llvm-project/llvm/lib/Target/CSKY/AsmParser/CSKYAsmParser.cpp

653 lines
20 KiB
C++

//===-- CSKYAsmParser.cpp - Parse CSKY assembly to MCInst instructions --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/CSKYMCExpr.h"
#include "MCTargetDesc/CSKYMCTargetDesc.h"
#include "TargetInfo/CSKYTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
namespace {
struct CSKYOperand;
class CSKYAsmParser : public MCTargetAsmParser {
bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
int64_t Lower, int64_t Upper, Twine Msg);
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) override;
// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "CSKYGenAsmMatcher.inc"
OperandMatchResultTy parseImmediate(OperandVector &Operands);
OperandMatchResultTy parseRegister(OperandVector &Operands);
OperandMatchResultTy parseBaseRegImm(OperandVector &Operands);
OperandMatchResultTy parseCSKYSymbol(OperandVector &Operands);
OperandMatchResultTy parseConstpoolSymbol(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
public:
enum CSKYMatchResultTy {
Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "CSKYGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
CSKYAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
};
/// Instances of this class represent a parsed machine instruction.
struct CSKYOperand : public MCParsedAsmOperand {
enum KindTy {
Token,
Register,
Immediate,
} Kind;
struct RegOp {
unsigned RegNum;
};
struct ImmOp {
const MCExpr *Val;
};
SMLoc StartLoc, EndLoc;
union {
StringRef Tok;
RegOp Reg;
ImmOp Imm;
};
CSKYOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
CSKYOperand(const CSKYOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case Register:
Reg = o.Reg;
break;
case Immediate:
Imm = o.Imm;
break;
case Token:
Tok = o.Tok;
break;
}
}
bool isToken() const override { return Kind == Token; }
bool isReg() const override { return Kind == Register; }
bool isImm() const override { return Kind == Immediate; }
bool isMem() const override { return false; }
static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm) {
if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
Imm = CE->getValue();
return true;
}
return false;
}
template <unsigned num, unsigned shift = 0> bool isUImm() const {
if (!isImm())
return false;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isShiftedUInt<num, shift>(Imm);
}
template <unsigned num> bool isOImm() const {
if (!isImm())
return false;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isUInt<num>(Imm - 1);
}
template <unsigned num, unsigned shift = 0> bool isSImm() const {
if (!isImm())
return false;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isShiftedInt<num, shift>(Imm);
}
bool isUImm2() const { return isUImm<2>(); }
bool isUImm5() const { return isUImm<5>(); }
bool isUImm12() const { return isUImm<12>(); }
bool isUImm16() const { return isUImm<16>(); }
bool isOImm12() const { return isOImm<12>(); }
bool isOImm16() const { return isOImm<16>(); }
bool isUImm12Shift1() { return isUImm<12, 1>(); }
bool isUImm12Shift2() { return isUImm<12, 2>(); }
bool isSImm16Shift1() { return isSImm<16, 1>(); }
bool isCSKYSymbol() const {
int64_t Imm;
// Must be of 'immediate' type but not a constant.
return isImm() && !evaluateConstantImm(getImm(), Imm);
}
bool isConstpoolSymbol() const {
int64_t Imm;
// Must be of 'immediate' type but not a constant.
return isImm() && !evaluateConstantImm(getImm(), Imm);
}
/// Gets location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// Gets location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
unsigned getReg() const override {
assert(Kind == Register && "Invalid type access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid type access!");
return Imm.Val;
}
StringRef getToken() const {
assert(Kind == Token && "Invalid type access!");
return Tok;
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case Immediate:
OS << *getImm();
break;
case Register:
OS << "<register x" << getReg() << ">";
break;
case Token:
OS << "'" << getToken() << "'";
break;
}
}
static std::unique_ptr<CSKYOperand> createToken(StringRef Str, SMLoc S) {
auto Op = std::make_unique<CSKYOperand>(Token);
Op->Tok = Str;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<CSKYOperand> createReg(unsigned RegNo, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<CSKYOperand>(Register);
Op->Reg.RegNum = RegNo;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<CSKYOperand> createImm(const MCExpr *Val, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<CSKYOperand>(Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
assert(Expr && "Expr shouldn't be null!");
if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
// Used by the TableGen Code.
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
};
} // end anonymous namespace.
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "CSKYGenAsmMatcher.inc"
static std::string CSKYMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
unsigned VariantID = 0);
bool CSKYAsmParser::generateImmOutOfRangeError(
OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
Twine Msg = "immediate must be an integer in the range") {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
}
bool CSKYAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
FeatureBitset MissingFeatures;
auto Result = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
MatchingInlineAsm);
switch (Result) {
default:
break;
case Match_Success:
Inst.setLoc(IDLoc);
Out.emitInstruction(Inst, getSTI());
return false;
case Match_MissingFeature: {
assert(MissingFeatures.any() && "Unknown missing features!");
ListSeparator LS;
std::string Msg = "instruction requires the following: ";
for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
if (MissingFeatures[i]) {
Msg += LS;
Msg += getSubtargetFeatureName(i);
}
}
return Error(IDLoc, Msg);
}
case Match_MnemonicFail: {
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
std::string Suggestion =
CSKYMnemonicSpellCheck(((CSKYOperand &)*Operands[0]).getToken(), FBS);
return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
}
case Match_InvalidTiedOperand:
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
}
// Handle the case when the error message is of specific type
// other than the generic Match_InvalidOperand, and the
// corresponding operand is missing.
if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U && ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
}
switch (Result) {
default:
break;
case Match_InvalidOImm12:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 12));
case Match_InvalidOImm16:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 16));
case Match_InvalidUImm2:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 2) - 1);
case Match_InvalidUImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidUImm12:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1);
case Match_InvalidUImm12Shift1:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 12) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm12Shift2:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 12) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm16:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 16) - 1);
case Match_InvalidCSKYSymbol: {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a symbol name");
}
case Match_InvalidConstpool: {
SMLoc ErrorLoc = ((CSKYOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a constpool symbol name");
}
}
llvm_unreachable("Unknown match type detected!");
}
// Attempts to match Name as a register (either using the default name or
// alternative ABI names), setting RegNo to the matching register. Upon
// failure, returns true and sets RegNo to 0.
static bool matchRegisterNameHelper(MCRegister &RegNo, StringRef Name) {
RegNo = MatchRegisterName(Name);
if (RegNo == CSKY::NoRegister)
RegNo = MatchRegisterAltName(Name);
return RegNo == CSKY::NoRegister;
}
bool CSKYAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
StringRef Name = getLexer().getTok().getIdentifier();
if (!matchRegisterNameHelper((MCRegister &)RegNo, Name)) {
getParser().Lex(); // Eat identifier token.
return false;
}
return Error(StartLoc, "invalid register name");
}
OperandMatchResultTy CSKYAsmParser::parseRegister(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::Identifier: {
StringRef Name = getLexer().getTok().getIdentifier();
MCRegister RegNo;
if (matchRegisterNameHelper((MCRegister &)RegNo, Name))
return MatchOperand_NoMatch;
getLexer().Lex();
Operands.push_back(CSKYOperand::createReg(RegNo, S, E));
return MatchOperand_Success;
}
}
}
OperandMatchResultTy CSKYAsmParser::parseBaseRegImm(OperandVector &Operands) {
assert(getLexer().is(AsmToken::LParen));
Operands.push_back(CSKYOperand::createToken("(", getLoc()));
auto Tok = getParser().Lex(); // Eat '('
if (parseRegister(Operands) != MatchOperand_Success) {
getLexer().UnLex(Tok);
Operands.pop_back();
return MatchOperand_ParseFail;
}
if (getLexer().isNot(AsmToken::Comma)) {
Error(getLoc(), "expected ','");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat ','
if (parseRegister(Operands) == MatchOperand_Success) {
if (getLexer().isNot(AsmToken::LessLess)) {
Error(getLoc(), "expected '<<'");
return MatchOperand_ParseFail;
}
Operands.push_back(CSKYOperand::createToken("<<", getLoc()));
getParser().Lex(); // Eat '<<'
if (parseImmediate(Operands) != MatchOperand_Success) {
Error(getLoc(), "expected imm");
return MatchOperand_ParseFail;
}
} else if (parseImmediate(Operands) != MatchOperand_Success) {
Error(getLoc(), "expected imm");
return MatchOperand_ParseFail;
}
if (getLexer().isNot(AsmToken::RParen)) {
Error(getLoc(), "expected ')'");
return MatchOperand_ParseFail;
}
Operands.push_back(CSKYOperand::createToken(")", getLoc()));
getParser().Lex(); // Eat ')'
return MatchOperand_Success;
}
OperandMatchResultTy CSKYAsmParser::parseImmediate(OperandVector &Operands) {
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::String:
break;
}
const MCExpr *IdVal;
SMLoc S = getLoc();
if (getParser().parseExpression(IdVal))
return MatchOperand_ParseFail;
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
Operands.push_back(CSKYOperand::createImm(IdVal, S, E));
return MatchOperand_Success;
}
/// Looks at a token type and creates the relevant operand from this
/// information, adding to Operands. If operand was parsed, returns false, else
/// true.
bool CSKYAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy Result =
MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
if (Result == MatchOperand_Success)
return false;
if (Result == MatchOperand_ParseFail)
return true;
// Attempt to parse token as register
if (parseRegister(Operands) == MatchOperand_Success)
return false;
// Attempt to parse token as (register, imm)
if (getLexer().is(AsmToken::LParen))
if (parseBaseRegImm(Operands) == MatchOperand_Success)
return false;
// Attempt to parse token as a imm.
if (parseImmediate(Operands) == MatchOperand_Success)
return false;
// Finally we have exhausted all options and must declare defeat.
Error(getLoc(), "unknown operand");
return true;
}
OperandMatchResultTy CSKYAsmParser::parseCSKYSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
if (getLexer().getKind() != AsmToken::Identifier)
return MatchOperand_NoMatch;
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
CSKYMCExpr::VariantKind Kind = CSKYMCExpr::VK_CSKY_None;
if (Identifier.consume_back("@GOT"))
Kind = CSKYMCExpr::VK_CSKY_GOT;
else if (Identifier.consume_back("@GOTOFF"))
Kind = CSKYMCExpr::VK_CSKY_GOTOFF;
else if (Identifier.consume_back("@PLT"))
Kind = CSKYMCExpr::VK_CSKY_PLT;
else if (Identifier.consume_back("@GOTPC"))
Kind = CSKYMCExpr::VK_CSKY_GOTPC;
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
const MCExpr *Res =
MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
if (Kind != CSKYMCExpr::VK_CSKY_None)
Res = CSKYMCExpr::create(Res, Kind, getContext());
Operands.push_back(CSKYOperand::createImm(Res, S, E));
return MatchOperand_Success;
}
OperandMatchResultTy
CSKYAsmParser::parseConstpoolSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
if (getLexer().getKind() != AsmToken::LBrac)
return MatchOperand_NoMatch;
getLexer().Lex(); // Eat '['.
if (getLexer().getKind() != AsmToken::Identifier)
return MatchOperand_NoMatch;
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
if (getLexer().getKind() != AsmToken::RBrac)
return MatchOperand_NoMatch;
getLexer().Lex(); // Eat ']'.
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
const MCExpr *Res =
MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
Operands.push_back(CSKYOperand::createImm(Res, S, E));
return MatchOperand_Success;
}
bool CSKYAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
// First operand is token for instruction.
Operands.push_back(CSKYOperand::createToken(Name, NameLoc));
// If there are no more operands, then finish.
if (getLexer().is(AsmToken::EndOfStatement))
return false;
// Parse first operand.
if (parseOperand(Operands, Name))
return true;
// Parse until end of statement, consuming commas between operands.
while (getLexer().is(AsmToken::Comma)) {
// Consume comma token.
getLexer().Lex();
// Parse next operand.
if (parseOperand(Operands, Name))
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
getParser().eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
getParser().Lex(); // Consume the EndOfStatement.
return false;
}
OperandMatchResultTy CSKYAsmParser::tryParseRegister(unsigned &RegNo,
SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
StringRef Name = getLexer().getTok().getIdentifier();
if (matchRegisterNameHelper((MCRegister &)RegNo, Name))
return MatchOperand_NoMatch;
getParser().Lex(); // Eat identifier token.
return MatchOperand_Success;
}
bool CSKYAsmParser::ParseDirective(AsmToken DirectiveID) { return true; }
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeCSKYAsmParser() {
RegisterMCAsmParser<CSKYAsmParser> X(getTheCSKYTarget());
}