277 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			277 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- WriteInst.cpp - Functions for writing instructions -------*- C++ -*--=//
 | 
						|
//
 | 
						|
// This file implements the routines for encoding instruction opcodes to a 
 | 
						|
// bytecode stream.
 | 
						|
//
 | 
						|
// Note that the performance of this library is not terribly important, because
 | 
						|
// it shouldn't be used by JIT type applications... so it is not a huge focus
 | 
						|
// at least.  :)
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "WriterInternals.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
static Statistic<> 
 | 
						|
NumInstrs("bytecodewriter", "Number of instructions");
 | 
						|
 | 
						|
typedef unsigned char uchar;
 | 
						|
 | 
						|
// outputInstructionFormat0 - Output those wierd instructions that have a large
 | 
						|
// number of operands or have large operands themselves...
 | 
						|
//
 | 
						|
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
 | 
						|
//
 | 
						|
static void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
 | 
						|
				     const SlotCalculator &Table,
 | 
						|
				     unsigned Type, std::deque<uchar> &Out) {
 | 
						|
  // Opcode must have top two bits clear...
 | 
						|
  output_vbr(Opcode << 2, Out);                  // Instruction Opcode ID
 | 
						|
  output_vbr(Type, Out);                         // Result type
 | 
						|
 | 
						|
  unsigned NumArgs = I->getNumOperands();
 | 
						|
  output_vbr(NumArgs + (isa<CastInst>(I) || isa<VarArgInst>(I)), Out);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumArgs; ++i) {
 | 
						|
    int Slot = Table.getValSlot(I->getOperand(i));
 | 
						|
    assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    output_vbr((unsigned)Slot, Out);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<CastInst>(I) || isa<VarArgInst>(I)) {
 | 
						|
    int Slot = Table.getValSlot(I->getType());
 | 
						|
    assert(Slot != -1 && "Cast/VarArg return type unknown?");
 | 
						|
    output_vbr((unsigned)Slot, Out);
 | 
						|
  }
 | 
						|
 | 
						|
  align32(Out);    // We must maintain correct alignment!
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstrVarArgsCall - Output the obsurdly annoying varargs function calls.
 | 
						|
// This are more annoying than most because the signature of the call does not
 | 
						|
// tell us anything about the types of the arguments in the varargs portion.
 | 
						|
// Because of this, we encode (as type 0) all of the argument types explicitly
 | 
						|
// before the argument value.  This really sucks, but you shouldn't be using
 | 
						|
// varargs functions in your code! *death to printf*!
 | 
						|
//
 | 
						|
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
 | 
						|
//
 | 
						|
static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode,
 | 
						|
				   const SlotCalculator &Table, unsigned Type,
 | 
						|
				   std::deque<uchar> &Out) {
 | 
						|
  assert(isa<CallInst>(I) || isa<InvokeInst>(I));
 | 
						|
  // Opcode must have top two bits clear...
 | 
						|
  output_vbr(Opcode << 2, Out);                  // Instruction Opcode ID
 | 
						|
  output_vbr(Type, Out);                         // Result type (varargs type)
 | 
						|
 | 
						|
  unsigned NumArgs = I->getNumOperands();
 | 
						|
  output_vbr(NumArgs*2, Out);
 | 
						|
  // TODO: Don't need to emit types for the fixed types of the varargs function
 | 
						|
  // prototype...
 | 
						|
 | 
						|
  // The type for the function has already been emitted in the type field of the
 | 
						|
  // instruction.  Just emit the slot # now.
 | 
						|
  int Slot = Table.getValSlot(I->getOperand(0));
 | 
						|
  assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
  output_vbr((unsigned)Slot, Out);
 | 
						|
 | 
						|
  // Output a dummy field to fill Arg#2 in the reader that is currently unused
 | 
						|
  // for varargs calls.  This is a gross hack to make the code simpler, but we
 | 
						|
  // aren't really doing very small bytecode for varargs calls anyways.
 | 
						|
  // FIXME in the future: Smaller bytecode for varargs calls
 | 
						|
  output_vbr(0, Out);
 | 
						|
 | 
						|
  for (unsigned i = 1; i < NumArgs; ++i) {
 | 
						|
    // Output Arg Type ID
 | 
						|
    Slot = Table.getValSlot(I->getOperand(i)->getType());
 | 
						|
    assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    output_vbr((unsigned)Slot, Out);
 | 
						|
 | 
						|
    // Output arg ID itself
 | 
						|
    Slot = Table.getValSlot(I->getOperand(i));
 | 
						|
    assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    output_vbr((unsigned)Slot, Out);
 | 
						|
  }
 | 
						|
  align32(Out);    // We must maintain correct alignment!
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstructionFormat1 - Output one operand instructions, knowing that no
 | 
						|
// operand index is >= 2^12.
 | 
						|
//
 | 
						|
static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
 | 
						|
				     const SlotCalculator &Table, int *Slots,
 | 
						|
				     unsigned Type, std::deque<uchar> &Out) {
 | 
						|
  // bits   Instruction format:
 | 
						|
  // --------------------------
 | 
						|
  // 01-00: Opcode type, fixed to 1.
 | 
						|
  // 07-02: Opcode
 | 
						|
  // 19-08: Resulting type plane
 | 
						|
  // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
 | 
						|
  //
 | 
						|
  unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20);
 | 
						|
  //  cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl;
 | 
						|
  output(Bits, Out);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstructionFormat2 - Output two operand instructions, knowing that no
 | 
						|
// operand index is >= 2^8.
 | 
						|
//
 | 
						|
static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
 | 
						|
				     const SlotCalculator &Table, int *Slots,
 | 
						|
				     unsigned Type, std::deque<uchar> &Out) {
 | 
						|
  // bits   Instruction format:
 | 
						|
  // --------------------------
 | 
						|
  // 01-00: Opcode type, fixed to 2.
 | 
						|
  // 07-02: Opcode
 | 
						|
  // 15-08: Resulting type plane
 | 
						|
  // 23-16: Operand #1
 | 
						|
  // 31-24: Operand #2  
 | 
						|
  //
 | 
						|
  unsigned Bits = 2 | (Opcode << 2) | (Type << 8) |
 | 
						|
                    (Slots[0] << 16) | (Slots[1] << 24);
 | 
						|
  //  cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " 
 | 
						|
  //       << Slots[1] << endl;
 | 
						|
  output(Bits, Out);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstructionFormat3 - Output three operand instructions, knowing that no
 | 
						|
// operand index is >= 2^6.
 | 
						|
//
 | 
						|
static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
 | 
						|
				     const SlotCalculator &Table, int *Slots,
 | 
						|
				     unsigned Type, std::deque<uchar> &Out) {
 | 
						|
  // bits   Instruction format:
 | 
						|
  // --------------------------
 | 
						|
  // 01-00: Opcode type, fixed to 3.
 | 
						|
  // 07-02: Opcode
 | 
						|
  // 13-08: Resulting type plane
 | 
						|
  // 19-14: Operand #1
 | 
						|
  // 25-20: Operand #2
 | 
						|
  // 31-26: Operand #3
 | 
						|
  //
 | 
						|
  unsigned Bits = 3 | (Opcode << 2) | (Type << 8) |
 | 
						|
          (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26);
 | 
						|
  //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " 
 | 
						|
  //     << Slots[1] << " " << Slots[2] << endl;
 | 
						|
  output(Bits, Out);
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::processInstruction(const Instruction &I) {
 | 
						|
  assert(I.getOpcode() < 62 && "Opcode too big???");
 | 
						|
  unsigned Opcode = I.getOpcode();
 | 
						|
 | 
						|
  // Encode 'volatile load' as 62 and 'volatile store' as 63.
 | 
						|
  if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
 | 
						|
    Opcode = 62;
 | 
						|
  if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
 | 
						|
    Opcode = 63;
 | 
						|
 | 
						|
  unsigned NumOperands = I.getNumOperands();
 | 
						|
  int MaxOpSlot = 0;
 | 
						|
  int Slots[3]; Slots[0] = (1 << 12)-1;   // Marker to signify 0 operands
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumOperands; ++i) {
 | 
						|
    const Value *Def = I.getOperand(i);
 | 
						|
    int slot = Table.getValSlot(Def);
 | 
						|
    assert(slot != -1 && "Broken bytecode!");
 | 
						|
    if (slot > MaxOpSlot) MaxOpSlot = slot;
 | 
						|
    if (i < 3) Slots[i] = slot;
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out which type to encode with the instruction.  Typically we want
 | 
						|
  // the type of the first parameter, as opposed to the type of the instruction
 | 
						|
  // (for example, with setcc, we always know it returns bool, but the type of
 | 
						|
  // the first param is actually interesting).  But if we have no arguments
 | 
						|
  // we take the type of the instruction itself.  
 | 
						|
  //
 | 
						|
  const Type *Ty;
 | 
						|
  switch (I.getOpcode()) {
 | 
						|
  case Instruction::Malloc:
 | 
						|
  case Instruction::Alloca:
 | 
						|
    Ty = I.getType();  // Malloc & Alloca ALWAYS want to encode the return type
 | 
						|
    break;
 | 
						|
  case Instruction::Store:
 | 
						|
    Ty = I.getOperand(1)->getType();  // Encode the pointer type...
 | 
						|
    assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
 | 
						|
    break;
 | 
						|
  default:              // Otherwise use the default behavior...
 | 
						|
    Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Type;
 | 
						|
  int Slot = Table.getValSlot(Ty);
 | 
						|
  assert(Slot != -1 && "Type not available!!?!");
 | 
						|
  Type = (unsigned)Slot;
 | 
						|
 | 
						|
  // Make sure that we take the type number into consideration.  We don't want
 | 
						|
  // to overflow the field size for the instruction format we select.
 | 
						|
  //
 | 
						|
  if (Slot > MaxOpSlot) MaxOpSlot = Slot;
 | 
						|
 | 
						|
  // Handle the special case for cast...
 | 
						|
  if (isa<CastInst>(I) || isa<VarArgInst>(I)) {
 | 
						|
    // Cast has to encode the destination type as the second argument in the
 | 
						|
    // packet, or else we won't know what type to cast to!
 | 
						|
    Slots[1] = Table.getValSlot(I.getType());
 | 
						|
    assert(Slots[1] != -1 && "Cast return type unknown?");
 | 
						|
    if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
 | 
						|
    NumOperands++;
 | 
						|
  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)){// Handle VarArg calls
 | 
						|
    const PointerType *Ty = cast<PointerType>(CI->getCalledValue()->getType());
 | 
						|
    if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
 | 
						|
      outputInstrVarArgsCall(CI, Opcode, Table, Type, Out);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {// ...  & Invokes
 | 
						|
    const PointerType *Ty = cast<PointerType>(II->getCalledValue()->getType());
 | 
						|
    if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
 | 
						|
      outputInstrVarArgsCall(II, Opcode, Table, Type, Out);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ++NumInstrs;
 | 
						|
 | 
						|
  // Decide which instruction encoding to use.  This is determined primarily by
 | 
						|
  // the number of operands, and secondarily by whether or not the max operand
 | 
						|
  // will fit into the instruction encoding.  More operands == fewer bits per
 | 
						|
  // operand.
 | 
						|
  //
 | 
						|
  switch (NumOperands) {
 | 
						|
  case 0:
 | 
						|
  case 1:
 | 
						|
    if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
 | 
						|
      outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case 2:
 | 
						|
    if (MaxOpSlot < (1 << 8)) {
 | 
						|
      outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case 3:
 | 
						|
    if (MaxOpSlot < (1 << 6)) {
 | 
						|
      outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we weren't handled before here, we either have a large number of
 | 
						|
  // operands or a large operand index that we are refering to.
 | 
						|
  outputInstructionFormat0(&I, Opcode, Table, Type, Out);
 | 
						|
}
 |