234 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			TableGen
		
	
	
	
			
		
		
	
	
			234 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			TableGen
		
	
	
	
| //=- X86ScheduleSLM.td - X86 Silvermont Scheduling -----------*- tablegen -*-=//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the machine model for Intel Silvermont to support
 | |
| // instruction scheduling and other instruction cost heuristics.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| def SLMModel : SchedMachineModel {
 | |
|   // All x86 instructions are modeled as a single micro-op, and SLM can decode 2
 | |
|   // instructions per cycle.
 | |
|   let IssueWidth = 2;
 | |
|   let MicroOpBufferSize = 32; // Based on the reorder buffer.
 | |
|   let LoadLatency = 3;
 | |
|   let MispredictPenalty = 10;
 | |
|   let PostRAScheduler = 1;
 | |
| 
 | |
|   // For small loops, expand by a small factor to hide the backedge cost.
 | |
|   let LoopMicroOpBufferSize = 10;
 | |
| 
 | |
|   // FIXME: SSE4 is unimplemented. This flag is set to allow
 | |
|   // the scheduler to assign a default model to unrecognized opcodes.
 | |
|   let CompleteModel = 0;
 | |
| }
 | |
| 
 | |
| let SchedModel = SLMModel in {
 | |
| 
 | |
| // Silvermont has 5 reservation stations for micro-ops
 | |
| 
 | |
| def IEC_RSV0 : ProcResource<1>;
 | |
| def IEC_RSV1 : ProcResource<1>;
 | |
| def FPC_RSV0 : ProcResource<1> { let BufferSize = 1; }
 | |
| def FPC_RSV1 : ProcResource<1> { let BufferSize = 1; }
 | |
| def MEC_RSV  : ProcResource<1>;
 | |
| 
 | |
| // Many micro-ops are capable of issuing on multiple ports.
 | |
| def IEC_RSV01  : ProcResGroup<[IEC_RSV0, IEC_RSV1]>;
 | |
| def FPC_RSV01  : ProcResGroup<[FPC_RSV0, FPC_RSV1]>;
 | |
| 
 | |
| def SMDivider      : ProcResource<1>;
 | |
| def SMFPMultiplier : ProcResource<1>;
 | |
| def SMFPDivider    : ProcResource<1>;
 | |
| 
 | |
| // Loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
 | |
| // cycles after the memory operand.
 | |
| def : ReadAdvance<ReadAfterLd, 3>;
 | |
| 
 | |
| // Many SchedWrites are defined in pairs with and without a folded load.
 | |
| // Instructions with folded loads are usually micro-fused, so they only appear
 | |
| // as two micro-ops when queued in the reservation station.
 | |
| // This multiclass defines the resource usage for variants with and without
 | |
| // folded loads.
 | |
| multiclass SMWriteResPair<X86FoldableSchedWrite SchedRW,
 | |
|                           ProcResourceKind ExePort,
 | |
|                           int Lat> {
 | |
|   // Register variant is using a single cycle on ExePort.
 | |
|   def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
 | |
| 
 | |
|   // Memory variant also uses a cycle on MEC_RSV and adds 3 cycles to the
 | |
|   // latency.
 | |
|   def : WriteRes<SchedRW.Folded, [MEC_RSV, ExePort]> {
 | |
|      let Latency = !add(Lat, 3);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // A folded store needs a cycle on MEC_RSV for the store data, but it does not
 | |
| // need an extra port cycle to recompute the address.
 | |
| def : WriteRes<WriteRMW, [MEC_RSV]>;
 | |
| 
 | |
| def : WriteRes<WriteStore, [IEC_RSV01, MEC_RSV]>;
 | |
| def : WriteRes<WriteLoad,  [MEC_RSV]> { let Latency = 3; }
 | |
| def : WriteRes<WriteMove,  [IEC_RSV01]>;
 | |
| def : WriteRes<WriteZero,  []>;
 | |
| 
 | |
| defm : SMWriteResPair<WriteALU,   IEC_RSV01, 1>;
 | |
| defm : SMWriteResPair<WriteIMul,  IEC_RSV1,  3>;
 | |
| defm : SMWriteResPair<WriteShift, IEC_RSV0,  1>;
 | |
| defm : SMWriteResPair<WriteJump,  IEC_RSV1,   1>;
 | |
| 
 | |
| // This is for simple LEAs with one or two input operands.
 | |
| // The complex ones can only execute on port 1, and they require two cycles on
 | |
| // the port to read all inputs. We don't model that.
 | |
| def : WriteRes<WriteLEA, [IEC_RSV1]>;
 | |
| 
 | |
| // This is quite rough, latency depends on the dividend.
 | |
| def : WriteRes<WriteIDiv, [IEC_RSV01, SMDivider]> {
 | |
|   let Latency = 25;
 | |
|   let ResourceCycles = [1, 25];
 | |
| }
 | |
| def : WriteRes<WriteIDivLd, [MEC_RSV, IEC_RSV01, SMDivider]> {
 | |
|   let Latency = 29;
 | |
|   let ResourceCycles = [1, 1, 25];
 | |
| }
 | |
| 
 | |
| // Scalar and vector floating point.
 | |
| defm : SMWriteResPair<WriteFAdd,   FPC_RSV1, 3>;
 | |
| defm : SMWriteResPair<WriteFRcp,   FPC_RSV0, 5>;
 | |
| defm : SMWriteResPair<WriteFRsqrt, FPC_RSV0, 5>;
 | |
| defm : SMWriteResPair<WriteFSqrt,  FPC_RSV0, 15>;
 | |
| defm : SMWriteResPair<WriteCvtF2I, FPC_RSV01, 4>;
 | |
| defm : SMWriteResPair<WriteCvtI2F, FPC_RSV01, 4>;
 | |
| defm : SMWriteResPair<WriteCvtF2F, FPC_RSV01, 4>;
 | |
| defm : SMWriteResPair<WriteFShuffle,  FPC_RSV0,  1>;
 | |
| defm : SMWriteResPair<WriteFBlend,  FPC_RSV0,  1>;
 | |
| 
 | |
| // This is quite rough, latency depends on precision
 | |
| def : WriteRes<WriteFMul, [FPC_RSV0, SMFPMultiplier]> {
 | |
|   let Latency = 5;
 | |
|   let ResourceCycles = [1, 2];
 | |
| }
 | |
| def : WriteRes<WriteFMulLd, [MEC_RSV, FPC_RSV0, SMFPMultiplier]> {
 | |
|   let Latency = 8;
 | |
|   let ResourceCycles = [1, 1, 2];
 | |
| }
 | |
| 
 | |
| def : WriteRes<WriteFDiv, [FPC_RSV0, SMFPDivider]> {
 | |
|   let Latency = 34;
 | |
|   let ResourceCycles = [1, 34];
 | |
| }
 | |
| def : WriteRes<WriteFDivLd, [MEC_RSV, FPC_RSV0, SMFPDivider]> {
 | |
|   let Latency = 37;
 | |
|   let ResourceCycles = [1, 1, 34];
 | |
| }
 | |
| 
 | |
| // Vector integer operations.
 | |
| defm : SMWriteResPair<WriteVecShift, FPC_RSV0,  1>;
 | |
| defm : SMWriteResPair<WriteVecLogic, FPC_RSV01, 1>;
 | |
| defm : SMWriteResPair<WriteVecALU,   FPC_RSV01,  1>;
 | |
| defm : SMWriteResPair<WriteVecIMul,  FPC_RSV0,   4>;
 | |
| defm : SMWriteResPair<WriteShuffle,  FPC_RSV0,  1>;
 | |
| defm : SMWriteResPair<WriteBlend,  FPC_RSV0,  1>;
 | |
| defm : SMWriteResPair<WriteMPSAD,  FPC_RSV0,  7>;
 | |
| 
 | |
| // String instructions.
 | |
| // Packed Compare Implicit Length Strings, Return Mask
 | |
| def : WriteRes<WritePCmpIStrM, [FPC_RSV0]> {
 | |
|   let Latency = 13;
 | |
|   let ResourceCycles = [13];
 | |
| }
 | |
| def : WriteRes<WritePCmpIStrMLd, [FPC_RSV0, MEC_RSV]> {
 | |
|   let Latency = 13;
 | |
|   let ResourceCycles = [13, 1];
 | |
| }
 | |
| 
 | |
| // Packed Compare Explicit Length Strings, Return Mask
 | |
| def : WriteRes<WritePCmpEStrM, [FPC_RSV0]> {
 | |
|   let Latency = 17;
 | |
|   let ResourceCycles = [17];
 | |
| }
 | |
| def : WriteRes<WritePCmpEStrMLd, [FPC_RSV0, MEC_RSV]> {
 | |
|   let Latency = 17;
 | |
|   let ResourceCycles = [17, 1];
 | |
| }
 | |
| 
 | |
| // Packed Compare Implicit Length Strings, Return Index
 | |
| def : WriteRes<WritePCmpIStrI, [FPC_RSV0]> {
 | |
|   let Latency = 17;
 | |
|   let ResourceCycles = [17];
 | |
| }
 | |
| def : WriteRes<WritePCmpIStrILd, [FPC_RSV0, MEC_RSV]> {
 | |
|   let Latency = 17;
 | |
|   let ResourceCycles = [17, 1];
 | |
| }
 | |
| 
 | |
| // Packed Compare Explicit Length Strings, Return Index
 | |
| def : WriteRes<WritePCmpEStrI, [FPC_RSV0]> {
 | |
|   let Latency = 21;
 | |
|   let ResourceCycles = [21];
 | |
| }
 | |
| def : WriteRes<WritePCmpEStrILd, [FPC_RSV0, MEC_RSV]> {
 | |
|   let Latency = 21;
 | |
|   let ResourceCycles = [21, 1];
 | |
| }
 | |
| 
 | |
| // AES Instructions.
 | |
| def : WriteRes<WriteAESDecEnc, [FPC_RSV0]> {
 | |
|   let Latency = 8;
 | |
|   let ResourceCycles = [5];
 | |
| }
 | |
| def : WriteRes<WriteAESDecEncLd, [FPC_RSV0, MEC_RSV]> {
 | |
|   let Latency = 8;
 | |
|   let ResourceCycles = [5, 1];
 | |
| }
 | |
| 
 | |
| def : WriteRes<WriteAESIMC, [FPC_RSV0]> {
 | |
|   let Latency = 8;
 | |
|   let ResourceCycles = [5];
 | |
| }
 | |
| def : WriteRes<WriteAESIMCLd, [FPC_RSV0, MEC_RSV]> {
 | |
|   let Latency = 8;
 | |
|   let ResourceCycles = [5, 1];
 | |
| }
 | |
| 
 | |
| def : WriteRes<WriteAESKeyGen, [FPC_RSV0]> {
 | |
|   let Latency = 8;
 | |
|   let ResourceCycles = [5];
 | |
| }
 | |
| def : WriteRes<WriteAESKeyGenLd, [FPC_RSV0, MEC_RSV]> {
 | |
|   let Latency = 8;
 | |
|   let ResourceCycles = [5, 1];
 | |
| }
 | |
| 
 | |
| // Carry-less multiplication instructions.
 | |
| def : WriteRes<WriteCLMul, [FPC_RSV0]> {
 | |
|   let Latency = 10;
 | |
|   let ResourceCycles = [10];
 | |
| }
 | |
| def : WriteRes<WriteCLMulLd, [FPC_RSV0, MEC_RSV]> {
 | |
|   let Latency = 10;
 | |
|   let ResourceCycles = [10, 1];
 | |
| }
 | |
| 
 | |
| 
 | |
| def : WriteRes<WriteSystem,     [FPC_RSV0]> { let Latency = 100; }
 | |
| def : WriteRes<WriteMicrocoded, [FPC_RSV0]> { let Latency = 100; }
 | |
| def : WriteRes<WriteFence, [MEC_RSV]>;
 | |
| def : WriteRes<WriteNop, []>;
 | |
| 
 | |
| // AVX is not supported on that architecture, but we should define the basic
 | |
| // scheduling resources anyway.
 | |
| def  : WriteRes<WriteIMulH, [FPC_RSV0]>;
 | |
| defm : SMWriteResPair<WriteVarBlend, FPC_RSV0, 1>;
 | |
| defm : SMWriteResPair<WriteFVarBlend, FPC_RSV0, 1>;
 | |
| defm : SMWriteResPair<WriteFShuffle256, FPC_RSV0,  1>;
 | |
| defm : SMWriteResPair<WriteShuffle256, FPC_RSV0,  1>;
 | |
| defm : SMWriteResPair<WriteVarVecShift, FPC_RSV0,  1>;
 | |
| } // SchedModel
 |