1854 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1854 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements the ASTContext interface.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Bitcode/Serialize.h"
 | 
						|
#include "llvm/Bitcode/Deserialize.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
enum FloatingRank {
 | 
						|
  FloatRank, DoubleRank, LongDoubleRank
 | 
						|
};
 | 
						|
 | 
						|
ASTContext::~ASTContext() {
 | 
						|
  // Deallocate all the types.
 | 
						|
  while (!Types.empty()) {
 | 
						|
    if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
 | 
						|
      // Destroy the object, but don't call delete.  These are malloc'd.
 | 
						|
      FT->~FunctionTypeProto();
 | 
						|
      free(FT);
 | 
						|
    } else {
 | 
						|
      delete Types.back();
 | 
						|
    }
 | 
						|
    Types.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::PrintStats() const {
 | 
						|
  fprintf(stderr, "*** AST Context Stats:\n");
 | 
						|
  fprintf(stderr, "  %d types total.\n", (int)Types.size());
 | 
						|
  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
 | 
						|
  unsigned NumVector = 0, NumComplex = 0;
 | 
						|
  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
 | 
						|
  
 | 
						|
  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
 | 
						|
  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
 | 
						|
  unsigned NumObjCQualifiedIds = 0;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
 | 
						|
    Type *T = Types[i];
 | 
						|
    if (isa<BuiltinType>(T))
 | 
						|
      ++NumBuiltin;
 | 
						|
    else if (isa<PointerType>(T))
 | 
						|
      ++NumPointer;
 | 
						|
    else if (isa<ReferenceType>(T))
 | 
						|
      ++NumReference;
 | 
						|
    else if (isa<ComplexType>(T))
 | 
						|
      ++NumComplex;
 | 
						|
    else if (isa<ArrayType>(T))
 | 
						|
      ++NumArray;
 | 
						|
    else if (isa<VectorType>(T))
 | 
						|
      ++NumVector;
 | 
						|
    else if (isa<FunctionTypeNoProto>(T))
 | 
						|
      ++NumFunctionNP;
 | 
						|
    else if (isa<FunctionTypeProto>(T))
 | 
						|
      ++NumFunctionP;
 | 
						|
    else if (isa<TypedefType>(T))
 | 
						|
      ++NumTypeName;
 | 
						|
    else if (TagType *TT = dyn_cast<TagType>(T)) {
 | 
						|
      ++NumTagged;
 | 
						|
      switch (TT->getDecl()->getKind()) {
 | 
						|
      default: assert(0 && "Unknown tagged type!");
 | 
						|
      case Decl::Struct: ++NumTagStruct; break;
 | 
						|
      case Decl::Union:  ++NumTagUnion; break;
 | 
						|
      case Decl::Class:  ++NumTagClass; break; 
 | 
						|
      case Decl::Enum:   ++NumTagEnum; break;
 | 
						|
      }
 | 
						|
    } else if (isa<ObjCInterfaceType>(T))
 | 
						|
      ++NumObjCInterfaces;
 | 
						|
    else if (isa<ObjCQualifiedInterfaceType>(T))
 | 
						|
      ++NumObjCQualifiedInterfaces;
 | 
						|
    else if (isa<ObjCQualifiedIdType>(T))
 | 
						|
      ++NumObjCQualifiedIds;
 | 
						|
    else {
 | 
						|
      QualType(T, 0).dump();
 | 
						|
      assert(0 && "Unknown type!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
 | 
						|
  fprintf(stderr, "    %d pointer types\n", NumPointer);
 | 
						|
  fprintf(stderr, "    %d reference types\n", NumReference);
 | 
						|
  fprintf(stderr, "    %d complex types\n", NumComplex);
 | 
						|
  fprintf(stderr, "    %d array types\n", NumArray);
 | 
						|
  fprintf(stderr, "    %d vector types\n", NumVector);
 | 
						|
  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
 | 
						|
  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
 | 
						|
  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
 | 
						|
  fprintf(stderr, "    %d tagged types\n", NumTagged);
 | 
						|
  fprintf(stderr, "      %d struct types\n", NumTagStruct);
 | 
						|
  fprintf(stderr, "      %d union types\n", NumTagUnion);
 | 
						|
  fprintf(stderr, "      %d class types\n", NumTagClass);
 | 
						|
  fprintf(stderr, "      %d enum types\n", NumTagEnum);
 | 
						|
  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
 | 
						|
  fprintf(stderr, "    %d protocol qualified interface types\n",
 | 
						|
          NumObjCQualifiedInterfaces);
 | 
						|
  fprintf(stderr, "    %d protocol qualified id types\n",
 | 
						|
          NumObjCQualifiedIds);
 | 
						|
  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
 | 
						|
    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
 | 
						|
    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
 | 
						|
    NumFunctionP*sizeof(FunctionTypeProto)+
 | 
						|
    NumFunctionNP*sizeof(FunctionTypeNoProto)+
 | 
						|
    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
 | 
						|
  Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::InitBuiltinTypes() {
 | 
						|
  assert(VoidTy.isNull() && "Context reinitialized?");
 | 
						|
  
 | 
						|
  // C99 6.2.5p19.
 | 
						|
  InitBuiltinType(VoidTy,              BuiltinType::Void);
 | 
						|
  
 | 
						|
  // C99 6.2.5p2.
 | 
						|
  InitBuiltinType(BoolTy,              BuiltinType::Bool);
 | 
						|
  // C99 6.2.5p3.
 | 
						|
  if (Target.isCharSigned())
 | 
						|
    InitBuiltinType(CharTy,            BuiltinType::Char_S);
 | 
						|
  else
 | 
						|
    InitBuiltinType(CharTy,            BuiltinType::Char_U);
 | 
						|
  // C99 6.2.5p4.
 | 
						|
  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
 | 
						|
  InitBuiltinType(ShortTy,             BuiltinType::Short);
 | 
						|
  InitBuiltinType(IntTy,               BuiltinType::Int);
 | 
						|
  InitBuiltinType(LongTy,              BuiltinType::Long);
 | 
						|
  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
 | 
						|
  
 | 
						|
  // C99 6.2.5p6.
 | 
						|
  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
 | 
						|
  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
 | 
						|
  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
 | 
						|
  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
 | 
						|
  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
 | 
						|
  
 | 
						|
  // C99 6.2.5p10.
 | 
						|
  InitBuiltinType(FloatTy,             BuiltinType::Float);
 | 
						|
  InitBuiltinType(DoubleTy,            BuiltinType::Double);
 | 
						|
  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
 | 
						|
  
 | 
						|
  // C99 6.2.5p11.
 | 
						|
  FloatComplexTy      = getComplexType(FloatTy);
 | 
						|
  DoubleComplexTy     = getComplexType(DoubleTy);
 | 
						|
  LongDoubleComplexTy = getComplexType(LongDoubleTy);
 | 
						|
  
 | 
						|
  BuiltinVaListType = QualType();
 | 
						|
  ObjCIdType = QualType();
 | 
						|
  IdStructType = 0;
 | 
						|
  ObjCClassType = QualType();
 | 
						|
  ClassStructType = 0;
 | 
						|
  
 | 
						|
  ObjCConstantStringType = QualType();
 | 
						|
  
 | 
						|
  // void * type
 | 
						|
  VoidPtrTy = getPointerType(VoidTy);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Type Sizing and Analysis
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// getTypeSize - Return the size of the specified type, in bits.  This method
 | 
						|
/// does not work on incomplete types.
 | 
						|
std::pair<uint64_t, unsigned>
 | 
						|
ASTContext::getTypeInfo(QualType T) {
 | 
						|
  T = T.getCanonicalType();
 | 
						|
  uint64_t Width;
 | 
						|
  unsigned Align;
 | 
						|
  switch (T->getTypeClass()) {
 | 
						|
  case Type::TypeName: assert(0 && "Not a canonical type!");
 | 
						|
  case Type::FunctionNoProto:
 | 
						|
  case Type::FunctionProto:
 | 
						|
  default:
 | 
						|
    assert(0 && "Incomplete types have no size!");
 | 
						|
  case Type::VariableArray:
 | 
						|
    assert(0 && "VLAs not implemented yet!");
 | 
						|
  case Type::ConstantArray: {
 | 
						|
    ConstantArrayType *CAT = cast<ConstantArrayType>(T);
 | 
						|
    
 | 
						|
    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
 | 
						|
    Width = EltInfo.first*CAT->getSize().getZExtValue();
 | 
						|
    Align = EltInfo.second;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::OCUVector:
 | 
						|
  case Type::Vector: {
 | 
						|
    std::pair<uint64_t, unsigned> EltInfo = 
 | 
						|
      getTypeInfo(cast<VectorType>(T)->getElementType());
 | 
						|
    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
 | 
						|
    // FIXME: Vector alignment is not the alignment of its elements.
 | 
						|
    Align = EltInfo.second;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::Builtin:
 | 
						|
    // FIXME: need to use TargetInfo to derive the target specific sizes. This
 | 
						|
    // implementation will suffice for play with vector support.
 | 
						|
    switch (cast<BuiltinType>(T)->getKind()) {
 | 
						|
    default: assert(0 && "Unknown builtin type!");
 | 
						|
    case BuiltinType::Void:
 | 
						|
      assert(0 && "Incomplete types have no size!");
 | 
						|
    case BuiltinType::Bool:
 | 
						|
      Width = Target.getBoolWidth();
 | 
						|
      Align = Target.getBoolAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::Char_S:
 | 
						|
    case BuiltinType::Char_U:
 | 
						|
    case BuiltinType::UChar:
 | 
						|
    case BuiltinType::SChar:
 | 
						|
      Width = Target.getCharWidth();
 | 
						|
      Align = Target.getCharAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::UShort:
 | 
						|
    case BuiltinType::Short:
 | 
						|
      Width = Target.getShortWidth();
 | 
						|
      Align = Target.getShortAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::UInt:
 | 
						|
    case BuiltinType::Int:
 | 
						|
      Width = Target.getIntWidth();
 | 
						|
      Align = Target.getIntAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::ULong:
 | 
						|
    case BuiltinType::Long:
 | 
						|
      Width = Target.getLongWidth();
 | 
						|
      Align = Target.getLongAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::ULongLong:
 | 
						|
    case BuiltinType::LongLong:
 | 
						|
      Width = Target.getLongLongWidth();
 | 
						|
      Align = Target.getLongLongAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::Float:
 | 
						|
      Width = Target.getFloatWidth();
 | 
						|
      Align = Target.getFloatAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::Double:
 | 
						|
        Width = Target.getDoubleWidth();
 | 
						|
        Align = Target.getDoubleAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::LongDouble:
 | 
						|
      Width = Target.getLongDoubleWidth();
 | 
						|
      Align = Target.getLongDoubleAlign();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Type::ASQual:
 | 
						|
    // FIXME: Pointers into different addr spaces could have different sizes and
 | 
						|
    // alignment requirements: getPointerInfo should take an AddrSpace.
 | 
						|
    return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
 | 
						|
  case Type::ObjCQualifiedId:
 | 
						|
    Width  = Target.getPointerWidth(0);
 | 
						|
    Align = Target.getPointerAlign(0);
 | 
						|
    break;
 | 
						|
  case Type::Pointer: {
 | 
						|
    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
 | 
						|
    Width  = Target.getPointerWidth(AS);
 | 
						|
    Align = Target.getPointerAlign(AS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::Reference:
 | 
						|
    // "When applied to a reference or a reference type, the result is the size
 | 
						|
    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
 | 
						|
    // FIXME: This is wrong for struct layout: a reference in a struct has
 | 
						|
    // pointer size.
 | 
						|
    return getTypeInfo(cast<ReferenceType>(T)->getReferenceeType());
 | 
						|
    
 | 
						|
  case Type::Complex: {
 | 
						|
    // Complex types have the same alignment as their elements, but twice the
 | 
						|
    // size.
 | 
						|
    std::pair<uint64_t, unsigned> EltInfo = 
 | 
						|
      getTypeInfo(cast<ComplexType>(T)->getElementType());
 | 
						|
    Width = EltInfo.first*2;
 | 
						|
    Align = EltInfo.second;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::Tagged:
 | 
						|
    TagType *TT = cast<TagType>(T);
 | 
						|
    if (RecordType *RT = dyn_cast<RecordType>(TT)) {
 | 
						|
      const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
 | 
						|
      Width = Layout.getSize();
 | 
						|
      Align = Layout.getAlignment();
 | 
						|
    } else if (EnumDecl *ED = dyn_cast<EnumDecl>(TT->getDecl())) {
 | 
						|
      return getTypeInfo(ED->getIntegerType());
 | 
						|
    } else {
 | 
						|
      assert(0 && "Unimplemented type sizes!");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
 | 
						|
  return std::make_pair(Width, Align);
 | 
						|
}
 | 
						|
 | 
						|
/// getASTRecordLayout - Get or compute information about the layout of the
 | 
						|
/// specified record (struct/union/class), which indicates its size and field
 | 
						|
/// position information.
 | 
						|
const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
 | 
						|
  assert(D->isDefinition() && "Cannot get layout of forward declarations!");
 | 
						|
  
 | 
						|
  // Look up this layout, if already laid out, return what we have.
 | 
						|
  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
 | 
						|
  if (Entry) return *Entry;
 | 
						|
  
 | 
						|
  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
 | 
						|
  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
 | 
						|
  ASTRecordLayout *NewEntry = new ASTRecordLayout();
 | 
						|
  Entry = NewEntry;
 | 
						|
  
 | 
						|
  uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()];
 | 
						|
  uint64_t RecordSize = 0;
 | 
						|
  unsigned RecordAlign = 8;  // Default alignment = 1 byte = 8 bits.
 | 
						|
 | 
						|
  if (D->getKind() != Decl::Union) {
 | 
						|
    if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
 | 
						|
      RecordAlign = std::max(RecordAlign, AA->getAlignment());
 | 
						|
        
 | 
						|
    bool StructIsPacked = D->getAttr<PackedAttr>();
 | 
						|
    
 | 
						|
    // Layout each field, for now, just sequentially, respecting alignment.  In
 | 
						|
    // the future, this will need to be tweakable by targets.
 | 
						|
    for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
 | 
						|
      const FieldDecl *FD = D->getMember(i);
 | 
						|
      bool FieldIsPacked = StructIsPacked || FD->getAttr<PackedAttr>();
 | 
						|
      uint64_t FieldSize;
 | 
						|
      unsigned FieldAlign;
 | 
						|
      
 | 
						|
      if (const Expr *BitWidthExpr = FD->getBitWidth()) {
 | 
						|
        llvm::APSInt I(32);
 | 
						|
        bool BitWidthIsICE = 
 | 
						|
          BitWidthExpr->isIntegerConstantExpr(I, *this);
 | 
						|
        assert (BitWidthIsICE  && "Invalid BitField size expression");
 | 
						|
        FieldSize = I.getZExtValue();
 | 
						|
 | 
						|
        std::pair<uint64_t, unsigned> TypeInfo = getTypeInfo(FD->getType());
 | 
						|
        uint64_t TypeSize = TypeInfo.first;
 | 
						|
        
 | 
						|
        if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
 | 
						|
          FieldAlign = AA->getAlignment();
 | 
						|
        else if (FieldIsPacked)
 | 
						|
          FieldAlign = 8;
 | 
						|
        else {
 | 
						|
          // FIXME: This is X86 specific, use 32-bit alignment for long long.
 | 
						|
          if (FD->getType()->isIntegerType() && TypeInfo.second > 32)
 | 
						|
            FieldAlign = 32;
 | 
						|
          else
 | 
						|
            FieldAlign = TypeInfo.second;
 | 
						|
        }
 | 
						|
 | 
						|
        // Check if we need to add padding to give the field the correct
 | 
						|
        // alignment.
 | 
						|
        if (RecordSize % FieldAlign + FieldSize > TypeSize)
 | 
						|
          RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
 | 
						|
 | 
						|
      } else {
 | 
						|
        if (FD->getType()->isIncompleteType()) {
 | 
						|
          // This must be a flexible array member; we can't directly
 | 
						|
          // query getTypeInfo about these, so we figure it out here.
 | 
						|
          // Flexible array members don't have any size, but they
 | 
						|
          // have to be aligned appropriately for their element type.
 | 
						|
        
 | 
						|
          if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
 | 
						|
            FieldAlign = AA->getAlignment();
 | 
						|
          else if (FieldIsPacked)
 | 
						|
            FieldAlign = 8;
 | 
						|
          else {
 | 
						|
            const ArrayType* ATy = FD->getType()->getAsArrayType();
 | 
						|
            FieldAlign = getTypeAlign(ATy->getElementType());
 | 
						|
          }
 | 
						|
          FieldSize = 0;
 | 
						|
        } else {
 | 
						|
          std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
 | 
						|
          FieldSize = FieldInfo.first;
 | 
						|
        
 | 
						|
          if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
 | 
						|
            FieldAlign = AA->getAlignment();
 | 
						|
          else if (FieldIsPacked)
 | 
						|
            FieldAlign = 8;
 | 
						|
          else
 | 
						|
            FieldAlign = FieldInfo.second;
 | 
						|
        }
 | 
						|
 | 
						|
        // Round up the current record size to the field's alignment boundary.
 | 
						|
        RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Place this field at the current location.
 | 
						|
      FieldOffsets[i] = RecordSize;
 | 
						|
      
 | 
						|
      // Reserve space for this field.
 | 
						|
      RecordSize += FieldSize;
 | 
						|
      
 | 
						|
      // Remember max struct/class alignment.
 | 
						|
      RecordAlign = std::max(RecordAlign, FieldAlign);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Finally, round the size of the total struct up to the alignment of the
 | 
						|
    // struct itself.
 | 
						|
    RecordSize = (RecordSize+RecordAlign-1) & ~(RecordAlign-1);
 | 
						|
  } else {
 | 
						|
    // Union layout just puts each member at the start of the record.
 | 
						|
    for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
 | 
						|
      const FieldDecl *FD = D->getMember(i);
 | 
						|
      std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
 | 
						|
      uint64_t FieldSize = FieldInfo.first;
 | 
						|
      unsigned FieldAlign = FieldInfo.second;
 | 
						|
      
 | 
						|
      // FIXME: This is X86 specific, use 32-bit alignment for long long.
 | 
						|
      if (FD->getType()->isIntegerType() && FieldAlign > 32)
 | 
						|
        FieldAlign = 32;
 | 
						|
 | 
						|
      // Round up the current record size to the field's alignment boundary.
 | 
						|
      RecordSize = std::max(RecordSize, FieldSize);
 | 
						|
      
 | 
						|
      // Place this field at the start of the record.
 | 
						|
      FieldOffsets[i] = 0;
 | 
						|
      
 | 
						|
      // Remember max struct/class alignment.
 | 
						|
      RecordAlign = std::max(RecordAlign, FieldAlign);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets);
 | 
						|
  return *NewEntry;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                   Type creation/memoization methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
 | 
						|
  if (T.getCanonicalType().getAddressSpace() == AddressSpace)
 | 
						|
    return T;
 | 
						|
  
 | 
						|
  // Type's cannot have multiple ASQuals, therefore we know we only have to deal
 | 
						|
  // with CVR qualifiers from here on out.
 | 
						|
  assert(T.getCanonicalType().getAddressSpace() == 0 &&
 | 
						|
         "Type is already address space qualified");
 | 
						|
  
 | 
						|
  // Check if we've already instantiated an address space qual'd type of this
 | 
						|
  // type.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);      
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(ASQy, 0);
 | 
						|
    
 | 
						|
  // If the base type isn't canonical, this won't be a canonical type either,
 | 
						|
  // so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!T->isCanonical()) {
 | 
						|
    Canonical = getASQualType(T.getCanonicalType(), AddressSpace);
 | 
						|
    
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!");
 | 
						|
  }
 | 
						|
  ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
 | 
						|
  ASQualTypes.InsertNode(New, InsertPos);
 | 
						|
  Types.push_back(New);
 | 
						|
  return QualType(New, T.getCVRQualifiers());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getComplexType - Return the uniqued reference to the type for a complex
 | 
						|
/// number with the specified element type.
 | 
						|
QualType ASTContext::getComplexType(QualType T) {
 | 
						|
  // Unique pointers, to guarantee there is only one pointer of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ComplexType::Profile(ID, T);
 | 
						|
  
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(CT, 0);
 | 
						|
  
 | 
						|
  // If the pointee type isn't canonical, this won't be a canonical type either,
 | 
						|
  // so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!T->isCanonical()) {
 | 
						|
    Canonical = getComplexType(T.getCanonicalType());
 | 
						|
    
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!");
 | 
						|
  }
 | 
						|
  ComplexType *New = new ComplexType(T, Canonical);
 | 
						|
  Types.push_back(New);
 | 
						|
  ComplexTypes.InsertNode(New, InsertPos);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getPointerType - Return the uniqued reference to the type for a pointer to
 | 
						|
/// the specified type.
 | 
						|
QualType ASTContext::getPointerType(QualType T) {
 | 
						|
  // Unique pointers, to guarantee there is only one pointer of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  PointerType::Profile(ID, T);
 | 
						|
  
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(PT, 0);
 | 
						|
  
 | 
						|
  // If the pointee type isn't canonical, this won't be a canonical type either,
 | 
						|
  // so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!T->isCanonical()) {
 | 
						|
    Canonical = getPointerType(T.getCanonicalType());
 | 
						|
   
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!");
 | 
						|
  }
 | 
						|
  PointerType *New = new PointerType(T, Canonical);
 | 
						|
  Types.push_back(New);
 | 
						|
  PointerTypes.InsertNode(New, InsertPos);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getReferenceType - Return the uniqued reference to the type for a reference
 | 
						|
/// to the specified type.
 | 
						|
QualType ASTContext::getReferenceType(QualType T) {
 | 
						|
  // Unique pointers, to guarantee there is only one pointer of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ReferenceType::Profile(ID, T);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(RT, 0);
 | 
						|
  
 | 
						|
  // If the referencee type isn't canonical, this won't be a canonical type
 | 
						|
  // either, so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!T->isCanonical()) {
 | 
						|
    Canonical = getReferenceType(T.getCanonicalType());
 | 
						|
   
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!");
 | 
						|
  }
 | 
						|
 | 
						|
  ReferenceType *New = new ReferenceType(T, Canonical);
 | 
						|
  Types.push_back(New);
 | 
						|
  ReferenceTypes.InsertNode(New, InsertPos);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getConstantArrayType - Return the unique reference to the type for an 
 | 
						|
/// array of the specified element type.
 | 
						|
QualType ASTContext::getConstantArrayType(QualType EltTy, 
 | 
						|
                                          const llvm::APInt &ArySize,
 | 
						|
                                          ArrayType::ArraySizeModifier ASM,
 | 
						|
                                          unsigned EltTypeQuals) {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ConstantArrayType::Profile(ID, EltTy, ArySize);
 | 
						|
      
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (ConstantArrayType *ATP = 
 | 
						|
      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(ATP, 0);
 | 
						|
  
 | 
						|
  // If the element type isn't canonical, this won't be a canonical type either,
 | 
						|
  // so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!EltTy->isCanonical()) {
 | 
						|
    Canonical = getConstantArrayType(EltTy.getCanonicalType(), ArySize, 
 | 
						|
                                     ASM, EltTypeQuals);
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    ConstantArrayType *NewIP = 
 | 
						|
      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
 | 
						|
                                                 ASM, EltTypeQuals);
 | 
						|
  ConstantArrayTypes.InsertNode(New, InsertPos);
 | 
						|
  Types.push_back(New);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getVariableArrayType - Returns a non-unique reference to the type for a
 | 
						|
/// variable array of the specified element type.
 | 
						|
QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
 | 
						|
                                          ArrayType::ArraySizeModifier ASM,
 | 
						|
                                          unsigned EltTypeQuals) {
 | 
						|
  // Since we don't unique expressions, it isn't possible to unique VLA's
 | 
						|
  // that have an expression provided for their size.
 | 
						|
 | 
						|
  VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts, 
 | 
						|
                                                 ASM, EltTypeQuals);
 | 
						|
 | 
						|
  VariableArrayTypes.push_back(New);
 | 
						|
  Types.push_back(New);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getIncompleteArrayType(QualType EltTy,
 | 
						|
                                            ArrayType::ArraySizeModifier ASM,
 | 
						|
                                            unsigned EltTypeQuals) {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  IncompleteArrayType::Profile(ID, EltTy);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (IncompleteArrayType *ATP = 
 | 
						|
       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(ATP, 0);
 | 
						|
 | 
						|
  // If the element type isn't canonical, this won't be a canonical type
 | 
						|
  // either, so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
 | 
						|
  if (!EltTy->isCanonical()) {
 | 
						|
    Canonical = getIncompleteArrayType(EltTy.getCanonicalType(),
 | 
						|
                                       ASM, EltTypeQuals);
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    IncompleteArrayType *NewIP =
 | 
						|
      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!");
 | 
						|
  }
 | 
						|
 | 
						|
  IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
 | 
						|
                                                     ASM, EltTypeQuals);
 | 
						|
 | 
						|
  IncompleteArrayTypes.InsertNode(New, InsertPos);
 | 
						|
  Types.push_back(New);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getVectorType - Return the unique reference to a vector type of
 | 
						|
/// the specified element type and size. VectorType must be a built-in type.
 | 
						|
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
 | 
						|
  BuiltinType *baseType;
 | 
						|
  
 | 
						|
  baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
 | 
						|
  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
 | 
						|
         
 | 
						|
  // Check if we've already instantiated a vector of this type.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  VectorType::Profile(ID, vecType, NumElts, Type::Vector);      
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(VTP, 0);
 | 
						|
 | 
						|
  // If the element type isn't canonical, this won't be a canonical type either,
 | 
						|
  // so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!vecType->isCanonical()) {
 | 
						|
    Canonical = getVectorType(vecType.getCanonicalType(), NumElts);
 | 
						|
    
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!");
 | 
						|
  }
 | 
						|
  VectorType *New = new VectorType(vecType, NumElts, Canonical);
 | 
						|
  VectorTypes.InsertNode(New, InsertPos);
 | 
						|
  Types.push_back(New);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getOCUVectorType - Return the unique reference to an OCU vector type of
 | 
						|
/// the specified element type and size. VectorType must be a built-in type.
 | 
						|
QualType ASTContext::getOCUVectorType(QualType vecType, unsigned NumElts) {
 | 
						|
  BuiltinType *baseType;
 | 
						|
  
 | 
						|
  baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
 | 
						|
  assert(baseType != 0 && "getOCUVectorType(): Expecting a built-in type");
 | 
						|
         
 | 
						|
  // Check if we've already instantiated a vector of this type.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  VectorType::Profile(ID, vecType, NumElts, Type::OCUVector);      
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(VTP, 0);
 | 
						|
 | 
						|
  // If the element type isn't canonical, this won't be a canonical type either,
 | 
						|
  // so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!vecType->isCanonical()) {
 | 
						|
    Canonical = getOCUVectorType(vecType.getCanonicalType(), NumElts);
 | 
						|
    
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!");
 | 
						|
  }
 | 
						|
  OCUVectorType *New = new OCUVectorType(vecType, NumElts, Canonical);
 | 
						|
  VectorTypes.InsertNode(New, InsertPos);
 | 
						|
  Types.push_back(New);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
 | 
						|
///
 | 
						|
QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
 | 
						|
  // Unique functions, to guarantee there is only one function of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  FunctionTypeNoProto::Profile(ID, ResultTy);
 | 
						|
  
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (FunctionTypeNoProto *FT = 
 | 
						|
        FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(FT, 0);
 | 
						|
  
 | 
						|
  QualType Canonical;
 | 
						|
  if (!ResultTy->isCanonical()) {
 | 
						|
    Canonical = getFunctionTypeNoProto(ResultTy.getCanonicalType());
 | 
						|
    
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    FunctionTypeNoProto *NewIP =
 | 
						|
      FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
 | 
						|
  Types.push_back(New);
 | 
						|
  FunctionTypeNoProtos.InsertNode(New, InsertPos);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getFunctionType - Return a normal function type with a typed argument
 | 
						|
/// list.  isVariadic indicates whether the argument list includes '...'.
 | 
						|
QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
 | 
						|
                                     unsigned NumArgs, bool isVariadic) {
 | 
						|
  // Unique functions, to guarantee there is only one function of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (FunctionTypeProto *FTP = 
 | 
						|
        FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(FTP, 0);
 | 
						|
    
 | 
						|
  // Determine whether the type being created is already canonical or not.  
 | 
						|
  bool isCanonical = ResultTy->isCanonical();
 | 
						|
  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
 | 
						|
    if (!ArgArray[i]->isCanonical())
 | 
						|
      isCanonical = false;
 | 
						|
 | 
						|
  // If this type isn't canonical, get the canonical version of it.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!isCanonical) {
 | 
						|
    llvm::SmallVector<QualType, 16> CanonicalArgs;
 | 
						|
    CanonicalArgs.reserve(NumArgs);
 | 
						|
    for (unsigned i = 0; i != NumArgs; ++i)
 | 
						|
      CanonicalArgs.push_back(ArgArray[i].getCanonicalType());
 | 
						|
    
 | 
						|
    Canonical = getFunctionType(ResultTy.getCanonicalType(),
 | 
						|
                                &CanonicalArgs[0], NumArgs,
 | 
						|
                                isVariadic);
 | 
						|
    
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    FunctionTypeProto *NewIP =
 | 
						|
      FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FunctionTypeProto objects are not allocated with new because they have a
 | 
						|
  // variable size array (for parameter types) at the end of them.
 | 
						|
  FunctionTypeProto *FTP = 
 | 
						|
    (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) + 
 | 
						|
                               NumArgs*sizeof(QualType));
 | 
						|
  new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
 | 
						|
                              Canonical);
 | 
						|
  Types.push_back(FTP);
 | 
						|
  FunctionTypeProtos.InsertNode(FTP, InsertPos);
 | 
						|
  return QualType(FTP, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getTypedefType - Return the unique reference to the type for the
 | 
						|
/// specified typename decl.
 | 
						|
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
 | 
						|
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | 
						|
  
 | 
						|
  QualType Canonical = Decl->getUnderlyingType().getCanonicalType();
 | 
						|
  Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
 | 
						|
  Types.push_back(Decl->TypeForDecl);
 | 
						|
  return QualType(Decl->TypeForDecl, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCInterfaceType - Return the unique reference to the type for the
 | 
						|
/// specified ObjC interface decl.
 | 
						|
QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
 | 
						|
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | 
						|
  
 | 
						|
  Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
 | 
						|
  Types.push_back(Decl->TypeForDecl);
 | 
						|
  return QualType(Decl->TypeForDecl, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCQualifiedInterfaceType - Return a 
 | 
						|
/// ObjCQualifiedInterfaceType type for the given interface decl and
 | 
						|
/// the conforming protocol list.
 | 
						|
QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
 | 
						|
                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ObjCQualifiedInterfaceType::Profile(ID, Protocols, NumProtocols);
 | 
						|
  
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (ObjCQualifiedInterfaceType *QT =
 | 
						|
      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(QT, 0);
 | 
						|
  
 | 
						|
  // No Match;
 | 
						|
  ObjCQualifiedInterfaceType *QType =
 | 
						|
    new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
 | 
						|
  Types.push_back(QType);
 | 
						|
  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
 | 
						|
  return QualType(QType, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCQualifiedIdType - Return a 
 | 
						|
/// getObjCQualifiedIdType type for the 'id' decl and
 | 
						|
/// the conforming protocol list.
 | 
						|
QualType ASTContext::getObjCQualifiedIdType(QualType idType,
 | 
						|
                                            ObjCProtocolDecl **Protocols, 
 | 
						|
                                            unsigned NumProtocols) {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
 | 
						|
  
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (ObjCQualifiedIdType *QT =
 | 
						|
      ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(QT, 0);
 | 
						|
  
 | 
						|
  // No Match;
 | 
						|
  QualType Canonical;
 | 
						|
  if (!idType->isCanonical()) {
 | 
						|
    Canonical = getObjCQualifiedIdType(idType.getCanonicalType(), 
 | 
						|
                                       Protocols, NumProtocols);
 | 
						|
    ObjCQualifiedIdType *NewQT = 
 | 
						|
      ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewQT == 0 && "Shouldn't be in the map!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  ObjCQualifiedIdType *QType = 
 | 
						|
    new ObjCQualifiedIdType(Canonical, Protocols, NumProtocols);
 | 
						|
  Types.push_back(QType);
 | 
						|
  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
 | 
						|
  return QualType(QType, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
 | 
						|
/// TypeOfExpr AST's (since expression's are never shared). For example,
 | 
						|
/// multiple declarations that refer to "typeof(x)" all contain different
 | 
						|
/// DeclRefExpr's. This doesn't effect the type checker, since it operates 
 | 
						|
/// on canonical type's (which are always unique).
 | 
						|
QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
 | 
						|
  QualType Canonical = tofExpr->getType().getCanonicalType();
 | 
						|
  TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
 | 
						|
  Types.push_back(toe);
 | 
						|
  return QualType(toe, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
 | 
						|
/// TypeOfType AST's. The only motivation to unique these nodes would be
 | 
						|
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
 | 
						|
/// an issue. This doesn't effect the type checker, since it operates 
 | 
						|
/// on canonical type's (which are always unique).
 | 
						|
QualType ASTContext::getTypeOfType(QualType tofType) {
 | 
						|
  QualType Canonical = tofType.getCanonicalType();
 | 
						|
  TypeOfType *tot = new TypeOfType(tofType, Canonical);
 | 
						|
  Types.push_back(tot);
 | 
						|
  return QualType(tot, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getTagDeclType - Return the unique reference to the type for the
 | 
						|
/// specified TagDecl (struct/union/class/enum) decl.
 | 
						|
QualType ASTContext::getTagDeclType(TagDecl *Decl) {
 | 
						|
  assert (Decl);
 | 
						|
 | 
						|
  // The decl stores the type cache.
 | 
						|
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | 
						|
  
 | 
						|
  TagType* T = new TagType(Decl, QualType());
 | 
						|
  Types.push_back(T);  
 | 
						|
  Decl->TypeForDecl = T;
 | 
						|
 | 
						|
  return QualType(T, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result 
 | 
						|
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and 
 | 
						|
/// needs to agree with the definition in <stddef.h>. 
 | 
						|
QualType ASTContext::getSizeType() const {
 | 
						|
  // On Darwin, size_t is defined as a "long unsigned int". 
 | 
						|
  // FIXME: should derive from "Target".
 | 
						|
  return UnsignedLongTy; 
 | 
						|
}
 | 
						|
 | 
						|
/// getWcharType - Return the unique type for "wchar_t" (C99 7.17), the
 | 
						|
/// width of characters in wide strings, The value is target dependent and 
 | 
						|
/// needs to agree with the definition in <stddef.h>.
 | 
						|
QualType ASTContext::getWcharType() const {
 | 
						|
  // On Darwin, wchar_t is defined as a "int". 
 | 
						|
  // FIXME: should derive from "Target".
 | 
						|
  return IntTy; 
 | 
						|
}
 | 
						|
 | 
						|
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
 | 
						|
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
 | 
						|
QualType ASTContext::getPointerDiffType() const {
 | 
						|
  // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
 | 
						|
  // FIXME: should derive from "Target".
 | 
						|
  return IntTy; 
 | 
						|
}
 | 
						|
 | 
						|
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
 | 
						|
/// routine will assert if passed a built-in type that isn't an integer or enum.
 | 
						|
static int getIntegerRank(QualType t) {
 | 
						|
  if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) {
 | 
						|
    assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum");
 | 
						|
    return 4;
 | 
						|
  }
 | 
						|
  
 | 
						|
  const BuiltinType *BT = t.getCanonicalType()->getAsBuiltinType();
 | 
						|
  switch (BT->getKind()) {
 | 
						|
  default:
 | 
						|
    assert(0 && "getIntegerRank(): not a built-in integer");
 | 
						|
  case BuiltinType::Bool:
 | 
						|
    return 1;
 | 
						|
  case BuiltinType::Char_S:
 | 
						|
  case BuiltinType::Char_U:
 | 
						|
  case BuiltinType::SChar:
 | 
						|
  case BuiltinType::UChar:
 | 
						|
    return 2;
 | 
						|
  case BuiltinType::Short:
 | 
						|
  case BuiltinType::UShort:
 | 
						|
    return 3;
 | 
						|
  case BuiltinType::Int:
 | 
						|
  case BuiltinType::UInt:
 | 
						|
    return 4;
 | 
						|
  case BuiltinType::Long:
 | 
						|
  case BuiltinType::ULong:
 | 
						|
    return 5;
 | 
						|
  case BuiltinType::LongLong:
 | 
						|
  case BuiltinType::ULongLong:
 | 
						|
    return 6;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getFloatingRank - Return a relative rank for floating point types.
 | 
						|
/// This routine will assert if passed a built-in type that isn't a float.
 | 
						|
static int getFloatingRank(QualType T) {
 | 
						|
  T = T.getCanonicalType();
 | 
						|
  if (const ComplexType *CT = T->getAsComplexType())
 | 
						|
    return getFloatingRank(CT->getElementType());
 | 
						|
  
 | 
						|
  switch (T->getAsBuiltinType()->getKind()) {
 | 
						|
  default:  assert(0 && "getFloatingRank(): not a floating type");
 | 
						|
  case BuiltinType::Float:      return FloatRank;
 | 
						|
  case BuiltinType::Double:     return DoubleRank;
 | 
						|
  case BuiltinType::LongDouble: return LongDoubleRank;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating 
 | 
						|
/// point or a complex type (based on typeDomain/typeSize). 
 | 
						|
/// 'typeDomain' is a real floating point or complex type.
 | 
						|
/// 'typeSize' is a real floating point or complex type.
 | 
						|
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(
 | 
						|
  QualType typeSize, QualType typeDomain) const {
 | 
						|
  if (typeDomain->isComplexType()) {
 | 
						|
    switch (getFloatingRank(typeSize)) {
 | 
						|
    default: assert(0 && "getFloatingRank(): illegal value for rank");
 | 
						|
    case FloatRank:      return FloatComplexTy;
 | 
						|
    case DoubleRank:     return DoubleComplexTy;
 | 
						|
    case LongDoubleRank: return LongDoubleComplexTy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (typeDomain->isRealFloatingType()) {
 | 
						|
    switch (getFloatingRank(typeSize)) {
 | 
						|
    default: assert(0 && "getFloatingRank(): illegal value for rank");
 | 
						|
    case FloatRank:      return FloatTy;
 | 
						|
    case DoubleRank:     return DoubleTy;
 | 
						|
    case LongDoubleRank: return LongDoubleTy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(0 && "getFloatingTypeOfSizeWithinDomain(): illegal domain");
 | 
						|
  //an invalid return value, but the assert
 | 
						|
  //will ensure that this code is never reached.
 | 
						|
  return VoidTy;
 | 
						|
}
 | 
						|
 | 
						|
/// compareFloatingType - Handles 3 different combos: 
 | 
						|
/// float/float, float/complex, complex/complex. 
 | 
						|
/// If lt > rt, return 1. If lt == rt, return 0. If lt < rt, return -1. 
 | 
						|
int ASTContext::compareFloatingType(QualType lt, QualType rt) {
 | 
						|
  if (getFloatingRank(lt) == getFloatingRank(rt))
 | 
						|
    return 0;
 | 
						|
  if (getFloatingRank(lt) > getFloatingRank(rt))
 | 
						|
    return 1;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
// maxIntegerType - Returns the highest ranked integer type. Handles 3 case:
 | 
						|
// unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1.
 | 
						|
QualType ASTContext::maxIntegerType(QualType lhs, QualType rhs) {
 | 
						|
  if (lhs == rhs) return lhs;
 | 
						|
  
 | 
						|
  bool t1Unsigned = lhs->isUnsignedIntegerType();
 | 
						|
  bool t2Unsigned = rhs->isUnsignedIntegerType();
 | 
						|
  
 | 
						|
  if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned))
 | 
						|
    return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs; 
 | 
						|
  
 | 
						|
  // We have two integer types with differing signs
 | 
						|
  QualType unsignedType = t1Unsigned ? lhs : rhs;
 | 
						|
  QualType signedType = t1Unsigned ? rhs : lhs;
 | 
						|
  
 | 
						|
  if (getIntegerRank(unsignedType) >= getIntegerRank(signedType))
 | 
						|
    return unsignedType;
 | 
						|
  else {
 | 
						|
    // FIXME: Need to check if the signed type can represent all values of the 
 | 
						|
    // unsigned type. If it can, then the result is the signed type. 
 | 
						|
    // If it can't, then the result is the unsigned version of the signed type.  
 | 
						|
    // Should probably add a helper that returns a signed integer type from 
 | 
						|
    // an unsigned (and vice versa). C99 6.3.1.8.
 | 
						|
    return signedType; 
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// getCFConstantStringType - Return the type used for constant CFStrings. 
 | 
						|
QualType ASTContext::getCFConstantStringType() {
 | 
						|
  if (!CFConstantStringTypeDecl) {
 | 
						|
    CFConstantStringTypeDecl = new RecordDecl(Decl::Struct, SourceLocation(), 
 | 
						|
                                              &Idents.get("NSConstantString"),
 | 
						|
                                              0);
 | 
						|
    QualType FieldTypes[4];
 | 
						|
  
 | 
						|
    // const int *isa;
 | 
						|
    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));  
 | 
						|
    // int flags;
 | 
						|
    FieldTypes[1] = IntTy;
 | 
						|
    // const char *str;
 | 
						|
    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));  
 | 
						|
    // long length;
 | 
						|
    FieldTypes[3] = LongTy;  
 | 
						|
    // Create fields
 | 
						|
    FieldDecl *FieldDecls[4];
 | 
						|
  
 | 
						|
    for (unsigned i = 0; i < 4; ++i)
 | 
						|
      FieldDecls[i] = new FieldDecl(SourceLocation(), 0, FieldTypes[i]);
 | 
						|
  
 | 
						|
    CFConstantStringTypeDecl->defineBody(FieldDecls, 4);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return getTagDeclType(CFConstantStringTypeDecl);
 | 
						|
}
 | 
						|
 | 
						|
// This returns true if a type has been typedefed to BOOL:
 | 
						|
// typedef <type> BOOL;
 | 
						|
static bool isTypeTypedefedAsBOOL(QualType T) {
 | 
						|
  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
 | 
						|
    return !strcmp(TT->getDecl()->getName(), "BOOL");
 | 
						|
        
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
 | 
						|
/// purpose.
 | 
						|
int ASTContext::getObjCEncodingTypeSize(QualType type) {
 | 
						|
  uint64_t sz = getTypeSize(type);
 | 
						|
  
 | 
						|
  // Make all integer and enum types at least as large as an int
 | 
						|
  if (sz > 0 && type->isIntegralType())
 | 
						|
    sz = std::max(sz, getTypeSize(IntTy));
 | 
						|
  // Treat arrays as pointers, since that's how they're passed in.
 | 
						|
  else if (type->isArrayType())
 | 
						|
    sz = getTypeSize(VoidPtrTy);
 | 
						|
  return sz / getTypeSize(CharTy);
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
 | 
						|
/// declaration.
 | 
						|
void ASTContext::getObjCEncodingForMethodDecl(ObjCMethodDecl *Decl, 
 | 
						|
                                              std::string& S)
 | 
						|
{
 | 
						|
  // Encode type qualifer, 'in', 'inout', etc. for the return type.
 | 
						|
  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
 | 
						|
  // Encode result type.
 | 
						|
  getObjCEncodingForType(Decl->getResultType(), S, EncodingRecordTypes);
 | 
						|
  // Compute size of all parameters.
 | 
						|
  // Start with computing size of a pointer in number of bytes.
 | 
						|
  // FIXME: There might(should) be a better way of doing this computation!
 | 
						|
  SourceLocation Loc;
 | 
						|
  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
 | 
						|
  // The first two arguments (self and _cmd) are pointers; account for
 | 
						|
  // their size.
 | 
						|
  int ParmOffset = 2 * PtrSize;
 | 
						|
  int NumOfParams = Decl->getNumParams();
 | 
						|
  for (int i = 0; i < NumOfParams; i++) {
 | 
						|
    QualType PType = Decl->getParamDecl(i)->getType();
 | 
						|
    int sz = getObjCEncodingTypeSize (PType);
 | 
						|
    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
 | 
						|
    ParmOffset += sz;
 | 
						|
  }
 | 
						|
  S += llvm::utostr(ParmOffset);
 | 
						|
  S += "@0:";
 | 
						|
  S += llvm::utostr(PtrSize);
 | 
						|
  
 | 
						|
  // Argument types.
 | 
						|
  ParmOffset = 2 * PtrSize;
 | 
						|
  for (int i = 0; i < NumOfParams; i++) {
 | 
						|
    QualType PType = Decl->getParamDecl(i)->getType();
 | 
						|
    // Process argument qualifiers for user supplied arguments; such as,
 | 
						|
    // 'in', 'inout', etc.
 | 
						|
    getObjCEncodingForTypeQualifier(
 | 
						|
      Decl->getParamDecl(i)->getObjCDeclQualifier(), S);
 | 
						|
    getObjCEncodingForType(PType, S, EncodingRecordTypes);
 | 
						|
    S += llvm::utostr(ParmOffset);
 | 
						|
    ParmOffset += getObjCEncodingTypeSize(PType);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
 | 
						|
       llvm::SmallVector<const RecordType *, 8> &ERType) const
 | 
						|
{
 | 
						|
  // FIXME: This currently doesn't encode:
 | 
						|
  // @ An object (whether statically typed or typed id)
 | 
						|
  // # A class object (Class)
 | 
						|
  // : A method selector (SEL)
 | 
						|
  // {name=type...} A structure
 | 
						|
  // (name=type...) A union
 | 
						|
  // bnum A bit field of num bits
 | 
						|
  
 | 
						|
  if (const BuiltinType *BT = T->getAsBuiltinType()) {
 | 
						|
    char encoding;
 | 
						|
    switch (BT->getKind()) {
 | 
						|
    case BuiltinType::Void:
 | 
						|
      encoding = 'v';
 | 
						|
      break;
 | 
						|
    case BuiltinType::Bool:
 | 
						|
      encoding = 'B';
 | 
						|
      break;
 | 
						|
    case BuiltinType::Char_U:
 | 
						|
    case BuiltinType::UChar:
 | 
						|
      encoding = 'C';
 | 
						|
      break;
 | 
						|
    case BuiltinType::UShort:
 | 
						|
      encoding = 'S';
 | 
						|
      break;
 | 
						|
    case BuiltinType::UInt:
 | 
						|
      encoding = 'I';
 | 
						|
      break;
 | 
						|
    case BuiltinType::ULong:
 | 
						|
      encoding = 'L';
 | 
						|
      break;
 | 
						|
    case BuiltinType::ULongLong:
 | 
						|
      encoding = 'Q';
 | 
						|
      break;
 | 
						|
    case BuiltinType::Char_S:
 | 
						|
    case BuiltinType::SChar:
 | 
						|
      encoding = 'c';
 | 
						|
      break;
 | 
						|
    case BuiltinType::Short:
 | 
						|
      encoding = 's';
 | 
						|
      break;
 | 
						|
    case BuiltinType::Int:
 | 
						|
      encoding = 'i';
 | 
						|
      break;
 | 
						|
    case BuiltinType::Long:
 | 
						|
      encoding = 'l';
 | 
						|
      break;
 | 
						|
    case BuiltinType::LongLong:
 | 
						|
      encoding = 'q';
 | 
						|
      break;
 | 
						|
    case BuiltinType::Float:
 | 
						|
      encoding = 'f';
 | 
						|
      break;
 | 
						|
    case BuiltinType::Double:
 | 
						|
      encoding = 'd';
 | 
						|
      break;
 | 
						|
    case BuiltinType::LongDouble:
 | 
						|
      encoding = 'd';
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      assert(0 && "Unhandled builtin type kind");          
 | 
						|
    }
 | 
						|
    
 | 
						|
    S += encoding;
 | 
						|
  }
 | 
						|
  else if (T->isObjCQualifiedIdType()) {
 | 
						|
    // Treat id<P...> same as 'id' for encoding purposes.
 | 
						|
    return getObjCEncodingForType(getObjCIdType(), S, ERType);
 | 
						|
    
 | 
						|
  }
 | 
						|
  else if (const PointerType *PT = T->getAsPointerType()) {
 | 
						|
    QualType PointeeTy = PT->getPointeeType();
 | 
						|
    if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) {
 | 
						|
      S += '@';
 | 
						|
      return;
 | 
						|
    } else if (isObjCClassType(PointeeTy)) {
 | 
						|
      S += '#';
 | 
						|
      return;
 | 
						|
    } else if (isObjCSelType(PointeeTy)) {
 | 
						|
      S += ':';
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (PointeeTy->isCharType()) {
 | 
						|
      // char pointer types should be encoded as '*' unless it is a
 | 
						|
      // type that has been typedef'd to 'BOOL'.
 | 
						|
      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
 | 
						|
        S += '*';
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    S += '^';
 | 
						|
    getObjCEncodingForType(PT->getPointeeType(), S, ERType);
 | 
						|
  } else if (const ArrayType *AT = T->getAsArrayType()) {
 | 
						|
    S += '[';
 | 
						|
    
 | 
						|
    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
 | 
						|
      S += llvm::utostr(CAT->getSize().getZExtValue());
 | 
						|
    else
 | 
						|
      assert(0 && "Unhandled array type!");
 | 
						|
    
 | 
						|
    getObjCEncodingForType(AT->getElementType(), S, ERType);
 | 
						|
    S += ']';
 | 
						|
  } else if (T->getAsFunctionType()) {
 | 
						|
    S += '?';
 | 
						|
  } else if (const RecordType *RTy = T->getAsRecordType()) {
 | 
						|
    RecordDecl *RDecl= RTy->getDecl();
 | 
						|
    S += '{';
 | 
						|
    S += RDecl->getName();
 | 
						|
    bool found = false;
 | 
						|
    for (unsigned i = 0, e = ERType.size(); i != e; ++i)
 | 
						|
      if (ERType[i] == RTy) {
 | 
						|
        found = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (!found) {
 | 
						|
      ERType.push_back(RTy);
 | 
						|
      S += '=';
 | 
						|
      for (int i = 0; i < RDecl->getNumMembers(); i++) {
 | 
						|
        FieldDecl *field = RDecl->getMember(i);
 | 
						|
        getObjCEncodingForType(field->getType(), S, ERType);
 | 
						|
      }
 | 
						|
      assert(ERType.back() == RTy && "Record Type stack mismatch.");
 | 
						|
      ERType.pop_back();
 | 
						|
    }
 | 
						|
    S += '}';
 | 
						|
  } else if (T->isEnumeralType()) {
 | 
						|
    S += 'i';
 | 
						|
  } else
 | 
						|
    assert(0 && "@encode for type not implemented!");
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, 
 | 
						|
                                                 std::string& S) const {
 | 
						|
  if (QT & Decl::OBJC_TQ_In)
 | 
						|
    S += 'n';
 | 
						|
  if (QT & Decl::OBJC_TQ_Inout)
 | 
						|
    S += 'N';
 | 
						|
  if (QT & Decl::OBJC_TQ_Out)
 | 
						|
    S += 'o';
 | 
						|
  if (QT & Decl::OBJC_TQ_Bycopy)
 | 
						|
    S += 'O';
 | 
						|
  if (QT & Decl::OBJC_TQ_Byref)
 | 
						|
    S += 'R';
 | 
						|
  if (QT & Decl::OBJC_TQ_Oneway)
 | 
						|
    S += 'V';
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setBuiltinVaListType(QualType T)
 | 
						|
{
 | 
						|
  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
 | 
						|
    
 | 
						|
  BuiltinVaListType = T;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setObjCIdType(TypedefDecl *TD)
 | 
						|
{
 | 
						|
  assert(ObjCIdType.isNull() && "'id' type already set!");
 | 
						|
    
 | 
						|
  ObjCIdType = getTypedefType(TD);
 | 
						|
 | 
						|
  // typedef struct objc_object *id;
 | 
						|
  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
 | 
						|
  assert(ptr && "'id' incorrectly typed");
 | 
						|
  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
 | 
						|
  assert(rec && "'id' incorrectly typed");
 | 
						|
  IdStructType = rec;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setObjCSelType(TypedefDecl *TD)
 | 
						|
{
 | 
						|
  assert(ObjCSelType.isNull() && "'SEL' type already set!");
 | 
						|
    
 | 
						|
  ObjCSelType = getTypedefType(TD);
 | 
						|
 | 
						|
  // typedef struct objc_selector *SEL;
 | 
						|
  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
 | 
						|
  assert(ptr && "'SEL' incorrectly typed");
 | 
						|
  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
 | 
						|
  assert(rec && "'SEL' incorrectly typed");
 | 
						|
  SelStructType = rec;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setObjCProtoType(QualType QT)
 | 
						|
{
 | 
						|
  assert(ObjCProtoType.isNull() && "'Protocol' type already set!");
 | 
						|
  ObjCProtoType = QT;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setObjCClassType(TypedefDecl *TD)
 | 
						|
{
 | 
						|
  assert(ObjCClassType.isNull() && "'Class' type already set!");
 | 
						|
    
 | 
						|
  ObjCClassType = getTypedefType(TD);
 | 
						|
 | 
						|
  // typedef struct objc_class *Class;
 | 
						|
  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
 | 
						|
  assert(ptr && "'Class' incorrectly typed");
 | 
						|
  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
 | 
						|
  assert(rec && "'Class' incorrectly typed");
 | 
						|
  ClassStructType = rec;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
 | 
						|
  assert(ObjCConstantStringType.isNull() && 
 | 
						|
         "'NSConstantString' type already set!");
 | 
						|
  
 | 
						|
  ObjCConstantStringType = getObjCInterfaceType(Decl);
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::builtinTypesAreCompatible(QualType lhs, QualType rhs) {
 | 
						|
  const BuiltinType *lBuiltin = lhs->getAsBuiltinType();
 | 
						|
  const BuiltinType *rBuiltin = rhs->getAsBuiltinType();
 | 
						|
  
 | 
						|
  return lBuiltin->getKind() == rBuiltin->getKind();
 | 
						|
}
 | 
						|
 | 
						|
/// objcTypesAreCompatible - This routine is called when two types
 | 
						|
/// are of different class; one is interface type or is 
 | 
						|
/// a qualified interface type and the other type is of a different class.
 | 
						|
/// Example, II or II<P>. 
 | 
						|
bool ASTContext::objcTypesAreCompatible(QualType lhs, QualType rhs) {
 | 
						|
  if (lhs->isObjCInterfaceType() && isObjCIdType(rhs))
 | 
						|
    return true;
 | 
						|
  else if (isObjCIdType(lhs) && rhs->isObjCInterfaceType())
 | 
						|
    return true;
 | 
						|
  if (ObjCInterfaceType *lhsIT = 
 | 
						|
      dyn_cast<ObjCInterfaceType>(lhs.getCanonicalType().getTypePtr())) {
 | 
						|
    ObjCQualifiedInterfaceType *rhsQI = 
 | 
						|
      dyn_cast<ObjCQualifiedInterfaceType>(rhs.getCanonicalType().getTypePtr());
 | 
						|
    return rhsQI && (lhsIT->getDecl() == rhsQI->getDecl());
 | 
						|
  }
 | 
						|
  else if (ObjCInterfaceType *rhsIT = 
 | 
						|
           dyn_cast<ObjCInterfaceType>(rhs.getCanonicalType().getTypePtr())) {
 | 
						|
    ObjCQualifiedInterfaceType *lhsQI = 
 | 
						|
    dyn_cast<ObjCQualifiedInterfaceType>(lhs.getCanonicalType().getTypePtr());
 | 
						|
    return lhsQI && (rhsIT->getDecl() == lhsQI->getDecl());
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check that 'lhs' and 'rhs' are compatible interface types. Both types
 | 
						|
/// must be canonical types.
 | 
						|
bool ASTContext::interfaceTypesAreCompatible(QualType lhs, QualType rhs) {
 | 
						|
  assert (lhs->isCanonical() &&
 | 
						|
          "interfaceTypesAreCompatible strip typedefs of lhs");
 | 
						|
  assert (rhs->isCanonical() &&
 | 
						|
          "interfaceTypesAreCompatible strip typedefs of rhs");
 | 
						|
  if (lhs == rhs)
 | 
						|
    return true;
 | 
						|
  ObjCInterfaceType *lhsIT = cast<ObjCInterfaceType>(lhs.getTypePtr());
 | 
						|
  ObjCInterfaceType *rhsIT = cast<ObjCInterfaceType>(rhs.getTypePtr());
 | 
						|
  ObjCInterfaceDecl *rhsIDecl = rhsIT->getDecl();
 | 
						|
  ObjCInterfaceDecl *lhsIDecl = lhsIT->getDecl();
 | 
						|
  // rhs is derived from lhs it is OK; else it is not OK.
 | 
						|
  while (rhsIDecl != NULL) {
 | 
						|
    if (rhsIDecl == lhsIDecl)
 | 
						|
      return true;
 | 
						|
    rhsIDecl = rhsIDecl->getSuperClass();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::QualifiedInterfaceTypesAreCompatible(QualType lhs, 
 | 
						|
                                                      QualType rhs) {
 | 
						|
  ObjCQualifiedInterfaceType *lhsQI = 
 | 
						|
    dyn_cast<ObjCQualifiedInterfaceType>(lhs.getCanonicalType().getTypePtr());
 | 
						|
  assert(lhsQI && "QualifiedInterfaceTypesAreCompatible - bad lhs type");
 | 
						|
  ObjCQualifiedInterfaceType *rhsQI = 
 | 
						|
    dyn_cast<ObjCQualifiedInterfaceType>(rhs.getCanonicalType().getTypePtr());
 | 
						|
  assert(rhsQI && "QualifiedInterfaceTypesAreCompatible - bad rhs type");
 | 
						|
  if (!interfaceTypesAreCompatible(
 | 
						|
         getObjCInterfaceType(lhsQI->getDecl()).getCanonicalType(), 
 | 
						|
         getObjCInterfaceType(rhsQI->getDecl()).getCanonicalType()))
 | 
						|
    return false;
 | 
						|
  /* All protocols in lhs must have a presense in rhs. */
 | 
						|
  for (unsigned i =0; i < lhsQI->getNumProtocols(); i++) {
 | 
						|
    bool match = false;
 | 
						|
    ObjCProtocolDecl *lhsProto = lhsQI->getProtocols(i);
 | 
						|
    for (unsigned j = 0; j < rhsQI->getNumProtocols(); j++) {
 | 
						|
      ObjCProtocolDecl *rhsProto = rhsQI->getProtocols(j);
 | 
						|
      if (lhsProto == rhsProto) {
 | 
						|
        match = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!match)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
 | 
						|
/// inheritance hierarchy of 'rProto'.
 | 
						|
static bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
 | 
						|
                                           ObjCProtocolDecl *rProto) {
 | 
						|
  if (lProto == rProto)
 | 
						|
    return true;
 | 
						|
  ObjCProtocolDecl** RefPDecl = rProto->getReferencedProtocols();
 | 
						|
  for (unsigned i = 0; i < rProto->getNumReferencedProtocols(); i++)
 | 
						|
    if (ProtocolCompatibleWithProtocol(lProto, RefPDecl[i]))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ClassImplementsProtocol - Checks that 'lProto' protocol
 | 
						|
/// has been implemented in IDecl class, its super class or categories (if
 | 
						|
/// lookupCategory is true). 
 | 
						|
static bool ClassImplementsProtocol(ObjCProtocolDecl *lProto,
 | 
						|
                                    ObjCInterfaceDecl *IDecl, 
 | 
						|
                                    bool lookupCategory) {
 | 
						|
  
 | 
						|
  // 1st, look up the class.
 | 
						|
  ObjCProtocolDecl **protoList = IDecl->getReferencedProtocols();
 | 
						|
  for (unsigned i = 0; i < IDecl->getNumIntfRefProtocols(); i++) {
 | 
						|
    if (ProtocolCompatibleWithProtocol(lProto, protoList[i]))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // 2nd, look up the category.
 | 
						|
  if (lookupCategory)
 | 
						|
    for (ObjCCategoryDecl *CDecl = IDecl->getCategoryList(); CDecl;
 | 
						|
         CDecl = CDecl->getNextClassCategory()) {
 | 
						|
      protoList = CDecl->getReferencedProtocols();
 | 
						|
      for (unsigned i = 0; i < CDecl->getNumReferencedProtocols(); i++) {
 | 
						|
        if (ProtocolCompatibleWithProtocol(lProto, protoList[i]))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
  // 3rd, look up the super class(s)
 | 
						|
  if (IDecl->getSuperClass())
 | 
						|
    return 
 | 
						|
      ClassImplementsProtocol(lProto, IDecl->getSuperClass(), lookupCategory);
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
                                           
 | 
						|
/// ObjCQualifiedIdTypesAreCompatible - Compares two types, at least
 | 
						|
/// one of which is a protocol qualified 'id' type. When 'compare'
 | 
						|
/// is true it is for comparison; when false, for assignment/initialization.
 | 
						|
bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, 
 | 
						|
                                                   QualType rhs,
 | 
						|
                                                   bool compare) {
 | 
						|
  // match id<P..> with an 'id' type in all cases.
 | 
						|
  if (const PointerType *PT = lhs->getAsPointerType()) {
 | 
						|
    QualType PointeeTy = PT->getPointeeType();
 | 
						|
    if (isObjCIdType(PointeeTy) || PointeeTy->isVoidType())
 | 
						|
      return true;
 | 
						|
        
 | 
						|
  }
 | 
						|
  else if (const PointerType *PT = rhs->getAsPointerType()) {
 | 
						|
    QualType PointeeTy = PT->getPointeeType();
 | 
						|
    if (isObjCIdType(PointeeTy) || PointeeTy->isVoidType())
 | 
						|
      return true;
 | 
						|
    
 | 
						|
  }
 | 
						|
  
 | 
						|
  ObjCQualifiedInterfaceType *lhsQI = 0;
 | 
						|
  ObjCQualifiedInterfaceType *rhsQI = 0;
 | 
						|
  ObjCInterfaceDecl *lhsID = 0;
 | 
						|
  ObjCInterfaceDecl *rhsID = 0;
 | 
						|
  ObjCQualifiedIdType *lhsQID = dyn_cast<ObjCQualifiedIdType>(lhs);
 | 
						|
  ObjCQualifiedIdType *rhsQID = dyn_cast<ObjCQualifiedIdType>(rhs);
 | 
						|
  
 | 
						|
  if (lhsQID) {
 | 
						|
    if (!rhsQID && rhs->getTypeClass() == Type::Pointer) {
 | 
						|
      QualType rtype = 
 | 
						|
        cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
 | 
						|
      rhsQI = 
 | 
						|
        dyn_cast<ObjCQualifiedInterfaceType>(
 | 
						|
          rtype.getCanonicalType().getTypePtr());
 | 
						|
      if (!rhsQI) {
 | 
						|
        ObjCInterfaceType *IT = dyn_cast<ObjCInterfaceType>(
 | 
						|
                                  rtype.getCanonicalType().getTypePtr());
 | 
						|
        if (IT)
 | 
						|
          rhsID = IT->getDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!rhsQI && !rhsQID && !rhsID)
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    unsigned numRhsProtocols = 0;
 | 
						|
    ObjCProtocolDecl **rhsProtoList = 0;
 | 
						|
    if (rhsQI) {
 | 
						|
      numRhsProtocols = rhsQI->getNumProtocols();
 | 
						|
      rhsProtoList = rhsQI->getReferencedProtocols();
 | 
						|
    }
 | 
						|
    else if (rhsQID) {
 | 
						|
      numRhsProtocols = rhsQID->getNumProtocols();
 | 
						|
      rhsProtoList = rhsQID->getReferencedProtocols();
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (unsigned i =0; i < lhsQID->getNumProtocols(); i++) {
 | 
						|
      ObjCProtocolDecl *lhsProto = lhsQID->getProtocols(i);
 | 
						|
      bool match = false;
 | 
						|
 | 
						|
      // when comparing an id<P> on lhs with a static type on rhs,
 | 
						|
      // see if static class implements all of id's protocols, directly or
 | 
						|
      // through its super class and categories.
 | 
						|
      if (rhsID) {
 | 
						|
        if (ClassImplementsProtocol(lhsProto, rhsID, true))
 | 
						|
          match = true;
 | 
						|
      }
 | 
						|
      else for (unsigned j = 0; j < numRhsProtocols; j++) {
 | 
						|
        ObjCProtocolDecl *rhsProto = rhsProtoList[j];
 | 
						|
        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
 | 
						|
            compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) {
 | 
						|
          match = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!match)
 | 
						|
        return false;
 | 
						|
    }    
 | 
						|
  }
 | 
						|
  else if (rhsQID) {
 | 
						|
    if (!lhsQID && lhs->getTypeClass() == Type::Pointer) {
 | 
						|
      QualType ltype = 
 | 
						|
      cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
 | 
						|
      lhsQI = 
 | 
						|
      dyn_cast<ObjCQualifiedInterfaceType>(
 | 
						|
        ltype.getCanonicalType().getTypePtr());
 | 
						|
      if (!lhsQI) {
 | 
						|
        ObjCInterfaceType *IT = dyn_cast<ObjCInterfaceType>(
 | 
						|
                                  ltype.getCanonicalType().getTypePtr());
 | 
						|
        if (IT)
 | 
						|
          lhsID = IT->getDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!lhsQI && !lhsQID && !lhsID)
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    unsigned numLhsProtocols = 0;
 | 
						|
    ObjCProtocolDecl **lhsProtoList = 0;
 | 
						|
    if (lhsQI) {
 | 
						|
      numLhsProtocols = lhsQI->getNumProtocols();
 | 
						|
      lhsProtoList = lhsQI->getReferencedProtocols();
 | 
						|
    }
 | 
						|
    else if (lhsQID) {
 | 
						|
      numLhsProtocols = lhsQID->getNumProtocols();
 | 
						|
      lhsProtoList = lhsQID->getReferencedProtocols();
 | 
						|
    }    
 | 
						|
    bool match = false;
 | 
						|
    // for static type vs. qualified 'id' type, check that class implements
 | 
						|
    // one of 'id's protocols.
 | 
						|
    if (lhsID) {
 | 
						|
      for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) {
 | 
						|
        ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j);
 | 
						|
        if (ClassImplementsProtocol(rhsProto, lhsID, compare)) {
 | 
						|
          match = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }    
 | 
						|
    else for (unsigned i =0; i < numLhsProtocols; i++) {
 | 
						|
      match = false;
 | 
						|
      ObjCProtocolDecl *lhsProto = lhsProtoList[i];
 | 
						|
      for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) {
 | 
						|
        ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j);
 | 
						|
        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
 | 
						|
          compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) {
 | 
						|
          match = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!match)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::vectorTypesAreCompatible(QualType lhs, QualType rhs) {
 | 
						|
  const VectorType *lVector = lhs->getAsVectorType();
 | 
						|
  const VectorType *rVector = rhs->getAsVectorType();
 | 
						|
  
 | 
						|
  if ((lVector->getElementType().getCanonicalType() ==
 | 
						|
      rVector->getElementType().getCanonicalType()) &&
 | 
						|
      (lVector->getNumElements() == rVector->getNumElements()))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// C99 6.2.7p1: If both are complete types, then the following additional
 | 
						|
// requirements apply...FIXME (handle compatibility across source files).
 | 
						|
bool ASTContext::tagTypesAreCompatible(QualType lhs, QualType rhs) {
 | 
						|
  // "Class" and "id" are compatible built-in structure types.
 | 
						|
  if (isObjCIdType(lhs) && isObjCClassType(rhs) ||
 | 
						|
      isObjCClassType(lhs) && isObjCIdType(rhs))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Within a translation unit a tag type is
 | 
						|
  // only compatible with itself.
 | 
						|
  return lhs.getCanonicalType() == rhs.getCanonicalType();
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
 | 
						|
  // C99 6.7.5.1p2: For two pointer types to be compatible, both shall be 
 | 
						|
  // identically qualified and both shall be pointers to compatible types.
 | 
						|
  if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() ||
 | 
						|
      lhs.getAddressSpace() != rhs.getAddressSpace())
 | 
						|
    return false;
 | 
						|
    
 | 
						|
  QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
 | 
						|
  QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
 | 
						|
  
 | 
						|
  return typesAreCompatible(ltype, rtype);
 | 
						|
}
 | 
						|
 | 
						|
// C++ 5.17p6: When the left operand of an assignment operator denotes a
 | 
						|
// reference to T, the operation assigns to the object of type T denoted by the
 | 
						|
// reference.
 | 
						|
bool ASTContext::referenceTypesAreCompatible(QualType lhs, QualType rhs) {
 | 
						|
  QualType ltype = lhs;
 | 
						|
 | 
						|
  if (lhs->isReferenceType())
 | 
						|
    ltype = cast<ReferenceType>(lhs.getCanonicalType())->getReferenceeType();
 | 
						|
 | 
						|
  QualType rtype = rhs;
 | 
						|
 | 
						|
  if (rhs->isReferenceType())
 | 
						|
    rtype = cast<ReferenceType>(rhs.getCanonicalType())->getReferenceeType();
 | 
						|
 | 
						|
  return typesAreCompatible(ltype, rtype);
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::functionTypesAreCompatible(QualType lhs, QualType rhs) {
 | 
						|
  const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
 | 
						|
  const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
 | 
						|
  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
 | 
						|
  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
 | 
						|
 | 
						|
  // first check the return types (common between C99 and K&R).
 | 
						|
  if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (lproto && rproto) { // two C99 style function prototypes
 | 
						|
    unsigned lproto_nargs = lproto->getNumArgs();
 | 
						|
    unsigned rproto_nargs = rproto->getNumArgs();
 | 
						|
    
 | 
						|
    if (lproto_nargs != rproto_nargs)
 | 
						|
      return false;
 | 
						|
      
 | 
						|
    // both prototypes have the same number of arguments.
 | 
						|
    if ((lproto->isVariadic() && !rproto->isVariadic()) ||
 | 
						|
        (rproto->isVariadic() && !lproto->isVariadic()))
 | 
						|
      return false;
 | 
						|
      
 | 
						|
    // The use of ellipsis agree...now check the argument types.
 | 
						|
    for (unsigned i = 0; i < lproto_nargs; i++)
 | 
						|
      // C99 6.7.5.3p15: ...and each parameter declared with qualified type
 | 
						|
      // is taken as having the unqualified version of it's declared type.
 | 
						|
      if (!typesAreCompatible(lproto->getArgType(i).getUnqualifiedType(), 
 | 
						|
                              rproto->getArgType(i).getUnqualifiedType()))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (!lproto && !rproto) // two K&R style function decls, nothing to do.
 | 
						|
    return true;
 | 
						|
 | 
						|
  // we have a mixture of K&R style with C99 prototypes
 | 
						|
  const FunctionTypeProto *proto = lproto ? lproto : rproto;
 | 
						|
  
 | 
						|
  if (proto->isVariadic())
 | 
						|
    return false;
 | 
						|
    
 | 
						|
  // FIXME: Each parameter type T in the prototype must be compatible with the
 | 
						|
  // type resulting from applying the usual argument conversions to T.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::arrayTypesAreCompatible(QualType lhs, QualType rhs) {
 | 
						|
  // Compatible arrays must have compatible element types
 | 
						|
  QualType ltype = lhs->getAsArrayType()->getElementType();
 | 
						|
  QualType rtype = rhs->getAsArrayType()->getElementType();
 | 
						|
 | 
						|
  if (!typesAreCompatible(ltype, rtype))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Compatible arrays must be the same size
 | 
						|
  if (const ConstantArrayType* LCAT = lhs->getAsConstantArrayType())
 | 
						|
    if (const ConstantArrayType* RCAT = rhs->getAsConstantArrayType())
 | 
						|
      return RCAT->getSize() == LCAT->getSize();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 
 | 
						|
/// both shall have the identically qualified version of a compatible type.
 | 
						|
/// C99 6.2.7p1: Two types have compatible types if their types are the 
 | 
						|
/// same. See 6.7.[2,3,5] for additional rules.
 | 
						|
bool ASTContext::typesAreCompatible(QualType lhs, QualType rhs) {
 | 
						|
  if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() ||
 | 
						|
      lhs.getAddressSpace() != rhs.getAddressSpace())
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType lcanon = lhs.getCanonicalType();
 | 
						|
  QualType rcanon = rhs.getCanonicalType();
 | 
						|
 | 
						|
  // If two types are identical, they are are compatible
 | 
						|
  if (lcanon == rcanon)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // C++ [expr]: If an expression initially has the type "reference to T", the
 | 
						|
  // type is adjusted to "T" prior to any further analysis, the expression
 | 
						|
  // designates the object or function denoted by the reference, and the
 | 
						|
  // expression is an lvalue.
 | 
						|
  if (ReferenceType *RT = dyn_cast<ReferenceType>(lcanon))
 | 
						|
    lcanon = RT->getReferenceeType();
 | 
						|
  if (ReferenceType *RT = dyn_cast<ReferenceType>(rcanon))
 | 
						|
    rcanon = RT->getReferenceeType();
 | 
						|
  
 | 
						|
  Type::TypeClass LHSClass = lcanon->getTypeClass();
 | 
						|
  Type::TypeClass RHSClass = rcanon->getTypeClass();
 | 
						|
  
 | 
						|
  // We want to consider the two function types to be the same for these
 | 
						|
  // comparisons, just force one to the other.
 | 
						|
  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
 | 
						|
  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
 | 
						|
 | 
						|
  // Same as above for arrays
 | 
						|
  if (LHSClass == Type::VariableArray) LHSClass = Type::ConstantArray;
 | 
						|
  if (RHSClass == Type::VariableArray) RHSClass = Type::ConstantArray;
 | 
						|
  if (LHSClass == Type::IncompleteArray) LHSClass = Type::ConstantArray;
 | 
						|
  if (RHSClass == Type::IncompleteArray) RHSClass = Type::ConstantArray;
 | 
						|
  
 | 
						|
  // If the canonical type classes don't match...
 | 
						|
  if (LHSClass != RHSClass) {
 | 
						|
    // For Objective-C, it is possible for two types to be compatible
 | 
						|
    // when their classes don't match (when dealing with "id"). If either type
 | 
						|
    // is an interface, we defer to objcTypesAreCompatible(). 
 | 
						|
    if (lcanon->isObjCInterfaceType() || rcanon->isObjCInterfaceType())
 | 
						|
      return objcTypesAreCompatible(lcanon, rcanon);
 | 
						|
      
 | 
						|
    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
 | 
						|
    // a signed integer type, or an unsigned integer type. 
 | 
						|
    if (lcanon->isEnumeralType() && rcanon->isIntegralType()) {
 | 
						|
      EnumDecl* EDecl = cast<EnumDecl>(cast<TagType>(lcanon)->getDecl());
 | 
						|
      return EDecl->getIntegerType() == rcanon;
 | 
						|
    }
 | 
						|
    if (rcanon->isEnumeralType() && lcanon->isIntegralType()) {
 | 
						|
      EnumDecl* EDecl = cast<EnumDecl>(cast<TagType>(rcanon)->getDecl());
 | 
						|
      return EDecl->getIntegerType() == lcanon;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  // The canonical type classes match.
 | 
						|
  switch (LHSClass) {
 | 
						|
  case Type::FunctionProto: assert(0 && "Canonicalized away above");
 | 
						|
  case Type::Pointer:
 | 
						|
    return pointerTypesAreCompatible(lcanon, rcanon);
 | 
						|
  case Type::ConstantArray:
 | 
						|
  case Type::VariableArray:
 | 
						|
  case Type::IncompleteArray:
 | 
						|
    return arrayTypesAreCompatible(lcanon, rcanon);
 | 
						|
  case Type::FunctionNoProto:
 | 
						|
    return functionTypesAreCompatible(lcanon, rcanon);
 | 
						|
  case Type::Tagged: // handle structures, unions
 | 
						|
    return tagTypesAreCompatible(lcanon, rcanon);
 | 
						|
  case Type::Builtin:
 | 
						|
    return builtinTypesAreCompatible(lcanon, rcanon); 
 | 
						|
  case Type::ObjCInterface:
 | 
						|
    return interfaceTypesAreCompatible(lcanon, rcanon); 
 | 
						|
  case Type::Vector:
 | 
						|
  case Type::OCUVector:
 | 
						|
    return vectorTypesAreCompatible(lcanon, rcanon);
 | 
						|
  case Type::ObjCQualifiedInterface:
 | 
						|
    return QualifiedInterfaceTypesAreCompatible(lcanon, rcanon);
 | 
						|
  default:
 | 
						|
    assert(0 && "unexpected type");
 | 
						|
  }
 | 
						|
  return true; // should never get here...
 | 
						|
}
 | 
						|
 | 
						|
/// Emit - Serialize an ASTContext object to Bitcode.
 | 
						|
void ASTContext::Emit(llvm::Serializer& S) const {
 | 
						|
  S.EmitRef(SourceMgr);
 | 
						|
  S.EmitRef(Target);
 | 
						|
  S.EmitRef(Idents);
 | 
						|
  S.EmitRef(Selectors);
 | 
						|
 | 
						|
  // Emit the size of the type vector so that we can reserve that size
 | 
						|
  // when we reconstitute the ASTContext object.
 | 
						|
  S.EmitInt(Types.size());
 | 
						|
  
 | 
						|
  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end(); 
 | 
						|
                                          I!=E;++I)    
 | 
						|
    (*I)->Emit(S);
 | 
						|
 | 
						|
  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
 | 
						|
}
 | 
						|
 | 
						|
ASTContext* ASTContext::Create(llvm::Deserializer& D) {
 | 
						|
  SourceManager &SM = D.ReadRef<SourceManager>();
 | 
						|
  TargetInfo &t = D.ReadRef<TargetInfo>();
 | 
						|
  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
 | 
						|
  SelectorTable &sels = D.ReadRef<SelectorTable>();
 | 
						|
  
 | 
						|
  unsigned size_reserve = D.ReadInt();
 | 
						|
  
 | 
						|
  ASTContext* A = new ASTContext(SM,t,idents,sels,size_reserve);
 | 
						|
  
 | 
						|
  for (unsigned i = 0; i < size_reserve; ++i)
 | 
						|
    Type::Create(*A,i,D);
 | 
						|
 | 
						|
  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
 | 
						|
  
 | 
						|
  return A;
 | 
						|
}
 |