llvm-project/llvm/lib/Analysis/models/inlining/config.py

57 lines
1.3 KiB
Python

"""Inlining Training config."""
import tensorflow as tf
POLICY_DECISION_LABEL = 'inlining_decision'
POLICY_OUTPUT_SPEC = """
[
{
"logging_name": "inlining_decision",
"tensor_spec": {
"name": "StatefulPartitionedCall",
"port": 0,
"type": "int64_t",
"shape": [
1
]
}
}
]
"""
# pylint: disable=g-complex-comprehension
def get_input_signature():
"""Returns the list of features for LLVM inlining."""
# int64 features
inputs = [
tf.TensorSpec(dtype=tf.int64, shape=(), name=key) for key in [
'caller_basic_block_count', 'caller_conditionally_executed_blocks',
'caller_users', 'callee_basic_block_count',
'callee_conditionally_executed_blocks', 'callee_users',
'nr_ctant_params', 'node_count', 'edge_count', 'callsite_height',
'cost_estimate', 'inlining_default'
]
]
# float32 features
inputs.extend([
tf.TensorSpec(dtype=tf.float32, shape=(), name=key)
for key in ['discount', 'reward']
])
# int32 features
inputs.extend([
tf.TensorSpec(dtype=tf.int32, shape=(), name=key)
for key in ['step_type']
])
return inputs
def get_output_signature():
return POLICY_DECISION_LABEL
def get_output_spec():
return POLICY_OUTPUT_SPEC