284 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			284 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
//=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines BasicValueFactory, a class that manages the lifetime
 | 
						|
//  of APSInt objects and symbolic constraints used by GRExprEngine 
 | 
						|
//  and related classes.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Analysis/PathSensitive/BasicValueFactory.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T, 
 | 
						|
                              llvm::ImmutableList<SVal> L) {
 | 
						|
  T.Profile(ID);
 | 
						|
  ID.AddPointer(L.getInternalPointer());
 | 
						|
}
 | 
						|
 | 
						|
typedef std::pair<SVal, uintptr_t> SValData;
 | 
						|
typedef std::pair<SVal, SVal> SValPair;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template<> struct FoldingSetTrait<SValData> {
 | 
						|
  static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) {
 | 
						|
    X.first.Profile(ID);
 | 
						|
    ID.AddPointer( (void*) X.second);
 | 
						|
  }
 | 
						|
};
 | 
						|
  
 | 
						|
template<> struct FoldingSetTrait<SValPair> {
 | 
						|
  static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) {
 | 
						|
    X.first.Profile(ID);
 | 
						|
    X.second.Profile(ID);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData> >
 | 
						|
  PersistentSValsTy;
 | 
						|
 | 
						|
typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair> >
 | 
						|
  PersistentSValPairsTy;
 | 
						|
 | 
						|
BasicValueFactory::~BasicValueFactory() {
 | 
						|
  // Note that the dstor for the contents of APSIntSet will never be called,
 | 
						|
  // so we iterate over the set and invoke the dstor for each APSInt.  This
 | 
						|
  // frees an aux. memory allocated to represent very large constants.
 | 
						|
  for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I)
 | 
						|
    I->getValue().~APSInt();
 | 
						|
  
 | 
						|
  delete (PersistentSValsTy*) PersistentSVals;  
 | 
						|
  delete (PersistentSValPairsTy*) PersistentSValPairs;
 | 
						|
}
 | 
						|
 | 
						|
const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  void* InsertPos;
 | 
						|
  typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy;
 | 
						|
  
 | 
						|
  X.Profile(ID);
 | 
						|
  FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  
 | 
						|
  if (!P) {  
 | 
						|
    P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
 | 
						|
    new (P) FoldNodeTy(X);
 | 
						|
    APSIntSet.InsertNode(P, InsertPos);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return *P;
 | 
						|
}
 | 
						|
 | 
						|
const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X,
 | 
						|
                                                bool isUnsigned) {
 | 
						|
  llvm::APSInt V(X, isUnsigned);
 | 
						|
  return getValue(V);
 | 
						|
}
 | 
						|
 | 
						|
const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth,
 | 
						|
                                           bool isUnsigned) {
 | 
						|
  llvm::APSInt V(BitWidth, isUnsigned);
 | 
						|
  V = X;  
 | 
						|
  return getValue(V);
 | 
						|
}
 | 
						|
 | 
						|
const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) {
 | 
						|
  
 | 
						|
  unsigned bits = Ctx.getTypeSize(T);
 | 
						|
  llvm::APSInt V(bits, T->isUnsignedIntegerType());
 | 
						|
  V = X;
 | 
						|
  return getValue(V);
 | 
						|
}
 | 
						|
 | 
						|
const SymIntConstraint&
 | 
						|
BasicValueFactory::getConstraint(SymbolRef sym, BinaryOperator::Opcode Op,
 | 
						|
                            const llvm::APSInt& V) {
 | 
						|
  
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  SymIntConstraint::Profile(ID, sym, Op, V);
 | 
						|
  void* InsertPos;
 | 
						|
  
 | 
						|
  SymIntConstraint* C = SymIntCSet.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  
 | 
						|
  if (!C) {
 | 
						|
    C = (SymIntConstraint*) BPAlloc.Allocate<SymIntConstraint>();
 | 
						|
    new (C) SymIntConstraint(sym, Op, V);
 | 
						|
    SymIntCSet.InsertNode(C, InsertPos);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return *C;
 | 
						|
}
 | 
						|
 | 
						|
const CompoundValData* 
 | 
						|
BasicValueFactory::getCompoundValData(QualType T,
 | 
						|
                                      llvm::ImmutableList<SVal> Vals) {
 | 
						|
  
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  CompoundValData::Profile(ID, T, Vals);
 | 
						|
  void* InsertPos;
 | 
						|
 | 
						|
  CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
  if (!D) {
 | 
						|
    D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>();
 | 
						|
    new (D) CompoundValData(T, Vals);
 | 
						|
    CompoundValDataSet.InsertNode(D, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  return D;
 | 
						|
}
 | 
						|
 | 
						|
const llvm::APSInt*
 | 
						|
BasicValueFactory::EvaluateAPSInt(BinaryOperator::Opcode Op,
 | 
						|
                             const llvm::APSInt& V1, const llvm::APSInt& V2) {
 | 
						|
  
 | 
						|
  switch (Op) {
 | 
						|
    default:
 | 
						|
      assert (false && "Invalid Opcode.");
 | 
						|
      
 | 
						|
    case BinaryOperator::Mul:
 | 
						|
      return &getValue( V1 * V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::Div:
 | 
						|
      return &getValue( V1 / V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::Rem:
 | 
						|
      return &getValue( V1 % V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::Add:
 | 
						|
      return &getValue( V1 + V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::Sub:
 | 
						|
      return &getValue( V1 - V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::Shl: {
 | 
						|
 | 
						|
      // FIXME: This logic should probably go higher up, where we can
 | 
						|
      // test these conditions symbolically.
 | 
						|
      
 | 
						|
      // FIXME: Expand these checks to include all undefined behavior.
 | 
						|
      
 | 
						|
      if (V2.isSigned() && V2.isNegative())
 | 
						|
        return NULL;
 | 
						|
      
 | 
						|
      uint64_t Amt = V2.getZExtValue();
 | 
						|
      
 | 
						|
      if (Amt > V1.getBitWidth())
 | 
						|
        return NULL;
 | 
						|
      
 | 
						|
      return &getValue( V1.operator<<( (unsigned) Amt ));
 | 
						|
    }
 | 
						|
      
 | 
						|
    case BinaryOperator::Shr: {
 | 
						|
      
 | 
						|
      // FIXME: This logic should probably go higher up, where we can
 | 
						|
      // test these conditions symbolically.
 | 
						|
      
 | 
						|
      // FIXME: Expand these checks to include all undefined behavior.
 | 
						|
      
 | 
						|
      if (V2.isSigned() && V2.isNegative())
 | 
						|
        return NULL;
 | 
						|
      
 | 
						|
      uint64_t Amt = V2.getZExtValue();
 | 
						|
      
 | 
						|
      if (Amt > V1.getBitWidth())
 | 
						|
        return NULL;
 | 
						|
      
 | 
						|
      return &getValue( V1.operator>>( (unsigned) Amt ));
 | 
						|
    }
 | 
						|
      
 | 
						|
    case BinaryOperator::LT:
 | 
						|
      return &getTruthValue( V1 < V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::GT:
 | 
						|
      return &getTruthValue( V1 > V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::LE:
 | 
						|
      return &getTruthValue( V1 <= V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::GE:
 | 
						|
      return &getTruthValue( V1 >= V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::EQ:
 | 
						|
      return &getTruthValue( V1 == V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::NE:
 | 
						|
      return &getTruthValue( V1 != V2 );
 | 
						|
      
 | 
						|
      // Note: LAnd, LOr, Comma are handled specially by higher-level logic.
 | 
						|
      
 | 
						|
    case BinaryOperator::And:
 | 
						|
      return &getValue( V1 & V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::Or:
 | 
						|
      return &getValue( V1 | V2 );
 | 
						|
      
 | 
						|
    case BinaryOperator::Xor:
 | 
						|
      return &getValue( V1 ^ V2 );
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
const std::pair<SVal, uintptr_t>&
 | 
						|
BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) {
 | 
						|
  
 | 
						|
  // Lazily create the folding set.
 | 
						|
  if (!PersistentSVals) PersistentSVals = new PersistentSValsTy();
 | 
						|
    
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  void* InsertPos;
 | 
						|
  V.Profile(ID);
 | 
						|
  ID.AddPointer((void*) Data);
 | 
						|
  
 | 
						|
  PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals);
 | 
						|
  
 | 
						|
  typedef llvm::FoldingSetNodeWrapper<SValData> FoldNodeTy;
 | 
						|
  FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  
 | 
						|
  if (!P) {  
 | 
						|
    P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
 | 
						|
    new (P) FoldNodeTy(std::make_pair(V, Data));
 | 
						|
    Map.InsertNode(P, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  return P->getValue();
 | 
						|
}
 | 
						|
 | 
						|
const std::pair<SVal, SVal>&
 | 
						|
BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) {
 | 
						|
  
 | 
						|
  // Lazily create the folding set.
 | 
						|
  if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy();
 | 
						|
  
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  void* InsertPos;
 | 
						|
  V1.Profile(ID);
 | 
						|
  V2.Profile(ID);
 | 
						|
  
 | 
						|
  PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs);
 | 
						|
  
 | 
						|
  typedef llvm::FoldingSetNodeWrapper<SValPair> FoldNodeTy;
 | 
						|
  FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  
 | 
						|
  if (!P) {  
 | 
						|
    P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
 | 
						|
    new (P) FoldNodeTy(std::make_pair(V1, V2));
 | 
						|
    Map.InsertNode(P, InsertPos);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return P->getValue();
 | 
						|
}
 | 
						|
 | 
						|
const SVal* BasicValueFactory::getPersistentSVal(SVal X) {
 | 
						|
  return &getPersistentSValWithData(X, 0).first;
 | 
						|
}  
 | 
						|
 | 
						|
 |