llvm-project/llvm/lib/Target/AMDGPU/GCNSchedStrategy.cpp

1000 lines
37 KiB
C++

//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This contains a MachineSchedStrategy implementation for maximizing wave
/// occupancy on GCN hardware.
//===----------------------------------------------------------------------===//
#include "GCNSchedStrategy.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#define DEBUG_TYPE "machine-scheduler"
using namespace llvm;
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
const MachineSchedContext *C) :
GenericScheduler(C), TargetOccupancy(0), HasClusteredNodes(false),
HasExcessPressure(false), MF(nullptr) { }
void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
GenericScheduler::initialize(DAG);
MF = &DAG->MF;
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
// FIXME: This is also necessary, because some passes that run after
// scheduling and before regalloc increase register pressure.
const unsigned ErrorMargin = 3;
SGPRExcessLimit =
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
VGPRExcessLimit =
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);
SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
// Set the initial TargetOccupnacy to the maximum occupancy that we can
// achieve for this function. This effectively sets a lower bound on the
// 'Critical' register limits in the scheduler.
TargetOccupancy = MFI.getOccupancy();
SGPRCriticalLimit =
std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit);
VGPRCriticalLimit =
std::min(ST.getMaxNumVGPRs(TargetOccupancy), VGPRExcessLimit);
// Subtract error margin from register limits and avoid overflow.
SGPRCriticalLimit =
std::min(SGPRCriticalLimit - ErrorMargin, SGPRCriticalLimit);
VGPRCriticalLimit =
std::min(VGPRCriticalLimit - ErrorMargin, VGPRCriticalLimit);
SGPRExcessLimit = std::min(SGPRExcessLimit - ErrorMargin, SGPRExcessLimit);
VGPRExcessLimit = std::min(VGPRExcessLimit - ErrorMargin, VGPRExcessLimit);
}
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
bool AtTop, const RegPressureTracker &RPTracker,
const SIRegisterInfo *SRI,
unsigned SGPRPressure,
unsigned VGPRPressure) {
Cand.SU = SU;
Cand.AtTop = AtTop;
// getDownwardPressure() and getUpwardPressure() make temporary changes to
// the tracker, so we need to pass those function a non-const copy.
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
Pressure.clear();
MaxPressure.clear();
if (AtTop)
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
else {
// FIXME: I think for bottom up scheduling, the register pressure is cached
// and can be retrieved by DAG->getPressureDif(SU).
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
}
unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
// If two instructions increase the pressure of different register sets
// by the same amount, the generic scheduler will prefer to schedule the
// instruction that increases the set with the least amount of registers,
// which in our case would be SGPRs. This is rarely what we want, so
// when we report excess/critical register pressure, we do it either
// only for VGPRs or only for SGPRs.
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
const unsigned MaxVGPRPressureInc = 16;
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
// to increase the likelihood we don't go over the limits. We should improve
// the analysis to look through dependencies to find the path with the least
// register pressure.
// We only need to update the RPDelta for instructions that increase register
// pressure. Instructions that decrease or keep reg pressure the same will be
// marked as RegExcess in tryCandidate() when they are compared with
// instructions that increase the register pressure.
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
HasExcessPressure = true;
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
}
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
HasExcessPressure = true;
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
}
// Register pressure is considered 'CRITICAL' if it is approaching a value
// that would reduce the wave occupancy for the execution unit. When
// register pressure is 'CRITICAL', increasing SGPR and VGPR pressure both
// has the same cost, so we don't need to prefer one over the other.
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
HasExcessPressure = true;
if (SGPRDelta > VGPRDelta) {
Cand.RPDelta.CriticalMax =
PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
} else {
Cand.RPDelta.CriticalMax =
PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
}
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeFromQueue()
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
const CandPolicy &ZonePolicy,
const RegPressureTracker &RPTracker,
SchedCandidate &Cand) {
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
unsigned SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
unsigned VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
ReadyQueue &Q = Zone.Available;
for (SUnit *SU : Q) {
SchedCandidate TryCand(ZonePolicy);
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
SGPRPressure, VGPRPressure);
// Pass SchedBoundary only when comparing nodes from the same boundary.
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
if (TryCand.Reason != NoCand) {
// Initialize resource delta if needed in case future heuristics query it.
if (TryCand.ResDelta == SchedResourceDelta())
TryCand.initResourceDelta(Zone.DAG, SchedModel);
Cand.setBest(TryCand);
LLVM_DEBUG(traceCandidate(Cand));
}
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeBidirectional()
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
// Schedule as far as possible in the direction of no choice. This is most
// efficient, but also provides the best heuristics for CriticalPSets.
if (SUnit *SU = Bot.pickOnlyChoice()) {
IsTopNode = false;
return SU;
}
if (SUnit *SU = Top.pickOnlyChoice()) {
IsTopNode = true;
return SU;
}
// Set the bottom-up policy based on the state of the current bottom zone and
// the instructions outside the zone, including the top zone.
CandPolicy BotPolicy;
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
// Set the top-down policy based on the state of the current top zone and
// the instructions outside the zone, including the bottom zone.
CandPolicy TopPolicy;
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
// See if BotCand is still valid (because we previously scheduled from Top).
LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
BotCand.Policy != BotPolicy) {
BotCand.reset(CandPolicy());
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
} else {
LLVM_DEBUG(traceCandidate(BotCand));
#ifndef NDEBUG
if (VerifyScheduling) {
SchedCandidate TCand;
TCand.reset(CandPolicy());
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
assert(TCand.SU == BotCand.SU &&
"Last pick result should correspond to re-picking right now");
}
#endif
}
// Check if the top Q has a better candidate.
LLVM_DEBUG(dbgs() << "Picking from Top:\n");
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
TopCand.Policy != TopPolicy) {
TopCand.reset(CandPolicy());
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
} else {
LLVM_DEBUG(traceCandidate(TopCand));
#ifndef NDEBUG
if (VerifyScheduling) {
SchedCandidate TCand;
TCand.reset(CandPolicy());
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
assert(TCand.SU == TopCand.SU &&
"Last pick result should correspond to re-picking right now");
}
#endif
}
// Pick best from BotCand and TopCand.
LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
dbgs() << "Bot Cand: "; traceCandidate(BotCand););
SchedCandidate Cand = BotCand;
TopCand.Reason = NoCand;
GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
if (TopCand.Reason != NoCand) {
Cand.setBest(TopCand);
}
LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
IsTopNode = Cand.AtTop;
return Cand.SU;
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNode()
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
if (DAG->top() == DAG->bottom()) {
assert(Top.Available.empty() && Top.Pending.empty() &&
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
return nullptr;
}
SUnit *SU;
do {
if (RegionPolicy.OnlyTopDown) {
SU = Top.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
TopCand.reset(NoPolicy);
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
assert(TopCand.Reason != NoCand && "failed to find a candidate");
SU = TopCand.SU;
}
IsTopNode = true;
} else if (RegionPolicy.OnlyBottomUp) {
SU = Bot.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
BotCand.reset(NoPolicy);
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
assert(BotCand.Reason != NoCand && "failed to find a candidate");
SU = BotCand.SU;
}
IsTopNode = false;
} else {
SU = pickNodeBidirectional(IsTopNode);
}
} while (SU->isScheduled);
if (SU->isTopReady())
Top.removeReady(SU);
if (SU->isBottomReady())
Bot.removeReady(SU);
if (!HasClusteredNodes && SU->getInstr()->mayLoadOrStore()) {
for (SDep &Dep : SU->Preds) {
if (Dep.isCluster()) {
HasClusteredNodes = true;
break;
}
}
}
LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
<< *SU->getInstr());
return SU;
}
GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
std::unique_ptr<MachineSchedStrategy> S) :
ScheduleDAGMILive(C, std::move(S)),
ST(MF.getSubtarget<GCNSubtarget>()),
MFI(*MF.getInfo<SIMachineFunctionInfo>()),
StartingOccupancy(MFI.getOccupancy()),
MinOccupancy(StartingOccupancy), Stage(Collect), RegionIdx(0) {
LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
}
void GCNScheduleDAGMILive::schedule() {
if (Stage == Collect) {
// Just record regions at the first pass.
Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
return;
}
std::vector<MachineInstr*> Unsched;
Unsched.reserve(NumRegionInstrs);
for (auto &I : *this) {
Unsched.push_back(&I);
}
GCNRegPressure PressureBefore;
if (LIS) {
PressureBefore = Pressure[RegionIdx];
LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
dbgs() << "Region live-in pressure: ";
llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
dbgs() << "Region register pressure: ";
PressureBefore.print(dbgs()));
}
GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
// Set HasClusteredNodes to true for late stages where we have already
// collected it. That way pickNode() will not scan SDep's when not needed.
S.HasClusteredNodes = Stage > InitialSchedule;
S.HasExcessPressure = false;
ScheduleDAGMILive::schedule();
Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
RescheduleRegions[RegionIdx] = false;
if (Stage == InitialSchedule && S.HasClusteredNodes)
RegionsWithClusters[RegionIdx] = true;
if (S.HasExcessPressure)
RegionsWithHighRP[RegionIdx] = true;
if (!LIS)
return;
// Check the results of scheduling.
auto PressureAfter = getRealRegPressure();
LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
PressureAfter.print(dbgs()));
if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) {
Pressure[RegionIdx] = PressureAfter;
RegionsWithMinOcc[RegionIdx] =
PressureAfter.getOccupancy(ST) == MinOccupancy;
LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
return;
}
unsigned WavesAfter =
std::min(S.TargetOccupancy, PressureAfter.getOccupancy(ST));
unsigned WavesBefore =
std::min(S.TargetOccupancy, PressureBefore.getOccupancy(ST));
LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
<< ", after " << WavesAfter << ".\n");
// We may not be able to keep the current target occupancy because of the just
// scheduled region. We might still be able to revert scheduling if the
// occupancy before was higher, or if the current schedule has register
// pressure higher than the excess limits which could lead to more spilling.
unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
// Allow memory bound functions to drop to 4 waves if not limited by an
// attribute.
if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
WavesAfter >= MFI.getMinAllowedOccupancy()) {
LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
<< MFI.getMinAllowedOccupancy() << " waves\n");
NewOccupancy = WavesAfter;
}
if (NewOccupancy < MinOccupancy) {
MinOccupancy = NewOccupancy;
MFI.limitOccupancy(MinOccupancy);
RegionsWithMinOcc.reset();
LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
<< MinOccupancy << ".\n");
}
unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);
if (PressureAfter.getVGPRNum(false) > MaxVGPRs ||
PressureAfter.getAGPRNum() > MaxVGPRs ||
PressureAfter.getSGPRNum() > MaxSGPRs) {
RescheduleRegions[RegionIdx] = true;
RegionsWithHighRP[RegionIdx] = true;
}
// If this condition is true, then either the occupancy before and after
// scheduling is the same, or we are allowing the occupancy to drop because
// the function is memory bound. Even if we are OK with the current occupancy,
// we still need to verify that we will not introduce any extra chance of
// spilling.
if (WavesAfter >= MinOccupancy) {
if (Stage == UnclusteredReschedule &&
!PressureAfter.less(ST, PressureBefore)) {
LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
} else if (WavesAfter > MFI.getMinWavesPerEU() ||
PressureAfter.less(ST, PressureBefore) ||
!RescheduleRegions[RegionIdx]) {
Pressure[RegionIdx] = PressureAfter;
RegionsWithMinOcc[RegionIdx] =
PressureAfter.getOccupancy(ST) == MinOccupancy;
if (!RegionsWithClusters[RegionIdx] &&
(Stage + 1) == UnclusteredReschedule)
RescheduleRegions[RegionIdx] = false;
return;
} else {
LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
}
}
RegionsWithMinOcc[RegionIdx] =
PressureBefore.getOccupancy(ST) == MinOccupancy;
LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
RescheduleRegions[RegionIdx] = RegionsWithClusters[RegionIdx] ||
(Stage + 1) != UnclusteredReschedule;
RegionEnd = RegionBegin;
int SkippedDebugInstr = 0;
for (MachineInstr *MI : Unsched) {
if (MI->isDebugInstr()) {
++SkippedDebugInstr;
continue;
}
if (MI->getIterator() != RegionEnd) {
BB->remove(MI);
BB->insert(RegionEnd, MI);
if (!MI->isDebugInstr())
LIS->handleMove(*MI, true);
}
// Reset read-undef flags and update them later.
for (auto &Op : MI->operands())
if (Op.isReg() && Op.isDef())
Op.setIsUndef(false);
RegisterOperands RegOpers;
RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
if (!MI->isDebugInstr()) {
if (ShouldTrackLaneMasks) {
// Adjust liveness and add missing dead+read-undef flags.
SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
} else {
// Adjust for missing dead-def flags.
RegOpers.detectDeadDefs(*MI, *LIS);
}
}
RegionEnd = MI->getIterator();
++RegionEnd;
LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
}
// After reverting schedule, debug instrs will now be at the end of the block
// and RegionEnd will point to the first debug instr. Increment RegionEnd
// pass debug instrs to the actual end of the scheduling region.
while (SkippedDebugInstr-- > 0)
++RegionEnd;
// If Unsched.front() instruction is a debug instruction, this will actually
// shrink the region since we moved all debug instructions to the end of the
// block. Find the first instruction that is not a debug instruction.
RegionBegin = Unsched.front()->getIterator();
if (RegionBegin->isDebugInstr()) {
for (MachineInstr *MI : Unsched) {
if (MI->isDebugInstr())
continue;
RegionBegin = MI->getIterator();
break;
}
}
// Then move the debug instructions back into their correct place and set
// RegionBegin and RegionEnd if needed.
placeDebugValues();
Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
}
GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
GCNDownwardRPTracker RPTracker(*LIS);
RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
return RPTracker.moveMaxPressure();
}
void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
GCNDownwardRPTracker RPTracker(*LIS);
// If the block has the only successor then live-ins of that successor are
// live-outs of the current block. We can reuse calculated live set if the
// successor will be sent to scheduling past current block.
const MachineBasicBlock *OnlySucc = nullptr;
if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
SlotIndexes *Ind = LIS->getSlotIndexes();
if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
OnlySucc = *MBB->succ_begin();
}
// Scheduler sends regions from the end of the block upwards.
size_t CurRegion = RegionIdx;
for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
if (Regions[CurRegion].first->getParent() != MBB)
break;
--CurRegion;
auto I = MBB->begin();
auto LiveInIt = MBBLiveIns.find(MBB);
auto &Rgn = Regions[CurRegion];
auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
if (LiveInIt != MBBLiveIns.end()) {
auto LiveIn = std::move(LiveInIt->second);
RPTracker.reset(*MBB->begin(), &LiveIn);
MBBLiveIns.erase(LiveInIt);
} else {
I = Rgn.first;
auto LRS = BBLiveInMap.lookup(NonDbgMI);
#ifdef EXPENSIVE_CHECKS
assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
#endif
RPTracker.reset(*I, &LRS);
}
for ( ; ; ) {
I = RPTracker.getNext();
if (Regions[CurRegion].first == I || NonDbgMI == I) {
LiveIns[CurRegion] = RPTracker.getLiveRegs();
RPTracker.clearMaxPressure();
}
if (Regions[CurRegion].second == I) {
Pressure[CurRegion] = RPTracker.moveMaxPressure();
if (CurRegion-- == RegionIdx)
break;
}
RPTracker.advanceToNext();
RPTracker.advanceBeforeNext();
}
if (OnlySucc) {
if (I != MBB->end()) {
RPTracker.advanceToNext();
RPTracker.advance(MBB->end());
}
RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
RPTracker.advanceBeforeNext();
MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
}
}
DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
GCNScheduleDAGMILive::getBBLiveInMap() const {
assert(!Regions.empty());
std::vector<MachineInstr *> BBStarters;
BBStarters.reserve(Regions.size());
auto I = Regions.rbegin(), E = Regions.rend();
auto *BB = I->first->getParent();
do {
auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
BBStarters.push_back(MI);
do {
++I;
} while (I != E && I->first->getParent() == BB);
} while (I != E);
return getLiveRegMap(BBStarters, false /*After*/, *LIS);
}
void GCNScheduleDAGMILive::finalizeSchedule() {
LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
LiveIns.resize(Regions.size());
Pressure.resize(Regions.size());
RescheduleRegions.resize(Regions.size());
RegionsWithClusters.resize(Regions.size());
RegionsWithHighRP.resize(Regions.size());
RegionsWithMinOcc.resize(Regions.size());
RescheduleRegions.set();
RegionsWithClusters.reset();
RegionsWithHighRP.reset();
RegionsWithMinOcc.reset();
if (!Regions.empty())
BBLiveInMap = getBBLiveInMap();
std::vector<std::unique_ptr<ScheduleDAGMutation>> SavedMutations;
do {
Stage++;
RegionIdx = 0;
MachineBasicBlock *MBB = nullptr;
if (Stage > InitialSchedule) {
if (!LIS)
break;
// Retry function scheduling if we found resulting occupancy and it is
// lower than used for first pass scheduling. This will give more freedom
// to schedule low register pressure blocks.
// Code is partially copied from MachineSchedulerBase::scheduleRegions().
if (Stage == UnclusteredReschedule) {
if (RescheduleRegions.none())
continue;
LLVM_DEBUG(dbgs() <<
"Retrying function scheduling without clustering.\n");
}
if (Stage == ClusteredLowOccupancyReschedule) {
if (StartingOccupancy <= MinOccupancy)
break;
LLVM_DEBUG(
dbgs()
<< "Retrying function scheduling with lowest recorded occupancy "
<< MinOccupancy << ".\n");
}
if (Stage == PreRARematerialize) {
if (RegionsWithMinOcc.none() || Regions.size() == 1)
break;
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
// Check maximum occupancy
if (ST.computeOccupancy(MF.getFunction(), MFI.getLDSSize()) ==
MinOccupancy)
break;
// FIXME: This pass will invalidate cached MBBLiveIns for regions
// inbetween the defs and region we sinked the def to. Cached pressure
// for regions where a def is sinked from will also be invalidated. Will
// need to be fixed if there is another pass after this pass.
static_assert(LastStage == PreRARematerialize,
"Passes after PreRARematerialize are not supported");
collectRematerializableInstructions();
if (RematerializableInsts.empty() || !sinkTriviallyRematInsts(ST, TII))
break;
LLVM_DEBUG(
dbgs() << "Retrying function scheduling with improved occupancy of "
<< MinOccupancy << " from rematerializing\n");
}
}
if (Stage == UnclusteredReschedule)
SavedMutations.swap(Mutations);
for (auto Region : Regions) {
if (((Stage == UnclusteredReschedule || Stage == PreRARematerialize) &&
!RescheduleRegions[RegionIdx]) ||
(Stage == ClusteredLowOccupancyReschedule &&
!RegionsWithClusters[RegionIdx] && !RegionsWithHighRP[RegionIdx])) {
++RegionIdx;
continue;
}
RegionBegin = Region.first;
RegionEnd = Region.second;
if (RegionBegin->getParent() != MBB) {
if (MBB) finishBlock();
MBB = RegionBegin->getParent();
startBlock(MBB);
if (Stage == InitialSchedule)
computeBlockPressure(MBB);
}
unsigned NumRegionInstrs = std::distance(begin(), end());
enterRegion(MBB, begin(), end(), NumRegionInstrs);
// Skip empty scheduling regions (0 or 1 schedulable instructions).
if (begin() == end() || begin() == std::prev(end())) {
exitRegion();
++RegionIdx;
continue;
}
LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
<< MBB->getName() << "\n From: " << *begin()
<< " To: ";
if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
else dbgs() << "End";
dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
schedule();
exitRegion();
++RegionIdx;
}
finishBlock();
if (Stage == UnclusteredReschedule)
SavedMutations.swap(Mutations);
} while (Stage != LastStage);
}
void GCNScheduleDAGMILive::collectRematerializableInstructions() {
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo *>(TRI);
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
Register Reg = Register::index2VirtReg(I);
if (!LIS->hasInterval(Reg))
continue;
// TODO: Handle AGPR and SGPR rematerialization
if (!SRI->isVGPRClass(MRI.getRegClass(Reg)) || !MRI.hasOneDef(Reg) ||
!MRI.hasOneNonDBGUse(Reg))
continue;
MachineOperand *Op = MRI.getOneDef(Reg);
MachineInstr *Def = Op->getParent();
if (Op->getSubReg() != 0 || !isTriviallyReMaterializable(*Def, AA))
continue;
MachineInstr *UseI = &*MRI.use_instr_nodbg_begin(Reg);
if (Def->getParent() == UseI->getParent())
continue;
// We are only collecting defs that are defined in another block and are
// live-through or used inside regions at MinOccupancy. This means that the
// register must be in the live-in set for the region.
bool AddedToRematList = false;
for (unsigned I = 0, E = Regions.size(); I != E; ++I) {
auto It = LiveIns[I].find(Reg);
if (It != LiveIns[I].end() && !It->second.none()) {
if (RegionsWithMinOcc[I]) {
RematerializableInsts[I][Def] = UseI;
AddedToRematList = true;
}
// Collect regions with rematerializable reg as live-in to avoid
// searching later when updating RP.
RematDefToLiveInRegions[Def].push_back(I);
}
}
if (!AddedToRematList)
RematDefToLiveInRegions.erase(Def);
}
}
bool GCNScheduleDAGMILive::sinkTriviallyRematInsts(const GCNSubtarget &ST,
const TargetInstrInfo *TII) {
// Temporary copies of cached variables we will be modifying and replacing if
// sinking succeeds.
SmallVector<
std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>, 32>
NewRegions;
DenseMap<unsigned, GCNRPTracker::LiveRegSet> NewLiveIns;
DenseMap<unsigned, GCNRegPressure> NewPressure;
BitVector NewRescheduleRegions;
NewRegions.resize(Regions.size());
NewRescheduleRegions.resize(Regions.size());
// Collect only regions that has a rematerializable def as a live-in.
SmallSet<unsigned, 16> ImpactedRegions;
for (const auto &It : RematDefToLiveInRegions)
ImpactedRegions.insert(It.second.begin(), It.second.end());
// Make copies of register pressure and live-ins cache that will be updated
// as we rematerialize.
for (auto Idx : ImpactedRegions) {
NewPressure[Idx] = Pressure[Idx];
NewLiveIns[Idx] = LiveIns[Idx];
}
NewRegions = Regions;
NewRescheduleRegions.reset();
DenseMap<MachineInstr *, MachineInstr *> InsertedMIToOldDef;
bool Improved = false;
for (auto I : ImpactedRegions) {
if (!RegionsWithMinOcc[I])
continue;
Improved = false;
int VGPRUsage = NewPressure[I].getVGPRNum(ST.hasGFX90AInsts());
int SGPRUsage = NewPressure[I].getSGPRNum();
// TODO: Handle occupancy drop due to AGPR and SGPR.
// Check if cause of occupancy drop is due to VGPR usage and not SGPR.
if (ST.getOccupancyWithNumSGPRs(SGPRUsage) == MinOccupancy)
break;
// The occupancy of this region could have been improved by a previous
// iteration's sinking of defs.
if (NewPressure[I].getOccupancy(ST) > MinOccupancy) {
NewRescheduleRegions[I] = true;
Improved = true;
continue;
}
// First check if we have enough trivially rematerializable instructions to
// improve occupancy. Optimistically assume all instructions we are able to
// sink decreased RP.
int TotalSinkableRegs = 0;
for (const auto &It : RematerializableInsts[I]) {
MachineInstr *Def = It.first;
Register DefReg = Def->getOperand(0).getReg();
TotalSinkableRegs +=
SIRegisterInfo::getNumCoveredRegs(NewLiveIns[I][DefReg]);
}
int VGPRsAfterSink = VGPRUsage - TotalSinkableRegs;
unsigned OptimisticOccupancy = ST.getOccupancyWithNumVGPRs(VGPRsAfterSink);
// If in the most optimistic scenario, we cannot improve occupancy, then do
// not attempt to sink any instructions.
if (OptimisticOccupancy <= MinOccupancy)
break;
unsigned ImproveOccupancy = 0;
SmallVector<MachineInstr *, 4> SinkedDefs;
for (auto &It : RematerializableInsts[I]) {
MachineInstr *Def = It.first;
MachineBasicBlock::iterator InsertPos =
MachineBasicBlock::iterator(It.second);
Register Reg = Def->getOperand(0).getReg();
// Rematerialize MI to its use block. Since we are only rematerializing
// instructions that do not have any virtual reg uses, we do not need to
// call LiveRangeEdit::allUsesAvailableAt() and
// LiveRangeEdit::canRematerializeAt().
TII->reMaterialize(*InsertPos->getParent(), InsertPos, Reg,
Def->getOperand(0).getSubReg(), *Def, *TRI);
MachineInstr *NewMI = &*(--InsertPos);
LIS->InsertMachineInstrInMaps(*NewMI);
LIS->removeInterval(Reg);
LIS->createAndComputeVirtRegInterval(Reg);
InsertedMIToOldDef[NewMI] = Def;
// Update region boundaries in scheduling region we sinked from since we
// may sink an instruction that was at the beginning or end of its region
updateRegionBoundaries(NewRegions, Def, /*NewMI =*/nullptr,
/*Removing =*/true);
// Update region boundaries in region we sinked to.
updateRegionBoundaries(NewRegions, InsertPos, NewMI);
LaneBitmask PrevMask = NewLiveIns[I][Reg];
// FIXME: Also update cached pressure for where the def was sinked from.
// Update RP for all regions that has this reg as a live-in and remove
// the reg from all regions as a live-in.
for (auto Idx : RematDefToLiveInRegions[Def]) {
NewLiveIns[Idx].erase(Reg);
if (InsertPos->getParent() != Regions[Idx].first->getParent()) {
// Def is live-through and not used in this block.
NewPressure[Idx].inc(Reg, PrevMask, LaneBitmask::getNone(), MRI);
} else {
// Def is used and rematerialized into this block.
GCNDownwardRPTracker RPT(*LIS);
auto *NonDbgMI = &*skipDebugInstructionsForward(
NewRegions[Idx].first, NewRegions[Idx].second);
RPT.reset(*NonDbgMI, &NewLiveIns[Idx]);
RPT.advance(NewRegions[Idx].second);
NewPressure[Idx] = RPT.moveMaxPressure();
}
}
SinkedDefs.push_back(Def);
ImproveOccupancy = NewPressure[I].getOccupancy(ST);
if (ImproveOccupancy > MinOccupancy)
break;
}
// Remove defs we just sinked from all regions' list of sinkable defs
for (auto &Def : SinkedDefs)
for (auto TrackedIdx : RematDefToLiveInRegions[Def])
RematerializableInsts[TrackedIdx].erase(Def);
if (ImproveOccupancy <= MinOccupancy)
break;
NewRescheduleRegions[I] = true;
Improved = true;
}
if (!Improved) {
// Occupancy was not improved for all regions that were at MinOccupancy.
// Undo sinking and remove newly rematerialized instructions.
for (auto &Entry : InsertedMIToOldDef) {
MachineInstr *MI = Entry.first;
MachineInstr *OldMI = Entry.second;
Register Reg = MI->getOperand(0).getReg();
LIS->RemoveMachineInstrFromMaps(*MI);
MI->eraseFromParent();
OldMI->clearRegisterDeads(Reg);
LIS->removeInterval(Reg);
LIS->createAndComputeVirtRegInterval(Reg);
}
return false;
}
// Occupancy was improved for all regions.
for (auto &Entry : InsertedMIToOldDef) {
MachineInstr *MI = Entry.first;
MachineInstr *OldMI = Entry.second;
// Remove OldMI from BBLiveInMap since we are sinking it from its MBB.
BBLiveInMap.erase(OldMI);
// Remove OldMI and update LIS
Register Reg = MI->getOperand(0).getReg();
LIS->RemoveMachineInstrFromMaps(*OldMI);
OldMI->eraseFromParent();
LIS->removeInterval(Reg);
LIS->createAndComputeVirtRegInterval(Reg);
}
// Update live-ins, register pressure, and regions caches.
for (auto Idx : ImpactedRegions) {
LiveIns[Idx] = NewLiveIns[Idx];
Pressure[Idx] = NewPressure[Idx];
MBBLiveIns.erase(Regions[Idx].first->getParent());
}
Regions = NewRegions;
RescheduleRegions = NewRescheduleRegions;
SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
MFI.increaseOccupancy(MF, ++MinOccupancy);
return true;
}
// Copied from MachineLICM
bool GCNScheduleDAGMILive::isTriviallyReMaterializable(const MachineInstr &MI,
AAResults *AA) {
if (!TII->isTriviallyReMaterializable(MI, AA))
return false;
for (const MachineOperand &MO : MI.operands())
if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual())
return false;
return true;
}
// When removing, we will have to check both beginning and ending of the region.
// When inserting, we will only have to check if we are inserting NewMI in front
// of a scheduling region and do not need to check the ending since we will only
// ever be inserting before an already existing MI.
void GCNScheduleDAGMILive::updateRegionBoundaries(
SmallVectorImpl<std::pair<MachineBasicBlock::iterator,
MachineBasicBlock::iterator>> &RegionBoundaries,
MachineBasicBlock::iterator MI, MachineInstr *NewMI, bool Removing) {
unsigned I = 0, E = RegionBoundaries.size();
// Search for first region of the block where MI is located
while (I != E && MI->getParent() != RegionBoundaries[I].first->getParent())
++I;
for (; I != E; ++I) {
if (MI->getParent() != RegionBoundaries[I].first->getParent())
return;
if (Removing && MI == RegionBoundaries[I].first &&
MI == RegionBoundaries[I].second) {
// MI is in a region with size 1, after removing, the region will be
// size 0, set RegionBegin and RegionEnd to pass end of block iterator.
RegionBoundaries[I] =
std::make_pair(MI->getParent()->end(), MI->getParent()->end());
return;
}
if (MI == RegionBoundaries[I].first) {
if (Removing)
RegionBoundaries[I] =
std::make_pair(std::next(MI), RegionBoundaries[I].second);
else
// Inserted NewMI in front of region, set new RegionBegin to NewMI
RegionBoundaries[I] = std::make_pair(MachineBasicBlock::iterator(NewMI),
RegionBoundaries[I].second);
return;
}
if (Removing && MI == RegionBoundaries[I].second) {
RegionBoundaries[I] =
std::make_pair(RegionBoundaries[I].first, std::prev(MI));
return;
}
}
}