llvm-project/lld/lib/ReaderWriter/ELF/SegmentChunks.h

243 lines
7.9 KiB
C++

//===- lib/ReaderWriter/ELF/SegmentChunks.h -------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_READER_WRITER_ELF_SEGMENT_CHUNKS_H
#define LLD_READER_WRITER_ELF_SEGMENT_CHUNKS_H
#include "Chunk.h"
#include "SectionChunks.h"
#include "Writer.h"
#include "lld/Core/range.h"
#include "lld/Core/Writer.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include <memory>
namespace lld {
namespace elf {
template <typename ELFT> class TargetLayout;
/// \brief A segment can be divided into segment slices
/// depending on how the segments can be split
template<class ELFT>
class SegmentSlice {
public:
typedef typename std::vector<Chunk<ELFT> *>::iterator SectionIter;
/// Set the start of the slice.
void setStart(int32_t s) { _startSection = s; }
// Set the segment slice start and end iterators. This is used to walk through
// the sections that are part of the Segment slice
void setSections(range<SectionIter> sections) { _sections = sections; }
// Return the fileOffset of the slice
uint64_t fileOffset() const { return _offset; }
void setFileOffset(uint64_t offset) { _offset = offset; }
// Return the size of the slice
uint64_t fileSize() const { return _fsize; }
void setFileSize(uint64_t filesz) { _fsize = filesz; }
// Return the start of the slice
int32_t startSection() const { return _startSection; }
// Return the start address of the slice
uint64_t virtualAddr() const { return _addr; }
// Return the memory size of the slice
uint64_t memSize() const { return _memSize; }
// Return the alignment of the slice
uint64_t alignment() const { return _alignment; }
void setMemSize(uint64_t memsz) { _memSize = memsz; }
void setVirtualAddr(uint64_t addr) { _addr = addr; }
void setAlign(uint64_t align) { _alignment = align; }
static bool compare_slices(SegmentSlice<ELFT> *a, SegmentSlice<ELFT> *b);
range<SectionIter> sections() { return _sections; }
private:
range<SectionIter> _sections;
int32_t _startSection;
uint64_t _addr;
uint64_t _offset;
uint64_t _alignment;
uint64_t _fsize;
uint64_t _memSize;
};
/// \brief A segment contains a set of sections, that have similar properties
// the sections are already separated based on different flags and properties
// the segment is just a way to concatenate sections to segments
template<class ELFT>
class Segment : public Chunk<ELFT> {
public:
typedef typename std::vector<SegmentSlice<ELFT> *>::iterator SliceIter;
typedef typename std::vector<Chunk<ELFT> *>::iterator SectionIter;
Segment(const ELFLinkingContext &ctx, StringRef name,
const typename TargetLayout<ELFT>::SegmentType type);
/// \brief the Order of segments that appear in the output file
enum SegmentOrder {
permUnknown,
permRWX,
permRX,
permR,
permRWL,
permRW,
permNonAccess
};
/// append a section to a segment
virtual void append(Chunk<ELFT> *chunk);
/// Sort segments depending on the property
/// If we have a Program Header segment, it should appear first
/// If we have a INTERP segment, that should appear after the Program Header
/// All Loadable segments appear next in this order
/// All Read Write Execute segments follow
/// All Read Execute segments appear next
/// All Read only segments appear first
/// All Write execute segments follow
static bool compareSegments(Segment<ELFT> *sega, Segment<ELFT> *segb);
/// \brief Start assigning file offset to the segment chunks The fileoffset
/// needs to be page at the start of the segment and in addition the
/// fileoffset needs to be aligned to the max section alignment within the
/// segment. This is required so that the ELF property p_poffset % p_align =
/// p_vaddr mod p_align holds true.
/// The algorithm starts off by assigning the startOffset thats passed in as
/// parameter to the first section in the segment, if the difference between
/// the newly computed offset is greater than a page, then we create a segment
/// slice, as it would be a waste of virtual memory just to be filled with
/// zeroes
void assignFileOffsets(uint64_t startOffset);
/// \brief Assign virtual addresses to the slices
void assignVirtualAddress(uint64_t addr);
// Write the Segment
void write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer);
int64_t flags() const;
/// Prepend a generic chunk to the segment.
void prepend(Chunk<ELFT> *c) {
_sections.insert(_sections.begin(), c);
}
/// Finalize the segment, before we want to write the segment header
/// information
void finalize();
// For LLVM RTTI
static bool classof(const Chunk<ELFT> *c) {
return c->kind() == Chunk<ELFT>::Kind::ELFSegment;
}
// Getters
int32_t sectionCount() const { return _sections.size(); }
/// \brief, this function returns the type of segment (PT_*)
typename TargetLayout<ELFT>::SegmentType segmentType() {
return _segmentType;
}
/// \brief return the segment type depending on the content,
/// If the content corresponds to Code, this will return Segment::Code
/// If the content corresponds to Data, this will return Segment::Data
/// If the content corresponds to TLS, this will return Segment::TLS
virtual int getContentType() const;
int pageSize() const { return this->_ctx.getPageSize(); }
int rawflags() const { return _atomflags; }
int64_t atomflags() const;
int64_t numSlices() const { return _segmentSlices.size(); }
range<SliceIter> slices() { return _segmentSlices; }
Chunk<ELFT> *firstSection() { return _sections[0]; }
private:
/// \brief Check if the chunk needs to be aligned
bool needAlign(Chunk<ELFT> *chunk) const;
// Cached value of outputMagic
ELFLinkingContext::OutputMagic _outputMagic;
protected:
/// \brief Section or some other chunk type.
std::vector<Chunk<ELFT> *> _sections;
std::vector<SegmentSlice<ELFT> *> _segmentSlices;
typename TargetLayout<ELFT>::SegmentType _segmentType;
uint64_t _flags;
int64_t _atomflags;
llvm::BumpPtrAllocator _segmentAllocate;
};
/// This chunk represents a linker script expression that needs to be calculated
/// at the time the virtual addresses for the parent segment are being assigned.
template <class ELFT> class ExpressionChunk : public Chunk<ELFT> {
public:
ExpressionChunk(ELFLinkingContext &ctx, const script::SymbolAssignment *expr)
: Chunk<ELFT>(StringRef(), Chunk<ELFT>::Kind::Expression, ctx),
_expr(expr), _linkerScriptSema(ctx.linkerScriptSema()) {
this->_alignment = 1;
}
static bool classof(const Chunk<ELFT> *c) {
return c->kind() == Chunk<ELFT>::Kind::Expression;
}
int getContentType() const override {
return Chunk<ELFT>::ContentType::Unknown;
}
void write(ELFWriter *, TargetLayout<ELFT> &,
llvm::FileOutputBuffer &) override {}
std::error_code evalExpr(uint64_t &curPos) {
return _linkerScriptSema.evalExpr(_expr, curPos);
}
private:
const script::SymbolAssignment *_expr;
script::Sema &_linkerScriptSema;
};
/// \brief A Program Header segment contains a set of chunks instead of sections
/// The segment doesn't contain any slice
template <class ELFT> class ProgramHeaderSegment : public Segment<ELFT> {
public:
ProgramHeaderSegment(const ELFLinkingContext &ctx)
: Segment<ELFT>(ctx, "PHDR", llvm::ELF::PT_PHDR) {
this->_alignment = 8;
this->_flags = (llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_EXECINSTR);
}
/// Finalize the segment, before we want to write the segment header
/// information
void finalize();
};
} // end namespace elf
} // end namespace lld
#endif