468 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			468 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the DeltaTree and related classes.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Rewrite/DeltaTree.h"
 | 
						|
#include "clang/Basic/LLVM.h"
 | 
						|
#include <cstring>
 | 
						|
#include <cstdio>
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
/// The DeltaTree class is a multiway search tree (BTree) structure with some
 | 
						|
/// fancy features.  B-Trees are generally more memory and cache efficient
 | 
						|
/// than binary trees, because they store multiple keys/values in each node.
 | 
						|
///
 | 
						|
/// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
 | 
						|
/// fast lookup by FileIndex.  However, an added (important) bonus is that it
 | 
						|
/// can also efficiently tell us the full accumulated delta for a specific
 | 
						|
/// file offset as well, without traversing the whole tree.
 | 
						|
///
 | 
						|
/// The nodes of the tree are made up of instances of two classes:
 | 
						|
/// DeltaTreeNode and DeltaTreeInteriorNode.  The later subclasses the
 | 
						|
/// former and adds children pointers.  Each node knows the full delta of all
 | 
						|
/// entries (recursively) contained inside of it, which allows us to get the
 | 
						|
/// full delta implied by a whole subtree in constant time.
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// SourceDelta - As code in the original input buffer is added and deleted,
 | 
						|
  /// SourceDelta records are used to keep track of how the input SourceLocation
 | 
						|
  /// object is mapped into the output buffer.
 | 
						|
  struct SourceDelta {
 | 
						|
    unsigned FileLoc;
 | 
						|
    int Delta;
 | 
						|
 | 
						|
    static SourceDelta get(unsigned Loc, int D) {
 | 
						|
      SourceDelta Delta;
 | 
						|
      Delta.FileLoc = Loc;
 | 
						|
      Delta.Delta = D;
 | 
						|
      return Delta;
 | 
						|
    }
 | 
						|
  };
 | 
						|
  
 | 
						|
  /// DeltaTreeNode - The common part of all nodes.
 | 
						|
  ///
 | 
						|
  class DeltaTreeNode {
 | 
						|
  public:
 | 
						|
    struct InsertResult {
 | 
						|
      DeltaTreeNode *LHS, *RHS;
 | 
						|
      SourceDelta Split;
 | 
						|
    };
 | 
						|
    
 | 
						|
  private:
 | 
						|
    friend class DeltaTreeInteriorNode;
 | 
						|
 | 
						|
    /// WidthFactor - This controls the number of K/V slots held in the BTree:
 | 
						|
    /// how wide it is.  Each level of the BTree is guaranteed to have at least
 | 
						|
    /// WidthFactor-1 K/V pairs (except the root) and may have at most
 | 
						|
    /// 2*WidthFactor-1 K/V pairs.
 | 
						|
    enum { WidthFactor = 8 };
 | 
						|
 | 
						|
    /// Values - This tracks the SourceDelta's currently in this node.
 | 
						|
    ///
 | 
						|
    SourceDelta Values[2*WidthFactor-1];
 | 
						|
 | 
						|
    /// NumValuesUsed - This tracks the number of values this node currently
 | 
						|
    /// holds.
 | 
						|
    unsigned char NumValuesUsed;
 | 
						|
 | 
						|
    /// IsLeaf - This is true if this is a leaf of the btree.  If false, this is
 | 
						|
    /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
 | 
						|
    bool IsLeaf;
 | 
						|
 | 
						|
    /// FullDelta - This is the full delta of all the values in this node and
 | 
						|
    /// all children nodes.
 | 
						|
    int FullDelta;
 | 
						|
  public:
 | 
						|
    DeltaTreeNode(bool isLeaf = true)
 | 
						|
      : NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {}
 | 
						|
 | 
						|
    bool isLeaf() const { return IsLeaf; }
 | 
						|
    int getFullDelta() const { return FullDelta; }
 | 
						|
    bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; }
 | 
						|
 | 
						|
    unsigned getNumValuesUsed() const { return NumValuesUsed; }
 | 
						|
    const SourceDelta &getValue(unsigned i) const {
 | 
						|
      assert(i < NumValuesUsed && "Invalid value #");
 | 
						|
      return Values[i];
 | 
						|
    }
 | 
						|
    SourceDelta &getValue(unsigned i) {
 | 
						|
      assert(i < NumValuesUsed && "Invalid value #");
 | 
						|
      return Values[i];
 | 
						|
    }
 | 
						|
 | 
						|
    /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
 | 
						|
    /// this node.  If insertion is easy, do it and return false.  Otherwise,
 | 
						|
    /// split the node, populate InsertRes with info about the split, and return
 | 
						|
    /// true.
 | 
						|
    bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
 | 
						|
 | 
						|
    void DoSplit(InsertResult &InsertRes);
 | 
						|
 | 
						|
 | 
						|
    /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
 | 
						|
    /// local walk over our contained deltas.
 | 
						|
    void RecomputeFullDeltaLocally();
 | 
						|
 | 
						|
    void Destroy();
 | 
						|
 | 
						|
    //static inline bool classof(const DeltaTreeNode *) { return true; }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
 | 
						|
  /// This class tracks them.
 | 
						|
  class DeltaTreeInteriorNode : public DeltaTreeNode {
 | 
						|
    DeltaTreeNode *Children[2*WidthFactor];
 | 
						|
    ~DeltaTreeInteriorNode() {
 | 
						|
      for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i)
 | 
						|
        Children[i]->Destroy();
 | 
						|
    }
 | 
						|
    friend class DeltaTreeNode;
 | 
						|
  public:
 | 
						|
    DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
 | 
						|
 | 
						|
    DeltaTreeInteriorNode(const InsertResult &IR)
 | 
						|
      : DeltaTreeNode(false /*nonleaf*/) {
 | 
						|
      Children[0] = IR.LHS;
 | 
						|
      Children[1] = IR.RHS;
 | 
						|
      Values[0] = IR.Split;
 | 
						|
      FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta;
 | 
						|
      NumValuesUsed = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    const DeltaTreeNode *getChild(unsigned i) const {
 | 
						|
      assert(i < getNumValuesUsed()+1 && "Invalid child");
 | 
						|
      return Children[i];
 | 
						|
    }
 | 
						|
    DeltaTreeNode *getChild(unsigned i) {
 | 
						|
      assert(i < getNumValuesUsed()+1 && "Invalid child");
 | 
						|
      return Children[i];
 | 
						|
    }
 | 
						|
 | 
						|
  //static inline bool classof(const DeltaTreeInteriorNode *) { return true; }
 | 
						|
    static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Destroy - A 'virtual' destructor.
 | 
						|
void DeltaTreeNode::Destroy() {
 | 
						|
  if (isLeaf())
 | 
						|
    delete this;
 | 
						|
  else
 | 
						|
    delete cast<DeltaTreeInteriorNode>(this);
 | 
						|
}
 | 
						|
 | 
						|
/// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
 | 
						|
/// local walk over our contained deltas.
 | 
						|
void DeltaTreeNode::RecomputeFullDeltaLocally() {
 | 
						|
  int NewFullDelta = 0;
 | 
						|
  for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
 | 
						|
    NewFullDelta += Values[i].Delta;
 | 
						|
  if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this))
 | 
						|
    for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i)
 | 
						|
      NewFullDelta += IN->getChild(i)->getFullDelta();
 | 
						|
  FullDelta = NewFullDelta;
 | 
						|
}
 | 
						|
 | 
						|
/// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
 | 
						|
/// this node.  If insertion is easy, do it and return false.  Otherwise,
 | 
						|
/// split the node, populate InsertRes with info about the split, and return
 | 
						|
/// true.
 | 
						|
bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
 | 
						|
                                InsertResult *InsertRes) {
 | 
						|
  // Maintain full delta for this node.
 | 
						|
  FullDelta += Delta;
 | 
						|
 | 
						|
  // Find the insertion point, the first delta whose index is >= FileIndex.
 | 
						|
  unsigned i = 0, e = getNumValuesUsed();
 | 
						|
  while (i != e && FileIndex > getValue(i).FileLoc)
 | 
						|
    ++i;
 | 
						|
 | 
						|
  // If we found an a record for exactly this file index, just merge this
 | 
						|
  // value into the pre-existing record and finish early.
 | 
						|
  if (i != e && getValue(i).FileLoc == FileIndex) {
 | 
						|
    // NOTE: Delta could drop to zero here.  This means that the delta entry is
 | 
						|
    // useless and could be removed.  Supporting erases is more complex than
 | 
						|
    // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
 | 
						|
    // the tree.
 | 
						|
    Values[i].Delta += Delta;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we found an insertion point, and we know that the value at the
 | 
						|
  // specified index is > FileIndex.  Handle the leaf case first.
 | 
						|
  if (isLeaf()) {
 | 
						|
    if (!isFull()) {
 | 
						|
      // For an insertion into a non-full leaf node, just insert the value in
 | 
						|
      // its sorted position.  This requires moving later values over.
 | 
						|
      if (i != e)
 | 
						|
        memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
 | 
						|
      Values[i] = SourceDelta::get(FileIndex, Delta);
 | 
						|
      ++NumValuesUsed;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, if this is leaf is full, split the node at its median, insert
 | 
						|
    // the value into one of the children, and return the result.
 | 
						|
    assert(InsertRes && "No result location specified");
 | 
						|
    DoSplit(*InsertRes);
 | 
						|
 | 
						|
    if (InsertRes->Split.FileLoc > FileIndex)
 | 
						|
      InsertRes->LHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/);
 | 
						|
    else
 | 
						|
      InsertRes->RHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this is an interior node.  Send the request down the tree.
 | 
						|
  DeltaTreeInteriorNode *IN = cast<DeltaTreeInteriorNode>(this);
 | 
						|
  if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
 | 
						|
    return false; // If there was space in the child, just return.
 | 
						|
 | 
						|
  // Okay, this split the subtree, producing a new value and two children to
 | 
						|
  // insert here.  If this node is non-full, we can just insert it directly.
 | 
						|
  if (!isFull()) {
 | 
						|
    // Now that we have two nodes and a new element, insert the perclated value
 | 
						|
    // into ourself by moving all the later values/children down, then inserting
 | 
						|
    // the new one.
 | 
						|
    if (i != e)
 | 
						|
      memmove(&IN->Children[i+2], &IN->Children[i+1],
 | 
						|
              (e-i)*sizeof(IN->Children[0]));
 | 
						|
    IN->Children[i] = InsertRes->LHS;
 | 
						|
    IN->Children[i+1] = InsertRes->RHS;
 | 
						|
 | 
						|
    if (e != i)
 | 
						|
      memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0]));
 | 
						|
    Values[i] = InsertRes->Split;
 | 
						|
    ++NumValuesUsed;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, if this interior node was full and a node is percolated up, split
 | 
						|
  // ourself and return that up the chain.  Start by saving all our info to
 | 
						|
  // avoid having the split clobber it.
 | 
						|
  IN->Children[i] = InsertRes->LHS;
 | 
						|
  DeltaTreeNode *SubRHS = InsertRes->RHS;
 | 
						|
  SourceDelta SubSplit = InsertRes->Split;
 | 
						|
 | 
						|
  // Do the split.
 | 
						|
  DoSplit(*InsertRes);
 | 
						|
 | 
						|
  // Figure out where to insert SubRHS/NewSplit.
 | 
						|
  DeltaTreeInteriorNode *InsertSide;
 | 
						|
  if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
 | 
						|
    InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
 | 
						|
  else
 | 
						|
    InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
 | 
						|
 | 
						|
  // We now have a non-empty interior node 'InsertSide' to insert
 | 
						|
  // SubRHS/SubSplit into.  Find out where to insert SubSplit.
 | 
						|
 | 
						|
  // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
 | 
						|
  i = 0; e = InsertSide->getNumValuesUsed();
 | 
						|
  while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
 | 
						|
    ++i;
 | 
						|
 | 
						|
  // Now we know that i is the place to insert the split value into.  Insert it
 | 
						|
  // and the child right after it.
 | 
						|
  if (i != e)
 | 
						|
    memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1],
 | 
						|
            (e-i)*sizeof(IN->Children[0]));
 | 
						|
  InsertSide->Children[i+1] = SubRHS;
 | 
						|
 | 
						|
  if (e != i)
 | 
						|
    memmove(&InsertSide->Values[i+1], &InsertSide->Values[i],
 | 
						|
            (e-i)*sizeof(Values[0]));
 | 
						|
  InsertSide->Values[i] = SubSplit;
 | 
						|
  ++InsertSide->NumValuesUsed;
 | 
						|
  InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
 | 
						|
/// into two subtrees each with "WidthFactor-1" values and a pivot value.
 | 
						|
/// Return the pieces in InsertRes.
 | 
						|
void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
 | 
						|
  assert(isFull() && "Why split a non-full node?");
 | 
						|
 | 
						|
  // Since this node is full, it contains 2*WidthFactor-1 values.  We move
 | 
						|
  // the first 'WidthFactor-1' values to the LHS child (which we leave in this
 | 
						|
  // node), propagate one value up, and move the last 'WidthFactor-1' values
 | 
						|
  // into the RHS child.
 | 
						|
 | 
						|
  // Create the new child node.
 | 
						|
  DeltaTreeNode *NewNode;
 | 
						|
  if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
 | 
						|
    // If this is an interior node, also move over 'WidthFactor' children
 | 
						|
    // into the new node.
 | 
						|
    DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
 | 
						|
    memcpy(&New->Children[0], &IN->Children[WidthFactor],
 | 
						|
           WidthFactor*sizeof(IN->Children[0]));
 | 
						|
    NewNode = New;
 | 
						|
  } else {
 | 
						|
    // Just create the new leaf node.
 | 
						|
    NewNode = new DeltaTreeNode();
 | 
						|
  }
 | 
						|
 | 
						|
  // Move over the last 'WidthFactor-1' values from here to NewNode.
 | 
						|
  memcpy(&NewNode->Values[0], &Values[WidthFactor],
 | 
						|
         (WidthFactor-1)*sizeof(Values[0]));
 | 
						|
 | 
						|
  // Decrease the number of values in the two nodes.
 | 
						|
  NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1;
 | 
						|
 | 
						|
  // Recompute the two nodes' full delta.
 | 
						|
  NewNode->RecomputeFullDeltaLocally();
 | 
						|
  RecomputeFullDeltaLocally();
 | 
						|
 | 
						|
  InsertRes.LHS = this;
 | 
						|
  InsertRes.RHS = NewNode;
 | 
						|
  InsertRes.Split = Values[WidthFactor-1];
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        DeltaTree Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
//#define VERIFY_TREE
 | 
						|
 | 
						|
#ifdef VERIFY_TREE
 | 
						|
/// VerifyTree - Walk the btree performing assertions on various properties to
 | 
						|
/// verify consistency.  This is useful for debugging new changes to the tree.
 | 
						|
static void VerifyTree(const DeltaTreeNode *N) {
 | 
						|
  const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(N);
 | 
						|
  if (IN == 0) {
 | 
						|
    // Verify leaves, just ensure that FullDelta matches up and the elements
 | 
						|
    // are in proper order.
 | 
						|
    int FullDelta = 0;
 | 
						|
    for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
 | 
						|
      if (i)
 | 
						|
        assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc);
 | 
						|
      FullDelta += N->getValue(i).Delta;
 | 
						|
    }
 | 
						|
    assert(FullDelta == N->getFullDelta());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify interior nodes: Ensure that FullDelta matches up and the
 | 
						|
  // elements are in proper order and the children are in proper order.
 | 
						|
  int FullDelta = 0;
 | 
						|
  for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
 | 
						|
    const SourceDelta &IVal = N->getValue(i);
 | 
						|
    const DeltaTreeNode *IChild = IN->getChild(i);
 | 
						|
    if (i)
 | 
						|
      assert(IN->getValue(i-1).FileLoc < IVal.FileLoc);
 | 
						|
    FullDelta += IVal.Delta;
 | 
						|
    FullDelta += IChild->getFullDelta();
 | 
						|
 | 
						|
    // The largest value in child #i should be smaller than FileLoc.
 | 
						|
    assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc <
 | 
						|
           IVal.FileLoc);
 | 
						|
 | 
						|
    // The smallest value in child #i+1 should be larger than FileLoc.
 | 
						|
    assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc);
 | 
						|
    VerifyTree(IChild);
 | 
						|
  }
 | 
						|
 | 
						|
  FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
 | 
						|
 | 
						|
  assert(FullDelta == N->getFullDelta());
 | 
						|
}
 | 
						|
#endif  // VERIFY_TREE
 | 
						|
 | 
						|
static DeltaTreeNode *getRoot(void *Root) {
 | 
						|
  return (DeltaTreeNode*)Root;
 | 
						|
}
 | 
						|
 | 
						|
DeltaTree::DeltaTree() {
 | 
						|
  Root = new DeltaTreeNode();
 | 
						|
}
 | 
						|
DeltaTree::DeltaTree(const DeltaTree &RHS) {
 | 
						|
  // Currently we only support copying when the RHS is empty.
 | 
						|
  assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
 | 
						|
         "Can only copy empty tree");
 | 
						|
  Root = new DeltaTreeNode();
 | 
						|
}
 | 
						|
 | 
						|
DeltaTree::~DeltaTree() {
 | 
						|
  getRoot(Root)->Destroy();
 | 
						|
}
 | 
						|
 | 
						|
/// getDeltaAt - Return the accumulated delta at the specified file offset.
 | 
						|
/// This includes all insertions or delections that occurred *before* the
 | 
						|
/// specified file index.
 | 
						|
int DeltaTree::getDeltaAt(unsigned FileIndex) const {
 | 
						|
  const DeltaTreeNode *Node = getRoot(Root);
 | 
						|
 | 
						|
  int Result = 0;
 | 
						|
 | 
						|
  // Walk down the tree.
 | 
						|
  while (1) {
 | 
						|
    // For all nodes, include any local deltas before the specified file
 | 
						|
    // index by summing them up directly.  Keep track of how many were
 | 
						|
    // included.
 | 
						|
    unsigned NumValsGreater = 0;
 | 
						|
    for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
 | 
						|
         ++NumValsGreater) {
 | 
						|
      const SourceDelta &Val = Node->getValue(NumValsGreater);
 | 
						|
 | 
						|
      if (Val.FileLoc >= FileIndex)
 | 
						|
        break;
 | 
						|
      Result += Val.Delta;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have an interior node, include information about children and
 | 
						|
    // recurse.  Otherwise, if we have a leaf, we're done.
 | 
						|
    const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
 | 
						|
    if (!IN) return Result;
 | 
						|
 | 
						|
    // Include any children to the left of the values we skipped, all of
 | 
						|
    // their deltas should be included as well.
 | 
						|
    for (unsigned i = 0; i != NumValsGreater; ++i)
 | 
						|
      Result += IN->getChild(i)->getFullDelta();
 | 
						|
 | 
						|
    // If we found exactly the value we were looking for, break off the
 | 
						|
    // search early.  There is no need to search the RHS of the value for
 | 
						|
    // partial results.
 | 
						|
    if (NumValsGreater != Node->getNumValuesUsed() &&
 | 
						|
        Node->getValue(NumValsGreater).FileLoc == FileIndex)
 | 
						|
      return Result+IN->getChild(NumValsGreater)->getFullDelta();
 | 
						|
 | 
						|
    // Otherwise, traverse down the tree.  The selected subtree may be
 | 
						|
    // partially included in the range.
 | 
						|
    Node = IN->getChild(NumValsGreater);
 | 
						|
  }
 | 
						|
  // NOT REACHED.
 | 
						|
}
 | 
						|
 | 
						|
/// AddDelta - When a change is made that shifts around the text buffer,
 | 
						|
/// this method is used to record that info.  It inserts a delta of 'Delta'
 | 
						|
/// into the current DeltaTree at offset FileIndex.
 | 
						|
void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
 | 
						|
  assert(Delta && "Adding a noop?");
 | 
						|
  DeltaTreeNode *MyRoot = getRoot(Root);
 | 
						|
 | 
						|
  DeltaTreeNode::InsertResult InsertRes;
 | 
						|
  if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
 | 
						|
    Root = MyRoot = new DeltaTreeInteriorNode(InsertRes);
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef VERIFY_TREE
 | 
						|
  VerifyTree(MyRoot);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 |