1000 lines
37 KiB
C++
1000 lines
37 KiB
C++
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This contains a MachineSchedStrategy implementation for maximizing wave
|
|
/// occupancy on GCN hardware.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "GCNSchedStrategy.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
|
|
#define DEBUG_TYPE "machine-scheduler"
|
|
|
|
using namespace llvm;
|
|
|
|
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
|
|
const MachineSchedContext *C) :
|
|
GenericScheduler(C), TargetOccupancy(0), HasClusteredNodes(false),
|
|
HasExcessPressure(false), MF(nullptr) { }
|
|
|
|
void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
|
|
GenericScheduler::initialize(DAG);
|
|
|
|
MF = &DAG->MF;
|
|
|
|
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
|
|
|
|
// FIXME: This is also necessary, because some passes that run after
|
|
// scheduling and before regalloc increase register pressure.
|
|
const unsigned ErrorMargin = 3;
|
|
|
|
SGPRExcessLimit =
|
|
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
|
|
VGPRExcessLimit =
|
|
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);
|
|
|
|
SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
|
|
// Set the initial TargetOccupnacy to the maximum occupancy that we can
|
|
// achieve for this function. This effectively sets a lower bound on the
|
|
// 'Critical' register limits in the scheduler.
|
|
TargetOccupancy = MFI.getOccupancy();
|
|
SGPRCriticalLimit =
|
|
std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit);
|
|
VGPRCriticalLimit =
|
|
std::min(ST.getMaxNumVGPRs(TargetOccupancy), VGPRExcessLimit);
|
|
|
|
// Subtract error margin from register limits and avoid overflow.
|
|
SGPRCriticalLimit =
|
|
std::min(SGPRCriticalLimit - ErrorMargin, SGPRCriticalLimit);
|
|
VGPRCriticalLimit =
|
|
std::min(VGPRCriticalLimit - ErrorMargin, VGPRCriticalLimit);
|
|
SGPRExcessLimit = std::min(SGPRExcessLimit - ErrorMargin, SGPRExcessLimit);
|
|
VGPRExcessLimit = std::min(VGPRExcessLimit - ErrorMargin, VGPRExcessLimit);
|
|
}
|
|
|
|
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
|
|
bool AtTop, const RegPressureTracker &RPTracker,
|
|
const SIRegisterInfo *SRI,
|
|
unsigned SGPRPressure,
|
|
unsigned VGPRPressure) {
|
|
|
|
Cand.SU = SU;
|
|
Cand.AtTop = AtTop;
|
|
|
|
// getDownwardPressure() and getUpwardPressure() make temporary changes to
|
|
// the tracker, so we need to pass those function a non-const copy.
|
|
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
|
|
|
|
Pressure.clear();
|
|
MaxPressure.clear();
|
|
|
|
if (AtTop)
|
|
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
else {
|
|
// FIXME: I think for bottom up scheduling, the register pressure is cached
|
|
// and can be retrieved by DAG->getPressureDif(SU).
|
|
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
}
|
|
|
|
unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
|
|
unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
|
|
|
|
// If two instructions increase the pressure of different register sets
|
|
// by the same amount, the generic scheduler will prefer to schedule the
|
|
// instruction that increases the set with the least amount of registers,
|
|
// which in our case would be SGPRs. This is rarely what we want, so
|
|
// when we report excess/critical register pressure, we do it either
|
|
// only for VGPRs or only for SGPRs.
|
|
|
|
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
|
|
const unsigned MaxVGPRPressureInc = 16;
|
|
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
|
|
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
|
|
|
|
|
|
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
|
|
// to increase the likelihood we don't go over the limits. We should improve
|
|
// the analysis to look through dependencies to find the path with the least
|
|
// register pressure.
|
|
|
|
// We only need to update the RPDelta for instructions that increase register
|
|
// pressure. Instructions that decrease or keep reg pressure the same will be
|
|
// marked as RegExcess in tryCandidate() when they are compared with
|
|
// instructions that increase the register pressure.
|
|
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
|
|
HasExcessPressure = true;
|
|
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
|
|
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
|
|
}
|
|
|
|
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
|
|
HasExcessPressure = true;
|
|
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
|
|
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
|
|
}
|
|
|
|
// Register pressure is considered 'CRITICAL' if it is approaching a value
|
|
// that would reduce the wave occupancy for the execution unit. When
|
|
// register pressure is 'CRITICAL', increasing SGPR and VGPR pressure both
|
|
// has the same cost, so we don't need to prefer one over the other.
|
|
|
|
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
|
|
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
|
|
|
|
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
|
|
HasExcessPressure = true;
|
|
if (SGPRDelta > VGPRDelta) {
|
|
Cand.RPDelta.CriticalMax =
|
|
PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
|
|
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
|
|
} else {
|
|
Cand.RPDelta.CriticalMax =
|
|
PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
|
|
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeFromQueue()
|
|
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
|
|
const CandPolicy &ZonePolicy,
|
|
const RegPressureTracker &RPTracker,
|
|
SchedCandidate &Cand) {
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
|
|
unsigned SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
|
|
unsigned VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
|
|
ReadyQueue &Q = Zone.Available;
|
|
for (SUnit *SU : Q) {
|
|
|
|
SchedCandidate TryCand(ZonePolicy);
|
|
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
|
|
SGPRPressure, VGPRPressure);
|
|
// Pass SchedBoundary only when comparing nodes from the same boundary.
|
|
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
|
|
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
|
|
if (TryCand.Reason != NoCand) {
|
|
// Initialize resource delta if needed in case future heuristics query it.
|
|
if (TryCand.ResDelta == SchedResourceDelta())
|
|
TryCand.initResourceDelta(Zone.DAG, SchedModel);
|
|
Cand.setBest(TryCand);
|
|
LLVM_DEBUG(traceCandidate(Cand));
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeBidirectional()
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
|
|
// Schedule as far as possible in the direction of no choice. This is most
|
|
// efficient, but also provides the best heuristics for CriticalPSets.
|
|
if (SUnit *SU = Bot.pickOnlyChoice()) {
|
|
IsTopNode = false;
|
|
return SU;
|
|
}
|
|
if (SUnit *SU = Top.pickOnlyChoice()) {
|
|
IsTopNode = true;
|
|
return SU;
|
|
}
|
|
// Set the bottom-up policy based on the state of the current bottom zone and
|
|
// the instructions outside the zone, including the top zone.
|
|
CandPolicy BotPolicy;
|
|
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
|
|
// Set the top-down policy based on the state of the current top zone and
|
|
// the instructions outside the zone, including the bottom zone.
|
|
CandPolicy TopPolicy;
|
|
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
|
|
|
|
// See if BotCand is still valid (because we previously scheduled from Top).
|
|
LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
|
|
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
|
|
BotCand.Policy != BotPolicy) {
|
|
BotCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
LLVM_DEBUG(traceCandidate(BotCand));
|
|
#ifndef NDEBUG
|
|
if (VerifyScheduling) {
|
|
SchedCandidate TCand;
|
|
TCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
|
|
assert(TCand.SU == BotCand.SU &&
|
|
"Last pick result should correspond to re-picking right now");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Check if the top Q has a better candidate.
|
|
LLVM_DEBUG(dbgs() << "Picking from Top:\n");
|
|
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
|
|
TopCand.Policy != TopPolicy) {
|
|
TopCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
LLVM_DEBUG(traceCandidate(TopCand));
|
|
#ifndef NDEBUG
|
|
if (VerifyScheduling) {
|
|
SchedCandidate TCand;
|
|
TCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
|
|
assert(TCand.SU == TopCand.SU &&
|
|
"Last pick result should correspond to re-picking right now");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Pick best from BotCand and TopCand.
|
|
LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
|
|
dbgs() << "Bot Cand: "; traceCandidate(BotCand););
|
|
SchedCandidate Cand = BotCand;
|
|
TopCand.Reason = NoCand;
|
|
GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
|
|
if (TopCand.Reason != NoCand) {
|
|
Cand.setBest(TopCand);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
|
|
|
|
IsTopNode = Cand.AtTop;
|
|
return Cand.SU;
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNode()
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
|
|
if (DAG->top() == DAG->bottom()) {
|
|
assert(Top.Available.empty() && Top.Pending.empty() &&
|
|
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
|
|
return nullptr;
|
|
}
|
|
SUnit *SU;
|
|
do {
|
|
if (RegionPolicy.OnlyTopDown) {
|
|
SU = Top.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
TopCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = TopCand.SU;
|
|
}
|
|
IsTopNode = true;
|
|
} else if (RegionPolicy.OnlyBottomUp) {
|
|
SU = Bot.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
BotCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = BotCand.SU;
|
|
}
|
|
IsTopNode = false;
|
|
} else {
|
|
SU = pickNodeBidirectional(IsTopNode);
|
|
}
|
|
} while (SU->isScheduled);
|
|
|
|
if (SU->isTopReady())
|
|
Top.removeReady(SU);
|
|
if (SU->isBottomReady())
|
|
Bot.removeReady(SU);
|
|
|
|
if (!HasClusteredNodes && SU->getInstr()->mayLoadOrStore()) {
|
|
for (SDep &Dep : SU->Preds) {
|
|
if (Dep.isCluster()) {
|
|
HasClusteredNodes = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
|
|
<< *SU->getInstr());
|
|
return SU;
|
|
}
|
|
|
|
GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
|
|
std::unique_ptr<MachineSchedStrategy> S) :
|
|
ScheduleDAGMILive(C, std::move(S)),
|
|
ST(MF.getSubtarget<GCNSubtarget>()),
|
|
MFI(*MF.getInfo<SIMachineFunctionInfo>()),
|
|
StartingOccupancy(MFI.getOccupancy()),
|
|
MinOccupancy(StartingOccupancy), Stage(Collect), RegionIdx(0) {
|
|
|
|
LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::schedule() {
|
|
if (Stage == Collect) {
|
|
// Just record regions at the first pass.
|
|
Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
|
|
return;
|
|
}
|
|
|
|
std::vector<MachineInstr*> Unsched;
|
|
Unsched.reserve(NumRegionInstrs);
|
|
for (auto &I : *this) {
|
|
Unsched.push_back(&I);
|
|
}
|
|
|
|
GCNRegPressure PressureBefore;
|
|
if (LIS) {
|
|
PressureBefore = Pressure[RegionIdx];
|
|
|
|
LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
|
|
GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
|
|
dbgs() << "Region live-in pressure: ";
|
|
llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
|
|
dbgs() << "Region register pressure: ";
|
|
PressureBefore.print(dbgs()));
|
|
}
|
|
|
|
GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
|
|
// Set HasClusteredNodes to true for late stages where we have already
|
|
// collected it. That way pickNode() will not scan SDep's when not needed.
|
|
S.HasClusteredNodes = Stage > InitialSchedule;
|
|
S.HasExcessPressure = false;
|
|
ScheduleDAGMILive::schedule();
|
|
Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
|
|
RescheduleRegions[RegionIdx] = false;
|
|
if (Stage == InitialSchedule && S.HasClusteredNodes)
|
|
RegionsWithClusters[RegionIdx] = true;
|
|
if (S.HasExcessPressure)
|
|
RegionsWithHighRP[RegionIdx] = true;
|
|
|
|
if (!LIS)
|
|
return;
|
|
|
|
// Check the results of scheduling.
|
|
auto PressureAfter = getRealRegPressure();
|
|
|
|
LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
|
|
PressureAfter.print(dbgs()));
|
|
|
|
if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
|
|
PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) {
|
|
Pressure[RegionIdx] = PressureAfter;
|
|
RegionsWithMinOcc[RegionIdx] =
|
|
PressureAfter.getOccupancy(ST) == MinOccupancy;
|
|
|
|
LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
|
|
return;
|
|
}
|
|
|
|
unsigned WavesAfter =
|
|
std::min(S.TargetOccupancy, PressureAfter.getOccupancy(ST));
|
|
unsigned WavesBefore =
|
|
std::min(S.TargetOccupancy, PressureBefore.getOccupancy(ST));
|
|
LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
|
|
<< ", after " << WavesAfter << ".\n");
|
|
|
|
// We may not be able to keep the current target occupancy because of the just
|
|
// scheduled region. We might still be able to revert scheduling if the
|
|
// occupancy before was higher, or if the current schedule has register
|
|
// pressure higher than the excess limits which could lead to more spilling.
|
|
unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
|
|
|
|
// Allow memory bound functions to drop to 4 waves if not limited by an
|
|
// attribute.
|
|
if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
|
|
WavesAfter >= MFI.getMinAllowedOccupancy()) {
|
|
LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
|
|
<< MFI.getMinAllowedOccupancy() << " waves\n");
|
|
NewOccupancy = WavesAfter;
|
|
}
|
|
|
|
if (NewOccupancy < MinOccupancy) {
|
|
MinOccupancy = NewOccupancy;
|
|
MFI.limitOccupancy(MinOccupancy);
|
|
RegionsWithMinOcc.reset();
|
|
LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
|
|
<< MinOccupancy << ".\n");
|
|
}
|
|
|
|
unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
|
|
unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);
|
|
if (PressureAfter.getVGPRNum(false) > MaxVGPRs ||
|
|
PressureAfter.getAGPRNum() > MaxVGPRs ||
|
|
PressureAfter.getSGPRNum() > MaxSGPRs) {
|
|
RescheduleRegions[RegionIdx] = true;
|
|
RegionsWithHighRP[RegionIdx] = true;
|
|
}
|
|
|
|
// If this condition is true, then either the occupancy before and after
|
|
// scheduling is the same, or we are allowing the occupancy to drop because
|
|
// the function is memory bound. Even if we are OK with the current occupancy,
|
|
// we still need to verify that we will not introduce any extra chance of
|
|
// spilling.
|
|
if (WavesAfter >= MinOccupancy) {
|
|
if (Stage == UnclusteredReschedule &&
|
|
!PressureAfter.less(ST, PressureBefore)) {
|
|
LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
|
|
} else if (WavesAfter > MFI.getMinWavesPerEU() ||
|
|
PressureAfter.less(ST, PressureBefore) ||
|
|
!RescheduleRegions[RegionIdx]) {
|
|
Pressure[RegionIdx] = PressureAfter;
|
|
RegionsWithMinOcc[RegionIdx] =
|
|
PressureAfter.getOccupancy(ST) == MinOccupancy;
|
|
if (!RegionsWithClusters[RegionIdx] &&
|
|
(Stage + 1) == UnclusteredReschedule)
|
|
RescheduleRegions[RegionIdx] = false;
|
|
return;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
|
|
}
|
|
}
|
|
|
|
RegionsWithMinOcc[RegionIdx] =
|
|
PressureBefore.getOccupancy(ST) == MinOccupancy;
|
|
LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
|
|
RescheduleRegions[RegionIdx] = RegionsWithClusters[RegionIdx] ||
|
|
(Stage + 1) != UnclusteredReschedule;
|
|
RegionEnd = RegionBegin;
|
|
int SkippedDebugInstr = 0;
|
|
for (MachineInstr *MI : Unsched) {
|
|
if (MI->isDebugInstr()) {
|
|
++SkippedDebugInstr;
|
|
continue;
|
|
}
|
|
|
|
if (MI->getIterator() != RegionEnd) {
|
|
BB->remove(MI);
|
|
BB->insert(RegionEnd, MI);
|
|
if (!MI->isDebugInstr())
|
|
LIS->handleMove(*MI, true);
|
|
}
|
|
// Reset read-undef flags and update them later.
|
|
for (auto &Op : MI->operands())
|
|
if (Op.isReg() && Op.isDef())
|
|
Op.setIsUndef(false);
|
|
RegisterOperands RegOpers;
|
|
RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
|
|
if (!MI->isDebugInstr()) {
|
|
if (ShouldTrackLaneMasks) {
|
|
// Adjust liveness and add missing dead+read-undef flags.
|
|
SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
|
|
RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
|
|
} else {
|
|
// Adjust for missing dead-def flags.
|
|
RegOpers.detectDeadDefs(*MI, *LIS);
|
|
}
|
|
}
|
|
RegionEnd = MI->getIterator();
|
|
++RegionEnd;
|
|
LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
|
|
}
|
|
|
|
// After reverting schedule, debug instrs will now be at the end of the block
|
|
// and RegionEnd will point to the first debug instr. Increment RegionEnd
|
|
// pass debug instrs to the actual end of the scheduling region.
|
|
while (SkippedDebugInstr-- > 0)
|
|
++RegionEnd;
|
|
|
|
// If Unsched.front() instruction is a debug instruction, this will actually
|
|
// shrink the region since we moved all debug instructions to the end of the
|
|
// block. Find the first instruction that is not a debug instruction.
|
|
RegionBegin = Unsched.front()->getIterator();
|
|
if (RegionBegin->isDebugInstr()) {
|
|
for (MachineInstr *MI : Unsched) {
|
|
if (MI->isDebugInstr())
|
|
continue;
|
|
RegionBegin = MI->getIterator();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Then move the debug instructions back into their correct place and set
|
|
// RegionBegin and RegionEnd if needed.
|
|
placeDebugValues();
|
|
|
|
Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
|
|
}
|
|
|
|
GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
|
|
GCNDownwardRPTracker RPTracker(*LIS);
|
|
RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
|
|
return RPTracker.moveMaxPressure();
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
|
|
GCNDownwardRPTracker RPTracker(*LIS);
|
|
|
|
// If the block has the only successor then live-ins of that successor are
|
|
// live-outs of the current block. We can reuse calculated live set if the
|
|
// successor will be sent to scheduling past current block.
|
|
const MachineBasicBlock *OnlySucc = nullptr;
|
|
if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
|
|
SlotIndexes *Ind = LIS->getSlotIndexes();
|
|
if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
|
|
OnlySucc = *MBB->succ_begin();
|
|
}
|
|
|
|
// Scheduler sends regions from the end of the block upwards.
|
|
size_t CurRegion = RegionIdx;
|
|
for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
|
|
if (Regions[CurRegion].first->getParent() != MBB)
|
|
break;
|
|
--CurRegion;
|
|
|
|
auto I = MBB->begin();
|
|
auto LiveInIt = MBBLiveIns.find(MBB);
|
|
auto &Rgn = Regions[CurRegion];
|
|
auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
|
|
if (LiveInIt != MBBLiveIns.end()) {
|
|
auto LiveIn = std::move(LiveInIt->second);
|
|
RPTracker.reset(*MBB->begin(), &LiveIn);
|
|
MBBLiveIns.erase(LiveInIt);
|
|
} else {
|
|
I = Rgn.first;
|
|
auto LRS = BBLiveInMap.lookup(NonDbgMI);
|
|
#ifdef EXPENSIVE_CHECKS
|
|
assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
|
|
#endif
|
|
RPTracker.reset(*I, &LRS);
|
|
}
|
|
|
|
for ( ; ; ) {
|
|
I = RPTracker.getNext();
|
|
|
|
if (Regions[CurRegion].first == I || NonDbgMI == I) {
|
|
LiveIns[CurRegion] = RPTracker.getLiveRegs();
|
|
RPTracker.clearMaxPressure();
|
|
}
|
|
|
|
if (Regions[CurRegion].second == I) {
|
|
Pressure[CurRegion] = RPTracker.moveMaxPressure();
|
|
if (CurRegion-- == RegionIdx)
|
|
break;
|
|
}
|
|
RPTracker.advanceToNext();
|
|
RPTracker.advanceBeforeNext();
|
|
}
|
|
|
|
if (OnlySucc) {
|
|
if (I != MBB->end()) {
|
|
RPTracker.advanceToNext();
|
|
RPTracker.advance(MBB->end());
|
|
}
|
|
RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
|
|
RPTracker.advanceBeforeNext();
|
|
MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
|
|
}
|
|
}
|
|
|
|
DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
|
|
GCNScheduleDAGMILive::getBBLiveInMap() const {
|
|
assert(!Regions.empty());
|
|
std::vector<MachineInstr *> BBStarters;
|
|
BBStarters.reserve(Regions.size());
|
|
auto I = Regions.rbegin(), E = Regions.rend();
|
|
auto *BB = I->first->getParent();
|
|
do {
|
|
auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
|
|
BBStarters.push_back(MI);
|
|
do {
|
|
++I;
|
|
} while (I != E && I->first->getParent() == BB);
|
|
} while (I != E);
|
|
return getLiveRegMap(BBStarters, false /*After*/, *LIS);
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::finalizeSchedule() {
|
|
LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
|
|
|
|
LiveIns.resize(Regions.size());
|
|
Pressure.resize(Regions.size());
|
|
RescheduleRegions.resize(Regions.size());
|
|
RegionsWithClusters.resize(Regions.size());
|
|
RegionsWithHighRP.resize(Regions.size());
|
|
RegionsWithMinOcc.resize(Regions.size());
|
|
RescheduleRegions.set();
|
|
RegionsWithClusters.reset();
|
|
RegionsWithHighRP.reset();
|
|
RegionsWithMinOcc.reset();
|
|
|
|
if (!Regions.empty())
|
|
BBLiveInMap = getBBLiveInMap();
|
|
|
|
std::vector<std::unique_ptr<ScheduleDAGMutation>> SavedMutations;
|
|
|
|
do {
|
|
Stage++;
|
|
RegionIdx = 0;
|
|
MachineBasicBlock *MBB = nullptr;
|
|
|
|
if (Stage > InitialSchedule) {
|
|
if (!LIS)
|
|
break;
|
|
|
|
// Retry function scheduling if we found resulting occupancy and it is
|
|
// lower than used for first pass scheduling. This will give more freedom
|
|
// to schedule low register pressure blocks.
|
|
// Code is partially copied from MachineSchedulerBase::scheduleRegions().
|
|
|
|
if (Stage == UnclusteredReschedule) {
|
|
if (RescheduleRegions.none())
|
|
continue;
|
|
LLVM_DEBUG(dbgs() <<
|
|
"Retrying function scheduling without clustering.\n");
|
|
}
|
|
|
|
if (Stage == ClusteredLowOccupancyReschedule) {
|
|
if (StartingOccupancy <= MinOccupancy)
|
|
break;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "Retrying function scheduling with lowest recorded occupancy "
|
|
<< MinOccupancy << ".\n");
|
|
}
|
|
|
|
if (Stage == PreRARematerialize) {
|
|
if (RegionsWithMinOcc.none() || Regions.size() == 1)
|
|
break;
|
|
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
// Check maximum occupancy
|
|
if (ST.computeOccupancy(MF.getFunction(), MFI.getLDSSize()) ==
|
|
MinOccupancy)
|
|
break;
|
|
|
|
// FIXME: This pass will invalidate cached MBBLiveIns for regions
|
|
// inbetween the defs and region we sinked the def to. Cached pressure
|
|
// for regions where a def is sinked from will also be invalidated. Will
|
|
// need to be fixed if there is another pass after this pass.
|
|
static_assert(LastStage == PreRARematerialize,
|
|
"Passes after PreRARematerialize are not supported");
|
|
|
|
collectRematerializableInstructions();
|
|
if (RematerializableInsts.empty() || !sinkTriviallyRematInsts(ST, TII))
|
|
break;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Retrying function scheduling with improved occupancy of "
|
|
<< MinOccupancy << " from rematerializing\n");
|
|
}
|
|
}
|
|
|
|
if (Stage == UnclusteredReschedule)
|
|
SavedMutations.swap(Mutations);
|
|
|
|
for (auto Region : Regions) {
|
|
if (((Stage == UnclusteredReschedule || Stage == PreRARematerialize) &&
|
|
!RescheduleRegions[RegionIdx]) ||
|
|
(Stage == ClusteredLowOccupancyReschedule &&
|
|
!RegionsWithClusters[RegionIdx] && !RegionsWithHighRP[RegionIdx])) {
|
|
|
|
++RegionIdx;
|
|
continue;
|
|
}
|
|
|
|
RegionBegin = Region.first;
|
|
RegionEnd = Region.second;
|
|
|
|
if (RegionBegin->getParent() != MBB) {
|
|
if (MBB) finishBlock();
|
|
MBB = RegionBegin->getParent();
|
|
startBlock(MBB);
|
|
if (Stage == InitialSchedule)
|
|
computeBlockPressure(MBB);
|
|
}
|
|
|
|
unsigned NumRegionInstrs = std::distance(begin(), end());
|
|
enterRegion(MBB, begin(), end(), NumRegionInstrs);
|
|
|
|
// Skip empty scheduling regions (0 or 1 schedulable instructions).
|
|
if (begin() == end() || begin() == std::prev(end())) {
|
|
exitRegion();
|
|
++RegionIdx;
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
|
|
LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
|
|
<< MBB->getName() << "\n From: " << *begin()
|
|
<< " To: ";
|
|
if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
|
|
else dbgs() << "End";
|
|
dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
|
|
|
|
schedule();
|
|
|
|
exitRegion();
|
|
++RegionIdx;
|
|
}
|
|
finishBlock();
|
|
|
|
if (Stage == UnclusteredReschedule)
|
|
SavedMutations.swap(Mutations);
|
|
} while (Stage != LastStage);
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::collectRematerializableInstructions() {
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo *>(TRI);
|
|
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
|
|
Register Reg = Register::index2VirtReg(I);
|
|
if (!LIS->hasInterval(Reg))
|
|
continue;
|
|
|
|
// TODO: Handle AGPR and SGPR rematerialization
|
|
if (!SRI->isVGPRClass(MRI.getRegClass(Reg)) || !MRI.hasOneDef(Reg) ||
|
|
!MRI.hasOneNonDBGUse(Reg))
|
|
continue;
|
|
|
|
MachineOperand *Op = MRI.getOneDef(Reg);
|
|
MachineInstr *Def = Op->getParent();
|
|
if (Op->getSubReg() != 0 || !isTriviallyReMaterializable(*Def, AA))
|
|
continue;
|
|
|
|
MachineInstr *UseI = &*MRI.use_instr_nodbg_begin(Reg);
|
|
if (Def->getParent() == UseI->getParent())
|
|
continue;
|
|
|
|
// We are only collecting defs that are defined in another block and are
|
|
// live-through or used inside regions at MinOccupancy. This means that the
|
|
// register must be in the live-in set for the region.
|
|
bool AddedToRematList = false;
|
|
for (unsigned I = 0, E = Regions.size(); I != E; ++I) {
|
|
auto It = LiveIns[I].find(Reg);
|
|
if (It != LiveIns[I].end() && !It->second.none()) {
|
|
if (RegionsWithMinOcc[I]) {
|
|
RematerializableInsts[I][Def] = UseI;
|
|
AddedToRematList = true;
|
|
}
|
|
|
|
// Collect regions with rematerializable reg as live-in to avoid
|
|
// searching later when updating RP.
|
|
RematDefToLiveInRegions[Def].push_back(I);
|
|
}
|
|
}
|
|
if (!AddedToRematList)
|
|
RematDefToLiveInRegions.erase(Def);
|
|
}
|
|
}
|
|
|
|
bool GCNScheduleDAGMILive::sinkTriviallyRematInsts(const GCNSubtarget &ST,
|
|
const TargetInstrInfo *TII) {
|
|
// Temporary copies of cached variables we will be modifying and replacing if
|
|
// sinking succeeds.
|
|
SmallVector<
|
|
std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>, 32>
|
|
NewRegions;
|
|
DenseMap<unsigned, GCNRPTracker::LiveRegSet> NewLiveIns;
|
|
DenseMap<unsigned, GCNRegPressure> NewPressure;
|
|
BitVector NewRescheduleRegions;
|
|
|
|
NewRegions.resize(Regions.size());
|
|
NewRescheduleRegions.resize(Regions.size());
|
|
|
|
// Collect only regions that has a rematerializable def as a live-in.
|
|
SmallSet<unsigned, 16> ImpactedRegions;
|
|
for (const auto &It : RematDefToLiveInRegions)
|
|
ImpactedRegions.insert(It.second.begin(), It.second.end());
|
|
|
|
// Make copies of register pressure and live-ins cache that will be updated
|
|
// as we rematerialize.
|
|
for (auto Idx : ImpactedRegions) {
|
|
NewPressure[Idx] = Pressure[Idx];
|
|
NewLiveIns[Idx] = LiveIns[Idx];
|
|
}
|
|
NewRegions = Regions;
|
|
NewRescheduleRegions.reset();
|
|
|
|
DenseMap<MachineInstr *, MachineInstr *> InsertedMIToOldDef;
|
|
bool Improved = false;
|
|
for (auto I : ImpactedRegions) {
|
|
if (!RegionsWithMinOcc[I])
|
|
continue;
|
|
|
|
Improved = false;
|
|
int VGPRUsage = NewPressure[I].getVGPRNum(ST.hasGFX90AInsts());
|
|
int SGPRUsage = NewPressure[I].getSGPRNum();
|
|
|
|
// TODO: Handle occupancy drop due to AGPR and SGPR.
|
|
// Check if cause of occupancy drop is due to VGPR usage and not SGPR.
|
|
if (ST.getOccupancyWithNumSGPRs(SGPRUsage) == MinOccupancy)
|
|
break;
|
|
|
|
// The occupancy of this region could have been improved by a previous
|
|
// iteration's sinking of defs.
|
|
if (NewPressure[I].getOccupancy(ST) > MinOccupancy) {
|
|
NewRescheduleRegions[I] = true;
|
|
Improved = true;
|
|
continue;
|
|
}
|
|
|
|
// First check if we have enough trivially rematerializable instructions to
|
|
// improve occupancy. Optimistically assume all instructions we are able to
|
|
// sink decreased RP.
|
|
int TotalSinkableRegs = 0;
|
|
for (const auto &It : RematerializableInsts[I]) {
|
|
MachineInstr *Def = It.first;
|
|
Register DefReg = Def->getOperand(0).getReg();
|
|
TotalSinkableRegs +=
|
|
SIRegisterInfo::getNumCoveredRegs(NewLiveIns[I][DefReg]);
|
|
}
|
|
int VGPRsAfterSink = VGPRUsage - TotalSinkableRegs;
|
|
unsigned OptimisticOccupancy = ST.getOccupancyWithNumVGPRs(VGPRsAfterSink);
|
|
// If in the most optimistic scenario, we cannot improve occupancy, then do
|
|
// not attempt to sink any instructions.
|
|
if (OptimisticOccupancy <= MinOccupancy)
|
|
break;
|
|
|
|
unsigned ImproveOccupancy = 0;
|
|
SmallVector<MachineInstr *, 4> SinkedDefs;
|
|
for (auto &It : RematerializableInsts[I]) {
|
|
MachineInstr *Def = It.first;
|
|
MachineBasicBlock::iterator InsertPos =
|
|
MachineBasicBlock::iterator(It.second);
|
|
Register Reg = Def->getOperand(0).getReg();
|
|
// Rematerialize MI to its use block. Since we are only rematerializing
|
|
// instructions that do not have any virtual reg uses, we do not need to
|
|
// call LiveRangeEdit::allUsesAvailableAt() and
|
|
// LiveRangeEdit::canRematerializeAt().
|
|
TII->reMaterialize(*InsertPos->getParent(), InsertPos, Reg,
|
|
Def->getOperand(0).getSubReg(), *Def, *TRI);
|
|
MachineInstr *NewMI = &*(--InsertPos);
|
|
LIS->InsertMachineInstrInMaps(*NewMI);
|
|
LIS->removeInterval(Reg);
|
|
LIS->createAndComputeVirtRegInterval(Reg);
|
|
InsertedMIToOldDef[NewMI] = Def;
|
|
|
|
// Update region boundaries in scheduling region we sinked from since we
|
|
// may sink an instruction that was at the beginning or end of its region
|
|
updateRegionBoundaries(NewRegions, Def, /*NewMI =*/nullptr,
|
|
/*Removing =*/true);
|
|
|
|
// Update region boundaries in region we sinked to.
|
|
updateRegionBoundaries(NewRegions, InsertPos, NewMI);
|
|
|
|
LaneBitmask PrevMask = NewLiveIns[I][Reg];
|
|
// FIXME: Also update cached pressure for where the def was sinked from.
|
|
// Update RP for all regions that has this reg as a live-in and remove
|
|
// the reg from all regions as a live-in.
|
|
for (auto Idx : RematDefToLiveInRegions[Def]) {
|
|
NewLiveIns[Idx].erase(Reg);
|
|
if (InsertPos->getParent() != Regions[Idx].first->getParent()) {
|
|
// Def is live-through and not used in this block.
|
|
NewPressure[Idx].inc(Reg, PrevMask, LaneBitmask::getNone(), MRI);
|
|
} else {
|
|
// Def is used and rematerialized into this block.
|
|
GCNDownwardRPTracker RPT(*LIS);
|
|
auto *NonDbgMI = &*skipDebugInstructionsForward(
|
|
NewRegions[Idx].first, NewRegions[Idx].second);
|
|
RPT.reset(*NonDbgMI, &NewLiveIns[Idx]);
|
|
RPT.advance(NewRegions[Idx].second);
|
|
NewPressure[Idx] = RPT.moveMaxPressure();
|
|
}
|
|
}
|
|
|
|
SinkedDefs.push_back(Def);
|
|
ImproveOccupancy = NewPressure[I].getOccupancy(ST);
|
|
if (ImproveOccupancy > MinOccupancy)
|
|
break;
|
|
}
|
|
|
|
// Remove defs we just sinked from all regions' list of sinkable defs
|
|
for (auto &Def : SinkedDefs)
|
|
for (auto TrackedIdx : RematDefToLiveInRegions[Def])
|
|
RematerializableInsts[TrackedIdx].erase(Def);
|
|
|
|
if (ImproveOccupancy <= MinOccupancy)
|
|
break;
|
|
|
|
NewRescheduleRegions[I] = true;
|
|
Improved = true;
|
|
}
|
|
|
|
if (!Improved) {
|
|
// Occupancy was not improved for all regions that were at MinOccupancy.
|
|
// Undo sinking and remove newly rematerialized instructions.
|
|
for (auto &Entry : InsertedMIToOldDef) {
|
|
MachineInstr *MI = Entry.first;
|
|
MachineInstr *OldMI = Entry.second;
|
|
Register Reg = MI->getOperand(0).getReg();
|
|
LIS->RemoveMachineInstrFromMaps(*MI);
|
|
MI->eraseFromParent();
|
|
OldMI->clearRegisterDeads(Reg);
|
|
LIS->removeInterval(Reg);
|
|
LIS->createAndComputeVirtRegInterval(Reg);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Occupancy was improved for all regions.
|
|
for (auto &Entry : InsertedMIToOldDef) {
|
|
MachineInstr *MI = Entry.first;
|
|
MachineInstr *OldMI = Entry.second;
|
|
|
|
// Remove OldMI from BBLiveInMap since we are sinking it from its MBB.
|
|
BBLiveInMap.erase(OldMI);
|
|
|
|
// Remove OldMI and update LIS
|
|
Register Reg = MI->getOperand(0).getReg();
|
|
LIS->RemoveMachineInstrFromMaps(*OldMI);
|
|
OldMI->eraseFromParent();
|
|
LIS->removeInterval(Reg);
|
|
LIS->createAndComputeVirtRegInterval(Reg);
|
|
}
|
|
|
|
// Update live-ins, register pressure, and regions caches.
|
|
for (auto Idx : ImpactedRegions) {
|
|
LiveIns[Idx] = NewLiveIns[Idx];
|
|
Pressure[Idx] = NewPressure[Idx];
|
|
MBBLiveIns.erase(Regions[Idx].first->getParent());
|
|
}
|
|
Regions = NewRegions;
|
|
RescheduleRegions = NewRescheduleRegions;
|
|
|
|
SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
|
|
MFI.increaseOccupancy(MF, ++MinOccupancy);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Copied from MachineLICM
|
|
bool GCNScheduleDAGMILive::isTriviallyReMaterializable(const MachineInstr &MI,
|
|
AAResults *AA) {
|
|
if (!TII->isTriviallyReMaterializable(MI, AA))
|
|
return false;
|
|
|
|
for (const MachineOperand &MO : MI.operands())
|
|
if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// When removing, we will have to check both beginning and ending of the region.
|
|
// When inserting, we will only have to check if we are inserting NewMI in front
|
|
// of a scheduling region and do not need to check the ending since we will only
|
|
// ever be inserting before an already existing MI.
|
|
void GCNScheduleDAGMILive::updateRegionBoundaries(
|
|
SmallVectorImpl<std::pair<MachineBasicBlock::iterator,
|
|
MachineBasicBlock::iterator>> &RegionBoundaries,
|
|
MachineBasicBlock::iterator MI, MachineInstr *NewMI, bool Removing) {
|
|
unsigned I = 0, E = RegionBoundaries.size();
|
|
// Search for first region of the block where MI is located
|
|
while (I != E && MI->getParent() != RegionBoundaries[I].first->getParent())
|
|
++I;
|
|
|
|
for (; I != E; ++I) {
|
|
if (MI->getParent() != RegionBoundaries[I].first->getParent())
|
|
return;
|
|
|
|
if (Removing && MI == RegionBoundaries[I].first &&
|
|
MI == RegionBoundaries[I].second) {
|
|
// MI is in a region with size 1, after removing, the region will be
|
|
// size 0, set RegionBegin and RegionEnd to pass end of block iterator.
|
|
RegionBoundaries[I] =
|
|
std::make_pair(MI->getParent()->end(), MI->getParent()->end());
|
|
return;
|
|
}
|
|
if (MI == RegionBoundaries[I].first) {
|
|
if (Removing)
|
|
RegionBoundaries[I] =
|
|
std::make_pair(std::next(MI), RegionBoundaries[I].second);
|
|
else
|
|
// Inserted NewMI in front of region, set new RegionBegin to NewMI
|
|
RegionBoundaries[I] = std::make_pair(MachineBasicBlock::iterator(NewMI),
|
|
RegionBoundaries[I].second);
|
|
return;
|
|
}
|
|
if (Removing && MI == RegionBoundaries[I].second) {
|
|
RegionBoundaries[I] =
|
|
std::make_pair(RegionBoundaries[I].first, std::prev(MI));
|
|
return;
|
|
}
|
|
}
|
|
}
|