1087 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1087 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Evan Cheng and is distributed under the
 | 
						|
// University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements bottom-up and top-down list schedulers, using standard
 | 
						|
// algorithms.  The basic approach uses a priority queue of available nodes to
 | 
						|
// schedule.  One at a time, nodes are taken from the priority queue (thus in
 | 
						|
// priority order), checked for legality to schedule, and emitted if legal.
 | 
						|
//
 | 
						|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
 | 
						|
// pipeline or resource constraints) or because an input to the instruction has
 | 
						|
// not completed execution.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "sched"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <climits>
 | 
						|
#include <iostream>
 | 
						|
#include <queue>
 | 
						|
#include <set>
 | 
						|
#include <vector>
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumNoops ("scheduler", "Number of noops inserted");
 | 
						|
  Statistic<> NumStalls("scheduler", "Number of pipeline stalls");
 | 
						|
 | 
						|
  /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
 | 
						|
  /// a group of nodes flagged together.
 | 
						|
  struct SUnit {
 | 
						|
    SDNode *Node;                       // Representative node.
 | 
						|
    std::vector<SDNode*> FlaggedNodes;  // All nodes flagged to Node.
 | 
						|
    
 | 
						|
    // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
 | 
						|
    // is true if the edge is a token chain edge, false if it is a value edge. 
 | 
						|
    std::set<std::pair<SUnit*,bool> > Preds;  // All sunit predecessors.
 | 
						|
    std::set<std::pair<SUnit*,bool> > Succs;  // All sunit successors.
 | 
						|
 | 
						|
    short NumPredsLeft;                 // # of preds not scheduled.
 | 
						|
    short NumSuccsLeft;                 // # of succs not scheduled.
 | 
						|
    short NumChainPredsLeft;            // # of chain preds not scheduled.
 | 
						|
    short NumChainSuccsLeft;            // # of chain succs not scheduled.
 | 
						|
    bool isTwoAddress     : 1;          // Is a two-address instruction.
 | 
						|
    bool isDefNUseOperand : 1;          // Is a def&use operand.
 | 
						|
    bool isPending        : 1;          // True once pending.
 | 
						|
    bool isAvailable      : 1;          // True once available.
 | 
						|
    bool isScheduled      : 1;          // True once scheduled.
 | 
						|
    unsigned short Latency;             // Node latency.
 | 
						|
    unsigned CycleBound;                // Upper/lower cycle to be scheduled at.
 | 
						|
    unsigned Cycle;                     // Once scheduled, the cycle of the op.
 | 
						|
    unsigned NodeNum;                   // Entry # of node in the node vector.
 | 
						|
    
 | 
						|
    SUnit(SDNode *node, unsigned nodenum)
 | 
						|
      : Node(node), NumPredsLeft(0), NumSuccsLeft(0),
 | 
						|
      NumChainPredsLeft(0), NumChainSuccsLeft(0),
 | 
						|
      isTwoAddress(false), isDefNUseOperand(false),
 | 
						|
      isPending(false), isAvailable(false), isScheduled(false), 
 | 
						|
      Latency(0), CycleBound(0), Cycle(0), NodeNum(nodenum) {}
 | 
						|
    
 | 
						|
    void dump(const SelectionDAG *G) const;
 | 
						|
    void dumpAll(const SelectionDAG *G) const;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void SUnit::dump(const SelectionDAG *G) const {
 | 
						|
  std::cerr << "SU: ";
 | 
						|
  Node->dump(G);
 | 
						|
  std::cerr << "\n";
 | 
						|
  if (FlaggedNodes.size() != 0) {
 | 
						|
    for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
 | 
						|
      std::cerr << "    ";
 | 
						|
      FlaggedNodes[i]->dump(G);
 | 
						|
      std::cerr << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SUnit::dumpAll(const SelectionDAG *G) const {
 | 
						|
  dump(G);
 | 
						|
 | 
						|
  std::cerr << "  # preds left       : " << NumPredsLeft << "\n";
 | 
						|
  std::cerr << "  # succs left       : " << NumSuccsLeft << "\n";
 | 
						|
  std::cerr << "  # chain preds left : " << NumChainPredsLeft << "\n";
 | 
						|
  std::cerr << "  # chain succs left : " << NumChainSuccsLeft << "\n";
 | 
						|
  std::cerr << "  Latency            : " << Latency << "\n";
 | 
						|
 | 
						|
  if (Preds.size() != 0) {
 | 
						|
    std::cerr << "  Predecessors:\n";
 | 
						|
    for (std::set<std::pair<SUnit*,bool> >::const_iterator I = Preds.begin(),
 | 
						|
           E = Preds.end(); I != E; ++I) {
 | 
						|
      if (I->second)
 | 
						|
        std::cerr << "   ch  ";
 | 
						|
      else
 | 
						|
        std::cerr << "   val ";
 | 
						|
      I->first->dump(G);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Succs.size() != 0) {
 | 
						|
    std::cerr << "  Successors:\n";
 | 
						|
    for (std::set<std::pair<SUnit*, bool> >::const_iterator I = Succs.begin(),
 | 
						|
           E = Succs.end(); I != E; ++I) {
 | 
						|
      if (I->second)
 | 
						|
        std::cerr << "   ch  ";
 | 
						|
      else
 | 
						|
        std::cerr << "   val ";
 | 
						|
      I->first->dump(G);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  std::cerr << "\n";
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// SchedulingPriorityQueue - This interface is used to plug different
 | 
						|
/// priorities computation algorithms into the list scheduler. It implements the
 | 
						|
/// interface of a standard priority queue, where nodes are inserted in 
 | 
						|
/// arbitrary order and returned in priority order.  The computation of the
 | 
						|
/// priority and the representation of the queue are totally up to the
 | 
						|
/// implementation to decide.
 | 
						|
/// 
 | 
						|
namespace {
 | 
						|
class SchedulingPriorityQueue {
 | 
						|
public:
 | 
						|
  virtual ~SchedulingPriorityQueue() {}
 | 
						|
  
 | 
						|
  virtual void initNodes(const std::vector<SUnit> &SUnits) = 0;
 | 
						|
  virtual void releaseState() = 0;
 | 
						|
  
 | 
						|
  virtual bool empty() const = 0;
 | 
						|
  virtual void push(SUnit *U) = 0;
 | 
						|
  
 | 
						|
  virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
 | 
						|
  virtual SUnit *pop() = 0;
 | 
						|
  
 | 
						|
  /// ScheduledNode - As each node is scheduled, this method is invoked.  This
 | 
						|
  /// allows the priority function to adjust the priority of node that have
 | 
						|
  /// already been emitted.
 | 
						|
  virtual void ScheduledNode(SUnit *Node) {}
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ScheduleDAGList - The actual list scheduler implementation.  This supports
 | 
						|
/// both top-down and bottom-up scheduling.
 | 
						|
///
 | 
						|
class ScheduleDAGList : public ScheduleDAG {
 | 
						|
private:
 | 
						|
  // SDNode to SUnit mapping (many to one).
 | 
						|
  std::map<SDNode*, SUnit*> SUnitMap;
 | 
						|
  // The schedule.  Null SUnit*'s represent noop instructions.
 | 
						|
  std::vector<SUnit*> Sequence;
 | 
						|
  
 | 
						|
  // The scheduling units.
 | 
						|
  std::vector<SUnit> SUnits;
 | 
						|
 | 
						|
  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
 | 
						|
  /// it is top-down.
 | 
						|
  bool isBottomUp;
 | 
						|
  
 | 
						|
  /// AvailableQueue - The priority queue to use for the available SUnits.
 | 
						|
  ///
 | 
						|
  SchedulingPriorityQueue *AvailableQueue;
 | 
						|
  
 | 
						|
  /// PendingQueue - This contains all of the instructions whose operands have
 | 
						|
  /// been issued, but their results are not ready yet (due to the latency of
 | 
						|
  /// the operation).  Once the operands becomes available, the instruction is
 | 
						|
  /// added to the AvailableQueue.  This keeps track of each SUnit and the
 | 
						|
  /// number of cycles left to execute before the operation is available.
 | 
						|
  std::vector<std::pair<unsigned, SUnit*> > PendingQueue;
 | 
						|
  
 | 
						|
  /// HazardRec - The hazard recognizer to use.
 | 
						|
  HazardRecognizer *HazardRec;
 | 
						|
  
 | 
						|
public:
 | 
						|
  ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
 | 
						|
                  const TargetMachine &tm, bool isbottomup,
 | 
						|
                  SchedulingPriorityQueue *availqueue,
 | 
						|
                  HazardRecognizer *HR)
 | 
						|
    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), 
 | 
						|
      AvailableQueue(availqueue), HazardRec(HR) {
 | 
						|
    }
 | 
						|
 | 
						|
  ~ScheduleDAGList() {
 | 
						|
    delete HazardRec;
 | 
						|
    delete AvailableQueue;
 | 
						|
  }
 | 
						|
 | 
						|
  void Schedule();
 | 
						|
 | 
						|
  void dumpSchedule() const;
 | 
						|
 | 
						|
private:
 | 
						|
  SUnit *NewSUnit(SDNode *N);
 | 
						|
  void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
 | 
						|
  void ReleaseSucc(SUnit *SuccSU, bool isChain);
 | 
						|
  void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle);
 | 
						|
  void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
 | 
						|
  void ListScheduleTopDown();
 | 
						|
  void ListScheduleBottomUp();
 | 
						|
  void BuildSchedUnits();
 | 
						|
  void EmitSchedule();
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
HazardRecognizer::~HazardRecognizer() {}
 | 
						|
 | 
						|
 | 
						|
/// NewSUnit - Creates a new SUnit and return a ptr to it.
 | 
						|
SUnit *ScheduleDAGList::NewSUnit(SDNode *N) {
 | 
						|
  SUnits.push_back(SUnit(N, SUnits.size()));
 | 
						|
  return &SUnits.back();
 | 
						|
}
 | 
						|
 | 
						|
/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
 | 
						|
/// This SUnit graph is similar to the SelectionDAG, but represents flagged
 | 
						|
/// together nodes with a single SUnit.
 | 
						|
void ScheduleDAGList::BuildSchedUnits() {
 | 
						|
  // Reserve entries in the vector for each of the SUnits we are creating.  This
 | 
						|
  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
 | 
						|
  // invalidated.
 | 
						|
  SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
 | 
						|
  
 | 
						|
  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
 | 
						|
  
 | 
						|
  for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
 | 
						|
       E = DAG.allnodes_end(); NI != E; ++NI) {
 | 
						|
    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If this node has already been processed, stop now.
 | 
						|
    if (SUnitMap[NI]) continue;
 | 
						|
    
 | 
						|
    SUnit *NodeSUnit = NewSUnit(NI);
 | 
						|
    
 | 
						|
    // See if anything is flagged to this node, if so, add them to flagged
 | 
						|
    // nodes.  Nodes can have at most one flag input and one flag output.  Flags
 | 
						|
    // are required the be the last operand and result of a node.
 | 
						|
    
 | 
						|
    // Scan up, adding flagged preds to FlaggedNodes.
 | 
						|
    SDNode *N = NI;
 | 
						|
    while (N->getNumOperands() &&
 | 
						|
           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
 | 
						|
      N = N->getOperand(N->getNumOperands()-1).Val;
 | 
						|
      NodeSUnit->FlaggedNodes.push_back(N);
 | 
						|
      SUnitMap[N] = NodeSUnit;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Scan down, adding this node and any flagged succs to FlaggedNodes if they
 | 
						|
    // have a user of the flag operand.
 | 
						|
    N = NI;
 | 
						|
    while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
 | 
						|
      SDOperand FlagVal(N, N->getNumValues()-1);
 | 
						|
      
 | 
						|
      // There are either zero or one users of the Flag result.
 | 
						|
      bool HasFlagUse = false;
 | 
						|
      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 
 | 
						|
           UI != E; ++UI)
 | 
						|
        if (FlagVal.isOperand(*UI)) {
 | 
						|
          HasFlagUse = true;
 | 
						|
          NodeSUnit->FlaggedNodes.push_back(N);
 | 
						|
          SUnitMap[N] = NodeSUnit;
 | 
						|
          N = *UI;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
          if (!HasFlagUse) break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
 | 
						|
    // Update the SUnit
 | 
						|
    NodeSUnit->Node = N;
 | 
						|
    SUnitMap[N] = NodeSUnit;
 | 
						|
    
 | 
						|
    // Compute the latency for the node.  We use the sum of the latencies for
 | 
						|
    // all nodes flagged together into this SUnit.
 | 
						|
    if (InstrItins.isEmpty()) {
 | 
						|
      // No latency information.
 | 
						|
      NodeSUnit->Latency = 1;
 | 
						|
    } else {
 | 
						|
      NodeSUnit->Latency = 0;
 | 
						|
      if (N->isTargetOpcode()) {
 | 
						|
        unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
 | 
						|
        InstrStage *S = InstrItins.begin(SchedClass);
 | 
						|
        InstrStage *E = InstrItins.end(SchedClass);
 | 
						|
        for (; S != E; ++S)
 | 
						|
          NodeSUnit->Latency += S->Cycles;
 | 
						|
      }
 | 
						|
      for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) {
 | 
						|
        SDNode *FNode = NodeSUnit->FlaggedNodes[i];
 | 
						|
        if (FNode->isTargetOpcode()) {
 | 
						|
          unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
 | 
						|
          InstrStage *S = InstrItins.begin(SchedClass);
 | 
						|
          InstrStage *E = InstrItins.end(SchedClass);
 | 
						|
          for (; S != E; ++S)
 | 
						|
            NodeSUnit->Latency += S->Cycles;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Pass 2: add the preds, succs, etc.
 | 
						|
  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
 | 
						|
    SUnit *SU = &SUnits[su];
 | 
						|
    SDNode *MainNode = SU->Node;
 | 
						|
    
 | 
						|
    if (MainNode->isTargetOpcode() &&
 | 
						|
        TII->isTwoAddrInstr(MainNode->getTargetOpcode()))
 | 
						|
      SU->isTwoAddress = true;
 | 
						|
    
 | 
						|
    // Find all predecessors and successors of the group.
 | 
						|
    // Temporarily add N to make code simpler.
 | 
						|
    SU->FlaggedNodes.push_back(MainNode);
 | 
						|
    
 | 
						|
    for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
 | 
						|
      SDNode *N = SU->FlaggedNodes[n];
 | 
						|
      
 | 
						|
      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
        SDNode *OpN = N->getOperand(i).Val;
 | 
						|
        if (isPassiveNode(OpN)) continue;   // Not scheduled.
 | 
						|
        SUnit *OpSU = SUnitMap[OpN];
 | 
						|
        assert(OpSU && "Node has no SUnit!");
 | 
						|
        if (OpSU == SU) continue;           // In the same group.
 | 
						|
        
 | 
						|
        MVT::ValueType OpVT = N->getOperand(i).getValueType();
 | 
						|
        assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
 | 
						|
        bool isChain = OpVT == MVT::Other;
 | 
						|
        
 | 
						|
        if (SU->Preds.insert(std::make_pair(OpSU, isChain)).second) {
 | 
						|
          if (!isChain) {
 | 
						|
            SU->NumPredsLeft++;
 | 
						|
          } else {
 | 
						|
            SU->NumChainPredsLeft++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (OpSU->Succs.insert(std::make_pair(SU, isChain)).second) {
 | 
						|
          if (!isChain) {
 | 
						|
            OpSU->NumSuccsLeft++;
 | 
						|
          } else {
 | 
						|
            OpSU->NumChainSuccsLeft++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Remove MainNode from FlaggedNodes again.
 | 
						|
    SU->FlaggedNodes.pop_back();
 | 
						|
  }
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
        SUnits[su].dumpAll(&DAG));
 | 
						|
}
 | 
						|
 | 
						|
/// EmitSchedule - Emit the machine code in scheduled order.
 | 
						|
void ScheduleDAGList::EmitSchedule() {
 | 
						|
  std::map<SDNode*, unsigned> VRBaseMap;
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | 
						|
    if (SUnit *SU = Sequence[i]) {
 | 
						|
      for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
 | 
						|
        EmitNode(SU->FlaggedNodes[j], VRBaseMap);
 | 
						|
      EmitNode(SU->Node, VRBaseMap);
 | 
						|
    } else {
 | 
						|
      // Null SUnit* is a noop.
 | 
						|
      EmitNoop();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// dump - dump the schedule.
 | 
						|
void ScheduleDAGList::dumpSchedule() const {
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | 
						|
    if (SUnit *SU = Sequence[i])
 | 
						|
      SU->dump(&DAG);
 | 
						|
    else
 | 
						|
      std::cerr << "**** NOOP ****\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Schedule - Schedule the DAG using list scheduling.
 | 
						|
void ScheduleDAGList::Schedule() {
 | 
						|
  DEBUG(std::cerr << "********** List Scheduling **********\n");
 | 
						|
  
 | 
						|
  // Build scheduling units.
 | 
						|
  BuildSchedUnits();
 | 
						|
  
 | 
						|
  AvailableQueue->initNodes(SUnits);
 | 
						|
  
 | 
						|
  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
 | 
						|
  if (isBottomUp)
 | 
						|
    ListScheduleBottomUp();
 | 
						|
  else
 | 
						|
    ListScheduleTopDown();
 | 
						|
  
 | 
						|
  AvailableQueue->releaseState();
 | 
						|
  
 | 
						|
  DEBUG(std::cerr << "*** Final schedule ***\n");
 | 
						|
  DEBUG(dumpSchedule());
 | 
						|
  DEBUG(std::cerr << "\n");
 | 
						|
  
 | 
						|
  // Emit in scheduled order
 | 
						|
  EmitSchedule();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Bottom-Up Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | 
						|
/// the Available queue is the count reaches zero. Also update its cycle bound.
 | 
						|
void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain, 
 | 
						|
                                  unsigned CurCycle) {
 | 
						|
  // FIXME: the distance between two nodes is not always == the predecessor's
 | 
						|
  // latency. For example, the reader can very well read the register written
 | 
						|
  // by the predecessor later than the issue cycle. It also depends on the
 | 
						|
  // interrupt model (drain vs. freeze).
 | 
						|
  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
 | 
						|
 | 
						|
  if (!isChain)
 | 
						|
    PredSU->NumSuccsLeft--;
 | 
						|
  else
 | 
						|
    PredSU->NumChainSuccsLeft--;
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
 | 
						|
    std::cerr << "*** List scheduling failed! ***\n";
 | 
						|
    PredSU->dump(&DAG);
 | 
						|
    std::cerr << " has been released too many times!\n";
 | 
						|
    assert(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  
 | 
						|
  if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
 | 
						|
    // EntryToken has to go last!  Special case it here.
 | 
						|
    if (PredSU->Node->getOpcode() != ISD::EntryToken) {
 | 
						|
      PredSU->isAvailable = true;
 | 
						|
      AvailableQueue->push(PredSU);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its predecessors. If a predecessor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
 | 
						|
  DEBUG(SU->dump(&DAG));
 | 
						|
  SU->Cycle = CurCycle;
 | 
						|
 | 
						|
  Sequence.push_back(SU);
 | 
						|
 | 
						|
  // Bottom up: release predecessors
 | 
						|
  for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
 | 
						|
         E = SU->Preds.end(); I != E; ++I) {
 | 
						|
    ReleasePred(I->first, I->second, CurCycle);
 | 
						|
    // FIXME: This is something used by the priority function that it should
 | 
						|
    // calculate directly.
 | 
						|
    if (!I->second)
 | 
						|
      SU->NumPredsLeft--;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isReady - True if node's lower cycle bound is less or equal to the current
 | 
						|
/// scheduling cycle. Always true if all nodes have uniform latency 1.
 | 
						|
static inline bool isReady(SUnit *SU, unsigned CurrCycle) {
 | 
						|
  return SU->CycleBound <= CurrCycle;
 | 
						|
}
 | 
						|
 | 
						|
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | 
						|
/// schedulers.
 | 
						|
void ScheduleDAGList::ListScheduleBottomUp() {
 | 
						|
  unsigned CurrCycle = 0;
 | 
						|
  // Add root to Available queue.
 | 
						|
  AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
 | 
						|
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back. Schedule the node.
 | 
						|
  std::vector<SUnit*> NotReady;
 | 
						|
  while (!AvailableQueue->empty()) {
 | 
						|
    SUnit *CurrNode = AvailableQueue->pop();
 | 
						|
 | 
						|
    while (!isReady(CurrNode, CurrCycle)) {
 | 
						|
      NotReady.push_back(CurrNode);
 | 
						|
      CurrNode = AvailableQueue->pop();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    AvailableQueue->push_all(NotReady);
 | 
						|
    NotReady.clear();
 | 
						|
 | 
						|
    ScheduleNodeBottomUp(CurrNode, CurrCycle);
 | 
						|
    CurrCycle++;
 | 
						|
    CurrNode->isScheduled = true;
 | 
						|
    AvailableQueue->ScheduledNode(CurrNode);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add entry node last
 | 
						|
  if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
 | 
						|
    SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | 
						|
    Sequence.push_back(Entry);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reverse the order if it is bottom up.
 | 
						|
  std::reverse(Sequence.begin(), Sequence.end());
 | 
						|
  
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that all SUnits were scheduled.
 | 
						|
  bool AnyNotSched = false;
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
 | 
						|
      if (!AnyNotSched)
 | 
						|
        std::cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(&DAG);
 | 
						|
      std::cerr << "has not been scheduled!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(!AnyNotSched);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Top-Down Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | 
						|
/// the PendingQueue if the count reaches zero.
 | 
						|
void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
 | 
						|
  if (!isChain)
 | 
						|
    SuccSU->NumPredsLeft--;
 | 
						|
  else
 | 
						|
    SuccSU->NumChainPredsLeft--;
 | 
						|
  
 | 
						|
  assert(SuccSU->NumPredsLeft >= 0 && SuccSU->NumChainPredsLeft >= 0 &&
 | 
						|
         "List scheduling internal error");
 | 
						|
  
 | 
						|
  if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
 | 
						|
    // Compute how many cycles it will be before this actually becomes
 | 
						|
    // available.  This is the max of the start time of all predecessors plus
 | 
						|
    // their latencies.
 | 
						|
    unsigned AvailableCycle = 0;
 | 
						|
    for (std::set<std::pair<SUnit*, bool> >::iterator I = SuccSU->Preds.begin(),
 | 
						|
         E = SuccSU->Preds.end(); I != E; ++I) {
 | 
						|
      // If this is a token edge, we don't need to wait for the full latency of
 | 
						|
      // the preceeding instruction (e.g. a long-latency load) unless there is
 | 
						|
      // also some other data dependence.
 | 
						|
      unsigned PredDoneCycle = I->first->Cycle;
 | 
						|
      if (!I->second)
 | 
						|
        PredDoneCycle += I->first->Latency;
 | 
						|
      else
 | 
						|
        PredDoneCycle += 1;  
 | 
						|
 | 
						|
      AvailableCycle = std::max(AvailableCycle, PredDoneCycle);
 | 
						|
    }
 | 
						|
    
 | 
						|
    PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
 | 
						|
    SuccSU->isPending = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its successors. If a successor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
 | 
						|
  DEBUG(SU->dump(&DAG));
 | 
						|
  
 | 
						|
  Sequence.push_back(SU);
 | 
						|
  SU->Cycle = CurCycle;
 | 
						|
  
 | 
						|
  // Bottom up: release successors.
 | 
						|
  for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
 | 
						|
       E = SU->Succs.end(); I != E; ++I)
 | 
						|
    ReleaseSucc(I->first, I->second);
 | 
						|
}
 | 
						|
 | 
						|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
 | 
						|
/// schedulers.
 | 
						|
void ScheduleDAGList::ListScheduleTopDown() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
  SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | 
						|
 | 
						|
  // All leaves to Available queue.
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    // It is available if it has no predecessors.
 | 
						|
    if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
 | 
						|
      AvailableQueue->push(&SUnits[i]);
 | 
						|
      SUnits[i].isAvailable = SUnits[i].isPending = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Emit the entry node first.
 | 
						|
  ScheduleNodeTopDown(Entry, CurCycle);
 | 
						|
  HazardRec->EmitInstruction(Entry->Node);
 | 
						|
  
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back.  Schedule the node.
 | 
						|
  std::vector<SUnit*> NotReady;
 | 
						|
  while (!AvailableQueue->empty() || !PendingQueue.empty()) {
 | 
						|
    // Check to see if any of the pending instructions are ready to issue.  If
 | 
						|
    // so, add them to the available queue.
 | 
						|
    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i)
 | 
						|
      if (PendingQueue[i].first == CurCycle) {
 | 
						|
        AvailableQueue->push(PendingQueue[i].second);
 | 
						|
        PendingQueue[i].second->isAvailable = true;
 | 
						|
        PendingQueue[i] = PendingQueue.back();
 | 
						|
        PendingQueue.pop_back();
 | 
						|
        --i; --e;
 | 
						|
      } else {
 | 
						|
        assert(PendingQueue[i].first > CurCycle && "Negative latency?");
 | 
						|
      }
 | 
						|
    
 | 
						|
    SUnit *FoundNode = 0;
 | 
						|
 | 
						|
    bool HasNoopHazards = false;
 | 
						|
    while (!AvailableQueue->empty()) {
 | 
						|
      SUnit *CurNode = AvailableQueue->pop();
 | 
						|
      
 | 
						|
      // Get the node represented by this SUnit.
 | 
						|
      SDNode *N = CurNode->Node;
 | 
						|
      // If this is a pseudo op, like copyfromreg, look to see if there is a
 | 
						|
      // real target node flagged to it.  If so, use the target node.
 | 
						|
      for (unsigned i = 0, e = CurNode->FlaggedNodes.size(); 
 | 
						|
           N->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
 | 
						|
        N = CurNode->FlaggedNodes[i];
 | 
						|
      
 | 
						|
      HazardRecognizer::HazardType HT = HazardRec->getHazardType(N);
 | 
						|
      if (HT == HazardRecognizer::NoHazard) {
 | 
						|
        FoundNode = CurNode;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Remember if this is a noop hazard.
 | 
						|
      HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
 | 
						|
      
 | 
						|
      NotReady.push_back(CurNode);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    AvailableQueue->push_all(NotReady);
 | 
						|
    NotReady.clear();
 | 
						|
 | 
						|
    // If we found a node to schedule, do it now.
 | 
						|
    if (FoundNode) {
 | 
						|
      ScheduleNodeTopDown(FoundNode, CurCycle);
 | 
						|
      HazardRec->EmitInstruction(FoundNode->Node);
 | 
						|
      FoundNode->isScheduled = true;
 | 
						|
      AvailableQueue->ScheduledNode(FoundNode);
 | 
						|
 | 
						|
      // If this is a pseudo-op node, we don't want to increment the current
 | 
						|
      // cycle.
 | 
						|
      if (FoundNode->Latency == 0)
 | 
						|
        continue;   // Don't increment for pseudo-ops!
 | 
						|
    } else if (!HasNoopHazards) {
 | 
						|
      // Otherwise, we have a pipeline stall, but no other problem, just advance
 | 
						|
      // the current cycle and try again.
 | 
						|
      DEBUG(std::cerr << "*** Advancing cycle, no work to do\n");
 | 
						|
      HazardRec->AdvanceCycle();
 | 
						|
      ++NumStalls;
 | 
						|
    } else {
 | 
						|
      // Otherwise, we have no instructions to issue and we have instructions
 | 
						|
      // that will fault if we don't do this right.  This is the case for
 | 
						|
      // processors without pipeline interlocks and other cases.
 | 
						|
      DEBUG(std::cerr << "*** Emitting noop\n");
 | 
						|
      HazardRec->EmitNoop();
 | 
						|
      Sequence.push_back(0);   // NULL SUnit* -> noop
 | 
						|
      ++NumNoops;
 | 
						|
    }
 | 
						|
    ++CurCycle;
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that all SUnits were scheduled.
 | 
						|
  bool AnyNotSched = false;
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) {
 | 
						|
      if (!AnyNotSched)
 | 
						|
        std::cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(&DAG);
 | 
						|
      std::cerr << "has not been scheduled!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(!AnyNotSched);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                RegReductionPriorityQueue Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
 | 
						|
// to reduce register pressure.
 | 
						|
// 
 | 
						|
namespace {
 | 
						|
  class RegReductionPriorityQueue;
 | 
						|
  
 | 
						|
  /// Sorting functions for the Available queue.
 | 
						|
  struct ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue *SPQ;
 | 
						|
    ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {}
 | 
						|
    ls_rr_sort(const ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
  class RegReductionPriorityQueue : public SchedulingPriorityQueue {
 | 
						|
    // SUnits - The SUnits for the current graph.
 | 
						|
    const std::vector<SUnit> *SUnits;
 | 
						|
    
 | 
						|
    // SethiUllmanNumbers - The SethiUllman number for each node.
 | 
						|
    std::vector<int> SethiUllmanNumbers;
 | 
						|
    
 | 
						|
    std::priority_queue<SUnit*, std::vector<SUnit*>, ls_rr_sort> Queue;
 | 
						|
  public:
 | 
						|
    RegReductionPriorityQueue() : Queue(ls_rr_sort(this)) {
 | 
						|
    }
 | 
						|
    
 | 
						|
    void initNodes(const std::vector<SUnit> &sunits) {
 | 
						|
      SUnits = &sunits;
 | 
						|
      // Calculate node priorities.
 | 
						|
      CalculatePriorities();
 | 
						|
    }
 | 
						|
    void releaseState() {
 | 
						|
      SUnits = 0;
 | 
						|
      SethiUllmanNumbers.clear();
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned getSethiUllmanNumber(unsigned NodeNum) const {
 | 
						|
      assert(NodeNum < SethiUllmanNumbers.size());
 | 
						|
      return SethiUllmanNumbers[NodeNum];
 | 
						|
    }
 | 
						|
    
 | 
						|
    bool empty() const { return Queue.empty(); }
 | 
						|
    
 | 
						|
    void push(SUnit *U) {
 | 
						|
      Queue.push(U);
 | 
						|
    }
 | 
						|
    void push_all(const std::vector<SUnit *> &Nodes) {
 | 
						|
      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | 
						|
        Queue.push(Nodes[i]);
 | 
						|
    }
 | 
						|
    
 | 
						|
    SUnit *pop() {
 | 
						|
      SUnit *V = Queue.top();
 | 
						|
      Queue.pop();
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    void CalculatePriorities();
 | 
						|
    int CalcNodePriority(const SUnit *SU);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
bool ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | 
						|
  unsigned LeftNum  = left->NodeNum;
 | 
						|
  unsigned RightNum = right->NodeNum;
 | 
						|
  
 | 
						|
  int LBonus = (int)left ->isDefNUseOperand;
 | 
						|
  int RBonus = (int)right->isDefNUseOperand;
 | 
						|
  
 | 
						|
  // Special tie breaker: if two nodes share a operand, the one that
 | 
						|
  // use it as a def&use operand is preferred.
 | 
						|
  if (left->isTwoAddress && !right->isTwoAddress) {
 | 
						|
    SDNode *DUNode = left->Node->getOperand(0).Val;
 | 
						|
    if (DUNode->isOperand(right->Node))
 | 
						|
      LBonus++;
 | 
						|
  }
 | 
						|
  if (!left->isTwoAddress && right->isTwoAddress) {
 | 
						|
    SDNode *DUNode = right->Node->getOperand(0).Val;
 | 
						|
    if (DUNode->isOperand(left->Node))
 | 
						|
      RBonus++;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Priority1 is just the number of live range genned.
 | 
						|
  int LPriority1 = left ->NumPredsLeft - LBonus;
 | 
						|
  int RPriority1 = right->NumPredsLeft - RBonus;
 | 
						|
  int LPriority2 = SPQ->getSethiUllmanNumber(LeftNum) + LBonus;
 | 
						|
  int RPriority2 = SPQ->getSethiUllmanNumber(RightNum) + RBonus;
 | 
						|
  
 | 
						|
  if (LPriority1 > RPriority1)
 | 
						|
    return true;
 | 
						|
  else if (LPriority1 == RPriority1)
 | 
						|
    if (LPriority2 < RPriority2)
 | 
						|
      return true;
 | 
						|
    else if (LPriority2 == RPriority2)
 | 
						|
      if (left->CycleBound > right->CycleBound) 
 | 
						|
        return true;
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CalcNodePriority - Priority is the Sethi Ullman number. 
 | 
						|
/// Smaller number is the higher priority.
 | 
						|
int RegReductionPriorityQueue::CalcNodePriority(const SUnit *SU) {
 | 
						|
  int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | 
						|
  if (SethiUllmanNumber != INT_MIN)
 | 
						|
    return SethiUllmanNumber;
 | 
						|
  
 | 
						|
  if (SU->Preds.size() == 0) {
 | 
						|
    SethiUllmanNumber = 1;
 | 
						|
  } else {
 | 
						|
    int Extra = 0;
 | 
						|
    for (std::set<std::pair<SUnit*, bool> >::const_iterator
 | 
						|
         I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
 | 
						|
      if (I->second) continue;  // ignore chain preds.
 | 
						|
      SUnit *PredSU = I->first;
 | 
						|
      int PredSethiUllman = CalcNodePriority(PredSU);
 | 
						|
      if (PredSethiUllman > SethiUllmanNumber) {
 | 
						|
        SethiUllmanNumber = PredSethiUllman;
 | 
						|
        Extra = 0;
 | 
						|
      } else if (PredSethiUllman == SethiUllmanNumber)
 | 
						|
        Extra++;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (SU->Node->getOpcode() != ISD::TokenFactor)
 | 
						|
      SethiUllmanNumber += Extra;
 | 
						|
    else
 | 
						|
      SethiUllmanNumber = (Extra == 1) ? 0 : Extra-1;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return SethiUllmanNumber;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculatePriorities - Calculate priorities of all scheduling units.
 | 
						|
void RegReductionPriorityQueue::CalculatePriorities() {
 | 
						|
  SethiUllmanNumbers.assign(SUnits->size(), INT_MIN);
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | 
						|
    CalcNodePriority(&(*SUnits)[i]);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                    LatencyPriorityQueue Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This is a SchedulingPriorityQueue that schedules using latency information to
 | 
						|
// reduce the length of the critical path through the basic block.
 | 
						|
// 
 | 
						|
namespace {
 | 
						|
  class LatencyPriorityQueue;
 | 
						|
  
 | 
						|
  /// Sorting functions for the Available queue.
 | 
						|
  struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    LatencyPriorityQueue *PQ;
 | 
						|
    latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
 | 
						|
    latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
  class LatencyPriorityQueue : public SchedulingPriorityQueue {
 | 
						|
    // SUnits - The SUnits for the current graph.
 | 
						|
    const std::vector<SUnit> *SUnits;
 | 
						|
    
 | 
						|
    // Latencies - The latency (max of latency from this node to the bb exit)
 | 
						|
    // for each node.
 | 
						|
    std::vector<int> Latencies;
 | 
						|
 | 
						|
    /// NumNodesSolelyBlocking - This vector contains, for every node in the
 | 
						|
    /// Queue, the number of nodes that the node is the sole unscheduled
 | 
						|
    /// predecessor for.  This is used as a tie-breaker heuristic for better
 | 
						|
    /// mobility.
 | 
						|
    std::vector<unsigned> NumNodesSolelyBlocking;
 | 
						|
 | 
						|
    std::priority_queue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
 | 
						|
public:
 | 
						|
    LatencyPriorityQueue() : Queue(latency_sort(this)) {
 | 
						|
    }
 | 
						|
    
 | 
						|
    void initNodes(const std::vector<SUnit> &sunits) {
 | 
						|
      SUnits = &sunits;
 | 
						|
      // Calculate node priorities.
 | 
						|
      CalculatePriorities();
 | 
						|
    }
 | 
						|
    void releaseState() {
 | 
						|
      SUnits = 0;
 | 
						|
      Latencies.clear();
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned getLatency(unsigned NodeNum) const {
 | 
						|
      assert(NodeNum < Latencies.size());
 | 
						|
      return Latencies[NodeNum];
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
 | 
						|
      assert(NodeNum < NumNodesSolelyBlocking.size());
 | 
						|
      return NumNodesSolelyBlocking[NodeNum];
 | 
						|
    }
 | 
						|
    
 | 
						|
    bool empty() const { return Queue.empty(); }
 | 
						|
    
 | 
						|
    virtual void push(SUnit *U) {
 | 
						|
      push_impl(U);
 | 
						|
    }
 | 
						|
    void push_impl(SUnit *U);
 | 
						|
    
 | 
						|
    void push_all(const std::vector<SUnit *> &Nodes) {
 | 
						|
      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | 
						|
        push_impl(Nodes[i]);
 | 
						|
    }
 | 
						|
    
 | 
						|
    SUnit *pop() {
 | 
						|
      SUnit *V = Queue.top();
 | 
						|
      Queue.pop();
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // ScheduledNode - As nodes are scheduled, we look to see if there are any
 | 
						|
    // successor nodes that have a single unscheduled predecessor.  If so, that
 | 
						|
    // single predecessor has a higher priority, since scheduling it will make
 | 
						|
    // the node available.
 | 
						|
    void ScheduledNode(SUnit *Node);
 | 
						|
    
 | 
						|
private:
 | 
						|
    void CalculatePriorities();
 | 
						|
    int CalcLatency(const SUnit &SU);
 | 
						|
    void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
 | 
						|
    
 | 
						|
    /// RemoveFromPriorityQueue - This is a really inefficient way to remove a
 | 
						|
    /// node from a priority queue.  We should roll our own heap to make this
 | 
						|
    /// better or something.
 | 
						|
    void RemoveFromPriorityQueue(SUnit *SU) {
 | 
						|
      std::vector<SUnit*> Temp;
 | 
						|
      
 | 
						|
      assert(!Queue.empty() && "Not in queue!");
 | 
						|
      while (Queue.top() != SU) {
 | 
						|
        Temp.push_back(Queue.top());
 | 
						|
        Queue.pop();
 | 
						|
        assert(!Queue.empty() && "Not in queue!");
 | 
						|
      }
 | 
						|
 | 
						|
      // Remove the node from the PQ.
 | 
						|
      Queue.pop();
 | 
						|
      
 | 
						|
      // Add all the other nodes back.
 | 
						|
      for (unsigned i = 0, e = Temp.size(); i != e; ++i)
 | 
						|
        Queue.push(Temp[i]);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
 | 
						|
  unsigned LHSNum = LHS->NodeNum;
 | 
						|
  unsigned RHSNum = RHS->NodeNum;
 | 
						|
 | 
						|
  // The most important heuristic is scheduling the critical path.
 | 
						|
  unsigned LHSLatency = PQ->getLatency(LHSNum);
 | 
						|
  unsigned RHSLatency = PQ->getLatency(RHSNum);
 | 
						|
  if (LHSLatency < RHSLatency) return true;
 | 
						|
  if (LHSLatency > RHSLatency) return false;
 | 
						|
  
 | 
						|
  // After that, if two nodes have identical latencies, look to see if one will
 | 
						|
  // unblock more other nodes than the other.
 | 
						|
  unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
 | 
						|
  unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
 | 
						|
  if (LHSBlocked < RHSBlocked) return true;
 | 
						|
  if (LHSBlocked > RHSBlocked) return false;
 | 
						|
  
 | 
						|
  // Finally, just to provide a stable ordering, use the node number as a
 | 
						|
  // deciding factor.
 | 
						|
  return LHSNum < RHSNum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CalcNodePriority - Calculate the maximal path from the node to the exit.
 | 
						|
///
 | 
						|
int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
 | 
						|
  int &Latency = Latencies[SU.NodeNum];
 | 
						|
  if (Latency != -1)
 | 
						|
    return Latency;
 | 
						|
  
 | 
						|
  int MaxSuccLatency = 0;
 | 
						|
  for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU.Succs.begin(),
 | 
						|
       E = SU.Succs.end(); I != E; ++I)
 | 
						|
    MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(*I->first));
 | 
						|
 | 
						|
  return Latency = MaxSuccLatency + SU.Latency;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculatePriorities - Calculate priorities of all scheduling units.
 | 
						|
void LatencyPriorityQueue::CalculatePriorities() {
 | 
						|
  Latencies.assign(SUnits->size(), -1);
 | 
						|
  NumNodesSolelyBlocking.assign(SUnits->size(), 0);
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | 
						|
    CalcLatency((*SUnits)[i]);
 | 
						|
}
 | 
						|
 | 
						|
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
 | 
						|
/// of SU, return it, otherwise return null.
 | 
						|
static SUnit *getSingleUnscheduledPred(SUnit *SU) {
 | 
						|
  SUnit *OnlyAvailablePred = 0;
 | 
						|
  for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Preds.begin(),
 | 
						|
       E = SU->Preds.end(); I != E; ++I)
 | 
						|
    if (!I->first->isScheduled) {
 | 
						|
      // We found an available, but not scheduled, predecessor.  If it's the
 | 
						|
      // only one we have found, keep track of it... otherwise give up.
 | 
						|
      if (OnlyAvailablePred && OnlyAvailablePred != I->first)
 | 
						|
        return 0;
 | 
						|
      OnlyAvailablePred = I->first;
 | 
						|
    }
 | 
						|
      
 | 
						|
  return OnlyAvailablePred;
 | 
						|
}
 | 
						|
 | 
						|
void LatencyPriorityQueue::push_impl(SUnit *SU) {
 | 
						|
  // Look at all of the successors of this node.  Count the number of nodes that
 | 
						|
  // this node is the sole unscheduled node for.
 | 
						|
  unsigned NumNodesBlocking = 0;
 | 
						|
  for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(),
 | 
						|
       E = SU->Succs.end(); I != E; ++I)
 | 
						|
    if (getSingleUnscheduledPred(I->first) == SU)
 | 
						|
      ++NumNodesBlocking;
 | 
						|
  NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
 | 
						|
  
 | 
						|
  Queue.push(SU);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ScheduledNode - As nodes are scheduled, we look to see if there are any
 | 
						|
// successor nodes that have a single unscheduled predecessor.  If so, that
 | 
						|
// single predecessor has a higher priority, since scheduling it will make
 | 
						|
// the node available.
 | 
						|
void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
 | 
						|
  for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(),
 | 
						|
       E = SU->Succs.end(); I != E; ++I)
 | 
						|
    AdjustPriorityOfUnscheduledPreds(I->first);
 | 
						|
}
 | 
						|
 | 
						|
/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
 | 
						|
/// scheduled.  If SU is not itself available, then there is at least one
 | 
						|
/// predecessor node that has not been scheduled yet.  If SU has exactly ONE
 | 
						|
/// unscheduled predecessor, we want to increase its priority: it getting
 | 
						|
/// scheduled will make this node available, so it is better than some other
 | 
						|
/// node of the same priority that will not make a node available.
 | 
						|
void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
 | 
						|
  if (SU->isPending) return;  // All preds scheduled.
 | 
						|
  
 | 
						|
  SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
 | 
						|
  if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
 | 
						|
  
 | 
						|
  // Okay, we found a single predecessor that is available, but not scheduled.
 | 
						|
  // Since it is available, it must be in the priority queue.  First remove it.
 | 
						|
  RemoveFromPriorityQueue(OnlyAvailablePred);
 | 
						|
 | 
						|
  // Reinsert the node into the priority queue, which recomputes its
 | 
						|
  // NumNodesSolelyBlocking value.
 | 
						|
  push(OnlyAvailablePred);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Public Constructor Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
 | 
						|
                                                    MachineBasicBlock *BB) {
 | 
						|
  return new ScheduleDAGList(DAG, BB, DAG.getTarget(), true, 
 | 
						|
                             new RegReductionPriorityQueue(),
 | 
						|
                             new HazardRecognizer());
 | 
						|
}
 | 
						|
 | 
						|
/// createTDListDAGScheduler - This creates a top-down list scheduler with the
 | 
						|
/// specified hazard recognizer.
 | 
						|
ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAG &DAG,
 | 
						|
                                            MachineBasicBlock *BB,
 | 
						|
                                            HazardRecognizer *HR) {
 | 
						|
  return new ScheduleDAGList(DAG, BB, DAG.getTarget(), false,
 | 
						|
                             new LatencyPriorityQueue(),
 | 
						|
                             HR);
 | 
						|
}
 |