104 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is dual licensed under the MIT and the University of Illinois Open
 | 
						|
// Source Licenses. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// <random>
 | 
						|
 | 
						|
// class bernoulli_distribution
 | 
						|
 | 
						|
// template<class _URNG> result_type operator()(_URNG& g);
 | 
						|
 | 
						|
#include <random>
 | 
						|
#include <numeric>
 | 
						|
#include <vector>
 | 
						|
#include <cassert>
 | 
						|
 | 
						|
template <class T>
 | 
						|
inline
 | 
						|
T
 | 
						|
sqr(T x)
 | 
						|
{
 | 
						|
    return x * x;
 | 
						|
}
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
    {
 | 
						|
        typedef std::bernoulli_distribution D;
 | 
						|
        typedef std::minstd_rand G;
 | 
						|
        G g;
 | 
						|
        D d(.75);
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
            u.push_back(d(g));
 | 
						|
        double mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              double(0)) / u.size();
 | 
						|
        double var = 0;
 | 
						|
        double skew = 0;
 | 
						|
        double kurtosis = 0;
 | 
						|
        for (int i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            double d = (u[i] - mean);
 | 
						|
            double d2 = sqr(d);
 | 
						|
            var += d2;
 | 
						|
            skew += d * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        double dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        double x_mean = d.p();
 | 
						|
        double x_var = d.p()*(1-d.p());
 | 
						|
        double x_skew = (1 - 2 * d.p())/std::sqrt(x_var);
 | 
						|
        double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs((skew - x_skew) / x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::bernoulli_distribution D;
 | 
						|
        typedef std::minstd_rand G;
 | 
						|
        G g;
 | 
						|
        D d(.25);
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
            u.push_back(d(g));
 | 
						|
        double mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              double(0)) / u.size();
 | 
						|
        double var = 0;
 | 
						|
        double skew = 0;
 | 
						|
        double kurtosis = 0;
 | 
						|
        for (int i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            double d = (u[i] - mean);
 | 
						|
            double d2 = sqr(d);
 | 
						|
            var += d2;
 | 
						|
            skew += d * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        double dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        double x_mean = d.p();
 | 
						|
        double x_var = d.p()*(1-d.p());
 | 
						|
        double x_skew = (1 - 2 * d.p())/std::sqrt(x_var);
 | 
						|
        double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs((skew - x_skew) / x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
 | 
						|
    }
 | 
						|
}
 |