959 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			959 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements C++ semantic analysis for scope specifiers.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/Template.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/NestedNameSpecifier.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "TypeLocBuilder.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
/// \brief Find the current instantiation that associated with the given type.
 | 
						|
static CXXRecordDecl *getCurrentInstantiationOf(QualType T, 
 | 
						|
                                                DeclContext *CurContext) {
 | 
						|
  if (T.isNull())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
 | 
						|
  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
 | 
						|
    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
 | 
						|
    if (!T->isDependentType())
 | 
						|
      return Record;
 | 
						|
 | 
						|
    // This may be a member of a class template or class template partial
 | 
						|
    // specialization. If it's part of the current semantic context, then it's
 | 
						|
    // an injected-class-name;
 | 
						|
    for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
 | 
						|
      if (CurContext->Equals(Record))
 | 
						|
        return Record;
 | 
						|
    
 | 
						|
    return 0;
 | 
						|
  } else if (isa<InjectedClassNameType>(Ty))
 | 
						|
    return cast<InjectedClassNameType>(Ty)->getDecl();
 | 
						|
  else
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Compute the DeclContext that is associated with the given type.
 | 
						|
///
 | 
						|
/// \param T the type for which we are attempting to find a DeclContext.
 | 
						|
///
 | 
						|
/// \returns the declaration context represented by the type T,
 | 
						|
/// or NULL if the declaration context cannot be computed (e.g., because it is
 | 
						|
/// dependent and not the current instantiation).
 | 
						|
DeclContext *Sema::computeDeclContext(QualType T) {
 | 
						|
  if (!T->isDependentType())
 | 
						|
    if (const TagType *Tag = T->getAs<TagType>())
 | 
						|
      return Tag->getDecl();
 | 
						|
 | 
						|
  return ::getCurrentInstantiationOf(T, CurContext);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Compute the DeclContext that is associated with the given
 | 
						|
/// scope specifier.
 | 
						|
///
 | 
						|
/// \param SS the C++ scope specifier as it appears in the source
 | 
						|
///
 | 
						|
/// \param EnteringContext when true, we will be entering the context of
 | 
						|
/// this scope specifier, so we can retrieve the declaration context of a
 | 
						|
/// class template or class template partial specialization even if it is
 | 
						|
/// not the current instantiation.
 | 
						|
///
 | 
						|
/// \returns the declaration context represented by the scope specifier @p SS,
 | 
						|
/// or NULL if the declaration context cannot be computed (e.g., because it is
 | 
						|
/// dependent and not the current instantiation).
 | 
						|
DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
 | 
						|
                                      bool EnteringContext) {
 | 
						|
  if (!SS.isSet() || SS.isInvalid())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  NestedNameSpecifier *NNS
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
  if (NNS->isDependent()) {
 | 
						|
    // If this nested-name-specifier refers to the current
 | 
						|
    // instantiation, return its DeclContext.
 | 
						|
    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
 | 
						|
      return Record;
 | 
						|
 | 
						|
    if (EnteringContext) {
 | 
						|
      const Type *NNSType = NNS->getAsType();
 | 
						|
      if (!NNSType) {
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
 | 
						|
      // Look through type alias templates, per C++0x [temp.dep.type]p1.
 | 
						|
      NNSType = Context.getCanonicalType(NNSType);
 | 
						|
      if (const TemplateSpecializationType *SpecType
 | 
						|
            = NNSType->getAs<TemplateSpecializationType>()) {
 | 
						|
        // We are entering the context of the nested name specifier, so try to
 | 
						|
        // match the nested name specifier to either a primary class template
 | 
						|
        // or a class template partial specialization.
 | 
						|
        if (ClassTemplateDecl *ClassTemplate
 | 
						|
              = dyn_cast_or_null<ClassTemplateDecl>(
 | 
						|
                            SpecType->getTemplateName().getAsTemplateDecl())) {
 | 
						|
          QualType ContextType
 | 
						|
            = Context.getCanonicalType(QualType(SpecType, 0));
 | 
						|
 | 
						|
          // If the type of the nested name specifier is the same as the
 | 
						|
          // injected class name of the named class template, we're entering
 | 
						|
          // into that class template definition.
 | 
						|
          QualType Injected
 | 
						|
            = ClassTemplate->getInjectedClassNameSpecialization();
 | 
						|
          if (Context.hasSameType(Injected, ContextType))
 | 
						|
            return ClassTemplate->getTemplatedDecl();
 | 
						|
 | 
						|
          // If the type of the nested name specifier is the same as the
 | 
						|
          // type of one of the class template's class template partial
 | 
						|
          // specializations, we're entering into the definition of that
 | 
						|
          // class template partial specialization.
 | 
						|
          if (ClassTemplatePartialSpecializationDecl *PartialSpec
 | 
						|
                = ClassTemplate->findPartialSpecialization(ContextType))
 | 
						|
            return PartialSpec;
 | 
						|
        }
 | 
						|
      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
 | 
						|
        // The nested name specifier refers to a member of a class template.
 | 
						|
        return RecordT->getDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (NNS->getKind()) {
 | 
						|
  case NestedNameSpecifier::Identifier:
 | 
						|
    llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
 | 
						|
 | 
						|
  case NestedNameSpecifier::Namespace:
 | 
						|
    return NNS->getAsNamespace();
 | 
						|
 | 
						|
  case NestedNameSpecifier::NamespaceAlias:
 | 
						|
    return NNS->getAsNamespaceAlias()->getNamespace();
 | 
						|
 | 
						|
  case NestedNameSpecifier::TypeSpec:
 | 
						|
  case NestedNameSpecifier::TypeSpecWithTemplate: {
 | 
						|
    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
 | 
						|
    assert(Tag && "Non-tag type in nested-name-specifier");
 | 
						|
    return Tag->getDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  case NestedNameSpecifier::Global:
 | 
						|
    return Context.getTranslationUnitDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
 | 
						|
  if (!SS.isSet() || SS.isInvalid())
 | 
						|
    return false;
 | 
						|
 | 
						|
  NestedNameSpecifier *NNS
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
  return NNS->isDependent();
 | 
						|
}
 | 
						|
 | 
						|
// \brief Determine whether this C++ scope specifier refers to an
 | 
						|
// unknown specialization, i.e., a dependent type that is not the
 | 
						|
// current instantiation.
 | 
						|
bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
 | 
						|
  if (!isDependentScopeSpecifier(SS))
 | 
						|
    return false;
 | 
						|
 | 
						|
  NestedNameSpecifier *NNS
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
  return getCurrentInstantiationOf(NNS) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If the given nested name specifier refers to the current
 | 
						|
/// instantiation, return the declaration that corresponds to that
 | 
						|
/// current instantiation (C++0x [temp.dep.type]p1).
 | 
						|
///
 | 
						|
/// \param NNS a dependent nested name specifier.
 | 
						|
CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
 | 
						|
  assert(getLangOpts().CPlusPlus && "Only callable in C++");
 | 
						|
  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
 | 
						|
 | 
						|
  if (!NNS->getAsType())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  QualType T = QualType(NNS->getAsType(), 0);
 | 
						|
  return ::getCurrentInstantiationOf(T, CurContext);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Require that the context specified by SS be complete.
 | 
						|
///
 | 
						|
/// If SS refers to a type, this routine checks whether the type is
 | 
						|
/// complete enough (or can be made complete enough) for name lookup
 | 
						|
/// into the DeclContext. A type that is not yet completed can be
 | 
						|
/// considered "complete enough" if it is a class/struct/union/enum
 | 
						|
/// that is currently being defined. Or, if we have a type that names
 | 
						|
/// a class template specialization that is not a complete type, we
 | 
						|
/// will attempt to instantiate that class template.
 | 
						|
bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
 | 
						|
                                      DeclContext *DC) {
 | 
						|
  assert(DC != 0 && "given null context");
 | 
						|
 | 
						|
  TagDecl *tag = dyn_cast<TagDecl>(DC);
 | 
						|
 | 
						|
  // If this is a dependent type, then we consider it complete.
 | 
						|
  if (!tag || tag->isDependentContext())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we're currently defining this type, then lookup into the
 | 
						|
  // type is okay: don't complain that it isn't complete yet.
 | 
						|
  QualType type = Context.getTypeDeclType(tag);
 | 
						|
  const TagType *tagType = type->getAs<TagType>();
 | 
						|
  if (tagType && tagType->isBeingDefined())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SourceLocation loc = SS.getLastQualifierNameLoc();
 | 
						|
  if (loc.isInvalid()) loc = SS.getRange().getBegin();
 | 
						|
 | 
						|
  // The type must be complete.
 | 
						|
  if (RequireCompleteType(loc, type,
 | 
						|
                          PDiag(diag::err_incomplete_nested_name_spec)
 | 
						|
                            << SS.getRange())) {
 | 
						|
    SS.SetInvalid(SS.getRange());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Fixed enum types are complete, but they aren't valid as scopes
 | 
						|
  // until we see a definition, so awkwardly pull out this special
 | 
						|
  // case.
 | 
						|
  const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
 | 
						|
  if (!enumType || enumType->getDecl()->isCompleteDefinition())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Try to instantiate the definition, if this is a specialization of an
 | 
						|
  // enumeration temploid.
 | 
						|
  EnumDecl *ED = enumType->getDecl();
 | 
						|
  if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
 | 
						|
    MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
 | 
						|
    if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
 | 
						|
      if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
 | 
						|
                          TSK_ImplicitInstantiation)) {
 | 
						|
        SS.SetInvalid(SS.getRange());
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(loc, diag::err_incomplete_nested_name_spec)
 | 
						|
    << type << SS.getRange();
 | 
						|
  SS.SetInvalid(SS.getRange());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
 | 
						|
                                        CXXScopeSpec &SS) {
 | 
						|
  SS.MakeGlobal(Context, CCLoc);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determines whether the given declaration is an valid acceptable
 | 
						|
/// result for name lookup of a nested-name-specifier.
 | 
						|
bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
 | 
						|
  if (!SD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Namespace and namespace aliases are fine.
 | 
						|
  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!isa<TypeDecl>(SD))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Determine whether we have a class (or, in C++11, an enum) or
 | 
						|
  // a typedef thereof. If so, build the nested-name-specifier.
 | 
						|
  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
 | 
						|
  if (T->isDependentType())
 | 
						|
    return true;
 | 
						|
  else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
 | 
						|
    if (TD->getUnderlyingType()->isRecordType() ||
 | 
						|
        (Context.getLangOpts().CPlusPlus0x &&
 | 
						|
         TD->getUnderlyingType()->isEnumeralType()))
 | 
						|
      return true;
 | 
						|
  } else if (isa<RecordDecl>(SD) ||
 | 
						|
             (Context.getLangOpts().CPlusPlus0x && isa<EnumDecl>(SD)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If the given nested-name-specifier begins with a bare identifier
 | 
						|
/// (e.g., Base::), perform name lookup for that identifier as a
 | 
						|
/// nested-name-specifier within the given scope, and return the result of that
 | 
						|
/// name lookup.
 | 
						|
NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
 | 
						|
  if (!S || !NNS)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  while (NNS->getPrefix())
 | 
						|
    NNS = NNS->getPrefix();
 | 
						|
 | 
						|
  if (NNS->getKind() != NestedNameSpecifier::Identifier)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
 | 
						|
                     LookupNestedNameSpecifierName);
 | 
						|
  LookupName(Found, S);
 | 
						|
  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
 | 
						|
 | 
						|
  if (!Found.isSingleResult())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  NamedDecl *Result = Found.getFoundDecl();
 | 
						|
  if (isAcceptableNestedNameSpecifier(Result))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
 | 
						|
                                        SourceLocation IdLoc,
 | 
						|
                                        IdentifierInfo &II,
 | 
						|
                                        ParsedType ObjectTypePtr) {
 | 
						|
  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
 | 
						|
  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
 | 
						|
  
 | 
						|
  // Determine where to perform name lookup
 | 
						|
  DeclContext *LookupCtx = 0;
 | 
						|
  bool isDependent = false;
 | 
						|
  if (!ObjectType.isNull()) {
 | 
						|
    // This nested-name-specifier occurs in a member access expression, e.g.,
 | 
						|
    // x->B::f, and we are looking into the type of the object.
 | 
						|
    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
 | 
						|
    LookupCtx = computeDeclContext(ObjectType);
 | 
						|
    isDependent = ObjectType->isDependentType();
 | 
						|
  } else if (SS.isSet()) {
 | 
						|
    // This nested-name-specifier occurs after another nested-name-specifier,
 | 
						|
    // so long into the context associated with the prior nested-name-specifier.
 | 
						|
    LookupCtx = computeDeclContext(SS, false);
 | 
						|
    isDependent = isDependentScopeSpecifier(SS);
 | 
						|
    Found.setContextRange(SS.getRange());
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (LookupCtx) {
 | 
						|
    // Perform "qualified" name lookup into the declaration context we
 | 
						|
    // computed, which is either the type of the base of a member access
 | 
						|
    // expression or the declaration context associated with a prior
 | 
						|
    // nested-name-specifier.
 | 
						|
    
 | 
						|
    // The declaration context must be complete.
 | 
						|
    if (!LookupCtx->isDependentContext() &&
 | 
						|
        RequireCompleteDeclContext(SS, LookupCtx))
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    LookupQualifiedName(Found, LookupCtx);
 | 
						|
  } else if (isDependent) {
 | 
						|
    return false;
 | 
						|
  } else {
 | 
						|
    LookupName(Found, S);
 | 
						|
  }
 | 
						|
  Found.suppressDiagnostics();
 | 
						|
  
 | 
						|
  if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
 | 
						|
    return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Callback to only accept typo corrections that can be a valid C++ member
 | 
						|
// intializer: either a non-static field member or a base class.
 | 
						|
class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
 | 
						|
 public:
 | 
						|
  explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
 | 
						|
      : SRef(SRef) {}
 | 
						|
 | 
						|
  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
 | 
						|
    return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  Sema &SRef;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a new nested-name-specifier for "identifier::", as described
 | 
						|
/// by ActOnCXXNestedNameSpecifier.
 | 
						|
///
 | 
						|
/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
 | 
						|
/// that it contains an extra parameter \p ScopeLookupResult, which provides
 | 
						|
/// the result of name lookup within the scope of the nested-name-specifier
 | 
						|
/// that was computed at template definition time.
 | 
						|
///
 | 
						|
/// If ErrorRecoveryLookup is true, then this call is used to improve error
 | 
						|
/// recovery.  This means that it should not emit diagnostics, it should
 | 
						|
/// just return true on failure.  It also means it should only return a valid
 | 
						|
/// scope if it *knows* that the result is correct.  It should not return in a
 | 
						|
/// dependent context, for example. Nor will it extend \p SS with the scope
 | 
						|
/// specifier.
 | 
						|
bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
 | 
						|
                                       IdentifierInfo &Identifier,
 | 
						|
                                       SourceLocation IdentifierLoc,
 | 
						|
                                       SourceLocation CCLoc,
 | 
						|
                                       QualType ObjectType,
 | 
						|
                                       bool EnteringContext,
 | 
						|
                                       CXXScopeSpec &SS,
 | 
						|
                                       NamedDecl *ScopeLookupResult,
 | 
						|
                                       bool ErrorRecoveryLookup) {
 | 
						|
  LookupResult Found(*this, &Identifier, IdentifierLoc, 
 | 
						|
                     LookupNestedNameSpecifierName);
 | 
						|
 | 
						|
  // Determine where to perform name lookup
 | 
						|
  DeclContext *LookupCtx = 0;
 | 
						|
  bool isDependent = false;
 | 
						|
  if (!ObjectType.isNull()) {
 | 
						|
    // This nested-name-specifier occurs in a member access expression, e.g.,
 | 
						|
    // x->B::f, and we are looking into the type of the object.
 | 
						|
    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
 | 
						|
    LookupCtx = computeDeclContext(ObjectType);
 | 
						|
    isDependent = ObjectType->isDependentType();
 | 
						|
  } else if (SS.isSet()) {
 | 
						|
    // This nested-name-specifier occurs after another nested-name-specifier,
 | 
						|
    // so look into the context associated with the prior nested-name-specifier.
 | 
						|
    LookupCtx = computeDeclContext(SS, EnteringContext);
 | 
						|
    isDependent = isDependentScopeSpecifier(SS);
 | 
						|
    Found.setContextRange(SS.getRange());
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  bool ObjectTypeSearchedInScope = false;
 | 
						|
  if (LookupCtx) {
 | 
						|
    // Perform "qualified" name lookup into the declaration context we
 | 
						|
    // computed, which is either the type of the base of a member access
 | 
						|
    // expression or the declaration context associated with a prior
 | 
						|
    // nested-name-specifier.
 | 
						|
 | 
						|
    // The declaration context must be complete.
 | 
						|
    if (!LookupCtx->isDependentContext() &&
 | 
						|
        RequireCompleteDeclContext(SS, LookupCtx))
 | 
						|
      return true;
 | 
						|
 | 
						|
    LookupQualifiedName(Found, LookupCtx);
 | 
						|
 | 
						|
    if (!ObjectType.isNull() && Found.empty()) {
 | 
						|
      // C++ [basic.lookup.classref]p4:
 | 
						|
      //   If the id-expression in a class member access is a qualified-id of
 | 
						|
      //   the form
 | 
						|
      //
 | 
						|
      //        class-name-or-namespace-name::...
 | 
						|
      //
 | 
						|
      //   the class-name-or-namespace-name following the . or -> operator is
 | 
						|
      //   looked up both in the context of the entire postfix-expression and in
 | 
						|
      //   the scope of the class of the object expression. If the name is found
 | 
						|
      //   only in the scope of the class of the object expression, the name
 | 
						|
      //   shall refer to a class-name. If the name is found only in the
 | 
						|
      //   context of the entire postfix-expression, the name shall refer to a
 | 
						|
      //   class-name or namespace-name. [...]
 | 
						|
      //
 | 
						|
      // Qualified name lookup into a class will not find a namespace-name,
 | 
						|
      // so we do not need to diagnose that case specifically. However,
 | 
						|
      // this qualified name lookup may find nothing. In that case, perform
 | 
						|
      // unqualified name lookup in the given scope (if available) or
 | 
						|
      // reconstruct the result from when name lookup was performed at template
 | 
						|
      // definition time.
 | 
						|
      if (S)
 | 
						|
        LookupName(Found, S);
 | 
						|
      else if (ScopeLookupResult)
 | 
						|
        Found.addDecl(ScopeLookupResult);
 | 
						|
 | 
						|
      ObjectTypeSearchedInScope = true;
 | 
						|
    }
 | 
						|
  } else if (!isDependent) {
 | 
						|
    // Perform unqualified name lookup in the current scope.
 | 
						|
    LookupName(Found, S);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we performed lookup into a dependent context and did not find anything,
 | 
						|
  // that's fine: just build a dependent nested-name-specifier.
 | 
						|
  if (Found.empty() && isDependent &&
 | 
						|
      !(LookupCtx && LookupCtx->isRecord() &&
 | 
						|
        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
 | 
						|
         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
 | 
						|
    // Don't speculate if we're just trying to improve error recovery.
 | 
						|
    if (ErrorRecoveryLookup)
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    // We were not able to compute the declaration context for a dependent
 | 
						|
    // base object type or prior nested-name-specifier, so this
 | 
						|
    // nested-name-specifier refers to an unknown specialization. Just build
 | 
						|
    // a dependent nested-name-specifier.
 | 
						|
    SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
 | 
						|
    return false;
 | 
						|
  } 
 | 
						|
  
 | 
						|
  // FIXME: Deal with ambiguities cleanly.
 | 
						|
 | 
						|
  if (Found.empty() && !ErrorRecoveryLookup) {
 | 
						|
    // We haven't found anything, and we're not recovering from a
 | 
						|
    // different kind of error, so look for typos.
 | 
						|
    DeclarationName Name = Found.getLookupName();
 | 
						|
    NestedNameSpecifierValidatorCCC Validator(*this);
 | 
						|
    TypoCorrection Corrected;
 | 
						|
    Found.clear();
 | 
						|
    if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
 | 
						|
                                 Found.getLookupKind(), S, &SS, Validator,
 | 
						|
                                 LookupCtx, EnteringContext))) {
 | 
						|
      std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | 
						|
      std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
 | 
						|
      if (LookupCtx)
 | 
						|
        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
 | 
						|
          << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
 | 
						|
          << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
 | 
						|
      else
 | 
						|
        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
 | 
						|
          << Name << CorrectedQuotedStr
 | 
						|
          << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
 | 
						|
      
 | 
						|
      if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
 | 
						|
        Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
 | 
						|
        Found.addDecl(ND);
 | 
						|
      }
 | 
						|
      Found.setLookupName(Corrected.getCorrection());
 | 
						|
    } else {
 | 
						|
      Found.setLookupName(&Identifier);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
 | 
						|
  if (isAcceptableNestedNameSpecifier(SD)) {
 | 
						|
    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
 | 
						|
      // C++ [basic.lookup.classref]p4:
 | 
						|
      //   [...] If the name is found in both contexts, the
 | 
						|
      //   class-name-or-namespace-name shall refer to the same entity.
 | 
						|
      //
 | 
						|
      // We already found the name in the scope of the object. Now, look
 | 
						|
      // into the current scope (the scope of the postfix-expression) to
 | 
						|
      // see if we can find the same name there. As above, if there is no
 | 
						|
      // scope, reconstruct the result from the template instantiation itself.
 | 
						|
      NamedDecl *OuterDecl;
 | 
						|
      if (S) {
 | 
						|
        LookupResult FoundOuter(*this, &Identifier, IdentifierLoc, 
 | 
						|
                                LookupNestedNameSpecifierName);
 | 
						|
        LookupName(FoundOuter, S);
 | 
						|
        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
 | 
						|
      } else
 | 
						|
        OuterDecl = ScopeLookupResult;
 | 
						|
 | 
						|
      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
 | 
						|
          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
 | 
						|
          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
 | 
						|
           !Context.hasSameType(
 | 
						|
                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
 | 
						|
                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
 | 
						|
         if (ErrorRecoveryLookup)
 | 
						|
           return true;
 | 
						|
 | 
						|
         Diag(IdentifierLoc, 
 | 
						|
              diag::err_nested_name_member_ref_lookup_ambiguous)
 | 
						|
           << &Identifier;
 | 
						|
         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
 | 
						|
           << ObjectType;
 | 
						|
         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
 | 
						|
 | 
						|
         // Fall through so that we'll pick the name we found in the object
 | 
						|
         // type, since that's probably what the user wanted anyway.
 | 
						|
       }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we're just performing this lookup for error-recovery purposes, 
 | 
						|
    // don't extend the nested-name-specifier. Just return now.
 | 
						|
    if (ErrorRecoveryLookup)
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
 | 
						|
      SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
 | 
						|
      SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
 | 
						|
    TypeLocBuilder TLB;
 | 
						|
    if (isa<InjectedClassNameType>(T)) {
 | 
						|
      InjectedClassNameTypeLoc InjectedTL
 | 
						|
        = TLB.push<InjectedClassNameTypeLoc>(T);
 | 
						|
      InjectedTL.setNameLoc(IdentifierLoc);
 | 
						|
    } else if (isa<RecordType>(T)) {
 | 
						|
      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
 | 
						|
      RecordTL.setNameLoc(IdentifierLoc);
 | 
						|
    } else if (isa<TypedefType>(T)) {
 | 
						|
      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
 | 
						|
      TypedefTL.setNameLoc(IdentifierLoc);
 | 
						|
    } else if (isa<EnumType>(T)) {
 | 
						|
      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
 | 
						|
      EnumTL.setNameLoc(IdentifierLoc);
 | 
						|
    } else if (isa<TemplateTypeParmType>(T)) {
 | 
						|
      TemplateTypeParmTypeLoc TemplateTypeTL
 | 
						|
        = TLB.push<TemplateTypeParmTypeLoc>(T);
 | 
						|
      TemplateTypeTL.setNameLoc(IdentifierLoc);
 | 
						|
    } else if (isa<UnresolvedUsingType>(T)) {
 | 
						|
      UnresolvedUsingTypeLoc UnresolvedTL
 | 
						|
        = TLB.push<UnresolvedUsingTypeLoc>(T);
 | 
						|
      UnresolvedTL.setNameLoc(IdentifierLoc);
 | 
						|
    } else if (isa<SubstTemplateTypeParmType>(T)) {
 | 
						|
      SubstTemplateTypeParmTypeLoc TL 
 | 
						|
        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
 | 
						|
      TL.setNameLoc(IdentifierLoc);
 | 
						|
    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
 | 
						|
      SubstTemplateTypeParmPackTypeLoc TL
 | 
						|
        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
 | 
						|
      TL.setNameLoc(IdentifierLoc);
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
 | 
						|
    }
 | 
						|
 | 
						|
    if (T->isEnumeralType())
 | 
						|
      Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
 | 
						|
 | 
						|
    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
 | 
						|
              CCLoc);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have an error case.  If we don't want diagnostics, just
 | 
						|
  // return an error now.
 | 
						|
  if (ErrorRecoveryLookup)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we didn't find anything during our lookup, try again with
 | 
						|
  // ordinary name lookup, which can help us produce better error
 | 
						|
  // messages.
 | 
						|
  if (Found.empty()) {
 | 
						|
    Found.clear(LookupOrdinaryName);
 | 
						|
    LookupName(Found, S);
 | 
						|
  }
 | 
						|
 | 
						|
  // In Microsoft mode, if we are within a templated function and we can't
 | 
						|
  // resolve Identifier, then extend the SS with Identifier. This will have 
 | 
						|
  // the effect of resolving Identifier during template instantiation. 
 | 
						|
  // The goal is to be able to resolve a function call whose
 | 
						|
  // nested-name-specifier is located inside a dependent base class.
 | 
						|
  // Example: 
 | 
						|
  //
 | 
						|
  // class C {
 | 
						|
  // public:
 | 
						|
  //    static void foo2() {  }
 | 
						|
  // };
 | 
						|
  // template <class T> class A { public: typedef C D; };
 | 
						|
  //
 | 
						|
  // template <class T> class B : public A<T> {
 | 
						|
  // public:
 | 
						|
  //   void foo() { D::foo2(); }
 | 
						|
  // };
 | 
						|
  if (getLangOpts().MicrosoftExt) {
 | 
						|
    DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
 | 
						|
    if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
 | 
						|
      SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned DiagID;
 | 
						|
  if (!Found.empty())
 | 
						|
    DiagID = diag::err_expected_class_or_namespace;
 | 
						|
  else if (SS.isSet()) {
 | 
						|
    Diag(IdentifierLoc, diag::err_no_member) 
 | 
						|
      << &Identifier << LookupCtx << SS.getRange();
 | 
						|
    return true;
 | 
						|
  } else
 | 
						|
    DiagID = diag::err_undeclared_var_use;
 | 
						|
 | 
						|
  if (SS.isSet())
 | 
						|
    Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
 | 
						|
  else
 | 
						|
    Diag(IdentifierLoc, DiagID) << &Identifier;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
 | 
						|
                                       IdentifierInfo &Identifier,
 | 
						|
                                       SourceLocation IdentifierLoc,
 | 
						|
                                       SourceLocation CCLoc,
 | 
						|
                                       ParsedType ObjectType,
 | 
						|
                                       bool EnteringContext,
 | 
						|
                                       CXXScopeSpec &SS) {
 | 
						|
  if (SS.isInvalid())
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
 | 
						|
                                     GetTypeFromParser(ObjectType),
 | 
						|
                                     EnteringContext, SS, 
 | 
						|
                                     /*ScopeLookupResult=*/0, false);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
 | 
						|
                                               const DeclSpec &DS,
 | 
						|
                                               SourceLocation ColonColonLoc) {
 | 
						|
  if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
 | 
						|
 | 
						|
  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
 | 
						|
  if (!T->isDependentType() && !T->getAs<TagType>()) {
 | 
						|
    Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class) 
 | 
						|
      << T << getLangOpts().CPlusPlus;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  TypeLocBuilder TLB;
 | 
						|
  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
 | 
						|
  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
 | 
						|
  SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
 | 
						|
            ColonColonLoc);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsInvalidUnlessNestedName - This method is used for error recovery
 | 
						|
/// purposes to determine whether the specified identifier is only valid as
 | 
						|
/// a nested name specifier, for example a namespace name.  It is
 | 
						|
/// conservatively correct to always return false from this method.
 | 
						|
///
 | 
						|
/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
 | 
						|
bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
 | 
						|
                                     IdentifierInfo &Identifier, 
 | 
						|
                                     SourceLocation IdentifierLoc,
 | 
						|
                                     SourceLocation ColonLoc,
 | 
						|
                                     ParsedType ObjectType,
 | 
						|
                                     bool EnteringContext) {
 | 
						|
  if (SS.isInvalid())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
 | 
						|
                                      GetTypeFromParser(ObjectType),
 | 
						|
                                      EnteringContext, SS, 
 | 
						|
                                      /*ScopeLookupResult=*/0, true);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
 | 
						|
                                       CXXScopeSpec &SS,
 | 
						|
                                       SourceLocation TemplateKWLoc,
 | 
						|
                                       TemplateTy Template,
 | 
						|
                                       SourceLocation TemplateNameLoc,
 | 
						|
                                       SourceLocation LAngleLoc,
 | 
						|
                                       ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                       SourceLocation RAngleLoc,
 | 
						|
                                       SourceLocation CCLoc,
 | 
						|
                                       bool EnteringContext) {
 | 
						|
  if (SS.isInvalid())
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
 | 
						|
  if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
 | 
						|
    // Handle a dependent template specialization for which we cannot resolve
 | 
						|
    // the template name.
 | 
						|
    assert(DTN->getQualifier()
 | 
						|
             == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
 | 
						|
    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
 | 
						|
                                                          DTN->getQualifier(),
 | 
						|
                                                          DTN->getIdentifier(),
 | 
						|
                                                                TemplateArgs);
 | 
						|
    
 | 
						|
    // Create source-location information for this type.
 | 
						|
    TypeLocBuilder Builder;
 | 
						|
    DependentTemplateSpecializationTypeLoc SpecTL
 | 
						|
      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
 | 
						|
    SpecTL.setElaboratedKeywordLoc(SourceLocation());
 | 
						|
    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
    SpecTL.setTemplateNameLoc(TemplateNameLoc);
 | 
						|
    SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
    SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | 
						|
      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | 
						|
    
 | 
						|
    SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
 | 
						|
              CCLoc);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  if (Template.get().getAsOverloadedTemplate() ||
 | 
						|
      isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
 | 
						|
    SourceRange R(TemplateNameLoc, RAngleLoc);
 | 
						|
    if (SS.getRange().isValid())
 | 
						|
      R.setBegin(SS.getRange().getBegin());
 | 
						|
      
 | 
						|
    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
 | 
						|
      << Template.get() << R;
 | 
						|
    NoteAllFoundTemplates(Template.get());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
                                
 | 
						|
  // We were able to resolve the template name to an actual template. 
 | 
						|
  // Build an appropriate nested-name-specifier.
 | 
						|
  QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc, 
 | 
						|
                                   TemplateArgs);
 | 
						|
  if (T.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Alias template specializations can produce types which are not valid
 | 
						|
  // nested name specifiers.
 | 
						|
  if (!T->isDependentType() && !T->getAs<TagType>()) {
 | 
						|
    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
 | 
						|
    NoteAllFoundTemplates(Template.get());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Provide source-location information for the template specialization type.
 | 
						|
  TypeLocBuilder Builder;
 | 
						|
  TemplateSpecializationTypeLoc SpecTL
 | 
						|
    = Builder.push<TemplateSpecializationTypeLoc>(T);
 | 
						|
  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
  SpecTL.setTemplateNameLoc(TemplateNameLoc);
 | 
						|
  SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
  SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | 
						|
    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | 
						|
 | 
						|
 | 
						|
  SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
 | 
						|
            CCLoc);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// \brief A structure that stores a nested-name-specifier annotation,
 | 
						|
  /// including both the nested-name-specifier 
 | 
						|
  struct NestedNameSpecifierAnnotation {
 | 
						|
    NestedNameSpecifier *NNS;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
 | 
						|
  if (SS.isEmpty() || SS.isInvalid())
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
 | 
						|
                                                        SS.location_size()),
 | 
						|
                               llvm::alignOf<NestedNameSpecifierAnnotation>());
 | 
						|
  NestedNameSpecifierAnnotation *Annotation
 | 
						|
    = new (Mem) NestedNameSpecifierAnnotation;
 | 
						|
  Annotation->NNS = SS.getScopeRep();
 | 
						|
  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
 | 
						|
  return Annotation;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr, 
 | 
						|
                                                SourceRange AnnotationRange,
 | 
						|
                                                CXXScopeSpec &SS) {
 | 
						|
  if (!AnnotationPtr) {
 | 
						|
    SS.SetInvalid(AnnotationRange);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  NestedNameSpecifierAnnotation *Annotation
 | 
						|
    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
 | 
						|
  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
 | 
						|
  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
 | 
						|
 | 
						|
  NestedNameSpecifier *Qualifier =
 | 
						|
    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
 | 
						|
 | 
						|
  // There are only two places a well-formed program may qualify a
 | 
						|
  // declarator: first, when defining a namespace or class member
 | 
						|
  // out-of-line, and second, when naming an explicitly-qualified
 | 
						|
  // friend function.  The latter case is governed by
 | 
						|
  // C++03 [basic.lookup.unqual]p10:
 | 
						|
  //   In a friend declaration naming a member function, a name used
 | 
						|
  //   in the function declarator and not part of a template-argument
 | 
						|
  //   in a template-id is first looked up in the scope of the member
 | 
						|
  //   function's class. If it is not found, or if the name is part of
 | 
						|
  //   a template-argument in a template-id, the look up is as
 | 
						|
  //   described for unqualified names in the definition of the class
 | 
						|
  //   granting friendship.
 | 
						|
  // i.e. we don't push a scope unless it's a class member.
 | 
						|
 | 
						|
  switch (Qualifier->getKind()) {
 | 
						|
  case NestedNameSpecifier::Global:
 | 
						|
  case NestedNameSpecifier::Namespace:
 | 
						|
  case NestedNameSpecifier::NamespaceAlias:
 | 
						|
    // These are always namespace scopes.  We never want to enter a
 | 
						|
    // namespace scope from anything but a file context.
 | 
						|
    return CurContext->getRedeclContext()->isFileContext();
 | 
						|
 | 
						|
  case NestedNameSpecifier::Identifier:
 | 
						|
  case NestedNameSpecifier::TypeSpec:
 | 
						|
  case NestedNameSpecifier::TypeSpecWithTemplate:
 | 
						|
    // These are never namespace scopes.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
 | 
						|
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
 | 
						|
/// After this method is called, according to [C++ 3.4.3p3], names should be
 | 
						|
/// looked up in the declarator-id's scope, until the declarator is parsed and
 | 
						|
/// ActOnCXXExitDeclaratorScope is called.
 | 
						|
/// The 'SS' should be a non-empty valid CXXScopeSpec.
 | 
						|
bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
 | 
						|
  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
 | 
						|
 | 
						|
  if (SS.isInvalid()) return true;
 | 
						|
 | 
						|
  DeclContext *DC = computeDeclContext(SS, true);
 | 
						|
  if (!DC) return true;
 | 
						|
 | 
						|
  // Before we enter a declarator's context, we need to make sure that
 | 
						|
  // it is a complete declaration context.
 | 
						|
  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
 | 
						|
    return true;
 | 
						|
    
 | 
						|
  EnterDeclaratorContext(S, DC);
 | 
						|
 | 
						|
  // Rebuild the nested name specifier for the new scope.
 | 
						|
  if (DC->isDependentContext())
 | 
						|
    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
 | 
						|
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
 | 
						|
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
 | 
						|
/// Used to indicate that names should revert to being looked up in the
 | 
						|
/// defining scope.
 | 
						|
void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
 | 
						|
  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
 | 
						|
  if (SS.isInvalid())
 | 
						|
    return;
 | 
						|
  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
 | 
						|
         "exiting declarator scope we never really entered");
 | 
						|
  ExitDeclaratorContext(S);
 | 
						|
}
 |