llvm-project/flang/lib/evaluate/fixed-point.h

573 lines
17 KiB
C++

// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef FORTRAN_EVALUATE_FIXED_POINT_H_
#define FORTRAN_EVALUATE_FIXED_POINT_H_
// Emulates integers of a arbitrary static size for use when the C++
// environment does not support that size or when a fixed interface
// is needed. The data are typeless, so signed and unsigned operations
// are distinguished from each other with distinct member function interfaces.
// ("Signed" here means two's-complement, just to be clear.)
#include "leading-zero-bit-count.h"
#include <cinttypes>
#include <climits>
#include <cstddef>
namespace Fortran::evaluate {
// Integers are always ordered.
enum class Ordering { Less, Equal, Greater };
static constexpr Ordering Reverse(Ordering ordering) {
if (ordering == Ordering::Less) {
return Ordering::Greater;
} else if (ordering == Ordering::Greater) {
return Ordering::Less;
} else {
return Ordering::Equal;
}
}
// Implements an integer as an assembly of smaller (i.e., 32-bit) integers.
// These are stored in either little- or big-endian order, independent of
// the host's endianness.
// To facilitate exhaustive testing of what would otherwise be more rare
// edge cases, this class template may be configured to use other part
// types &/or partial fields in the parts.
// Member functions that correspond to Fortran intrinsic functions are
// named accordingly.
template<int BITS, int PARTBITS = 32, typename PART = std::uint32_t,
typename BIGPART = std::uint64_t, bool LITTLE_ENDIAN = true>
class FixedPoint {
public:
static constexpr int bits{BITS};
static constexpr int partBits{PARTBITS};
using Part = PART;
using BigPart = BIGPART;
static_assert(sizeof(BigPart) >= 2 * sizeof(Part));
static constexpr bool littleEndian{LITTLE_ENDIAN};
private:
static constexpr int maxPartBits{CHAR_BIT * sizeof(Part)};
static_assert(partBits > 0 && partBits <= maxPartBits);
static constexpr int extraPartBits{maxPartBits - partBits};
static constexpr int parts{(bits + partBits - 1) / partBits};
static_assert(parts >= 1);
static constexpr int extraTopPartBits{
extraPartBits + (parts * partBits) - bits};
static constexpr int topPartBits{maxPartBits - extraTopPartBits};
static_assert(topPartBits > 0 && topPartBits <= partBits);
static_assert((parts - 1) * partBits + topPartBits == bits);
static constexpr Part partMask{static_cast<Part>(~0) >> extraPartBits};
static constexpr Part topPartMask{static_cast<Part>(~0) >> extraTopPartBits};
public:
// Constructors and value-generating static functions
constexpr FixedPoint() { Clear(); } // default constructor: zero
constexpr FixedPoint(const FixedPoint &) = default;
constexpr FixedPoint(std::uint64_t n) {
for (int j{0}; j + 1 < parts; ++j) {
SetLEPart(j, n);
if constexpr (partBits < 64) {
n >>= partBits;
} else {
n = 0;
}
}
SetLEPart(parts - 1, n);
}
constexpr FixedPoint(std::int64_t n) {
std::int64_t signExtension{-(n < 0)};
signExtension <<= partBits;
for (int j{0}; j + 1 < parts; ++j) {
SetLEPart(j, n);
if constexpr (partBits < 64) {
n = (n >> partBits) | signExtension;
} else {
n = signExtension;
}
}
SetLEPart(parts - 1, n);
}
// Right-justified mask (e.g., MASKR(1) == 1, MASKR(2) == 3, &c.)
static constexpr FixedPoint MASKR(int places) {
FixedPoint result{nullptr};
int j{0};
for (; j + 1 < parts && places >= partBits; ++j, places -= partBits) {
result.LEPart(j) = partMask;
}
if (places > 0) {
if (j + 1 < parts) {
result.LEPart(j++) = partMask >> (partBits - places);
} else if (j + 1 == parts) {
if (places >= topPartBits) {
result.LEPart(j++) = topPartMask;
} else {
result.LEPart(j++) = topPartMask >> (topPartBits - places);
}
}
}
for (; j < parts; ++j) {
result.LEPart(j) = 0;
}
return result;
}
// Left-justified mask (e.g., MASKL(1) has only its sign bit set)
static constexpr FixedPoint MASKL(int places) {
if (places < 0) {
return {};
} else if (places >= bits) {
return MASKR(bits);
} else {
return MASKR(bits - places).NOT();
}
}
constexpr FixedPoint &operator=(const FixedPoint &) = default;
// Predicates and comparisons
constexpr bool IsZero() const {
for (int j{0}; j < parts; ++j) {
if (part_[j] != 0) {
return false;
}
}
return true;
}
constexpr bool IsNegative() const {
return (LEPart(parts - 1) >> (topPartBits - 1)) & 1;
}
constexpr Ordering CompareToZeroSigned() const {
if (IsNegative()) {
return Ordering::Less;
} else if (IsZero()) {
return Ordering::Equal;
} else {
return Ordering::Greater;
}
}
constexpr Ordering CompareUnsigned(const FixedPoint &y) const {
for (int j{parts}; j-- > 0;) {
if (LEPart(j) > y.LEPart(j)) {
return Ordering::Greater;
}
if (LEPart(j) < y.LEPart(j)) {
return Ordering::Less;
}
}
return Ordering::Equal;
}
constexpr Ordering CompareSigned(const FixedPoint &y) const {
bool isNegative{IsNegative()};
if (isNegative != y.IsNegative()) {
return isNegative ? Ordering::Less : Ordering::Greater;
}
return CompareUnsigned(y);
}
constexpr std::uint64_t ToUInt64() const {
std::uint64_t n{LEPart(0)};
int filled{partBits};
for (int j{1}; filled < 64 && j < parts; ++j, filled += partBits) {
n |= LEPart(j) << filled;
}
return n;
}
constexpr std::int64_t ToInt64() const {
std::int64_t signExtended = ToUInt64();
if (bits < 64) {
signExtended |= -(signExtended >> (bits - 1)) << bits;
}
return signExtended;
}
// Ones'-complement (i.e., C's ~)
constexpr FixedPoint NOT() const {
FixedPoint result{nullptr};
for (int j{0}; j < parts; ++j) {
result.SetLEPart(j, ~LEPart(j));
}
return result;
}
// Two's-complement negation (-x = ~x + 1).
struct ValueWithOverflow {
FixedPoint value;
bool overflow; // true when operand was MASKL(1), the most negative number
};
constexpr ValueWithOverflow Negate() const {
FixedPoint result;
Part carry{1};
for (int j{0}; j + 1 < parts; ++j) {
Part newCarry{LEPart(j) == 0 && carry};
result.SetLEPart(j, ~LEPart(j) + carry);
carry = newCarry;
}
Part top{LEPart(parts - 1)};
result.SetLEPart(parts - 1, ~top + carry);
bool overflow{top != 0 && result.LEPart(parts - 1) == top};
return {result, overflow};
}
// LEADZ intrinsic
constexpr int LeadingZeroBitCount() const {
if (LEPart(parts - 1) != 0) {
int lzbc{evaluate::LeadingZeroBitCount(LEPart(parts - 1))};
return lzbc - extraTopPartBits;
}
int upperZeroes{topPartBits};
for (int j{1}; j < parts; ++j) {
if (Part p{LEPart(parts - 1 - j)}) {
int lzbc{evaluate::LeadingZeroBitCount(p)};
return upperZeroes + lzbc - extraPartBits;
}
upperZeroes += partBits;
}
return bits;
}
// POPCNT intrinsic
// TODO pmk
// pmk also POPPAR
// SHIFTL and ISHFT intrinsics
constexpr void ShiftLeft(int count) {
if (count < 0) {
ShiftRightLogical(-count);
} else if (count > 0) {
int shiftParts{count / partBits};
int bitShift{count - partBits * shiftParts};
int j{parts - 1};
if (bitShift == 0) {
for (; j >= shiftParts; --j) {
SetLEPart(j, LEPart(j - shiftParts));
}
for (; j >= 0; --j) {
LEPart(j) = 0;
}
} else {
for (; j > shiftParts; --j) {
SetLEPart(j, ((LEPart(j - shiftParts) << bitShift) |
(LEPart(j - shiftParts - 1) >> (partBits - bitShift))));
}
if (j == shiftParts) {
SetLEPart(j, LEPart(0) << bitShift);
--j;
}
for (; j >= 0; --j) {
LEPart(j) = 0;
}
}
}
}
// ISHFTC intrinsic - shift some least-significant bits circularly
// TODO pmk
// SHIFTR intrinsic (and ISHFT with negated argument)
// i.e., vacated upper bits are filled with zeroes
constexpr void ShiftRightLogical(int count) {
if (count < 0) {
ShiftLeft(-count);
} else if (count > 0) {
int shiftParts{count / partBits};
int bitShift{count - partBits * shiftParts};
int j{0};
if (bitShift == 0) {
for (; j + shiftParts < parts; ++j) {
LEPart(j) = LEPart(j + shiftParts);
}
for (; j < parts; ++j) {
LEPart(j) = 0;
}
} else {
for (; j + shiftParts + 1 < parts; ++j) {
SetLEPart(j, (LEPart(j + shiftParts) >> bitShift) |
(LEPart(j + shiftParts + 1) << (partBits - bitShift)));
}
if (j + shiftParts + 1 == parts) {
LEPart(j++) = LEPart(parts - 1) >> bitShift;
}
for (; j < parts; ++j) {
LEPart(j) = 0;
}
}
}
}
// SHIFTA intrinsic (sign extending, but *not* a division
// by a power of two in general!)
constexpr void ShiftRightArithmetic(int count) {
if (count < 0) {
ShiftLeft(-count);
} else if (count > 0) {
bool fill{IsNegative()};
ShiftRightLogical(count);
if (fill) {
Or(MASKL(count));
}
}
}
// IAND
constexpr void And(const FixedPoint &y) {
for (int j{0}; j < parts; ++j) {
LEPart(j) &= y.LEPart(j);
}
}
// IOR
constexpr void Or(const FixedPoint &y) {
for (int j{0}; j < parts; ++j) {
LEPart(j) |= y.LEPart(j);
}
}
// IEOR
constexpr void Xor(const FixedPoint &y) {
for (int j{0}; j < parts; ++j) {
LEPart(j) ^= y.LEPart(j);
}
}
// Returns true when there is a carry out of the most significant bit.
constexpr bool AddUnsigned(const FixedPoint &y, bool carryIn = false) {
BigPart carry{carryIn};
for (int j{0}; j + 1 < parts; ++j) {
carry += LEPart(j);
carry += y.LEPart(j);
SetLEPart(j, carry);
carry >>= partBits;
}
carry += LEPart(parts - 1);
carry += y.LEPart(parts - 1);
SetLEPart(parts - 1, carry);
return carry > topPartMask;
}
// Returns true on overflow.
constexpr bool AddSigned(const FixedPoint &y) {
bool isNegative{IsNegative()};
bool sameSign{isNegative == y.IsNegative()};
AddUnsigned(y);
return sameSign && IsNegative() != isNegative;
}
// Returns true on overflow.
constexpr bool SubtractSigned(const FixedPoint &y) {
bool isNegative{IsNegative()};
bool sameSign{isNegative == y.IsNegative()};
AddUnsigned(y.Negate().value);
return !sameSign && IsNegative() != isNegative;
}
// Overwrites *this with lower half of full product.
constexpr void MultiplyUnsigned(const FixedPoint &y, FixedPoint &upper) {
Part product[2 * parts]{}; // little-endian full product
for (int j{0}; j < parts; ++j) {
if (LEPart(j) != 0) {
for (int k{0}; k < parts; ++k) {
if (y.LEPart(k) != 0) {
BigPart xy{LEPart(j)};
xy *= y.LEPart(k);
for (int to{j + k}; xy != 0; ++to) {
xy += product[to];
product[to] = xy & partMask;
xy >>= partBits;
}
}
}
}
}
for (int j{0}; j < parts; ++j) {
LEPart(j) = product[j];
upper.LEPart(j) = product[j + parts];
}
if (topPartBits < partBits) {
upper.ShiftLeft(partBits - topPartBits);
upper.LEPart(0) |= LEPart(parts - 1) >> topPartBits;
LEPart(parts - 1) &= topPartMask;
}
}
// Overwrites *this with lower half of full product.
constexpr void MultiplySigned(const FixedPoint &y, FixedPoint &upper) {
bool yIsNegative{y.IsNegative()};
FixedPoint yprime{y};
if (yIsNegative) {
yprime = y.Negate().value;
}
bool isNegative{IsNegative()};
if (isNegative) {
*this = Negate().value;
}
MultiplyUnsigned(yprime, upper);
if (isNegative != yIsNegative) {
*this = NOT();
upper = upper.NOT();
FixedPoint one{std::uint64_t{1}};
if (AddUnsigned(one)) {
upper.AddUnsigned(one);
}
}
}
// Overwrites *this with quotient. Returns true on division by zero.
constexpr bool DivideUnsigned(
const FixedPoint &divisor, FixedPoint &remainder) {
remainder.Clear();
if (divisor.IsZero()) {
*this = MASKR(bits);
return true;
}
FixedPoint top{*this};
Clear();
int bitsDone{top.LeadingZeroBitCount()};
top.ShiftLeft(bitsDone);
for (; bitsDone < bits; ++bitsDone) {
remainder.AddUnsigned(remainder, top.AddUnsigned(top));
bool nextBit{remainder.CompareUnsigned(divisor) != Ordering::Less};
AddUnsigned(*this, nextBit);
if (nextBit) {
remainder.SubtractSigned(divisor);
}
}
return false;
}
// Overwrites *this with quotient. Returns true on overflow (viz.,
// the most negative value divided by -1) and on division by zero.
// A nonzero remainder has the sign of the dividend, i.e., it is
// the MOD intrinsic (X-INT(X/Y)*Y), not MODULO (below).
// 8/5 = 1r3; -8/5 = -1r-3; 8/-5 = -1r3; -8/-5 = 1r-3
constexpr bool DivideSigned(FixedPoint divisor, FixedPoint &remainder) {
bool dividendIsNegative{IsNegative()};
bool negateQuotient{dividendIsNegative};
Ordering divisorOrdering{divisor.CompareToZeroSigned()};
if (divisorOrdering == Ordering::Less) {
negateQuotient = !negateQuotient;
auto negated{divisor.Negate()};
if (negated.overflow) {
// divisor was (and is) the most negative number
if (CompareUnsigned(divisor) == Ordering::Equal) {
*this = MASKR(1);
remainder.Clear();
return bits <= 1; // edge case: 1-bit signed numbers overflow on 1!
} else {
remainder = *this;
Clear();
return false;
}
}
divisor = negated.value;
} else if (divisorOrdering == Ordering::Equal) {
// division by zero
remainder.Clear();
if (dividendIsNegative) {
*this = MASKL(1); // most negative signed number
} else {
*this = MASKR(bits - 1); // most positive signed number
}
return true;
}
if (dividendIsNegative) {
auto negated{Negate()};
if (negated.overflow) {
// Dividend was (and remains) the most negative number.
// See whether the original divisor was -1 (if so, it's 1 now).
if (divisorOrdering == Ordering::Less &&
divisor.CompareUnsigned(FixedPoint{std::uint64_t{1}}) ==
Ordering::Equal) {
// most negative number / -1 is the sole overflow case
remainder.Clear();
return true;
}
} else {
*this = negated.value;
}
}
// Overflow is not possible, and both the dividend (*this) and divisor
// are now positive.
DivideUnsigned(divisor, remainder);
if (negateQuotient) {
*this = Negate().value;
}
if (dividendIsNegative) {
remainder = remainder.Negate().value;
}
return false;
}
// MODULO intrinsic. Returns true on overflow. Has the sign of
// the divisor argument.
// 8 mod 5 = 3; -8 mod 5 = 2; 8 mod -5 = -2; -8 mod -5 = -3
constexpr bool ModuloSigned(const FixedPoint &divisor) {
FixedPoint quotient{*this};
bool negativeDivisor{divisor.IsNegative()};
bool distinctSigns{IsNegative() != negativeDivisor};
bool overflow{quotient.DivideSigned(divisor, *this)};
if (distinctSigns && !IsZero()) {
AddUnsigned(divisor);
}
return overflow;
}
private:
constexpr FixedPoint(std::nullptr_t) {} // does not initialize
// Accesses parts in little-endian order.
constexpr const Part &LEPart(int part) const {
if constexpr (littleEndian) {
return part_[part];
} else {
return part_[parts - 1 - part];
}
}
constexpr Part &LEPart(int part) {
if constexpr (littleEndian) {
return part_[part];
} else {
return part_[parts - 1 - part];
}
}
constexpr void SetLEPart(int part, Part x) {
LEPart(part) = x & PartMask(part);
}
static constexpr Part PartMask(int part) {
return part == parts - 1 ? topPartMask : partMask;
}
constexpr void Clear() {
for (int j{0}; j < parts; ++j) {
part_[j] = 0;
}
}
Part part_[parts];
};
} // namespace Fortran::evaluate
#endif // FORTRAN_EVALUATE_FIXED_POINT_H_