
 | 
						|
    if (UI.Diagnosed)
 | 
						|
      return;
 | 
						|
 | 
						|
    const Usage &U = UI.Uses[OtherKind];
 | 
						|
    if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
 | 
						|
      return;
 | 
						|
 | 
						|
    const Expr *Mod = U.UsageExpr;
 | 
						|
    const Expr *ModOrUse = UsageExpr;
 | 
						|
    if (OtherKind == UK_Use)
 | 
						|
      std::swap(Mod, ModOrUse);
 | 
						|
 | 
						|
    SemaRef.DiagRuntimeBehavior(
 | 
						|
        Mod->getExprLoc(), {Mod, ModOrUse},
 | 
						|
        SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
 | 
						|
                               : diag::warn_unsequenced_mod_use)
 | 
						|
            << O << SourceRange(ModOrUse->getExprLoc()));
 | 
						|
    UI.Diagnosed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // A note on note{Pre, Post}{Use, Mod}:
 | 
						|
  //
 | 
						|
  // (It helps to follow the algorithm with an expression such as
 | 
						|
  //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
 | 
						|
  //  operations before C++17 and both are well-defined in C++17).
 | 
						|
  //
 | 
						|
  // When visiting a node which uses/modify an object we first call notePreUse
 | 
						|
  // or notePreMod before visiting its sub-expression(s). At this point the
 | 
						|
  // children of the current node have not yet been visited and so the eventual
 | 
						|
  // uses/modifications resulting from the children of the current node have not
 | 
						|
  // been recorded yet.
 | 
						|
  //
 | 
						|
  // We then visit the children of the current node. After that notePostUse or
 | 
						|
  // notePostMod is called. These will 1) detect an unsequenced modification
 | 
						|
  // as side effect (as in "k++ + k") and 2) add a new usage with the
 | 
						|
  // appropriate usage kind.
 | 
						|
  //
 | 
						|
  // We also have to be careful that some operation sequences modification as
 | 
						|
  // side effect as well (for example: || or ,). To account for this we wrap
 | 
						|
  // the visitation of such a sub-expression (for example: the LHS of || or ,)
 | 
						|
  // with SequencedSubexpression. SequencedSubexpression is an RAII object
 | 
						|
  // which record usages which are modifications as side effect, and then
 | 
						|
  // downgrade them (or more accurately restore the previous usage which was a
 | 
						|
  // modification as side effect) when exiting the scope of the sequenced
 | 
						|
  // subexpression.
 | 
						|
 | 
						|
  void notePreUse(Object O, const Expr *UseExpr) {
 | 
						|
    UsageInfo &UI = UsageMap[O];
 | 
						|
    // Uses conflict with other modifications.
 | 
						|
    checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  void notePostUse(Object O, const Expr *UseExpr) {
 | 
						|
    UsageInfo &UI = UsageMap[O];
 | 
						|
    checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
 | 
						|
               /*IsModMod=*/false);
 | 
						|
    addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
 | 
						|
  }
 | 
						|
 | 
						|
  void notePreMod(Object O, const Expr *ModExpr) {
 | 
						|
    UsageInfo &UI = UsageMap[O];
 | 
						|
    // Modifications conflict with other modifications and with uses.
 | 
						|
    checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
 | 
						|
    checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
 | 
						|
    UsageInfo &UI = UsageMap[O];
 | 
						|
    checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
 | 
						|
               /*IsModMod=*/true);
 | 
						|
    addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  SequenceChecker(Sema &S, const Expr *E,
 | 
						|
                  SmallVectorImpl<const Expr *> &WorkList)
 | 
						|
      : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
 | 
						|
    Visit(E);
 | 
						|
    // Silence a -Wunused-private-field since WorkList is now unused.
 | 
						|
    // TODO: Evaluate if it can be used, and if not remove it.
 | 
						|
    (void)this->WorkList;
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitStmt(const Stmt *S) {
 | 
						|
    // Skip all statements which aren't expressions for now.
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitExpr(const Expr *E) {
 | 
						|
    // By default, just recurse to evaluated subexpressions.
 | 
						|
    Base::VisitStmt(E);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitCastExpr(const CastExpr *E) {
 | 
						|
    Object O = Object();
 | 
						|
    if (E->getCastKind() == CK_LValueToRValue)
 | 
						|
      O = getObject(E->getSubExpr(), false);
 | 
						|
 | 
						|
    if (O)
 | 
						|
      notePreUse(O, E);
 | 
						|
    VisitExpr(E);
 | 
						|
    if (O)
 | 
						|
      notePostUse(O, E);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitSequencedExpressions(const Expr *SequencedBefore,
 | 
						|
                                 const Expr *SequencedAfter) {
 | 
						|
    SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
 | 
						|
    SequenceTree::Seq AfterRegion = Tree.allocate(Region);
 | 
						|
    SequenceTree::Seq OldRegion = Region;
 | 
						|
 | 
						|
    {
 | 
						|
      SequencedSubexpression SeqBefore(*this);
 | 
						|
      Region = BeforeRegion;
 | 
						|
      Visit(SequencedBefore);
 | 
						|
    }
 | 
						|
 | 
						|
    Region = AfterRegion;
 | 
						|
    Visit(SequencedAfter);
 | 
						|
 | 
						|
    Region = OldRegion;
 | 
						|
 | 
						|
    Tree.merge(BeforeRegion);
 | 
						|
    Tree.merge(AfterRegion);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
 | 
						|
    // C++17 [expr.sub]p1:
 | 
						|
    //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
 | 
						|
    //   expression E1 is sequenced before the expression E2.
 | 
						|
    if (SemaRef.getLangOpts().CPlusPlus17)
 | 
						|
      VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
 | 
						|
    else {
 | 
						|
      Visit(ASE->getLHS());
 | 
						|
      Visit(ASE->getRHS());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
 | 
						|
  void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
 | 
						|
  void VisitBinPtrMem(const BinaryOperator *BO) {
 | 
						|
    // C++17 [expr.mptr.oper]p4:
 | 
						|
    //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
 | 
						|
    //  the expression E1 is sequenced before the expression E2.
 | 
						|
    if (SemaRef.getLangOpts().CPlusPlus17)
 | 
						|
      VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
 | 
						|
    else {
 | 
						|
      Visit(BO->getLHS());
 | 
						|
      Visit(BO->getRHS());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
 | 
						|
  void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
 | 
						|
  void VisitBinShlShr(const BinaryOperator *BO) {
 | 
						|
    // C++17 [expr.shift]p4:
 | 
						|
    //  The expression E1 is sequenced before the expression E2.
 | 
						|
    if (SemaRef.getLangOpts().CPlusPlus17)
 | 
						|
      VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
 | 
						|
    else {
 | 
						|
      Visit(BO->getLHS());
 | 
						|
      Visit(BO->getRHS());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitBinComma(const BinaryOperator *BO) {
 | 
						|
    // C++11 [expr.comma]p1:
 | 
						|
    //   Every value computation and side effect associated with the left
 | 
						|
    //   expression is sequenced before every value computation and side
 | 
						|
    //   effect associated with the right expression.
 | 
						|
    VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitBinAssign(const BinaryOperator *BO) {
 | 
						|
    SequenceTree::Seq RHSRegion;
 | 
						|
    SequenceTree::Seq LHSRegion;
 | 
						|
    if (SemaRef.getLangOpts().CPlusPlus17) {
 | 
						|
      RHSRegion = Tree.allocate(Region);
 | 
						|
      LHSRegion = Tree.allocate(Region);
 | 
						|
    } else {
 | 
						|
      RHSRegion = Region;
 | 
						|
      LHSRegion = Region;
 | 
						|
    }
 | 
						|
    SequenceTree::Seq OldRegion = Region;
 | 
						|
 | 
						|
    // C++11 [expr.ass]p1:
 | 
						|
    //  [...] the assignment is sequenced after the value computation
 | 
						|
    //  of the right and left operands, [...]
 | 
						|
    //
 | 
						|
    // so check it before inspecting the operands and update the
 | 
						|
    // map afterwards.
 | 
						|
    Object O = getObject(BO->getLHS(), /*Mod=*/true);
 | 
						|
    if (O)
 | 
						|
      notePreMod(O, BO);
 | 
						|
 | 
						|
    if (SemaRef.getLangOpts().CPlusPlus17) {
 | 
						|
      // C++17 [expr.ass]p1:
 | 
						|
      //  [...] The right operand is sequenced before the left operand. [...]
 | 
						|
      {
 | 
						|
        SequencedSubexpression SeqBefore(*this);
 | 
						|
        Region = RHSRegion;
 | 
						|
        Visit(BO->getRHS());
 | 
						|
      }
 | 
						|
 | 
						|
      Region = LHSRegion;
 | 
						|
      Visit(BO->getLHS());
 | 
						|
 | 
						|
      if (O && isa<CompoundAssignOperator>(BO))
 | 
						|
        notePostUse(O, BO);
 | 
						|
 | 
						|
    } else {
 | 
						|
      // C++11 does not specify any sequencing between the LHS and RHS.
 | 
						|
      Region = LHSRegion;
 | 
						|
      Visit(BO->getLHS());
 | 
						|
 | 
						|
      if (O && isa<CompoundAssignOperator>(BO))
 | 
						|
        notePostUse(O, BO);
 | 
						|
 | 
						|
      Region = RHSRegion;
 | 
						|
      Visit(BO->getRHS());
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [expr.ass]p1:
 | 
						|
    //  the assignment is sequenced [...] before the value computation of the
 | 
						|
    //  assignment expression.
 | 
						|
    // C11 6.5.16/3 has no such rule.
 | 
						|
    Region = OldRegion;
 | 
						|
    if (O)
 | 
						|
      notePostMod(O, BO,
 | 
						|
                  SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
 | 
						|
                                                  : UK_ModAsSideEffect);
 | 
						|
    if (SemaRef.getLangOpts().CPlusPlus17) {
 | 
						|
      Tree.merge(RHSRegion);
 | 
						|
      Tree.merge(LHSRegion);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
 | 
						|
    VisitBinAssign(CAO);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
 | 
						|
  void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
 | 
						|
  void VisitUnaryPreIncDec(const UnaryOperator *UO) {
 | 
						|
    Object O = getObject(UO->getSubExpr(), true);
 | 
						|
    if (!O)
 | 
						|
      return VisitExpr(UO);
 | 
						|
 | 
						|
    notePreMod(O, UO);
 | 
						|
    Visit(UO->getSubExpr());
 | 
						|
    // C++11 [expr.pre.incr]p1:
 | 
						|
    //   the expression ++x is equivalent to x+=1
 | 
						|
    notePostMod(O, UO,
 | 
						|
                SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
 | 
						|
                                                : UK_ModAsSideEffect);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
 | 
						|
  void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
 | 
						|
  void VisitUnaryPostIncDec(const UnaryOperator *UO) {
 | 
						|
    Object O = getObject(UO->getSubExpr(), true);
 | 
						|
    if (!O)
 | 
						|
      return VisitExpr(UO);
 | 
						|
 | 
						|
    notePreMod(O, UO);
 | 
						|
    Visit(UO->getSubExpr());
 | 
						|
    notePostMod(O, UO, UK_ModAsSideEffect);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitBinLOr(const BinaryOperator *BO) {
 | 
						|
    // C++11 [expr.log.or]p2:
 | 
						|
    //  If the second expression is evaluated, every value computation and
 | 
						|
    //  side effect associated with the first expression is sequenced before
 | 
						|
    //  every value computation and side effect associated with the
 | 
						|
    //  second expression.
 | 
						|
    SequenceTree::Seq LHSRegion = Tree.allocate(Region);
 | 
						|
    SequenceTree::Seq RHSRegion = Tree.allocate(Region);
 | 
						|
    SequenceTree::Seq OldRegion = Region;
 | 
						|
 | 
						|
    EvaluationTracker Eval(*this);
 | 
						|
    {
 | 
						|
      SequencedSubexpression Sequenced(*this);
 | 
						|
      Region = LHSRegion;
 | 
						|
      Visit(BO->getLHS());
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [expr.log.or]p1:
 | 
						|
    //  [...] the second operand is not evaluated if the first operand
 | 
						|
    //  evaluates to true.
 | 
						|
    bool EvalResult = false;
 | 
						|
    bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
 | 
						|
    bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
 | 
						|
    if (ShouldVisitRHS) {
 | 
						|
      Region = RHSRegion;
 | 
						|
      Visit(BO->getRHS());
 | 
						|
    }
 | 
						|
 | 
						|
    Region = OldRegion;
 | 
						|
    Tree.merge(LHSRegion);
 | 
						|
    Tree.merge(RHSRegion);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitBinLAnd(const BinaryOperator *BO) {
 | 
						|
    // C++11 [expr.log.and]p2:
 | 
						|
    //  If the second expression is evaluated, every value computation and
 | 
						|
    //  side effect associated with the first expression is sequenced before
 | 
						|
    //  every value computation and side effect associated with the
 | 
						|
    //  second expression.
 | 
						|
    SequenceTree::Seq LHSRegion = Tree.allocate(Region);
 | 
						|
    SequenceTree::Seq RHSRegion = Tree.allocate(Region);
 | 
						|
    SequenceTree::Seq OldRegion = Region;
 | 
						|
 | 
						|
    EvaluationTracker Eval(*this);
 | 
						|
    {
 | 
						|
      SequencedSubexpression Sequenced(*this);
 | 
						|
      Region = LHSRegion;
 | 
						|
      Visit(BO->getLHS());
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [expr.log.and]p1:
 | 
						|
    //  [...] the second operand is not evaluated if the first operand is false.
 | 
						|
    bool EvalResult = false;
 | 
						|
    bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
 | 
						|
    bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
 | 
						|
    if (ShouldVisitRHS) {
 | 
						|
      Region = RHSRegion;
 | 
						|
      Visit(BO->getRHS());
 | 
						|
    }
 | 
						|
 | 
						|
    Region = OldRegion;
 | 
						|
    Tree.merge(LHSRegion);
 | 
						|
    Tree.merge(RHSRegion);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
 | 
						|
    // C++11 [expr.cond]p1:
 | 
						|
    //  [...] Every value computation and side effect associated with the first
 | 
						|
    //  expression is sequenced before every value computation and side effect
 | 
						|
    //  associated with the second or third expression.
 | 
						|
    SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
 | 
						|
 | 
						|
    // No sequencing is specified between the true and false expression.
 | 
						|
    // However since exactly one of both is going to be evaluated we can
 | 
						|
    // consider them to be sequenced. This is needed to avoid warning on
 | 
						|
    // something like "x ? y+= 1 : y += 2;" in the case where we will visit
 | 
						|
    // both the true and false expressions because we can't evaluate x.
 | 
						|
    // This will still allow us to detect an expression like (pre C++17)
 | 
						|
    // "(x ? y += 1 : y += 2) = y".
 | 
						|
    //
 | 
						|
    // We don't wrap the visitation of the true and false expression with
 | 
						|
    // SequencedSubexpression because we don't want to downgrade modifications
 | 
						|
    // as side effect in the true and false expressions after the visition
 | 
						|
    // is done. (for example in the expression "(x ? y++ : y++) + y" we should
 | 
						|
    // not warn between the two "y++", but we should warn between the "y++"
 | 
						|
    // and the "y".
 | 
						|
    SequenceTree::Seq TrueRegion = Tree.allocate(Region);
 | 
						|
    SequenceTree::Seq FalseRegion = Tree.allocate(Region);
 | 
						|
    SequenceTree::Seq OldRegion = Region;
 | 
						|
 | 
						|
    EvaluationTracker Eval(*this);
 | 
						|
    {
 | 
						|
      SequencedSubexpression Sequenced(*this);
 | 
						|
      Region = ConditionRegion;
 | 
						|
      Visit(CO->getCond());
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [expr.cond]p1:
 | 
						|
    // [...] The first expression is contextually converted to bool (Clause 4).
 | 
						|
    // It is evaluated and if it is true, the result of the conditional
 | 
						|
    // expression is the value of the second expression, otherwise that of the
 | 
						|
    // third expression. Only one of the second and third expressions is
 | 
						|
    // evaluated. [...]
 | 
						|
    bool EvalResult = false;
 | 
						|
    bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
 | 
						|
    bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
 | 
						|
    bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
 | 
						|
    if (ShouldVisitTrueExpr) {
 | 
						|
      Region = TrueRegion;
 | 
						|
      Visit(CO->getTrueExpr());
 | 
						|
    }
 | 
						|
    if (ShouldVisitFalseExpr) {
 | 
						|
      Region = FalseRegion;
 | 
						|
      Visit(CO->getFalseExpr());
 | 
						|
    }
 | 
						|
 | 
						|
    Region = OldRegion;
 | 
						|
    Tree.merge(ConditionRegion);
 | 
						|
    Tree.merge(TrueRegion);
 | 
						|
    Tree.merge(FalseRegion);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitCallExpr(const CallExpr *CE) {
 | 
						|
    // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
 | 
						|
 | 
						|
    if (CE->isUnevaluatedBuiltinCall(Context))
 | 
						|
      return;
 | 
						|
 | 
						|
    // C++11 [intro.execution]p15:
 | 
						|
    //   When calling a function [...], every value computation and side effect
 | 
						|
    //   associated with any argument expression, or with the postfix expression
 | 
						|
    //   designating the called function, is sequenced before execution of every
 | 
						|
    //   expression or statement in the body of the function [and thus before
 | 
						|
    //   the value computation of its result].
 | 
						|
    SequencedSubexpression Sequenced(*this);
 | 
						|
    SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
 | 
						|
      // C++17 [expr.call]p5
 | 
						|
      //   The postfix-expression is sequenced before each expression in the
 | 
						|
      //   expression-list and any default argument. [...]
 | 
						|
      SequenceTree::Seq CalleeRegion;
 | 
						|
      SequenceTree::Seq OtherRegion;
 | 
						|
      if (SemaRef.getLangOpts().CPlusPlus17) {
 | 
						|
        CalleeRegion = Tree.allocate(Region);
 | 
						|
        OtherRegion = Tree.allocate(Region);
 | 
						|
      } else {
 | 
						|
        CalleeRegion = Region;
 | 
						|
        OtherRegion = Region;
 | 
						|
      }
 | 
						|
      SequenceTree::Seq OldRegion = Region;
 | 
						|
 | 
						|
      // Visit the callee expression first.
 | 
						|
      Region = CalleeRegion;
 | 
						|
      if (SemaRef.getLangOpts().CPlusPlus17) {
 | 
						|
        SequencedSubexpression Sequenced(*this);
 | 
						|
        Visit(CE->getCallee());
 | 
						|
      } else {
 | 
						|
        Visit(CE->getCallee());
 | 
						|
      }
 | 
						|
 | 
						|
      // Then visit the argument expressions.
 | 
						|
      Region = OtherRegion;
 | 
						|
      for (const Expr *Argument : CE->arguments())
 | 
						|
        Visit(Argument);
 | 
						|
 | 
						|
      Region = OldRegion;
 | 
						|
      if (SemaRef.getLangOpts().CPlusPlus17) {
 | 
						|
        Tree.merge(CalleeRegion);
 | 
						|
        Tree.merge(OtherRegion);
 | 
						|
      }
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
 | 
						|
    // C++17 [over.match.oper]p2:
 | 
						|
    //   [...] the operator notation is first transformed to the equivalent
 | 
						|
    //   function-call notation as summarized in Table 12 (where @ denotes one
 | 
						|
    //   of the operators covered in the specified subclause). However, the
 | 
						|
    //   operands are sequenced in the order prescribed for the built-in
 | 
						|
    //   operator (Clause 8).
 | 
						|
    //
 | 
						|
    // From the above only overloaded binary operators and overloaded call
 | 
						|
    // operators have sequencing rules in C++17 that we need to handle
 | 
						|
    // separately.
 | 
						|
    if (!SemaRef.getLangOpts().CPlusPlus17 ||
 | 
						|
        (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
 | 
						|
      return VisitCallExpr(CXXOCE);
 | 
						|
 | 
						|
    enum {
 | 
						|
      NoSequencing,
 | 
						|
      LHSBeforeRHS,
 | 
						|
      RHSBeforeLHS,
 | 
						|
      LHSBeforeRest
 | 
						|
    } SequencingKind;
 | 
						|
    switch (CXXOCE->getOperator()) {
 | 
						|
    case OO_Equal:
 | 
						|
    case OO_PlusEqual:
 | 
						|
    case OO_MinusEqual:
 | 
						|
    case OO_StarEqual:
 | 
						|
    case OO_SlashEqual:
 | 
						|
    case OO_PercentEqual:
 | 
						|
    case OO_CaretEqual:
 | 
						|
    case OO_AmpEqual:
 | 
						|
    case OO_PipeEqual:
 | 
						|
    case OO_LessLessEqual:
 | 
						|
    case OO_GreaterGreaterEqual:
 | 
						|
      SequencingKind = RHSBeforeLHS;
 | 
						|
      break;
 | 
						|
 | 
						|
    case OO_LessLess:
 | 
						|
    case OO_GreaterGreater:
 | 
						|
    case OO_AmpAmp:
 | 
						|
    case OO_PipePipe:
 | 
						|
    case OO_Comma:
 | 
						|
    case OO_ArrowStar:
 | 
						|
    case OO_Subscript:
 | 
						|
      SequencingKind = LHSBeforeRHS;
 | 
						|
      break;
 | 
						|
 | 
						|
    case OO_Call:
 | 
						|
      SequencingKind = LHSBeforeRest;
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      SequencingKind = NoSequencing;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (SequencingKind == NoSequencing)
 | 
						|
      return VisitCallExpr(CXXOCE);
 | 
						|
 | 
						|
    // This is a call, so all subexpressions are sequenced before the result.
 | 
						|
    SequencedSubexpression Sequenced(*this);
 | 
						|
 | 
						|
    SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
 | 
						|
      assert(SemaRef.getLangOpts().CPlusPlus17 &&
 | 
						|
             "Should only get there with C++17 and above!");
 | 
						|
      assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
 | 
						|
             "Should only get there with an overloaded binary operator"
 | 
						|
             " or an overloaded call operator!");
 | 
						|
 | 
						|
      if (SequencingKind == LHSBeforeRest) {
 | 
						|
        assert(CXXOCE->getOperator() == OO_Call &&
 | 
						|
               "We should only have an overloaded call operator here!");
 | 
						|
 | 
						|
        // This is very similar to VisitCallExpr, except that we only have the
 | 
						|
        // C++17 case. The postfix-expression is the first argument of the
 | 
						|
        // CXXOperatorCallExpr. The expressions in the expression-list, if any,
 | 
						|
        // are in the following arguments.
 | 
						|
        //
 | 
						|
        // Note that we intentionally do not visit the callee expression since
 | 
						|
        // it is just a decayed reference to a function.
 | 
						|
        SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
 | 
						|
        SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
 | 
						|
        SequenceTree::Seq OldRegion = Region;
 | 
						|
 | 
						|
        assert(CXXOCE->getNumArgs() >= 1 &&
 | 
						|
               "An overloaded call operator must have at least one argument"
 | 
						|
               " for the postfix-expression!");
 | 
						|
        const Expr *PostfixExpr = CXXOCE->getArgs()[0];
 | 
						|
        llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
 | 
						|
                                          CXXOCE->getNumArgs() - 1);
 | 
						|
 | 
						|
        // Visit the postfix-expression first.
 | 
						|
        {
 | 
						|
          Region = PostfixExprRegion;
 | 
						|
          SequencedSubexpression Sequenced(*this);
 | 
						|
          Visit(PostfixExpr);
 | 
						|
        }
 | 
						|
 | 
						|
        // Then visit the argument expressions.
 | 
						|
        Region = ArgsRegion;
 | 
						|
        for (const Expr *Arg : Args)
 | 
						|
          Visit(Arg);
 | 
						|
 | 
						|
        Region = OldRegion;
 | 
						|
        Tree.merge(PostfixExprRegion);
 | 
						|
        Tree.merge(ArgsRegion);
 | 
						|
      } else {
 | 
						|
        assert(CXXOCE->getNumArgs() == 2 &&
 | 
						|
               "Should only have two arguments here!");
 | 
						|
        assert((SequencingKind == LHSBeforeRHS ||
 | 
						|
                SequencingKind == RHSBeforeLHS) &&
 | 
						|
               "Unexpected sequencing kind!");
 | 
						|
 | 
						|
        // We do not visit the callee expression since it is just a decayed
 | 
						|
        // reference to a function.
 | 
						|
        const Expr *E1 = CXXOCE->getArg(0);
 | 
						|
        const Expr *E2 = CXXOCE->getArg(1);
 | 
						|
        if (SequencingKind == RHSBeforeLHS)
 | 
						|
          std::swap(E1, E2);
 | 
						|
 | 
						|
        return VisitSequencedExpressions(E1, E2);
 | 
						|
      }
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
 | 
						|
    // This is a call, so all subexpressions are sequenced before the result.
 | 
						|
    SequencedSubexpression Sequenced(*this);
 | 
						|
 | 
						|
    if (!CCE->isListInitialization())
 | 
						|
      return VisitExpr(CCE);
 | 
						|
 | 
						|
    // In C++11, list initializations are sequenced.
 | 
						|
    SmallVector<SequenceTree::Seq, 32> Elts;
 | 
						|
    SequenceTree::Seq Parent = Region;
 | 
						|
    for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
 | 
						|
                                              E = CCE->arg_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      Region = Tree.allocate(Parent);
 | 
						|
      Elts.push_back(Region);
 | 
						|
      Visit(*I);
 | 
						|
    }
 | 
						|
 | 
						|
    // Forget that the initializers are sequenced.
 | 
						|
    Region = Parent;
 | 
						|
    for (unsigned I = 0; I < Elts.size(); ++I)
 | 
						|
      Tree.merge(Elts[I]);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitInitListExpr(const InitListExpr *ILE) {
 | 
						|
    if (!SemaRef.getLangOpts().CPlusPlus11)
 | 
						|
      return VisitExpr(ILE);
 | 
						|
 | 
						|
    // In C++11, list initializations are sequenced.
 | 
						|
    SmallVector<SequenceTree::Seq, 32> Elts;
 | 
						|
    SequenceTree::Seq Parent = Region;
 | 
						|
    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
 | 
						|
      const Expr *E = ILE->getInit(I);
 | 
						|
      if (!E)
 | 
						|
        continue;
 | 
						|
      Region = Tree.allocate(Parent);
 | 
						|
      Elts.push_back(Region);
 | 
						|
      Visit(E);
 | 
						|
    }
 | 
						|
 | 
						|
    // Forget that the initializers are sequenced.
 | 
						|
    Region = Parent;
 | 
						|
    for (unsigned I = 0; I < Elts.size(); ++I)
 | 
						|
      Tree.merge(Elts[I]);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
void Sema::CheckUnsequencedOperations(const Expr *E) {
 | 
						|
  SmallVector<const Expr *, 8> WorkList;
 | 
						|
  WorkList.push_back(E);
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    const Expr *Item = WorkList.pop_back_val();
 | 
						|
    SequenceChecker(*this, Item, WorkList);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
 | 
						|
                              bool IsConstexpr) {
 | 
						|
  llvm::SaveAndRestore<bool> ConstantContext(
 | 
						|
      isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
 | 
						|
  CheckImplicitConversions(E, CheckLoc);
 | 
						|
  if (!E->isInstantiationDependent())
 | 
						|
    CheckUnsequencedOperations(E);
 | 
						|
  if (!IsConstexpr && !E->isValueDependent())
 | 
						|
    CheckForIntOverflow(E);
 | 
						|
  DiagnoseMisalignedMembers();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
 | 
						|
                                       FieldDecl *BitField,
 | 
						|
                                       Expr *Init) {
 | 
						|
  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
 | 
						|
}
 | 
						|
 | 
						|
static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
 | 
						|
                                         SourceLocation Loc) {
 | 
						|
  if (!PType->isVariablyModifiedType())
 | 
						|
    return;
 | 
						|
  if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
 | 
						|
    diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
 | 
						|
    diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
 | 
						|
    diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const ArrayType *AT = S.Context.getAsArrayType(PType);
 | 
						|
  if (!AT)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (AT->getSizeModifier() != ArrayType::Star) {
 | 
						|
    diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(Loc, diag::err_array_star_in_function_definition);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckParmsForFunctionDef - Check that the parameters of the given
 | 
						|
/// function are appropriate for the definition of a function. This
 | 
						|
/// takes care of any checks that cannot be performed on the
 | 
						|
/// declaration itself, e.g., that the types of each of the function
 | 
						|
/// parameters are complete.
 | 
						|
bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
 | 
						|
                                    bool CheckParameterNames) {
 | 
						|
  bool HasInvalidParm = false;
 | 
						|
  for (ParmVarDecl *Param : Parameters) {
 | 
						|
    // C99 6.7.5.3p4: the parameters in a parameter type list in a
 | 
						|
    // function declarator that is part of a function definition of
 | 
						|
    // that function shall not have incomplete type.
 | 
						|
    //
 | 
						|
    // This is also C++ [dcl.fct]p6.
 | 
						|
    if (!Param->isInvalidDecl() &&
 | 
						|
        RequireCompleteType(Param->getLocation(), Param->getType(),
 | 
						|
                            diag::err_typecheck_decl_incomplete_type)) {
 | 
						|
      Param->setInvalidDecl();
 | 
						|
      HasInvalidParm = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // C99 6.9.1p5: If the declarator includes a parameter type list, the
 | 
						|
    // declaration of each parameter shall include an identifier.
 | 
						|
    if (CheckParameterNames && Param->getIdentifier() == nullptr &&
 | 
						|
        !Param->isImplicit() && !getLangOpts().CPlusPlus) {
 | 
						|
      // Diagnose this as an extension in C17 and earlier.
 | 
						|
      if (!getLangOpts().C2x)
 | 
						|
        Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
 | 
						|
    }
 | 
						|
 | 
						|
    // C99 6.7.5.3p12:
 | 
						|
    //   If the function declarator is not part of a definition of that
 | 
						|
    //   function, parameters may have incomplete type and may use the [*]
 | 
						|
    //   notation in their sequences of declarator specifiers to specify
 | 
						|
    //   variable length array types.
 | 
						|
    QualType PType = Param->getOriginalType();
 | 
						|
    // FIXME: This diagnostic should point the '[*]' if source-location
 | 
						|
    // information is added for it.
 | 
						|
    diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
 | 
						|
 | 
						|
    // If the parameter is a c++ class type and it has to be destructed in the
 | 
						|
    // callee function, declare the destructor so that it can be called by the
 | 
						|
    // callee function. Do not perform any direct access check on the dtor here.
 | 
						|
    if (!Param->isInvalidDecl()) {
 | 
						|
      if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
 | 
						|
        if (!ClassDecl->isInvalidDecl() &&
 | 
						|
            !ClassDecl->hasIrrelevantDestructor() &&
 | 
						|
            !ClassDecl->isDependentContext() &&
 | 
						|
            ClassDecl->isParamDestroyedInCallee()) {
 | 
						|
          CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
 | 
						|
          MarkFunctionReferenced(Param->getLocation(), Destructor);
 | 
						|
          DiagnoseUseOfDecl(Destructor, Param->getLocation());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Parameters with the pass_object_size attribute only need to be marked
 | 
						|
    // constant at function definitions. Because we lack information about
 | 
						|
    // whether we're on a declaration or definition when we're instantiating the
 | 
						|
    // attribute, we need to check for constness here.
 | 
						|
    if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
 | 
						|
      if (!Param->getType().isConstQualified())
 | 
						|
        Diag(Param->getLocation(), diag::err_attribute_pointers_only)
 | 
						|
            << Attr->getSpelling() << 1;
 | 
						|
 | 
						|
    // Check for parameter names shadowing fields from the class.
 | 
						|
    if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
 | 
						|
      // The owning context for the parameter should be the function, but we
 | 
						|
      // want to see if this function's declaration context is a record.
 | 
						|
      DeclContext *DC = Param->getDeclContext();
 | 
						|
      if (DC && DC->isFunctionOrMethod()) {
 | 
						|
        if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
 | 
						|
          CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
 | 
						|
                                     RD, /*DeclIsField*/ false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return HasInvalidParm;
 | 
						|
}
 | 
						|
 | 
						|
Optional<std::pair<CharUnits, CharUnits>>
 | 
						|
static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
 | 
						|
 | 
						|
/// Compute the alignment and offset of the base class object given the
 | 
						|
/// derived-to-base cast expression and the alignment and offset of the derived
 | 
						|
/// class object.
 | 
						|
static std::pair<CharUnits, CharUnits>
 | 
						|
getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
 | 
						|
                                   CharUnits BaseAlignment, CharUnits Offset,
 | 
						|
                                   ASTContext &Ctx) {
 | 
						|
  for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
 | 
						|
       ++PathI) {
 | 
						|
    const CXXBaseSpecifier *Base = *PathI;
 | 
						|
    const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
 | 
						|
    if (Base->isVirtual()) {
 | 
						|
      // The complete object may have a lower alignment than the non-virtual
 | 
						|
      // alignment of the base, in which case the base may be misaligned. Choose
 | 
						|
      // the smaller of the non-virtual alignment and BaseAlignment, which is a
 | 
						|
      // conservative lower bound of the complete object alignment.
 | 
						|
      CharUnits NonVirtualAlignment =
 | 
						|
          Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
 | 
						|
      BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
 | 
						|
      Offset = CharUnits::Zero();
 | 
						|
    } else {
 | 
						|
      const ASTRecordLayout &RL =
 | 
						|
          Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
 | 
						|
      Offset += RL.getBaseClassOffset(BaseDecl);
 | 
						|
    }
 | 
						|
    DerivedType = Base->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  return std::make_pair(BaseAlignment, Offset);
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the alignment and offset of a binary additive operator.
 | 
						|
static Optional<std::pair<CharUnits, CharUnits>>
 | 
						|
getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
 | 
						|
                                     bool IsSub, ASTContext &Ctx) {
 | 
						|
  QualType PointeeType = PtrE->getType()->getPointeeType();
 | 
						|
 | 
						|
  if (!PointeeType->isConstantSizeType())
 | 
						|
    return llvm::None;
 | 
						|
 | 
						|
  auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
 | 
						|
 | 
						|
  if (!P)
 | 
						|
    return llvm::None;
 | 
						|
 | 
						|
  CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
 | 
						|
  if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
 | 
						|
    CharUnits Offset = EltSize * IdxRes->getExtValue();
 | 
						|
    if (IsSub)
 | 
						|
      Offset = -Offset;
 | 
						|
    return std::make_pair(P->first, P->second + Offset);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the integer expression isn't a constant expression, compute the lower
 | 
						|
  // bound of the alignment using the alignment and offset of the pointer
 | 
						|
  // expression and the element size.
 | 
						|
  return std::make_pair(
 | 
						|
      P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
 | 
						|
      CharUnits::Zero());
 | 
						|
}
 | 
						|
 | 
						|
/// This helper function takes an lvalue expression and returns the alignment of
 | 
						|
/// a VarDecl and a constant offset from the VarDecl.
 | 
						|
Optional<std::pair<CharUnits, CharUnits>>
 | 
						|
static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
 | 
						|
  E = E->IgnoreParens();
 | 
						|
  switch (E->getStmtClass()) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case Stmt::CStyleCastExprClass:
 | 
						|
  case Stmt::CXXStaticCastExprClass:
 | 
						|
  case Stmt::ImplicitCastExprClass: {
 | 
						|
    auto *CE = cast<CastExpr>(E);
 | 
						|
    const Expr *From = CE->getSubExpr();
 | 
						|
    switch (CE->getCastKind()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case CK_NoOp:
 | 
						|
      return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
 | 
						|
    case CK_UncheckedDerivedToBase:
 | 
						|
    case CK_DerivedToBase: {
 | 
						|
      auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
 | 
						|
      if (!P)
 | 
						|
        break;
 | 
						|
      return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
 | 
						|
                                                P->second, Ctx);
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Stmt::ArraySubscriptExprClass: {
 | 
						|
    auto *ASE = cast<ArraySubscriptExpr>(E);
 | 
						|
    return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
 | 
						|
                                                false, Ctx);
 | 
						|
  }
 | 
						|
  case Stmt::DeclRefExprClass: {
 | 
						|
    if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
 | 
						|
      // FIXME: If VD is captured by copy or is an escaping __block variable,
 | 
						|
      // use the alignment of VD's type.
 | 
						|
      if (!VD->getType()->isReferenceType())
 | 
						|
        return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
 | 
						|
      if (VD->hasInit())
 | 
						|
        return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Stmt::MemberExprClass: {
 | 
						|
    auto *ME = cast<MemberExpr>(E);
 | 
						|
    auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
 | 
						|
    if (!FD || FD->getType()->isReferenceType())
 | 
						|
      break;
 | 
						|
    Optional<std::pair<CharUnits, CharUnits>> P;
 | 
						|
    if (ME->isArrow())
 | 
						|
      P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
 | 
						|
    else
 | 
						|
      P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
 | 
						|
    if (!P)
 | 
						|
      break;
 | 
						|
    const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
 | 
						|
    uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
 | 
						|
    return std::make_pair(P->first,
 | 
						|
                          P->second + CharUnits::fromQuantity(Offset));
 | 
						|
  }
 | 
						|
  case Stmt::UnaryOperatorClass: {
 | 
						|
    auto *UO = cast<UnaryOperator>(E);
 | 
						|
    switch (UO->getOpcode()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case UO_Deref:
 | 
						|
      return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Stmt::BinaryOperatorClass: {
 | 
						|
    auto *BO = cast<BinaryOperator>(E);
 | 
						|
    auto Opcode = BO->getOpcode();
 | 
						|
    switch (Opcode) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case BO_Comma:
 | 
						|
      return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return llvm::None;
 | 
						|
}
 | 
						|
 | 
						|
/// This helper function takes a pointer expression and returns the alignment of
 | 
						|
/// a VarDecl and a constant offset from the VarDecl.
 | 
						|
Optional<std::pair<CharUnits, CharUnits>>
 | 
						|
static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
 | 
						|
  E = E->IgnoreParens();
 | 
						|
  switch (E->getStmtClass()) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case Stmt::CStyleCastExprClass:
 | 
						|
  case Stmt::CXXStaticCastExprClass:
 | 
						|
  case Stmt::ImplicitCastExprClass: {
 | 
						|
    auto *CE = cast<CastExpr>(E);
 | 
						|
    const Expr *From = CE->getSubExpr();
 | 
						|
    switch (CE->getCastKind()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case CK_NoOp:
 | 
						|
      return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
 | 
						|
    case CK_ArrayToPointerDecay:
 | 
						|
      return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
 | 
						|
    case CK_UncheckedDerivedToBase:
 | 
						|
    case CK_DerivedToBase: {
 | 
						|
      auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
 | 
						|
      if (!P)
 | 
						|
        break;
 | 
						|
      return getDerivedToBaseAlignmentAndOffset(
 | 
						|
          CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Stmt::CXXThisExprClass: {
 | 
						|
    auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
 | 
						|
    CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
 | 
						|
    return std::make_pair(Alignment, CharUnits::Zero());
 | 
						|
  }
 | 
						|
  case Stmt::UnaryOperatorClass: {
 | 
						|
    auto *UO = cast<UnaryOperator>(E);
 | 
						|
    if (UO->getOpcode() == UO_AddrOf)
 | 
						|
      return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Stmt::BinaryOperatorClass: {
 | 
						|
    auto *BO = cast<BinaryOperator>(E);
 | 
						|
    auto Opcode = BO->getOpcode();
 | 
						|
    switch (Opcode) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case BO_Add:
 | 
						|
    case BO_Sub: {
 | 
						|
      const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
 | 
						|
      if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
 | 
						|
        std::swap(LHS, RHS);
 | 
						|
      return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
 | 
						|
                                                  Ctx);
 | 
						|
    }
 | 
						|
    case BO_Comma:
 | 
						|
      return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return llvm::None;
 | 
						|
}
 | 
						|
 | 
						|
static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
 | 
						|
  // See if we can compute the alignment of a VarDecl and an offset from it.
 | 
						|
  Optional<std::pair<CharUnits, CharUnits>> P =
 | 
						|
      getBaseAlignmentAndOffsetFromPtr(E, S.Context);
 | 
						|
 | 
						|
  if (P)
 | 
						|
    return P->first.alignmentAtOffset(P->second);
 | 
						|
 | 
						|
  // If that failed, return the type's alignment.
 | 
						|
  return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
/// CheckCastAlign - Implements -Wcast-align, which warns when a
 | 
						|
/// pointer cast increases the alignment requirements.
 | 
						|
void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
 | 
						|
  // This is actually a lot of work to potentially be doing on every
 | 
						|
  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
 | 
						|
  if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Ignore dependent types.
 | 
						|
  if (T->isDependentType() || Op->getType()->isDependentType())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Require that the destination be a pointer type.
 | 
						|
  const PointerType *DestPtr = T->getAs<PointerType>();
 | 
						|
  if (!DestPtr) return;
 | 
						|
 | 
						|
  // If the destination has alignment 1, we're done.
 | 
						|
  QualType DestPointee = DestPtr->getPointeeType();
 | 
						|
  if (DestPointee->isIncompleteType()) return;
 | 
						|
  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
 | 
						|
  if (DestAlign.isOne()) return;
 | 
						|
 | 
						|
  // Require that the source be a pointer type.
 | 
						|
  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
 | 
						|
  if (!SrcPtr) return;
 | 
						|
  QualType SrcPointee = SrcPtr->getPointeeType();
 | 
						|
 | 
						|
  // Explicitly allow casts from cv void*.  We already implicitly
 | 
						|
  // allowed casts to cv void*, since they have alignment 1.
 | 
						|
  // Also allow casts involving incomplete types, which implicitly
 | 
						|
  // includes 'void'.
 | 
						|
  if (SrcPointee->isIncompleteType()) return;
 | 
						|
 | 
						|
  CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
 | 
						|
 | 
						|
  if (SrcAlign >= DestAlign) return;
 | 
						|
 | 
						|
  Diag(TRange.getBegin(), diag::warn_cast_align)
 | 
						|
    << Op->getType() << T
 | 
						|
    << static_cast<unsigned>(SrcAlign.getQuantity())
 | 
						|
    << static_cast<unsigned>(DestAlign.getQuantity())
 | 
						|
    << TRange << Op->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether this array fits the idiom of a size-one tail padded
 | 
						|
/// array member of a struct.
 | 
						|
///
 | 
						|
/// We avoid emitting out-of-bounds access warnings for such arrays as they are
 | 
						|
/// commonly used to emulate flexible arrays in C89 code.
 | 
						|
static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
 | 
						|
                                    const NamedDecl *ND) {
 | 
						|
  if (Size != 1 || !ND) return false;
 | 
						|
 | 
						|
  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
 | 
						|
  if (!FD) return false;
 | 
						|
 | 
						|
  // Don't consider sizes resulting from macro expansions or template argument
 | 
						|
  // substitution to form C89 tail-padded arrays.
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
 | 
						|
  while (TInfo) {
 | 
						|
    TypeLoc TL = TInfo->getTypeLoc();
 | 
						|
    // Look through typedefs.
 | 
						|
    if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
 | 
						|
      const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
 | 
						|
      TInfo = TDL->getTypeSourceInfo();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
 | 
						|
      const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
 | 
						|
      if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
 | 
						|
  if (!RD) return false;
 | 
						|
  if (RD->isUnion()) return false;
 | 
						|
  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
 | 
						|
    if (!CRD->isStandardLayout()) return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // See if this is the last field decl in the record.
 | 
						|
  const Decl *D = FD;
 | 
						|
  while ((D = D->getNextDeclInContext()))
 | 
						|
    if (isa<FieldDecl>(D))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
 | 
						|
                            const ArraySubscriptExpr *ASE,
 | 
						|
                            bool AllowOnePastEnd, bool IndexNegated) {
 | 
						|
  // Already diagnosed by the constant evaluator.
 | 
						|
  if (isConstantEvaluated())
 | 
						|
    return;
 | 
						|
 | 
						|
  IndexExpr = IndexExpr->IgnoreParenImpCasts();
 | 
						|
  if (IndexExpr->isValueDependent())
 | 
						|
    return;
 | 
						|
 | 
						|
  const Type *EffectiveType =
 | 
						|
      BaseExpr->getType()->getPointeeOrArrayElementType();
 | 
						|
  BaseExpr = BaseExpr->IgnoreParenCasts();
 | 
						|
  const ConstantArrayType *ArrayTy =
 | 
						|
      Context.getAsConstantArrayType(BaseExpr->getType());
 | 
						|
 | 
						|
  if (!ArrayTy)
 | 
						|
    return;
 | 
						|
 | 
						|
  const Type *BaseType = ArrayTy->getElementType().getTypePtr();
 | 
						|
  if (EffectiveType->isDependentType() || BaseType->isDependentType())
 | 
						|
    return;
 | 
						|
 | 
						|
  Expr::EvalResult Result;
 | 
						|
  if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::APSInt index = Result.Val.getInt();
 | 
						|
  if (IndexNegated)
 | 
						|
    index = -index;
 | 
						|
 | 
						|
  const NamedDecl *ND = nullptr;
 | 
						|
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
 | 
						|
    ND = DRE->getDecl();
 | 
						|
  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
 | 
						|
    ND = ME->getMemberDecl();
 | 
						|
 | 
						|
  if (index.isUnsigned() || !index.isNegative()) {
 | 
						|
    // It is possible that the type of the base expression after
 | 
						|
    // IgnoreParenCasts is incomplete, even though the type of the base
 | 
						|
    // expression before IgnoreParenCasts is complete (see PR39746 for an
 | 
						|
    // example). In this case we have no information about whether the array
 | 
						|
    // access exceeds the array bounds. However we can still diagnose an array
 | 
						|
    // access which precedes the array bounds.
 | 
						|
    if (BaseType->isIncompleteType())
 | 
						|
      return;
 | 
						|
 | 
						|
    llvm::APInt size = ArrayTy->getSize();
 | 
						|
    if (!size.isStrictlyPositive())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (BaseType != EffectiveType) {
 | 
						|
      // Make sure we're comparing apples to apples when comparing index to size
 | 
						|
      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
 | 
						|
      uint64_t array_typesize = Context.getTypeSize(BaseType);
 | 
						|
      // Handle ptrarith_typesize being zero, such as when casting to void*
 | 
						|
      if (!ptrarith_typesize) ptrarith_typesize = 1;
 | 
						|
      if (ptrarith_typesize != array_typesize) {
 | 
						|
        // There's a cast to a different size type involved
 | 
						|
        uint64_t ratio = array_typesize / ptrarith_typesize;
 | 
						|
        // TODO: Be smarter about handling cases where array_typesize is not a
 | 
						|
        // multiple of ptrarith_typesize
 | 
						|
        if (ptrarith_typesize * ratio == array_typesize)
 | 
						|
          size *= llvm::APInt(size.getBitWidth(), ratio);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (size.getBitWidth() > index.getBitWidth())
 | 
						|
      index = index.zext(size.getBitWidth());
 | 
						|
    else if (size.getBitWidth() < index.getBitWidth())
 | 
						|
      size = size.zext(index.getBitWidth());
 | 
						|
 | 
						|
    // For array subscripting the index must be less than size, but for pointer
 | 
						|
    // arithmetic also allow the index (offset) to be equal to size since
 | 
						|
    // computing the next address after the end of the array is legal and
 | 
						|
    // commonly done e.g. in C++ iterators and range-based for loops.
 | 
						|
    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Also don't warn for arrays of size 1 which are members of some
 | 
						|
    // structure. These are often used to approximate flexible arrays in C89
 | 
						|
    // code.
 | 
						|
    if (IsTailPaddedMemberArray(*this, size, ND))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Suppress the warning if the subscript expression (as identified by the
 | 
						|
    // ']' location) and the index expression are both from macro expansions
 | 
						|
    // within a system header.
 | 
						|
    if (ASE) {
 | 
						|
      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
 | 
						|
          ASE->getRBracketLoc());
 | 
						|
      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
 | 
						|
        SourceLocation IndexLoc =
 | 
						|
            SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
 | 
						|
        if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
 | 
						|
          return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
 | 
						|
    if (ASE)
 | 
						|
      DiagID = diag::warn_array_index_exceeds_bounds;
 | 
						|
 | 
						|
    DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
 | 
						|
                        PDiag(DiagID) << index.toString(10, true)
 | 
						|
                                      << size.toString(10, true)
 | 
						|
                                      << (unsigned)size.getLimitedValue(~0U)
 | 
						|
                                      << IndexExpr->getSourceRange());
 | 
						|
  } else {
 | 
						|
    unsigned DiagID = diag::warn_array_index_precedes_bounds;
 | 
						|
    if (!ASE) {
 | 
						|
      DiagID = diag::warn_ptr_arith_precedes_bounds;
 | 
						|
      if (index.isNegative()) index = -index;
 | 
						|
    }
 | 
						|
 | 
						|
    DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
 | 
						|
                        PDiag(DiagID) << index.toString(10, true)
 | 
						|
                                      << IndexExpr->getSourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ND) {
 | 
						|
    // Try harder to find a NamedDecl to point at in the note.
 | 
						|
    while (const ArraySubscriptExpr *ASE =
 | 
						|
           dyn_cast<ArraySubscriptExpr>(BaseExpr))
 | 
						|
      BaseExpr = ASE->getBase()->IgnoreParenCasts();
 | 
						|
    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
 | 
						|
      ND = DRE->getDecl();
 | 
						|
    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
 | 
						|
      ND = ME->getMemberDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  if (ND)
 | 
						|
    DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
 | 
						|
                        PDiag(diag::note_array_declared_here) << ND);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckArrayAccess(const Expr *expr) {
 | 
						|
  int AllowOnePastEnd = 0;
 | 
						|
  while (expr) {
 | 
						|
    expr = expr->IgnoreParenImpCasts();
 | 
						|
    switch (expr->getStmtClass()) {
 | 
						|
      case Stmt::ArraySubscriptExprClass: {
 | 
						|
        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
 | 
						|
        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
 | 
						|
                         AllowOnePastEnd > 0);
 | 
						|
        expr = ASE->getBase();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case Stmt::MemberExprClass: {
 | 
						|
        expr = cast<MemberExpr>(expr)->getBase();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case Stmt::OMPArraySectionExprClass: {
 | 
						|
        const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
 | 
						|
        if (ASE->getLowerBound())
 | 
						|
          CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
 | 
						|
                           /*ASE=*/nullptr, AllowOnePastEnd > 0);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      case Stmt::UnaryOperatorClass: {
 | 
						|
        // Only unwrap the * and & unary operators
 | 
						|
        const UnaryOperator *UO = cast<UnaryOperator>(expr);
 | 
						|
        expr = UO->getSubExpr();
 | 
						|
        switch (UO->getOpcode()) {
 | 
						|
          case UO_AddrOf:
 | 
						|
            AllowOnePastEnd++;
 | 
						|
            break;
 | 
						|
          case UO_Deref:
 | 
						|
            AllowOnePastEnd--;
 | 
						|
            break;
 | 
						|
          default:
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case Stmt::ConditionalOperatorClass: {
 | 
						|
        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
 | 
						|
        if (const Expr *lhs = cond->getLHS())
 | 
						|
          CheckArrayAccess(lhs);
 | 
						|
        if (const Expr *rhs = cond->getRHS())
 | 
						|
          CheckArrayAccess(rhs);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      case Stmt::CXXOperatorCallExprClass: {
 | 
						|
        const auto *OCE = cast<CXXOperatorCallExpr>(expr);
 | 
						|
        for (const auto *Arg : OCE->arguments())
 | 
						|
          CheckArrayAccess(Arg);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      default:
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===--- CHECK: Objective-C retain cycles ----------------------------------//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct RetainCycleOwner {
 | 
						|
  VarDecl *Variable = nullptr;
 | 
						|
  SourceRange Range;
 | 
						|
  SourceLocation Loc;
 | 
						|
  bool Indirect = false;
 | 
						|
 | 
						|
  RetainCycleOwner() = default;
 | 
						|
 | 
						|
  void setLocsFrom(Expr *e) {
 | 
						|
    Loc = e->getExprLoc();
 | 
						|
    Range = e->getSourceRange();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
/// Consider whether capturing the given variable can possibly lead to
 | 
						|
/// a retain cycle.
 | 
						|
static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
 | 
						|
  // In ARC, it's captured strongly iff the variable has __strong
 | 
						|
  // lifetime.  In MRR, it's captured strongly if the variable is
 | 
						|
  // __block and has an appropriate type.
 | 
						|
  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
 | 
						|
    return false;
 | 
						|
 | 
						|
  owner.Variable = var;
 | 
						|
  if (ref)
 | 
						|
    owner.setLocsFrom(ref);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
 | 
						|
  while (true) {
 | 
						|
    e = e->IgnoreParens();
 | 
						|
    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
 | 
						|
      switch (cast->getCastKind()) {
 | 
						|
      case CK_BitCast:
 | 
						|
      case CK_LValueBitCast:
 | 
						|
      case CK_LValueToRValue:
 | 
						|
      case CK_ARCReclaimReturnedObject:
 | 
						|
        e = cast->getSubExpr();
 | 
						|
        continue;
 | 
						|
 | 
						|
      default:
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
 | 
						|
      ObjCIvarDecl *ivar = ref->getDecl();
 | 
						|
      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Try to find a retain cycle in the base.
 | 
						|
      if (!findRetainCycleOwner(S, ref->getBase(), owner))
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
 | 
						|
      owner.Indirect = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
 | 
						|
      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
 | 
						|
      if (!var) return false;
 | 
						|
      return considerVariable(var, ref, owner);
 | 
						|
    }
 | 
						|
 | 
						|
    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
 | 
						|
      if (member->isArrow()) return false;
 | 
						|
 | 
						|
      // Don't count this as an indirect ownership.
 | 
						|
      e = member->getBase();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
 | 
						|
      // Only pay attention to pseudo-objects on property references.
 | 
						|
      ObjCPropertyRefExpr *pre
 | 
						|
        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
 | 
						|
                                              ->IgnoreParens());
 | 
						|
      if (!pre) return false;
 | 
						|
      if (pre->isImplicitProperty()) return false;
 | 
						|
      ObjCPropertyDecl *property = pre->getExplicitProperty();
 | 
						|
      if (!property->isRetaining() &&
 | 
						|
          !(property->getPropertyIvarDecl() &&
 | 
						|
            property->getPropertyIvarDecl()->getType()
 | 
						|
              .getObjCLifetime() == Qualifiers::OCL_Strong))
 | 
						|
          return false;
 | 
						|
 | 
						|
      owner.Indirect = true;
 | 
						|
      if (pre->isSuperReceiver()) {
 | 
						|
        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
 | 
						|
        if (!owner.Variable)
 | 
						|
          return false;
 | 
						|
        owner.Loc = pre->getLocation();
 | 
						|
        owner.Range = pre->getSourceRange();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
 | 
						|
                              ->getSourceExpr());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Array ivars?
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
 | 
						|
    ASTContext &Context;
 | 
						|
    VarDecl *Variable;
 | 
						|
    Expr *Capturer = nullptr;
 | 
						|
    bool VarWillBeReased = false;
 | 
						|
 | 
						|
    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
 | 
						|
        : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
 | 
						|
          Context(Context), Variable(variable) {}
 | 
						|
 | 
						|
    void VisitDeclRefExpr(DeclRefExpr *ref) {
 | 
						|
      if (ref->getDecl() == Variable && !Capturer)
 | 
						|
        Capturer = ref;
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
 | 
						|
      if (Capturer) return;
 | 
						|
      Visit(ref->getBase());
 | 
						|
      if (Capturer && ref->isFreeIvar())
 | 
						|
        Capturer = ref;
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitBlockExpr(BlockExpr *block) {
 | 
						|
      // Look inside nested blocks
 | 
						|
      if (block->getBlockDecl()->capturesVariable(Variable))
 | 
						|
        Visit(block->getBlockDecl()->getBody());
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
 | 
						|
      if (Capturer) return;
 | 
						|
      if (OVE->getSourceExpr())
 | 
						|
        Visit(OVE->getSourceExpr());
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitBinaryOperator(BinaryOperator *BinOp) {
 | 
						|
      if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
 | 
						|
        return;
 | 
						|
      Expr *LHS = BinOp->getLHS();
 | 
						|
      if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
 | 
						|
        if (DRE->getDecl() != Variable)
 | 
						|
          return;
 | 
						|
        if (Expr *RHS = BinOp->getRHS()) {
 | 
						|
          RHS = RHS->IgnoreParenCasts();
 | 
						|
          Optional<llvm::APSInt> Value;
 | 
						|
          VarWillBeReased =
 | 
						|
              (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
 | 
						|
               *Value == 0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
/// Check whether the given argument is a block which captures a
 | 
						|
/// variable.
 | 
						|
static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
 | 
						|
  assert(owner.Variable && owner.Loc.isValid());
 | 
						|
 | 
						|
  e = e->IgnoreParenCasts();
 | 
						|
 | 
						|
  // Look through [^{...} copy] and Block_copy(^{...}).
 | 
						|
  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
 | 
						|
    Selector Cmd = ME->getSelector();
 | 
						|
    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
 | 
						|
      e = ME->getInstanceReceiver();
 | 
						|
      if (!e)
 | 
						|
        return nullptr;
 | 
						|
      e = e->IgnoreParenCasts();
 | 
						|
    }
 | 
						|
  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
 | 
						|
    if (CE->getNumArgs() == 1) {
 | 
						|
      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
 | 
						|
      if (Fn) {
 | 
						|
        const IdentifierInfo *FnI = Fn->getIdentifier();
 | 
						|
        if (FnI && FnI->isStr("_Block_copy")) {
 | 
						|
          e = CE->getArg(0)->IgnoreParenCasts();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  BlockExpr *block = dyn_cast<BlockExpr>(e);
 | 
						|
  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  FindCaptureVisitor visitor(S.Context, owner.Variable);
 | 
						|
  visitor.Visit(block->getBlockDecl()->getBody());
 | 
						|
  return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
 | 
						|
}
 | 
						|
 | 
						|
static void diagnoseRetainCycle(Sema &S, Expr *capturer,
 | 
						|
                                RetainCycleOwner &owner) {
 | 
						|
  assert(capturer);
 | 
						|
  assert(owner.Variable && owner.Loc.isValid());
 | 
						|
 | 
						|
  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
 | 
						|
    << owner.Variable << capturer->getSourceRange();
 | 
						|
  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
 | 
						|
    << owner.Indirect << owner.Range;
 | 
						|
}
 | 
						|
 | 
						|
/// Check for a keyword selector that starts with the word 'add' or
 | 
						|
/// 'set'.
 | 
						|
static bool isSetterLikeSelector(Selector sel) {
 | 
						|
  if (sel.isUnarySelector()) return false;
 | 
						|
 | 
						|
  StringRef str = sel.getNameForSlot(0);
 | 
						|
  while (!str.empty() && str.front() == '_') str = str.substr(1);
 | 
						|
  if (str.startswith("set"))
 | 
						|
    str = str.substr(3);
 | 
						|
  else if (str.startswith("add")) {
 | 
						|
    // Specially allow 'addOperationWithBlock:'.
 | 
						|
    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
 | 
						|
      return false;
 | 
						|
    str = str.substr(3);
 | 
						|
  }
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (str.empty()) return true;
 | 
						|
  return !isLowercase(str.front());
 | 
						|
}
 | 
						|
 | 
						|
static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
 | 
						|
                                                    ObjCMessageExpr *Message) {
 | 
						|
  bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
 | 
						|
                                                Message->getReceiverInterface(),
 | 
						|
                                                NSAPI::ClassId_NSMutableArray);
 | 
						|
  if (!IsMutableArray) {
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  Selector Sel = Message->getSelector();
 | 
						|
 | 
						|
  Optional<NSAPI::NSArrayMethodKind> MKOpt =
 | 
						|
    S.NSAPIObj->getNSArrayMethodKind(Sel);
 | 
						|
  if (!MKOpt) {
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  NSAPI::NSArrayMethodKind MK = *MKOpt;
 | 
						|
 | 
						|
  switch (MK) {
 | 
						|
    case NSAPI::NSMutableArr_addObject:
 | 
						|
    case NSAPI::NSMutableArr_insertObjectAtIndex:
 | 
						|
    case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
 | 
						|
      return 0;
 | 
						|
    case NSAPI::NSMutableArr_replaceObjectAtIndex:
 | 
						|
      return 1;
 | 
						|
 | 
						|
    default:
 | 
						|
      return None;
 | 
						|
  }
 | 
						|
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
 | 
						|
                                                  ObjCMessageExpr *Message) {
 | 
						|
  bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
 | 
						|
                                            Message->getReceiverInterface(),
 | 
						|
                                            NSAPI::ClassId_NSMutableDictionary);
 | 
						|
  if (!IsMutableDictionary) {
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  Selector Sel = Message->getSelector();
 | 
						|
 | 
						|
  Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
 | 
						|
    S.NSAPIObj->getNSDictionaryMethodKind(Sel);
 | 
						|
  if (!MKOpt) {
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  NSAPI::NSDictionaryMethodKind MK = *MKOpt;
 | 
						|
 | 
						|
  switch (MK) {
 | 
						|
    case NSAPI::NSMutableDict_setObjectForKey:
 | 
						|
    case NSAPI::NSMutableDict_setValueForKey:
 | 
						|
    case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
 | 
						|
      return 0;
 | 
						|
 | 
						|
    default:
 | 
						|
      return None;
 | 
						|
  }
 | 
						|
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
 | 
						|
  bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
 | 
						|
                                                Message->getReceiverInterface(),
 | 
						|
                                                NSAPI::ClassId_NSMutableSet);
 | 
						|
 | 
						|
  bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
 | 
						|
                                            Message->getReceiverInterface(),
 | 
						|
                                            NSAPI::ClassId_NSMutableOrderedSet);
 | 
						|
  if (!IsMutableSet && !IsMutableOrderedSet) {
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  Selector Sel = Message->getSelector();
 | 
						|
 | 
						|
  Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
 | 
						|
  if (!MKOpt) {
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  NSAPI::NSSetMethodKind MK = *MKOpt;
 | 
						|
 | 
						|
  switch (MK) {
 | 
						|
    case NSAPI::NSMutableSet_addObject:
 | 
						|
    case NSAPI::NSOrderedSet_setObjectAtIndex:
 | 
						|
    case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
 | 
						|
    case NSAPI::NSOrderedSet_insertObjectAtIndex:
 | 
						|
      return 0;
 | 
						|
    case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
 | 
						|
      return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
 | 
						|
  if (!Message->isInstanceMessage()) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Optional<int> ArgOpt;
 | 
						|
 | 
						|
  if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
 | 
						|
      !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
 | 
						|
      !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  int ArgIndex = *ArgOpt;
 | 
						|
 | 
						|
  Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
 | 
						|
  if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
 | 
						|
    Arg = OE->getSourceExpr()->IgnoreImpCasts();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
 | 
						|
    if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
 | 
						|
      if (ArgRE->isObjCSelfExpr()) {
 | 
						|
        Diag(Message->getSourceRange().getBegin(),
 | 
						|
             diag::warn_objc_circular_container)
 | 
						|
          << ArgRE->getDecl() << StringRef("'super'");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
 | 
						|
 | 
						|
    if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
 | 
						|
      Receiver = OE->getSourceExpr()->IgnoreImpCasts();
 | 
						|
    }
 | 
						|
 | 
						|
    if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
 | 
						|
      if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
 | 
						|
        if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
 | 
						|
          ValueDecl *Decl = ReceiverRE->getDecl();
 | 
						|
          Diag(Message->getSourceRange().getBegin(),
 | 
						|
               diag::warn_objc_circular_container)
 | 
						|
            << Decl << Decl;
 | 
						|
          if (!ArgRE->isObjCSelfExpr()) {
 | 
						|
            Diag(Decl->getLocation(),
 | 
						|
                 diag::note_objc_circular_container_declared_here)
 | 
						|
              << Decl;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
 | 
						|
      if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
 | 
						|
        if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
 | 
						|
          ObjCIvarDecl *Decl = IvarRE->getDecl();
 | 
						|
          Diag(Message->getSourceRange().getBegin(),
 | 
						|
               diag::warn_objc_circular_container)
 | 
						|
            << Decl << Decl;
 | 
						|
          Diag(Decl->getLocation(),
 | 
						|
               diag::note_objc_circular_container_declared_here)
 | 
						|
            << Decl;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check a message send to see if it's likely to cause a retain cycle.
 | 
						|
void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
 | 
						|
  // Only check instance methods whose selector looks like a setter.
 | 
						|
  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Try to find a variable that the receiver is strongly owned by.
 | 
						|
  RetainCycleOwner owner;
 | 
						|
  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
 | 
						|
    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
 | 
						|
      return;
 | 
						|
  } else {
 | 
						|
    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
 | 
						|
    owner.Variable = getCurMethodDecl()->getSelfDecl();
 | 
						|
    owner.Loc = msg->getSuperLoc();
 | 
						|
    owner.Range = msg->getSuperLoc();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether the receiver is captured by any of the arguments.
 | 
						|
  const ObjCMethodDecl *MD = msg->getMethodDecl();
 | 
						|
  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
 | 
						|
    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
 | 
						|
      // noescape blocks should not be retained by the method.
 | 
						|
      if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
 | 
						|
        continue;
 | 
						|
      return diagnoseRetainCycle(*this, capturer, owner);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check a property assign to see if it's likely to cause a retain cycle.
 | 
						|
void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
 | 
						|
  RetainCycleOwner owner;
 | 
						|
  if (!findRetainCycleOwner(*this, receiver, owner))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
 | 
						|
    diagnoseRetainCycle(*this, capturer, owner);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
 | 
						|
  RetainCycleOwner Owner;
 | 
						|
  if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Because we don't have an expression for the variable, we have to set the
 | 
						|
  // location explicitly here.
 | 
						|
  Owner.Loc = Var->getLocation();
 | 
						|
  Owner.Range = Var->getSourceRange();
 | 
						|
 | 
						|
  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
 | 
						|
    diagnoseRetainCycle(*this, Capturer, Owner);
 | 
						|
}
 | 
						|
 | 
						|
static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
 | 
						|
                                     Expr *RHS, bool isProperty) {
 | 
						|
  // Check if RHS is an Objective-C object literal, which also can get
 | 
						|
  // immediately zapped in a weak reference.  Note that we explicitly
 | 
						|
  // allow ObjCStringLiterals, since those are designed to never really die.
 | 
						|
  RHS = RHS->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  // This enum needs to match with the 'select' in
 | 
						|
  // warn_objc_arc_literal_assign (off-by-1).
 | 
						|
  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
 | 
						|
  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
 | 
						|
    return false;
 | 
						|
 | 
						|
  S.Diag(Loc, diag::warn_arc_literal_assign)
 | 
						|
    << (unsigned) Kind
 | 
						|
    << (isProperty ? 0 : 1)
 | 
						|
    << RHS->getSourceRange();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
 | 
						|
                                    Qualifiers::ObjCLifetime LT,
 | 
						|
                                    Expr *RHS, bool isProperty) {
 | 
						|
  // Strip off any implicit cast added to get to the one ARC-specific.
 | 
						|
  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
 | 
						|
    if (cast->getCastKind() == CK_ARCConsumeObject) {
 | 
						|
      S.Diag(Loc, diag::warn_arc_retained_assign)
 | 
						|
        << (LT == Qualifiers::OCL_ExplicitNone)
 | 
						|
        << (isProperty ? 0 : 1)
 | 
						|
        << RHS->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    RHS = cast->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  if (LT == Qualifiers::OCL_Weak &&
 | 
						|
      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::checkUnsafeAssigns(SourceLocation Loc,
 | 
						|
                              QualType LHS, Expr *RHS) {
 | 
						|
  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
 | 
						|
 | 
						|
  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
 | 
						|
                              Expr *LHS, Expr *RHS) {
 | 
						|
  QualType LHSType;
 | 
						|
  // PropertyRef on LHS type need be directly obtained from
 | 
						|
  // its declaration as it has a PseudoType.
 | 
						|
  ObjCPropertyRefExpr *PRE
 | 
						|
    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
 | 
						|
  if (PRE && !PRE->isImplicitProperty()) {
 | 
						|
    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
 | 
						|
    if (PD)
 | 
						|
      LHSType = PD->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHSType.isNull())
 | 
						|
    LHSType = LHS->getType();
 | 
						|
 | 
						|
  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
 | 
						|
 | 
						|
  if (LT == Qualifiers::OCL_Weak) {
 | 
						|
    if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
 | 
						|
      getCurFunction()->markSafeWeakUse(LHS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (checkUnsafeAssigns(Loc, LHSType, RHS))
 | 
						|
    return;
 | 
						|
 | 
						|
  // FIXME. Check for other life times.
 | 
						|
  if (LT != Qualifiers::OCL_None)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (PRE) {
 | 
						|
    if (PRE->isImplicitProperty())
 | 
						|
      return;
 | 
						|
    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
 | 
						|
    if (!PD)
 | 
						|
      return;
 | 
						|
 | 
						|
    unsigned Attributes = PD->getPropertyAttributes();
 | 
						|
    if (Attributes & ObjCPropertyAttribute::kind_assign) {
 | 
						|
      // when 'assign' attribute was not explicitly specified
 | 
						|
      // by user, ignore it and rely on property type itself
 | 
						|
      // for lifetime info.
 | 
						|
      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
 | 
						|
      if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
 | 
						|
          LHSType->isObjCRetainableType())
 | 
						|
        return;
 | 
						|
 | 
						|
      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
 | 
						|
        if (cast->getCastKind() == CK_ARCConsumeObject) {
 | 
						|
          Diag(Loc, diag::warn_arc_retained_property_assign)
 | 
						|
          << RHS->getSourceRange();
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        RHS = cast->getSubExpr();
 | 
						|
      }
 | 
						|
    } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
 | 
						|
      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
 | 
						|
 | 
						|
static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
 | 
						|
                                        SourceLocation StmtLoc,
 | 
						|
                                        const NullStmt *Body) {
 | 
						|
  // Do not warn if the body is a macro that expands to nothing, e.g:
 | 
						|
  //
 | 
						|
  // #define CALL(x)
 | 
						|
  // if (condition)
 | 
						|
  //   CALL(0);
 | 
						|
  if (Body->hasLeadingEmptyMacro())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get line numbers of statement and body.
 | 
						|
  bool StmtLineInvalid;
 | 
						|
  unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
 | 
						|
                                                      &StmtLineInvalid);
 | 
						|
  if (StmtLineInvalid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool BodyLineInvalid;
 | 
						|
  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
 | 
						|
                                                      &BodyLineInvalid);
 | 
						|
  if (BodyLineInvalid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Warn if null statement and body are on the same line.
 | 
						|
  if (StmtLine != BodyLine)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
 | 
						|
                                 const Stmt *Body,
 | 
						|
                                 unsigned DiagID) {
 | 
						|
  // Since this is a syntactic check, don't emit diagnostic for template
 | 
						|
  // instantiations, this just adds noise.
 | 
						|
  if (CurrentInstantiationScope)
 | 
						|
    return;
 | 
						|
 | 
						|
  // The body should be a null statement.
 | 
						|
  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
 | 
						|
  if (!NBody)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Do the usual checks.
 | 
						|
  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
 | 
						|
    return;
 | 
						|
 | 
						|
  Diag(NBody->getSemiLoc(), DiagID);
 | 
						|
  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
 | 
						|
                                 const Stmt *PossibleBody) {
 | 
						|
  assert(!CurrentInstantiationScope); // Ensured by caller
 | 
						|
 | 
						|
  SourceLocation StmtLoc;
 | 
						|
  const Stmt *Body;
 | 
						|
  unsigned DiagID;
 | 
						|
  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
 | 
						|
    StmtLoc = FS->getRParenLoc();
 | 
						|
    Body = FS->getBody();
 | 
						|
    DiagID = diag::warn_empty_for_body;
 | 
						|
  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
 | 
						|
    StmtLoc = WS->getCond()->getSourceRange().getEnd();
 | 
						|
    Body = WS->getBody();
 | 
						|
    DiagID = diag::warn_empty_while_body;
 | 
						|
  } else
 | 
						|
    return; // Neither `for' nor `while'.
 | 
						|
 | 
						|
  // The body should be a null statement.
 | 
						|
  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
 | 
						|
  if (!NBody)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Skip expensive checks if diagnostic is disabled.
 | 
						|
  if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Do the usual checks.
 | 
						|
  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
 | 
						|
    return;
 | 
						|
 | 
						|
  // `for(...);' and `while(...);' are popular idioms, so in order to keep
 | 
						|
  // noise level low, emit diagnostics only if for/while is followed by a
 | 
						|
  // CompoundStmt, e.g.:
 | 
						|
  //    for (int i = 0; i < n; i++);
 | 
						|
  //    {
 | 
						|
  //      a(i);
 | 
						|
  //    }
 | 
						|
  // or if for/while is followed by a statement with more indentation
 | 
						|
  // than for/while itself:
 | 
						|
  //    for (int i = 0; i < n; i++);
 | 
						|
  //      a(i);
 | 
						|
  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
 | 
						|
  if (!ProbableTypo) {
 | 
						|
    bool BodyColInvalid;
 | 
						|
    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
 | 
						|
        PossibleBody->getBeginLoc(), &BodyColInvalid);
 | 
						|
    if (BodyColInvalid)
 | 
						|
      return;
 | 
						|
 | 
						|
    bool StmtColInvalid;
 | 
						|
    unsigned StmtCol =
 | 
						|
        SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
 | 
						|
    if (StmtColInvalid)
 | 
						|
      return;
 | 
						|
 | 
						|
    if (BodyCol > StmtCol)
 | 
						|
      ProbableTypo = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ProbableTypo) {
 | 
						|
    Diag(NBody->getSemiLoc(), DiagID);
 | 
						|
    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===--- CHECK: Warn on self move with std::move. -------------------------===//
 | 
						|
 | 
						|
/// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
 | 
						|
void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
 | 
						|
                             SourceLocation OpLoc) {
 | 
						|
  if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (inTemplateInstantiation())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Strip parens and casts away.
 | 
						|
  LHSExpr = LHSExpr->IgnoreParenImpCasts();
 | 
						|
  RHSExpr = RHSExpr->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  // Check for a call expression
 | 
						|
  const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
 | 
						|
  if (!CE || CE->getNumArgs() != 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check for a call to std::move
 | 
						|
  if (!CE->isCallToStdMove())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Get argument from std::move
 | 
						|
  RHSExpr = CE->getArg(0);
 | 
						|
 | 
						|
  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
 | 
						|
  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
 | 
						|
 | 
						|
  // Two DeclRefExpr's, check that the decls are the same.
 | 
						|
  if (LHSDeclRef && RHSDeclRef) {
 | 
						|
    if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
 | 
						|
      return;
 | 
						|
    if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
 | 
						|
        RHSDeclRef->getDecl()->getCanonicalDecl())
 | 
						|
      return;
 | 
						|
 | 
						|
    Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
 | 
						|
                                        << LHSExpr->getSourceRange()
 | 
						|
                                        << RHSExpr->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Member variables require a different approach to check for self moves.
 | 
						|
  // MemberExpr's are the same if every nested MemberExpr refers to the same
 | 
						|
  // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
 | 
						|
  // the base Expr's are CXXThisExpr's.
 | 
						|
  const Expr *LHSBase = LHSExpr;
 | 
						|
  const Expr *RHSBase = RHSExpr;
 | 
						|
  const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
 | 
						|
  const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
 | 
						|
  if (!LHSME || !RHSME)
 | 
						|
    return;
 | 
						|
 | 
						|
  while (LHSME && RHSME) {
 | 
						|
    if (LHSME->getMemberDecl()->getCanonicalDecl() !=
 | 
						|
        RHSME->getMemberDecl()->getCanonicalDecl())
 | 
						|
      return;
 | 
						|
 | 
						|
    LHSBase = LHSME->getBase();
 | 
						|
    RHSBase = RHSME->getBase();
 | 
						|
    LHSME = dyn_cast<MemberExpr>(LHSBase);
 | 
						|
    RHSME = dyn_cast<MemberExpr>(RHSBase);
 | 
						|
  }
 | 
						|
 | 
						|
  LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
 | 
						|
  RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
 | 
						|
  if (LHSDeclRef && RHSDeclRef) {
 | 
						|
    if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
 | 
						|
      return;
 | 
						|
    if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
 | 
						|
        RHSDeclRef->getDecl()->getCanonicalDecl())
 | 
						|
      return;
 | 
						|
 | 
						|
    Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
 | 
						|
                                        << LHSExpr->getSourceRange()
 | 
						|
                                        << RHSExpr->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
 | 
						|
    Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
 | 
						|
                                        << LHSExpr->getSourceRange()
 | 
						|
                                        << RHSExpr->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
//===--- Layout compatibility ----------------------------------------------//
 | 
						|
 | 
						|
static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
 | 
						|
 | 
						|
/// Check if two enumeration types are layout-compatible.
 | 
						|
static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
 | 
						|
  // C++11 [dcl.enum] p8:
 | 
						|
  // Two enumeration types are layout-compatible if they have the same
 | 
						|
  // underlying type.
 | 
						|
  return ED1->isComplete() && ED2->isComplete() &&
 | 
						|
         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
 | 
						|
}
 | 
						|
 | 
						|
/// Check if two fields are layout-compatible.
 | 
						|
static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
 | 
						|
                               FieldDecl *Field2) {
 | 
						|
  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Field1->isBitField() != Field2->isBitField())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Field1->isBitField()) {
 | 
						|
    // Make sure that the bit-fields are the same length.
 | 
						|
    unsigned Bits1 = Field1->getBitWidthValue(C);
 | 
						|
    unsigned Bits2 = Field2->getBitWidthValue(C);
 | 
						|
 | 
						|
    if (Bits1 != Bits2)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if two standard-layout structs are layout-compatible.
 | 
						|
/// (C++11 [class.mem] p17)
 | 
						|
static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
 | 
						|
                                     RecordDecl *RD2) {
 | 
						|
  // If both records are C++ classes, check that base classes match.
 | 
						|
  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
 | 
						|
    // If one of records is a CXXRecordDecl we are in C++ mode,
 | 
						|
    // thus the other one is a CXXRecordDecl, too.
 | 
						|
    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
 | 
						|
    // Check number of base classes.
 | 
						|
    if (D1CXX->getNumBases() != D2CXX->getNumBases())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Check the base classes.
 | 
						|
    for (CXXRecordDecl::base_class_const_iterator
 | 
						|
               Base1 = D1CXX->bases_begin(),
 | 
						|
           BaseEnd1 = D1CXX->bases_end(),
 | 
						|
              Base2 = D2CXX->bases_begin();
 | 
						|
         Base1 != BaseEnd1;
 | 
						|
         ++Base1, ++Base2) {
 | 
						|
      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
 | 
						|
    // If only RD2 is a C++ class, it should have zero base classes.
 | 
						|
    if (D2CXX->getNumBases() > 0)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the fields.
 | 
						|
  RecordDecl::field_iterator Field2 = RD2->field_begin(),
 | 
						|
                             Field2End = RD2->field_end(),
 | 
						|
                             Field1 = RD1->field_begin(),
 | 
						|
                             Field1End = RD1->field_end();
 | 
						|
  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
 | 
						|
    if (!isLayoutCompatible(C, *Field1, *Field2))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  if (Field1 != Field1End || Field2 != Field2End)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if two standard-layout unions are layout-compatible.
 | 
						|
/// (C++11 [class.mem] p18)
 | 
						|
static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
 | 
						|
                                    RecordDecl *RD2) {
 | 
						|
  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
 | 
						|
  for (auto *Field2 : RD2->fields())
 | 
						|
    UnmatchedFields.insert(Field2);
 | 
						|
 | 
						|
  for (auto *Field1 : RD1->fields()) {
 | 
						|
    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
 | 
						|
        I = UnmatchedFields.begin(),
 | 
						|
        E = UnmatchedFields.end();
 | 
						|
 | 
						|
    for ( ; I != E; ++I) {
 | 
						|
      if (isLayoutCompatible(C, Field1, *I)) {
 | 
						|
        bool Result = UnmatchedFields.erase(*I);
 | 
						|
        (void) Result;
 | 
						|
        assert(Result);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (I == E)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return UnmatchedFields.empty();
 | 
						|
}
 | 
						|
 | 
						|
static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
 | 
						|
                               RecordDecl *RD2) {
 | 
						|
  if (RD1->isUnion() != RD2->isUnion())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (RD1->isUnion())
 | 
						|
    return isLayoutCompatibleUnion(C, RD1, RD2);
 | 
						|
  else
 | 
						|
    return isLayoutCompatibleStruct(C, RD1, RD2);
 | 
						|
}
 | 
						|
 | 
						|
/// Check if two types are layout-compatible in C++11 sense.
 | 
						|
static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
 | 
						|
  if (T1.isNull() || T2.isNull())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++11 [basic.types] p11:
 | 
						|
  // If two types T1 and T2 are the same type, then T1 and T2 are
 | 
						|
  // layout-compatible types.
 | 
						|
  if (C.hasSameType(T1, T2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  T1 = T1.getCanonicalType().getUnqualifiedType();
 | 
						|
  T2 = T2.getCanonicalType().getUnqualifiedType();
 | 
						|
 | 
						|
  const Type::TypeClass TC1 = T1->getTypeClass();
 | 
						|
  const Type::TypeClass TC2 = T2->getTypeClass();
 | 
						|
 | 
						|
  if (TC1 != TC2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TC1 == Type::Enum) {
 | 
						|
    return isLayoutCompatible(C,
 | 
						|
                              cast<EnumType>(T1)->getDecl(),
 | 
						|
                              cast<EnumType>(T2)->getDecl());
 | 
						|
  } else if (TC1 == Type::Record) {
 | 
						|
    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
 | 
						|
      return false;
 | 
						|
 | 
						|
    return isLayoutCompatible(C,
 | 
						|
                              cast<RecordType>(T1)->getDecl(),
 | 
						|
                              cast<RecordType>(T2)->getDecl());
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
 | 
						|
 | 
						|
/// Given a type tag expression find the type tag itself.
 | 
						|
///
 | 
						|
/// \param TypeExpr Type tag expression, as it appears in user's code.
 | 
						|
///
 | 
						|
/// \param VD Declaration of an identifier that appears in a type tag.
 | 
						|
///
 | 
						|
/// \param MagicValue Type tag magic value.
 | 
						|
///
 | 
						|
/// \param isConstantEvaluated wether the evalaution should be performed in
 | 
						|
 | 
						|
/// constant context.
 | 
						|
static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
 | 
						|
                            const ValueDecl **VD, uint64_t *MagicValue,
 | 
						|
                            bool isConstantEvaluated) {
 | 
						|
  while(true) {
 | 
						|
    if (!TypeExpr)
 | 
						|
      return false;
 | 
						|
 | 
						|
    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
 | 
						|
 | 
						|
    switch (TypeExpr->getStmtClass()) {
 | 
						|
    case Stmt::UnaryOperatorClass: {
 | 
						|
      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
 | 
						|
      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
 | 
						|
        TypeExpr = UO->getSubExpr();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    case Stmt::DeclRefExprClass: {
 | 
						|
      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
 | 
						|
      *VD = DRE->getDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    case Stmt::IntegerLiteralClass: {
 | 
						|
      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
 | 
						|
      llvm::APInt MagicValueAPInt = IL->getValue();
 | 
						|
      if (MagicValueAPInt.getActiveBits() <= 64) {
 | 
						|
        *MagicValue = MagicValueAPInt.getZExtValue();
 | 
						|
        return true;
 | 
						|
      } else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    case Stmt::BinaryConditionalOperatorClass:
 | 
						|
    case Stmt::ConditionalOperatorClass: {
 | 
						|
      const AbstractConditionalOperator *ACO =
 | 
						|
          cast<AbstractConditionalOperator>(TypeExpr);
 | 
						|
      bool Result;
 | 
						|
      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
 | 
						|
                                                     isConstantEvaluated)) {
 | 
						|
        if (Result)
 | 
						|
          TypeExpr = ACO->getTrueExpr();
 | 
						|
        else
 | 
						|
          TypeExpr = ACO->getFalseExpr();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    case Stmt::BinaryOperatorClass: {
 | 
						|
      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
 | 
						|
      if (BO->getOpcode() == BO_Comma) {
 | 
						|
        TypeExpr = BO->getRHS();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Retrieve the C type corresponding to type tag TypeExpr.
 | 
						|
///
 | 
						|
/// \param TypeExpr Expression that specifies a type tag.
 | 
						|
///
 | 
						|
/// \param MagicValues Registered magic values.
 | 
						|
///
 | 
						|
/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
 | 
						|
///        kind.
 | 
						|
///
 | 
						|
/// \param TypeInfo Information about the corresponding C type.
 | 
						|
///
 | 
						|
/// \param isConstantEvaluated wether the evalaution should be performed in
 | 
						|
/// constant context.
 | 
						|
///
 | 
						|
/// \returns true if the corresponding C type was found.
 | 
						|
static bool GetMatchingCType(
 | 
						|
    const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
 | 
						|
    const ASTContext &Ctx,
 | 
						|
    const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
 | 
						|
        *MagicValues,
 | 
						|
    bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
 | 
						|
    bool isConstantEvaluated) {
 | 
						|
  FoundWrongKind = false;
 | 
						|
 | 
						|
  // Variable declaration that has type_tag_for_datatype attribute.
 | 
						|
  const ValueDecl *VD = nullptr;
 | 
						|
 | 
						|
  uint64_t MagicValue;
 | 
						|
 | 
						|
  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (VD) {
 | 
						|
    if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
 | 
						|
      if (I->getArgumentKind() != ArgumentKind) {
 | 
						|
        FoundWrongKind = true;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      TypeInfo.Type = I->getMatchingCType();
 | 
						|
      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
 | 
						|
      TypeInfo.MustBeNull = I->getMustBeNull();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MagicValues)
 | 
						|
    return false;
 | 
						|
 | 
						|
  llvm::DenseMap<Sema::TypeTagMagicValue,
 | 
						|
                 Sema::TypeTagData>::const_iterator I =
 | 
						|
      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
 | 
						|
  if (I == MagicValues->end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  TypeInfo = I->second;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
 | 
						|
                                      uint64_t MagicValue, QualType Type,
 | 
						|
                                      bool LayoutCompatible,
 | 
						|
                                      bool MustBeNull) {
 | 
						|
  if (!TypeTagForDatatypeMagicValues)
 | 
						|
    TypeTagForDatatypeMagicValues.reset(
 | 
						|
        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
 | 
						|
 | 
						|
  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
 | 
						|
  (*TypeTagForDatatypeMagicValues)[Magic] =
 | 
						|
      TypeTagData(Type, LayoutCompatible, MustBeNull);
 | 
						|
}
 | 
						|
 | 
						|
static bool IsSameCharType(QualType T1, QualType T2) {
 | 
						|
  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
 | 
						|
  if (!BT1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
 | 
						|
  if (!BT2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BuiltinType::Kind T1Kind = BT1->getKind();
 | 
						|
  BuiltinType::Kind T2Kind = BT2->getKind();
 | 
						|
 | 
						|
  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
 | 
						|
         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
 | 
						|
         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
 | 
						|
         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
 | 
						|
                                    const ArrayRef<const Expr *> ExprArgs,
 | 
						|
                                    SourceLocation CallSiteLoc) {
 | 
						|
  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
 | 
						|
  bool IsPointerAttr = Attr->getIsPointer();
 | 
						|
 | 
						|
  // Retrieve the argument representing the 'type_tag'.
 | 
						|
  unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
 | 
						|
  if (TypeTagIdxAST >= ExprArgs.size()) {
 | 
						|
    Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
 | 
						|
        << 0 << Attr->getTypeTagIdx().getSourceIndex();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
 | 
						|
  bool FoundWrongKind;
 | 
						|
  TypeTagData TypeInfo;
 | 
						|
  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
 | 
						|
                        TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
 | 
						|
                        TypeInfo, isConstantEvaluated())) {
 | 
						|
    if (FoundWrongKind)
 | 
						|
      Diag(TypeTagExpr->getExprLoc(),
 | 
						|
           diag::warn_type_tag_for_datatype_wrong_kind)
 | 
						|
        << TypeTagExpr->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Retrieve the argument representing the 'arg_idx'.
 | 
						|
  unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
 | 
						|
  if (ArgumentIdxAST >= ExprArgs.size()) {
 | 
						|
    Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
 | 
						|
        << 1 << Attr->getArgumentIdx().getSourceIndex();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
 | 
						|
  if (IsPointerAttr) {
 | 
						|
    // Skip implicit cast of pointer to `void *' (as a function argument).
 | 
						|
    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
 | 
						|
      if (ICE->getType()->isVoidPointerType() &&
 | 
						|
          ICE->getCastKind() == CK_BitCast)
 | 
						|
        ArgumentExpr = ICE->getSubExpr();
 | 
						|
  }
 | 
						|
  QualType ArgumentType = ArgumentExpr->getType();
 | 
						|
 | 
						|
  // Passing a `void*' pointer shouldn't trigger a warning.
 | 
						|
  if (IsPointerAttr && ArgumentType->isVoidPointerType())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (TypeInfo.MustBeNull) {
 | 
						|
    // Type tag with matching void type requires a null pointer.
 | 
						|
    if (!ArgumentExpr->isNullPointerConstant(Context,
 | 
						|
                                             Expr::NPC_ValueDependentIsNotNull)) {
 | 
						|
      Diag(ArgumentExpr->getExprLoc(),
 | 
						|
           diag::warn_type_safety_null_pointer_required)
 | 
						|
          << ArgumentKind->getName()
 | 
						|
          << ArgumentExpr->getSourceRange()
 | 
						|
          << TypeTagExpr->getSourceRange();
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType RequiredType = TypeInfo.Type;
 | 
						|
  if (IsPointerAttr)
 | 
						|
    RequiredType = Context.getPointerType(RequiredType);
 | 
						|
 | 
						|
  bool mismatch = false;
 | 
						|
  if (!TypeInfo.LayoutCompatible) {
 | 
						|
    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
 | 
						|
 | 
						|
    // C++11 [basic.fundamental] p1:
 | 
						|
    // Plain char, signed char, and unsigned char are three distinct types.
 | 
						|
    //
 | 
						|
    // But we treat plain `char' as equivalent to `signed char' or `unsigned
 | 
						|
    // char' depending on the current char signedness mode.
 | 
						|
    if (mismatch)
 | 
						|
      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
 | 
						|
                                           RequiredType->getPointeeType())) ||
 | 
						|
          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
 | 
						|
        mismatch = false;
 | 
						|
  } else
 | 
						|
    if (IsPointerAttr)
 | 
						|
      mismatch = !isLayoutCompatible(Context,
 | 
						|
                                     ArgumentType->getPointeeType(),
 | 
						|
                                     RequiredType->getPointeeType());
 | 
						|
    else
 | 
						|
      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
 | 
						|
 | 
						|
  if (mismatch)
 | 
						|
    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
 | 
						|
        << ArgumentType << ArgumentKind
 | 
						|
        << TypeInfo.LayoutCompatible << RequiredType
 | 
						|
        << ArgumentExpr->getSourceRange()
 | 
						|
        << TypeTagExpr->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
 | 
						|
                                         CharUnits Alignment) {
 | 
						|
  MisalignedMembers.emplace_back(E, RD, MD, Alignment);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseMisalignedMembers() {
 | 
						|
  for (MisalignedMember &m : MisalignedMembers) {
 | 
						|
    const NamedDecl *ND = m.RD;
 | 
						|
    if (ND->getName().empty()) {
 | 
						|
      if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
 | 
						|
        ND = TD;
 | 
						|
    }
 | 
						|
    Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
 | 
						|
        << m.MD << ND << m.E->getSourceRange();
 | 
						|
  }
 | 
						|
  MisalignedMembers.clear();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
 | 
						|
  E = E->IgnoreParens();
 | 
						|
  if (!T->isPointerType() && !T->isIntegerType())
 | 
						|
    return;
 | 
						|
  if (isa<UnaryOperator>(E) &&
 | 
						|
      cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
 | 
						|
    auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
 | 
						|
    if (isa<MemberExpr>(Op)) {
 | 
						|
      auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
 | 
						|
      if (MA != MisalignedMembers.end() &&
 | 
						|
          (T->isIntegerType() ||
 | 
						|
           (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
 | 
						|
                                   Context.getTypeAlignInChars(
 | 
						|
                                       T->getPointeeType()) <= MA->Alignment))))
 | 
						|
        MisalignedMembers.erase(MA);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::RefersToMemberWithReducedAlignment(
 | 
						|
    Expr *E,
 | 
						|
    llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
 | 
						|
        Action) {
 | 
						|
  const auto *ME = dyn_cast<MemberExpr>(E);
 | 
						|
  if (!ME)
 | 
						|
    return;
 | 
						|
 | 
						|
  // No need to check expressions with an __unaligned-qualified type.
 | 
						|
  if (E->getType().getQualifiers().hasUnaligned())
 | 
						|
    return;
 | 
						|
 | 
						|
  // For a chain of MemberExpr like "a.b.c.d" this list
 | 
						|
  // will keep FieldDecl's like [d, c, b].
 | 
						|
  SmallVector<FieldDecl *, 4> ReverseMemberChain;
 | 
						|
  const MemberExpr *TopME = nullptr;
 | 
						|
  bool AnyIsPacked = false;
 | 
						|
  do {
 | 
						|
    QualType BaseType = ME->getBase()->getType();
 | 
						|
    if (BaseType->isDependentType())
 | 
						|
      return;
 | 
						|
    if (ME->isArrow())
 | 
						|
      BaseType = BaseType->getPointeeType();
 | 
						|
    RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
 | 
						|
    if (RD->isInvalidDecl())
 | 
						|
      return;
 | 
						|
 | 
						|
    ValueDecl *MD = ME->getMemberDecl();
 | 
						|
    auto *FD = dyn_cast<FieldDecl>(MD);
 | 
						|
    // We do not care about non-data members.
 | 
						|
    if (!FD || FD->isInvalidDecl())
 | 
						|
      return;
 | 
						|
 | 
						|
    AnyIsPacked =
 | 
						|
        AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
 | 
						|
    ReverseMemberChain.push_back(FD);
 | 
						|
 | 
						|
    TopME = ME;
 | 
						|
    ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
 | 
						|
  } while (ME);
 | 
						|
  assert(TopME && "We did not compute a topmost MemberExpr!");
 | 
						|
 | 
						|
  // Not the scope of this diagnostic.
 | 
						|
  if (!AnyIsPacked)
 | 
						|
    return;
 | 
						|
 | 
						|
  const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
 | 
						|
  const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
 | 
						|
  // TODO: The innermost base of the member expression may be too complicated.
 | 
						|
  // For now, just disregard these cases. This is left for future
 | 
						|
  // improvement.
 | 
						|
  if (!DRE && !isa<CXXThisExpr>(TopBase))
 | 
						|
      return;
 | 
						|
 | 
						|
  // Alignment expected by the whole expression.
 | 
						|
  CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
 | 
						|
 | 
						|
  // No need to do anything else with this case.
 | 
						|
  if (ExpectedAlignment.isOne())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Synthesize offset of the whole access.
 | 
						|
  CharUnits Offset;
 | 
						|
  for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
 | 
						|
       I++) {
 | 
						|
    Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the CompleteObjectAlignment as the alignment of the whole chain.
 | 
						|
  CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
 | 
						|
      ReverseMemberChain.back()->getParent()->getTypeForDecl());
 | 
						|
 | 
						|
  // The base expression of the innermost MemberExpr may give
 | 
						|
  // stronger guarantees than the class containing the member.
 | 
						|
  if (DRE && !TopME->isArrow()) {
 | 
						|
    const ValueDecl *VD = DRE->getDecl();
 | 
						|
    if (!VD->getType()->isReferenceType())
 | 
						|
      CompleteObjectAlignment =
 | 
						|
          std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if the synthesized offset fulfills the alignment.
 | 
						|
  if (Offset % ExpectedAlignment != 0 ||
 | 
						|
      // It may fulfill the offset it but the effective alignment may still be
 | 
						|
      // lower than the expected expression alignment.
 | 
						|
      CompleteObjectAlignment < ExpectedAlignment) {
 | 
						|
    // If this happens, we want to determine a sensible culprit of this.
 | 
						|
    // Intuitively, watching the chain of member expressions from right to
 | 
						|
    // left, we start with the required alignment (as required by the field
 | 
						|
    // type) but some packed attribute in that chain has reduced the alignment.
 | 
						|
    // It may happen that another packed structure increases it again. But if
 | 
						|
    // we are here such increase has not been enough. So pointing the first
 | 
						|
    // FieldDecl that either is packed or else its RecordDecl is,
 | 
						|
    // seems reasonable.
 | 
						|
    FieldDecl *FD = nullptr;
 | 
						|
    CharUnits Alignment;
 | 
						|
    for (FieldDecl *FDI : ReverseMemberChain) {
 | 
						|
      if (FDI->hasAttr<PackedAttr>() ||
 | 
						|
          FDI->getParent()->hasAttr<PackedAttr>()) {
 | 
						|
        FD = FDI;
 | 
						|
        Alignment = std::min(
 | 
						|
            Context.getTypeAlignInChars(FD->getType()),
 | 
						|
            Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(FD && "We did not find a packed FieldDecl!");
 | 
						|
    Action(E, FD->getParent(), FD, Alignment);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckAddressOfPackedMember(Expr *rhs) {
 | 
						|
  using namespace std::placeholders;
 | 
						|
 | 
						|
  RefersToMemberWithReducedAlignment(
 | 
						|
      rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
 | 
						|
                     _2, _3, _4));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
 | 
						|
                                            ExprResult CallResult) {
 | 
						|
  if (checkArgCount(*this, TheCall, 1))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
 | 
						|
  if (MatrixArg.isInvalid())
 | 
						|
    return MatrixArg;
 | 
						|
  Expr *Matrix = MatrixArg.get();
 | 
						|
 | 
						|
  auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
 | 
						|
  if (!MType) {
 | 
						|
    Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Create returned matrix type by swapping rows and columns of the argument
 | 
						|
  // matrix type.
 | 
						|
  QualType ResultType = Context.getConstantMatrixType(
 | 
						|
      MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
 | 
						|
 | 
						|
  // Change the return type to the type of the returned matrix.
 | 
						|
  TheCall->setType(ResultType);
 | 
						|
 | 
						|
  // Update call argument to use the possibly converted matrix argument.
 | 
						|
  TheCall->setArg(0, Matrix);
 | 
						|
  return CallResult;
 | 
						|
}
 | 
						|
 | 
						|
// Get and verify the matrix dimensions.
 | 
						|
static llvm::Optional<unsigned>
 | 
						|
getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
 | 
						|
  SourceLocation ErrorPos;
 | 
						|
  Optional<llvm::APSInt> Value =
 | 
						|
      Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
 | 
						|
  if (!Value) {
 | 
						|
    S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
 | 
						|
        << Name;
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
  uint64_t Dim = Value->getZExtValue();
 | 
						|
  if (!ConstantMatrixType::isDimensionValid(Dim)) {
 | 
						|
    S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
 | 
						|
        << Name << ConstantMatrixType::getMaxElementsPerDimension();
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
  return Dim;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
 | 
						|
                                                  ExprResult CallResult) {
 | 
						|
  if (!getLangOpts().MatrixTypes) {
 | 
						|
    Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (checkArgCount(*this, TheCall, 4))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  unsigned PtrArgIdx = 0;
 | 
						|
  Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
 | 
						|
  Expr *RowsExpr = TheCall->getArg(1);
 | 
						|
  Expr *ColumnsExpr = TheCall->getArg(2);
 | 
						|
  Expr *StrideExpr = TheCall->getArg(3);
 | 
						|
 | 
						|
  bool ArgError = false;
 | 
						|
 | 
						|
  // Check pointer argument.
 | 
						|
  {
 | 
						|
    ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
 | 
						|
    if (PtrConv.isInvalid())
 | 
						|
      return PtrConv;
 | 
						|
    PtrExpr = PtrConv.get();
 | 
						|
    TheCall->setArg(0, PtrExpr);
 | 
						|
    if (PtrExpr->isTypeDependent()) {
 | 
						|
      TheCall->setType(Context.DependentTy);
 | 
						|
      return TheCall;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
 | 
						|
  QualType ElementTy;
 | 
						|
  if (!PtrTy) {
 | 
						|
    Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
 | 
						|
        << PtrArgIdx + 1;
 | 
						|
    ArgError = true;
 | 
						|
  } else {
 | 
						|
    ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
 | 
						|
 | 
						|
    if (!ConstantMatrixType::isValidElementType(ElementTy)) {
 | 
						|
      Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
 | 
						|
          << PtrArgIdx + 1;
 | 
						|
      ArgError = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Apply default Lvalue conversions and convert the expression to size_t.
 | 
						|
  auto ApplyArgumentConversions = [this](Expr *E) {
 | 
						|
    ExprResult Conv = DefaultLvalueConversion(E);
 | 
						|
    if (Conv.isInvalid())
 | 
						|
      return Conv;
 | 
						|
 | 
						|
    return tryConvertExprToType(Conv.get(), Context.getSizeType());
 | 
						|
  };
 | 
						|
 | 
						|
  // Apply conversion to row and column expressions.
 | 
						|
  ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
 | 
						|
  if (!RowsConv.isInvalid()) {
 | 
						|
    RowsExpr = RowsConv.get();
 | 
						|
    TheCall->setArg(1, RowsExpr);
 | 
						|
  } else
 | 
						|
    RowsExpr = nullptr;
 | 
						|
 | 
						|
  ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
 | 
						|
  if (!ColumnsConv.isInvalid()) {
 | 
						|
    ColumnsExpr = ColumnsConv.get();
 | 
						|
    TheCall->setArg(2, ColumnsExpr);
 | 
						|
  } else
 | 
						|
    ColumnsExpr = nullptr;
 | 
						|
 | 
						|
  // If any any part of the result matrix type is still pending, just use
 | 
						|
  // Context.DependentTy, until all parts are resolved.
 | 
						|
  if ((RowsExpr && RowsExpr->isTypeDependent()) ||
 | 
						|
      (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
 | 
						|
    TheCall->setType(Context.DependentTy);
 | 
						|
    return CallResult;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check row and column dimenions.
 | 
						|
  llvm::Optional<unsigned> MaybeRows;
 | 
						|
  if (RowsExpr)
 | 
						|
    MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
 | 
						|
 | 
						|
  llvm::Optional<unsigned> MaybeColumns;
 | 
						|
  if (ColumnsExpr)
 | 
						|
    MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
 | 
						|
 | 
						|
  // Check stride argument.
 | 
						|
  ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
 | 
						|
  if (StrideConv.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  StrideExpr = StrideConv.get();
 | 
						|
  TheCall->setArg(3, StrideExpr);
 | 
						|
 | 
						|
  if (MaybeRows) {
 | 
						|
    if (Optional<llvm::APSInt> Value =
 | 
						|
            StrideExpr->getIntegerConstantExpr(Context)) {
 | 
						|
      uint64_t Stride = Value->getZExtValue();
 | 
						|
      if (Stride < *MaybeRows) {
 | 
						|
        Diag(StrideExpr->getBeginLoc(),
 | 
						|
             diag::err_builtin_matrix_stride_too_small);
 | 
						|
        ArgError = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ArgError || !MaybeRows || !MaybeColumns)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  TheCall->setType(
 | 
						|
      Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
 | 
						|
  return CallResult;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
 | 
						|
                                                   ExprResult CallResult) {
 | 
						|
  if (checkArgCount(*this, TheCall, 3))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  unsigned PtrArgIdx = 1;
 | 
						|
  Expr *MatrixExpr = TheCall->getArg(0);
 | 
						|
  Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
 | 
						|
  Expr *StrideExpr = TheCall->getArg(2);
 | 
						|
 | 
						|
  bool ArgError = false;
 | 
						|
 | 
						|
  {
 | 
						|
    ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
 | 
						|
    if (MatrixConv.isInvalid())
 | 
						|
      return MatrixConv;
 | 
						|
    MatrixExpr = MatrixConv.get();
 | 
						|
    TheCall->setArg(0, MatrixExpr);
 | 
						|
  }
 | 
						|
  if (MatrixExpr->isTypeDependent()) {
 | 
						|
    TheCall->setType(Context.DependentTy);
 | 
						|
    return TheCall;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
 | 
						|
  if (!MatrixTy) {
 | 
						|
    Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0;
 | 
						|
    ArgError = true;
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
 | 
						|
    if (PtrConv.isInvalid())
 | 
						|
      return PtrConv;
 | 
						|
    PtrExpr = PtrConv.get();
 | 
						|
    TheCall->setArg(1, PtrExpr);
 | 
						|
    if (PtrExpr->isTypeDependent()) {
 | 
						|
      TheCall->setType(Context.DependentTy);
 | 
						|
      return TheCall;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check pointer argument.
 | 
						|
  auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
 | 
						|
  if (!PtrTy) {
 | 
						|
    Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
 | 
						|
        << PtrArgIdx + 1;
 | 
						|
    ArgError = true;
 | 
						|
  } else {
 | 
						|
    QualType ElementTy = PtrTy->getPointeeType();
 | 
						|
    if (ElementTy.isConstQualified()) {
 | 
						|
      Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
 | 
						|
      ArgError = true;
 | 
						|
    }
 | 
						|
    ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
 | 
						|
    if (MatrixTy &&
 | 
						|
        !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
 | 
						|
      Diag(PtrExpr->getBeginLoc(),
 | 
						|
           diag::err_builtin_matrix_pointer_arg_mismatch)
 | 
						|
          << ElementTy << MatrixTy->getElementType();
 | 
						|
      ArgError = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Apply default Lvalue conversions and convert the stride expression to
 | 
						|
  // size_t.
 | 
						|
  {
 | 
						|
    ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
 | 
						|
    if (StrideConv.isInvalid())
 | 
						|
      return StrideConv;
 | 
						|
 | 
						|
    StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
 | 
						|
    if (StrideConv.isInvalid())
 | 
						|
      return StrideConv;
 | 
						|
    StrideExpr = StrideConv.get();
 | 
						|
    TheCall->setArg(2, StrideExpr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check stride argument.
 | 
						|
  if (MatrixTy) {
 | 
						|
    if (Optional<llvm::APSInt> Value =
 | 
						|
            StrideExpr->getIntegerConstantExpr(Context)) {
 | 
						|
      uint64_t Stride = Value->getZExtValue();
 | 
						|
      if (Stride < MatrixTy->getNumRows()) {
 | 
						|
        Diag(StrideExpr->getBeginLoc(),
 | 
						|
             diag::err_builtin_matrix_stride_too_small);
 | 
						|
        ArgError = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ArgError)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  return CallResult;
 | 
						|
}
 |