1216 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1216 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a basic region store model. In this model, we do have field
 | 
						|
// sensitivity. But we assume nothing about the heap shape. So recursive data
 | 
						|
// structures are largely ignored. Basically we do 1-limiting analysis.
 | 
						|
// Parameter pointers are assumed with no aliasing. Pointee objects of
 | 
						|
// parameters are created lazily.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#include "clang/Analysis/PathSensitive/MemRegion.h"
 | 
						|
#include "clang/Analysis/PathSensitive/GRState.h"
 | 
						|
#include "clang/Analysis/PathSensitive/GRStateTrait.h"
 | 
						|
#include "clang/Analysis/Analyses/LiveVariables.h"
 | 
						|
 | 
						|
#include "llvm/ADT/ImmutableMap.h"
 | 
						|
#include "llvm/ADT/ImmutableList.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
// Actual Store type.
 | 
						|
typedef llvm::ImmutableMap<const MemRegion*, SVal> RegionBindingsTy;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Region "Views"
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  MemRegions can be layered on top of each other.  This GDM entry tracks
 | 
						|
//  what are the MemRegions that layer a given MemRegion.
 | 
						|
//
 | 
						|
typedef llvm::ImmutableSet<const MemRegion*> RegionViews;
 | 
						|
namespace { class VISIBILITY_HIDDEN RegionViewMap {}; }
 | 
						|
static int RegionViewMapIndex = 0;
 | 
						|
namespace clang {
 | 
						|
  template<> struct GRStateTrait<RegionViewMap> 
 | 
						|
    : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*,
 | 
						|
                                                    RegionViews> > {
 | 
						|
                                                      
 | 
						|
    static void* GDMIndex() { return &RegionViewMapIndex; }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Region "Extents"
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  MemRegions represent chunks of memory with a size (their "extent").  This
 | 
						|
//  GDM entry tracks the extents for regions.  Extents are in bytes.
 | 
						|
//
 | 
						|
namespace { class VISIBILITY_HIDDEN RegionExtents {}; }
 | 
						|
static int RegionExtentsIndex = 0;
 | 
						|
namespace clang {
 | 
						|
  template<> struct GRStateTrait<RegionExtents>
 | 
						|
    : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, SVal> > {
 | 
						|
    static void* GDMIndex() { return &RegionExtentsIndex; }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Region "killsets".
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// RegionStore lazily adds value bindings to regions when the analyzer handles
 | 
						|
//  assignment statements.  Killsets track which default values have been
 | 
						|
//  killed, thus distinguishing between "unknown" values and default
 | 
						|
//  values. Regions are added to killset only when they are assigned "unknown"
 | 
						|
//  directly, otherwise we should have their value in the region bindings.
 | 
						|
//
 | 
						|
namespace { class VISIBILITY_HIDDEN RegionKills {}; }
 | 
						|
static int RegionKillsIndex = 0;
 | 
						|
namespace clang {
 | 
						|
  template<> struct GRStateTrait<RegionKills>
 | 
						|
  : public GRStatePartialTrait< llvm::ImmutableSet<const MemRegion*> > {
 | 
						|
    static void* GDMIndex() { return &RegionKillsIndex; }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Regions with default values.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This GDM entry tracks what regions have a default value if they have no bound
 | 
						|
// value and have not been killed.
 | 
						|
//
 | 
						|
namespace { class VISIBILITY_HIDDEN RegionDefaultValue {}; }
 | 
						|
static int RegionDefaultValueIndex = 0;
 | 
						|
namespace clang {
 | 
						|
 template<> struct GRStateTrait<RegionDefaultValue>
 | 
						|
   : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, SVal> > {
 | 
						|
   static void* GDMIndex() { return &RegionDefaultValueIndex; }
 | 
						|
 };
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Main RegionStore logic.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class VISIBILITY_HIDDEN RegionStoreSubRegionMap : public SubRegionMap {
 | 
						|
  typedef llvm::DenseMap<const MemRegion*,
 | 
						|
                         llvm::ImmutableSet<const MemRegion*> > Map;
 | 
						|
  
 | 
						|
  llvm::ImmutableSet<const MemRegion*>::Factory F;
 | 
						|
  Map M;
 | 
						|
 | 
						|
public:
 | 
						|
  void add(const MemRegion* Parent, const MemRegion* SubRegion) {
 | 
						|
    Map::iterator I = M.find(Parent);
 | 
						|
    M.insert(std::make_pair(Parent, 
 | 
						|
             F.Add(I == M.end() ? F.GetEmptySet() : I->second, SubRegion)));
 | 
						|
  }
 | 
						|
    
 | 
						|
  ~RegionStoreSubRegionMap() {}
 | 
						|
  
 | 
						|
  bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
 | 
						|
    Map::iterator I = M.find(Parent);
 | 
						|
 | 
						|
    if (I == M.end())
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    llvm::ImmutableSet<const MemRegion*> S = I->second;
 | 
						|
    for (llvm::ImmutableSet<const MemRegion*>::iterator SI=S.begin(),SE=S.end();
 | 
						|
         SI != SE; ++SI) {
 | 
						|
      if (!V.Visit(Parent, *SI))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};  
 | 
						|
 | 
						|
class VISIBILITY_HIDDEN RegionStoreManager : public StoreManager {
 | 
						|
  RegionBindingsTy::Factory RBFactory;
 | 
						|
  RegionViews::Factory RVFactory;
 | 
						|
 | 
						|
  GRStateManager& StateMgr;
 | 
						|
  const MemRegion* SelfRegion;
 | 
						|
  const ImplicitParamDecl *SelfDecl;
 | 
						|
 | 
						|
public:
 | 
						|
  RegionStoreManager(GRStateManager& mgr) 
 | 
						|
    : StoreManager(mgr.getAllocator()),
 | 
						|
      RBFactory(mgr.getAllocator()),
 | 
						|
      RVFactory(mgr.getAllocator()),
 | 
						|
      StateMgr(mgr), SelfRegion(0), SelfDecl(0) {
 | 
						|
    if (const ObjCMethodDecl* MD =
 | 
						|
          dyn_cast<ObjCMethodDecl>(&StateMgr.getCodeDecl()))
 | 
						|
      SelfDecl = MD->getSelfDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  virtual ~RegionStoreManager() {}
 | 
						|
 | 
						|
  MemRegionManager& getRegionManager() { return MRMgr; }
 | 
						|
  
 | 
						|
  SubRegionMap* getSubRegionMap(const GRState *state);
 | 
						|
  
 | 
						|
  const GRState* BindCompoundLiteral(const GRState* St, 
 | 
						|
                                     const CompoundLiteralExpr* CL, SVal V);
 | 
						|
 | 
						|
  /// getLValueString - Returns an SVal representing the lvalue of a
 | 
						|
  ///  StringLiteral.  Within RegionStore a StringLiteral has an
 | 
						|
  ///  associated StringRegion, and the lvalue of a StringLiteral is
 | 
						|
  ///  the lvalue of that region.
 | 
						|
  SVal getLValueString(const GRState* St, const StringLiteral* S);
 | 
						|
 | 
						|
  /// getLValueCompoundLiteral - Returns an SVal representing the
 | 
						|
  ///   lvalue of a compound literal.  Within RegionStore a compound
 | 
						|
  ///   literal has an associated region, and the lvalue of the
 | 
						|
  ///   compound literal is the lvalue of that region.
 | 
						|
  SVal getLValueCompoundLiteral(const GRState* St, const CompoundLiteralExpr*);
 | 
						|
 | 
						|
  /// getLValueVar - Returns an SVal that represents the lvalue of a
 | 
						|
  ///  variable.  Within RegionStore a variable has an associated
 | 
						|
  ///  VarRegion, and the lvalue of the variable is the lvalue of that region.
 | 
						|
  SVal getLValueVar(const GRState* St, const VarDecl* VD);
 | 
						|
  
 | 
						|
  SVal getLValueIvar(const GRState* St, const ObjCIvarDecl* D, SVal Base);
 | 
						|
 | 
						|
  SVal getLValueField(const GRState* St, SVal Base, const FieldDecl* D);
 | 
						|
  
 | 
						|
  SVal getLValueFieldOrIvar(const GRState* St, SVal Base, const Decl* D);
 | 
						|
 | 
						|
  SVal getLValueElement(const GRState* St, SVal Base, SVal Offset);
 | 
						|
 | 
						|
  SVal getSizeInElements(const GRState* St, const MemRegion* R);
 | 
						|
 | 
						|
  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
 | 
						|
  ///  type.  'Array' represents the lvalue of the array being decayed
 | 
						|
  ///  to a pointer, and the returned SVal represents the decayed
 | 
						|
  ///  version of that lvalue (i.e., a pointer to the first element of
 | 
						|
  ///  the array).  This is called by GRExprEngine when evaluating
 | 
						|
  ///  casts from arrays to pointers.
 | 
						|
  SVal ArrayToPointer(SVal Array);
 | 
						|
 | 
						|
  /// CastRegion - Used by GRExprEngine::VisitCast to handle casts from
 | 
						|
  ///  a MemRegion* to a specific location type.  'R' is the region being
 | 
						|
  ///  casted and 'CastToTy' the result type of the cast.  
 | 
						|
  CastResult CastRegion(const GRState* state, const MemRegion* R,
 | 
						|
                        QualType CastToTy);
 | 
						|
 | 
						|
  SVal EvalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R);
 | 
						|
 | 
						|
  /// The high level logic for this method is this:
 | 
						|
  /// Retrieve (L)
 | 
						|
  ///   if L has binding
 | 
						|
  ///     return L's binding
 | 
						|
  ///   else if L is in killset
 | 
						|
  ///     return unknown
 | 
						|
  ///   else
 | 
						|
  ///     if L is on stack or heap
 | 
						|
  ///       return undefined
 | 
						|
  ///     else
 | 
						|
  ///       return symbolic
 | 
						|
  SVal Retrieve(const GRState* state, Loc L, QualType T = QualType());
 | 
						|
 | 
						|
  const GRState* Bind(const GRState* St, Loc LV, SVal V);
 | 
						|
 | 
						|
  Store Remove(Store store, Loc LV);
 | 
						|
 | 
						|
  Store getInitialStore() { return RBFactory.GetEmptyMap().getRoot(); }
 | 
						|
  
 | 
						|
  /// getSelfRegion - Returns the region for the 'self' (Objective-C) or
 | 
						|
  ///  'this' object (C++).  When used when analyzing a normal function this
 | 
						|
  ///  method returns NULL.
 | 
						|
  const MemRegion* getSelfRegion(Store) {
 | 
						|
    if (!SelfDecl)
 | 
						|
      return 0;
 | 
						|
    
 | 
						|
    if (!SelfRegion) {
 | 
						|
      const ObjCMethodDecl *MD = cast<ObjCMethodDecl>(&StateMgr.getCodeDecl());
 | 
						|
      SelfRegion = MRMgr.getObjCObjectRegion(MD->getClassInterface(),
 | 
						|
                                             MRMgr.getHeapRegion());
 | 
						|
    }
 | 
						|
    
 | 
						|
    return SelfRegion;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values.
 | 
						|
  ///  It returns a new Store with these values removed, and populates LSymbols
 | 
						|
  //   and DSymbols with the known set of live and dead symbols respectively.
 | 
						|
  Store RemoveDeadBindings(const GRState* state, Stmt* Loc,
 | 
						|
                           SymbolReaper& SymReaper,
 | 
						|
                           llvm::SmallVectorImpl<const MemRegion*>& RegionRoots);
 | 
						|
 | 
						|
  const GRState* BindDecl(const GRState* St, const VarDecl* VD, SVal InitVal);
 | 
						|
 | 
						|
  const GRState* BindDeclWithNoInit(const GRState* St, const VarDecl* VD) {
 | 
						|
    return St;
 | 
						|
  }
 | 
						|
 | 
						|
  const GRState* setExtent(const GRState* St, const MemRegion* R, SVal Extent);
 | 
						|
 | 
						|
  static inline RegionBindingsTy GetRegionBindings(Store store) {
 | 
						|
   return RegionBindingsTy(static_cast<const RegionBindingsTy::TreeTy*>(store));
 | 
						|
  }
 | 
						|
 | 
						|
  void print(Store store, std::ostream& Out, const char* nl, const char *sep);
 | 
						|
 | 
						|
  void iterBindings(Store store, BindingsHandler& f) {
 | 
						|
    // FIXME: Implement.
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  Loc getVarLoc(const VarDecl* VD) {
 | 
						|
    return loc::MemRegionVal(MRMgr.getVarRegion(VD));
 | 
						|
  }
 | 
						|
 | 
						|
  const GRState* BindArray(const GRState* St, const TypedRegion* R, SVal V);
 | 
						|
 | 
						|
  /// Retrieve the values in a struct and return a CompoundVal, used when doing
 | 
						|
  /// struct copy: 
 | 
						|
  /// struct s x, y; 
 | 
						|
  /// x = y;
 | 
						|
  /// y's value is retrieved by this method.
 | 
						|
  SVal RetrieveStruct(const GRState* St, const TypedRegion* R);
 | 
						|
 | 
						|
  const GRState* BindStruct(const GRState* St, const TypedRegion* R, SVal V);
 | 
						|
 | 
						|
  /// KillStruct - Set the entire struct to unknown. 
 | 
						|
  const GRState* KillStruct(const GRState* St, const TypedRegion* R);
 | 
						|
 | 
						|
  // Utility methods.
 | 
						|
  BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); }
 | 
						|
  ASTContext& getContext() { return StateMgr.getContext(); }
 | 
						|
  SymbolManager& getSymbolManager() { return StateMgr.getSymbolManager(); }
 | 
						|
 | 
						|
  const GRState* AddRegionView(const GRState* St,
 | 
						|
                               const MemRegion* View, const MemRegion* Base);
 | 
						|
  const GRState* RemoveRegionView(const GRState* St,
 | 
						|
                                  const MemRegion* View, const MemRegion* Base);
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
StoreManager* clang::CreateRegionStoreManager(GRStateManager& StMgr) {
 | 
						|
  return new RegionStoreManager(StMgr);
 | 
						|
}
 | 
						|
 | 
						|
SubRegionMap* RegionStoreManager::getSubRegionMap(const GRState *state) {
 | 
						|
  RegionBindingsTy B = GetRegionBindings(state->getStore());
 | 
						|
  RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
 | 
						|
  
 | 
						|
  for (RegionBindingsTy::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
 | 
						|
    if (const SubRegion* R = dyn_cast<SubRegion>(I.getKey()))
 | 
						|
      M->add(R->getSuperRegion(), R);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return M;
 | 
						|
}
 | 
						|
 | 
						|
/// getLValueString - Returns an SVal representing the lvalue of a
 | 
						|
///  StringLiteral.  Within RegionStore a StringLiteral has an
 | 
						|
///  associated StringRegion, and the lvalue of a StringLiteral is the
 | 
						|
///  lvalue of that region.
 | 
						|
SVal RegionStoreManager::getLValueString(const GRState* St, 
 | 
						|
                                         const StringLiteral* S) {
 | 
						|
  return loc::MemRegionVal(MRMgr.getStringRegion(S));
 | 
						|
}
 | 
						|
 | 
						|
/// getLValueVar - Returns an SVal that represents the lvalue of a
 | 
						|
///  variable.  Within RegionStore a variable has an associated
 | 
						|
///  VarRegion, and the lvalue of the variable is the lvalue of that region.
 | 
						|
SVal RegionStoreManager::getLValueVar(const GRState* St, const VarDecl* VD) {
 | 
						|
  return loc::MemRegionVal(MRMgr.getVarRegion(VD));
 | 
						|
}
 | 
						|
 | 
						|
/// getLValueCompoundLiteral - Returns an SVal representing the lvalue
 | 
						|
///   of a compound literal.  Within RegionStore a compound literal
 | 
						|
///   has an associated region, and the lvalue of the compound literal
 | 
						|
///   is the lvalue of that region.
 | 
						|
SVal
 | 
						|
RegionStoreManager::getLValueCompoundLiteral(const GRState* St,
 | 
						|
					     const CompoundLiteralExpr* CL) {
 | 
						|
  return loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL));
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getLValueIvar(const GRState* St, const ObjCIvarDecl* D,
 | 
						|
                                       SVal Base) {
 | 
						|
  return getLValueFieldOrIvar(St, Base, D);
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getLValueField(const GRState* St, SVal Base,
 | 
						|
                                        const FieldDecl* D) {
 | 
						|
  return getLValueFieldOrIvar(St, Base, D);
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getLValueFieldOrIvar(const GRState* St, SVal Base,
 | 
						|
                                              const Decl* D) {
 | 
						|
  if (Base.isUnknownOrUndef())
 | 
						|
    return Base;
 | 
						|
 | 
						|
  Loc BaseL = cast<Loc>(Base);
 | 
						|
  const MemRegion* BaseR = 0;
 | 
						|
 | 
						|
  switch (BaseL.getSubKind()) {
 | 
						|
  case loc::MemRegionKind:
 | 
						|
    BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
 | 
						|
    break;
 | 
						|
 | 
						|
  case loc::SymbolValKind:
 | 
						|
    BaseR = MRMgr.getSymbolicRegion(cast<loc::SymbolVal>(&BaseL)->getSymbol(),
 | 
						|
                                    StateMgr.getSymbolManager());
 | 
						|
    break;
 | 
						|
  
 | 
						|
  case loc::GotoLabelKind:
 | 
						|
  case loc::FuncValKind:
 | 
						|
    // These are anormal cases. Flag an undefined value.
 | 
						|
    return UndefinedVal();
 | 
						|
 | 
						|
  case loc::ConcreteIntKind:
 | 
						|
    // While these seem funny, this can happen through casts.
 | 
						|
    // FIXME: What we should return is the field offset.  For example,
 | 
						|
    //  add the field offset to the integer value.  That way funny things
 | 
						|
    //  like this work properly:  &(((struct foo *) 0xa)->f)
 | 
						|
    return Base;
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(0 && "Unhandled Base.");
 | 
						|
    return Base;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
 | 
						|
  // of FieldDecl.
 | 
						|
  if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
 | 
						|
    return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
 | 
						|
 | 
						|
  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getLValueElement(const GRState* St, 
 | 
						|
                                          SVal Base, SVal Offset) {
 | 
						|
 | 
						|
  // If the base is an unknown or undefined value, just return it back.
 | 
						|
  // FIXME: For absolute pointer addresses, we just return that value back as
 | 
						|
  //  well, although in reality we should return the offset added to that
 | 
						|
  //  value.
 | 
						|
  if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
 | 
						|
    return Base;
 | 
						|
 | 
						|
  // Only handle integer offsets... for now.
 | 
						|
  if (!isa<nonloc::ConcreteInt>(Offset))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  const TypedRegion* BaseRegion = 0;
 | 
						|
 | 
						|
  if (isa<loc::SymbolVal>(Base))
 | 
						|
    BaseRegion = MRMgr.getSymbolicRegion(cast<loc::SymbolVal>(Base).getSymbol(),
 | 
						|
                                         StateMgr.getSymbolManager());
 | 
						|
  else
 | 
						|
    BaseRegion = cast<TypedRegion>(cast<loc::MemRegionVal>(Base).getRegion());
 | 
						|
 | 
						|
  // Pointer of any type can be cast and used as array base.
 | 
						|
  const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
 | 
						|
  
 | 
						|
  if (!ElemR) {
 | 
						|
    //
 | 
						|
    // If the base region is not an ElementRegion, create one.
 | 
						|
    // This can happen in the following example:
 | 
						|
    //
 | 
						|
    //   char *p = __builtin_alloc(10);
 | 
						|
    //   p[1] = 8;
 | 
						|
    //
 | 
						|
    //  Observe that 'p' binds to an TypedViewRegion<AllocaRegion>.
 | 
						|
    //
 | 
						|
 | 
						|
    // Offset might be unsigned. We have to convert it to signed ConcreteInt.
 | 
						|
    if (nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&Offset)) {
 | 
						|
      const llvm::APSInt& OffI = CI->getValue();
 | 
						|
      if (OffI.isUnsigned()) {
 | 
						|
        llvm::APSInt Tmp = OffI;
 | 
						|
        Tmp.setIsSigned(true);
 | 
						|
        Offset = NonLoc::MakeVal(getBasicVals(), Tmp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return loc::MemRegionVal(MRMgr.getElementRegion(Offset, BaseRegion));
 | 
						|
  }
 | 
						|
  
 | 
						|
  SVal BaseIdx = ElemR->getIndex();
 | 
						|
  
 | 
						|
  if (!isa<nonloc::ConcreteInt>(BaseIdx))
 | 
						|
    return UnknownVal();
 | 
						|
  
 | 
						|
  const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
 | 
						|
  const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
 | 
						|
  assert(BaseIdxI.isSigned());
 | 
						|
  
 | 
						|
  // FIXME: This appears to be the assumption of this code.  We should review
 | 
						|
  // whether or not BaseIdxI.getBitWidth() < OffI.getBitWidth().  If it
 | 
						|
  // can't we need to put a comment here.  If it can, we should handle it.
 | 
						|
  assert(BaseIdxI.getBitWidth() >= OffI.getBitWidth());
 | 
						|
 | 
						|
  const TypedRegion *ArrayR = ElemR->getArrayRegion();
 | 
						|
  SVal NewIdx;
 | 
						|
  
 | 
						|
  if (OffI.isUnsigned() || OffI.getBitWidth() < BaseIdxI.getBitWidth()) {
 | 
						|
    // 'Offset' might be unsigned.  We have to convert it to signed and
 | 
						|
    // possibly extend it.
 | 
						|
    llvm::APSInt Tmp = OffI;
 | 
						|
    
 | 
						|
    if (OffI.getBitWidth() < BaseIdxI.getBitWidth())
 | 
						|
        Tmp.extend(BaseIdxI.getBitWidth());
 | 
						|
    
 | 
						|
    Tmp.setIsSigned(true);
 | 
						|
    Tmp += BaseIdxI; // Compute the new offset.    
 | 
						|
    NewIdx = NonLoc::MakeVal(getBasicVals(), Tmp);    
 | 
						|
  }
 | 
						|
  else
 | 
						|
    NewIdx = nonloc::ConcreteInt(getBasicVals().getValue(BaseIdxI + OffI));
 | 
						|
 | 
						|
  return loc::MemRegionVal(MRMgr.getElementRegion(NewIdx, ArrayR));
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getSizeInElements(const GRState* St,
 | 
						|
                                           const MemRegion* R) {
 | 
						|
  if (const VarRegion* VR = dyn_cast<VarRegion>(R)) {
 | 
						|
    // Get the type of the variable.
 | 
						|
    QualType T = VR->getDesugaredRValueType(getContext());
 | 
						|
 | 
						|
    // FIXME: Handle variable-length arrays.
 | 
						|
    if (isa<VariableArrayType>(T))
 | 
						|
      return UnknownVal();
 | 
						|
    
 | 
						|
    if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(T)) {
 | 
						|
      // return the size as signed integer.
 | 
						|
      return NonLoc::MakeVal(getBasicVals(), CAT->getSize(), false);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Clients can use ordinary variables as if they were arrays.  These
 | 
						|
    // essentially are arrays of size 1.
 | 
						|
    return NonLoc::MakeIntVal(getBasicVals(), 1, false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const StringRegion* SR = dyn_cast<StringRegion>(R)) {
 | 
						|
    const StringLiteral* Str = SR->getStringLiteral();
 | 
						|
    // We intentionally made the size value signed because it participates in 
 | 
						|
    // operations with signed indices.
 | 
						|
    return NonLoc::MakeIntVal(getBasicVals(), Str->getByteLength()+1, false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const TypedViewRegion* ATR = dyn_cast<TypedViewRegion>(R)) {
 | 
						|
#if 0
 | 
						|
    // FIXME: This logic doesn't really work, as we can have all sorts of
 | 
						|
    // weird cases.  For example, this crashes on test case 'rdar-6442306-1.m'.
 | 
						|
    // The weird cases come in when arbitrary casting comes into play, violating
 | 
						|
    // any type-safe programming.
 | 
						|
    
 | 
						|
    GRStateRef state(St, StateMgr);
 | 
						|
 | 
						|
    // Get the size of the super region in bytes.
 | 
						|
    const SVal* Extent = state.get<RegionExtents>(ATR->getSuperRegion());
 | 
						|
    assert(Extent && "region extent not exist");
 | 
						|
 | 
						|
    // Assume it's ConcreteInt for now.
 | 
						|
    llvm::APSInt SSize = cast<nonloc::ConcreteInt>(*Extent).getValue();
 | 
						|
 | 
						|
    // Get the size of the element in bits.
 | 
						|
    QualType LvT = ATR->getLValueType(getContext());
 | 
						|
    QualType ElemTy = cast<PointerType>(LvT.getTypePtr())->getPointeeType();
 | 
						|
 | 
						|
    uint64_t X = getContext().getTypeSize(ElemTy);
 | 
						|
 | 
						|
    const llvm::APSInt& ESize = getBasicVals().getValue(X, SSize.getBitWidth(),
 | 
						|
                                                        false);
 | 
						|
 | 
						|
    // Calculate the number of elements. 
 | 
						|
 | 
						|
    // FIXME: What do we do with signed-ness problem? Shall we make all APSInts
 | 
						|
    // signed?
 | 
						|
    if (SSize.isUnsigned())
 | 
						|
      SSize.setIsSigned(true);
 | 
						|
 | 
						|
    // FIXME: move this operation into BasicVals.
 | 
						|
    const llvm::APSInt S = 
 | 
						|
      (SSize * getBasicVals().getValue(8, SSize.getBitWidth(), false)) / ESize;
 | 
						|
 | 
						|
    return NonLoc::MakeVal(getBasicVals(), S);
 | 
						|
#else
 | 
						|
    ATR = ATR;
 | 
						|
    return UnknownVal();
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) {
 | 
						|
    // FIXME: Unsupported yet.
 | 
						|
    FR = 0;
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<SymbolicRegion>(R)) {
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(0 && "Other regions are not supported yet.");
 | 
						|
  return UnknownVal();
 | 
						|
}
 | 
						|
 | 
						|
/// ArrayToPointer - Emulates the "decay" of an array to a pointer
 | 
						|
///  type.  'Array' represents the lvalue of the array being decayed
 | 
						|
///  to a pointer, and the returned SVal represents the decayed
 | 
						|
///  version of that lvalue (i.e., a pointer to the first element of
 | 
						|
///  the array).  This is called by GRExprEngine when evaluating casts
 | 
						|
///  from arrays to pointers.
 | 
						|
SVal RegionStoreManager::ArrayToPointer(SVal Array) {
 | 
						|
  // FIXME: This should be factored into GRExprEngine.  This allows
 | 
						|
  // us to pass a "loc" instead of an "SVal" for "Array".
 | 
						|
  if (Array.isUnknownOrUndef())
 | 
						|
    return Array;
 | 
						|
  
 | 
						|
  if (!isa<loc::MemRegionVal>(Array))
 | 
						|
    return UnknownVal();
 | 
						|
  
 | 
						|
  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
 | 
						|
  const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R);
 | 
						|
  
 | 
						|
  if (!ArrayR)
 | 
						|
    return UnknownVal();
 | 
						|
  
 | 
						|
  nonloc::ConcreteInt Idx(getBasicVals().getZeroWithPtrWidth(false));
 | 
						|
  ElementRegion* ER = MRMgr.getElementRegion(Idx, ArrayR);
 | 
						|
  
 | 
						|
  return loc::MemRegionVal(ER);                    
 | 
						|
}
 | 
						|
 | 
						|
StoreManager::CastResult
 | 
						|
RegionStoreManager::CastRegion(const GRState* state, const MemRegion* R,
 | 
						|
                               QualType CastToTy) {
 | 
						|
  
 | 
						|
  // Return the same region if the region types are compatible.
 | 
						|
  if (const TypedRegion* TR = dyn_cast<TypedRegion>(R)) {
 | 
						|
    ASTContext& Ctx = StateMgr.getContext();
 | 
						|
    QualType Ta = Ctx.getCanonicalType(TR->getLValueType(Ctx));
 | 
						|
    QualType Tb = Ctx.getCanonicalType(CastToTy);
 | 
						|
    
 | 
						|
    if (Ta == Tb)
 | 
						|
      return CastResult(state, R);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We should handle the case when we are casting *back* to a
 | 
						|
  // previous type. For example:
 | 
						|
  //
 | 
						|
  //      void* x = ...;
 | 
						|
  //      char* y = (char*) x;
 | 
						|
  //      void* z = (void*) y; // <-- we should get the same region that is 
 | 
						|
  //                                  bound to 'x'
 | 
						|
  const MemRegion* ViewR = MRMgr.getTypedViewRegion(CastToTy, R);  
 | 
						|
  return CastResult(AddRegionView(state, ViewR, R), ViewR);
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::EvalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R) {
 | 
						|
  // Assume the base location is MemRegionVal(ElementRegion).
 | 
						|
  if (!isa<loc::MemRegionVal>(L))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion();
 | 
						|
 | 
						|
  const ElementRegion* ER = cast<ElementRegion>(MR);
 | 
						|
  SVal Idx = ER->getIndex();
 | 
						|
 | 
						|
  nonloc::ConcreteInt* Base = dyn_cast<nonloc::ConcreteInt>(&Idx);
 | 
						|
  nonloc::ConcreteInt* Offset = dyn_cast<nonloc::ConcreteInt>(&R);
 | 
						|
 | 
						|
  // Only support concrete integer indexes for now.
 | 
						|
  if (Base && Offset) {
 | 
						|
    // For now, convert the signedness of offset in case it doesn't match.
 | 
						|
    const llvm::APSInt &I =
 | 
						|
      getBasicVals().ConvertSignedness(Base->getValue(), Offset->getValue());    
 | 
						|
    nonloc::ConcreteInt OffsetConverted(I);
 | 
						|
    
 | 
						|
    SVal NewIdx = Base->EvalBinOp(getBasicVals(), Op, OffsetConverted);
 | 
						|
    const MemRegion* NewER = MRMgr.getElementRegion(NewIdx, 
 | 
						|
                                                    ER->getArrayRegion());
 | 
						|
    return Loc::MakeVal(NewER);
 | 
						|
 | 
						|
  }
 | 
						|
  
 | 
						|
  return UnknownVal();
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::Retrieve(const GRState* St, Loc L, QualType T) {
 | 
						|
  assert(!isa<UnknownVal>(L) && "location unknown");
 | 
						|
  assert(!isa<UndefinedVal>(L) && "location undefined");
 | 
						|
 | 
						|
  // FIXME: What does loc::SymbolVal represent?  It represents the value
 | 
						|
  //  of a location but that value is not known.  In the future we should
 | 
						|
  //  handle potential aliasing relationships; e.g. a loc::SymbolVal could
 | 
						|
  //  be an alias for a particular region.
 | 
						|
  // Example:
 | 
						|
  // void foo(char* buf) {
 | 
						|
  //   char c = *buf;
 | 
						|
  // }
 | 
						|
  if (isa<loc::SymbolVal>(L)) {
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Is this even possible?  Shouldn't this be treated as a null
 | 
						|
  //  dereference at a higher level?
 | 
						|
  if (isa<loc::ConcreteInt>(L))
 | 
						|
    return UndefinedVal();
 | 
						|
 | 
						|
  // FIXME: Should this be refactored into GRExprEngine or GRStateManager?
 | 
						|
  //  It seems that all StoreManagers would do the same thing here.
 | 
						|
  if (isa<loc::FuncVal>(L))
 | 
						|
    return L;
 | 
						|
 | 
						|
  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
 | 
						|
  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
 | 
						|
  const TypedRegion* R 
 | 
						|
    = cast<TypedRegion>(cast<loc::MemRegionVal>(L).getRegion());
 | 
						|
  assert(R && "bad region");
 | 
						|
 | 
						|
  // FIXME: We should eventually handle funny addressing.  e.g.:
 | 
						|
  //
 | 
						|
  //   int x = ...;
 | 
						|
  //   int *p = &x;
 | 
						|
  //   char *q = (char*) p;
 | 
						|
  //   char c = *q;  // returns the first byte of 'x'.
 | 
						|
  //
 | 
						|
  // Such funny addressing will occur due to layering of regions.
 | 
						|
 | 
						|
  QualType RTy = R->getRValueType(getContext());
 | 
						|
  if (RTy->isStructureType())
 | 
						|
    return RetrieveStruct(St, R);
 | 
						|
  // FIXME: handle Vector types.
 | 
						|
  if (RTy->isVectorType())
 | 
						|
      return UnknownVal();
 | 
						|
  
 | 
						|
  RegionBindingsTy B = GetRegionBindings(St->getStore());
 | 
						|
  RegionBindingsTy::data_type* V = B.lookup(R);
 | 
						|
 | 
						|
  // Check if the region has a binding.
 | 
						|
  if (V)
 | 
						|
    return *V;
 | 
						|
 | 
						|
  GRStateRef state(St, StateMgr);
 | 
						|
  
 | 
						|
  // Check if the region is in killset.
 | 
						|
  if (state.contains<RegionKills>(R))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  // If the region is an element or field, it may have a default value.
 | 
						|
  if (isa<ElementRegion>(R) || isa<FieldRegion>(R)) {
 | 
						|
    const MemRegion* SuperR = cast<SubRegion>(R)->getSuperRegion();
 | 
						|
    GRStateTrait<RegionDefaultValue>::lookup_type D = 
 | 
						|
      state.get<RegionDefaultValue>(SuperR);
 | 
						|
    if (D)
 | 
						|
      return *D;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
 | 
						|
    const MemRegion *SR = IVR->getSuperRegion();
 | 
						|
 | 
						|
    // If the super region is 'self' then return the symbol representing
 | 
						|
    // the value of the ivar upon entry to the method.
 | 
						|
    if (SR == SelfRegion) {
 | 
						|
      // FIXME: Do we need to handle the case where the super region
 | 
						|
      // has a view?  We want to canonicalize the bindings.
 | 
						|
      return SVal::GetRValueSymbolVal(getSymbolManager(), R);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, we need a new symbol.  For now return Unknown.
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  // The location does not have a bound value.  This means that it has
 | 
						|
  // the value it had upon its creation and/or entry to the analyzed
 | 
						|
  // function/method.  These are either symbolic values or 'undefined'.
 | 
						|
 | 
						|
  // We treat function parameters as symbolic values.
 | 
						|
  if (const VarRegion* VR = dyn_cast<VarRegion>(R)) {
 | 
						|
    const VarDecl *VD = VR->getDecl();
 | 
						|
    
 | 
						|
    if (VD == SelfDecl)
 | 
						|
      return loc::MemRegionVal(getSelfRegion(0));
 | 
						|
    
 | 
						|
    if (isa<ParmVarDecl>(VD) || isa<ImplicitParamDecl>(VD) ||
 | 
						|
        VD->hasGlobalStorage()) {
 | 
						|
      QualType VTy = VD->getType();
 | 
						|
      if (Loc::IsLocType(VTy) || VTy->isIntegerType())
 | 
						|
        return SVal::GetRValueSymbolVal(getSymbolManager(), VR);
 | 
						|
      else
 | 
						|
        return UnknownVal();
 | 
						|
    }
 | 
						|
  }  
 | 
						|
 | 
						|
  if (MRMgr.onStack(R) || MRMgr.onHeap(R)) {
 | 
						|
    // All stack variables are considered to have undefined values
 | 
						|
    // upon creation.  All heap allocated blocks are considered to
 | 
						|
    // have undefined values as well unless they are explicitly bound
 | 
						|
    // to specific values.
 | 
						|
    return UndefinedVal();
 | 
						|
  }
 | 
						|
 | 
						|
  // All other integer values are symbolic.
 | 
						|
  if (Loc::IsLocType(RTy) || RTy->isIntegerType())
 | 
						|
    return SVal::GetRValueSymbolVal(getSymbolManager(), R);
 | 
						|
  else
 | 
						|
    return UnknownVal();
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::RetrieveStruct(const GRState* St,const TypedRegion* R){
 | 
						|
 | 
						|
  Store store = St->getStore();
 | 
						|
  GRStateRef state(St, StateMgr);
 | 
						|
 | 
						|
  // FIXME: Verify we want getRValueType instead of getLValueType.
 | 
						|
  QualType T = R->getRValueType(getContext());
 | 
						|
  assert(T->isStructureType());
 | 
						|
 | 
						|
  const RecordType* RT = cast<RecordType>(T.getTypePtr());
 | 
						|
  RecordDecl* RD = RT->getDecl();
 | 
						|
  assert(RD->isDefinition());
 | 
						|
 | 
						|
  llvm::ImmutableList<SVal> StructVal = getBasicVals().getEmptySValList();
 | 
						|
 | 
						|
  std::vector<FieldDecl *> Fields(RD->field_begin(), RD->field_end());
 | 
						|
 | 
						|
  for (std::vector<FieldDecl *>::reverse_iterator Field = Fields.rbegin(),
 | 
						|
                                               FieldEnd = Fields.rend();
 | 
						|
       Field != FieldEnd; ++Field) {
 | 
						|
    FieldRegion* FR = MRMgr.getFieldRegion(*Field, R);
 | 
						|
    RegionBindingsTy B = GetRegionBindings(store);
 | 
						|
    RegionBindingsTy::data_type* data = B.lookup(FR);
 | 
						|
 | 
						|
    SVal FieldValue;
 | 
						|
    if (data)
 | 
						|
      FieldValue = *data;
 | 
						|
    else if (state.contains<RegionKills>(FR))
 | 
						|
      FieldValue = UnknownVal();
 | 
						|
    else {
 | 
						|
      if (MRMgr.onStack(FR) || MRMgr.onHeap(FR))
 | 
						|
        FieldValue = UndefinedVal();
 | 
						|
      else
 | 
						|
        FieldValue = SVal::GetRValueSymbolVal(getSymbolManager(), FR);        
 | 
						|
    }
 | 
						|
 | 
						|
    StructVal = getBasicVals().consVals(FieldValue, StructVal);
 | 
						|
  }
 | 
						|
 | 
						|
  return NonLoc::MakeCompoundVal(T, StructVal, getBasicVals());
 | 
						|
}
 | 
						|
 | 
						|
const GRState* RegionStoreManager::Bind(const GRState* St, Loc L, SVal V) {
 | 
						|
  // Currently we don't bind value to symbolic location. But if the logic is
 | 
						|
  // made clear, we might change this decision.
 | 
						|
  if (isa<loc::SymbolVal>(L))
 | 
						|
    return St;
 | 
						|
 | 
						|
  // If we get here, the location should be a region.
 | 
						|
  const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion();
 | 
						|
  assert(R);
 | 
						|
 | 
						|
  // Check if the region is a struct region.
 | 
						|
  if (const TypedRegion* TR = dyn_cast<TypedRegion>(R))
 | 
						|
    // FIXME: Verify we want getRValueType().
 | 
						|
    if (TR->getRValueType(getContext())->isStructureType())
 | 
						|
      return BindStruct(St, TR, V);
 | 
						|
 | 
						|
  Store store = St->getStore();
 | 
						|
  RegionBindingsTy B = GetRegionBindings(store);
 | 
						|
 | 
						|
  if (V.isUnknown()) {
 | 
						|
    // Remove the binding.
 | 
						|
    store = RBFactory.Remove(B, R).getRoot();
 | 
						|
 | 
						|
    // Add the region to the killset.
 | 
						|
    GRStateRef state(St, StateMgr);
 | 
						|
    St = state.add<RegionKills>(R);
 | 
						|
  } 
 | 
						|
  else
 | 
						|
    store = RBFactory.Add(B, R, V).getRoot();
 | 
						|
 | 
						|
  return StateMgr.MakeStateWithStore(St, store);
 | 
						|
}
 | 
						|
 | 
						|
Store RegionStoreManager::Remove(Store store, Loc L) {
 | 
						|
  const MemRegion* R = 0;
 | 
						|
  
 | 
						|
  if (isa<loc::MemRegionVal>(L))
 | 
						|
    R = cast<loc::MemRegionVal>(L).getRegion();
 | 
						|
  else if (isa<loc::SymbolVal>(L))
 | 
						|
    R = MRMgr.getSymbolicRegion(cast<loc::SymbolVal>(L).getSymbol(),
 | 
						|
                                StateMgr.getSymbolManager());
 | 
						|
  
 | 
						|
  if (R) {
 | 
						|
    RegionBindingsTy B = GetRegionBindings(store);  
 | 
						|
    return RBFactory.Remove(B, R).getRoot();
 | 
						|
  }
 | 
						|
  
 | 
						|
  return store;
 | 
						|
}
 | 
						|
 | 
						|
const GRState* RegionStoreManager::BindDecl(const GRState* St, 
 | 
						|
                                            const VarDecl* VD, SVal InitVal) {
 | 
						|
 | 
						|
  QualType T = VD->getType();
 | 
						|
  VarRegion* VR = MRMgr.getVarRegion(VD);
 | 
						|
 | 
						|
  if (T->isArrayType())
 | 
						|
    return BindArray(St, VR, InitVal);
 | 
						|
  if (T->isStructureType())
 | 
						|
    return BindStruct(St, VR, InitVal);
 | 
						|
 | 
						|
  return Bind(St, Loc::MakeVal(VR), InitVal);
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: this method should be merged into Bind().
 | 
						|
const GRState* 
 | 
						|
RegionStoreManager::BindCompoundLiteral(const GRState* St,
 | 
						|
                                        const CompoundLiteralExpr* CL, SVal V) {
 | 
						|
  CompoundLiteralRegion* R = MRMgr.getCompoundLiteralRegion(CL);
 | 
						|
  return Bind(St, loc::MemRegionVal(R), V);
 | 
						|
}
 | 
						|
 | 
						|
const GRState* RegionStoreManager::setExtent(const GRState* St,
 | 
						|
                                             const MemRegion* R, SVal Extent) {
 | 
						|
  GRStateRef state(St, StateMgr);
 | 
						|
  return state.set<RegionExtents>(R, Extent);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void UpdateLiveSymbols(SVal X, SymbolReaper& SymReaper) {
 | 
						|
  if (loc::MemRegionVal *XR = dyn_cast<loc::MemRegionVal>(&X)) {
 | 
						|
    const MemRegion *R = XR->getRegion();
 | 
						|
    
 | 
						|
    while (R) {
 | 
						|
      if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
 | 
						|
        SymReaper.markLive(SR->getSymbol());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
 | 
						|
        R = SR->getSuperRegion();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (SVal::symbol_iterator SI=X.symbol_begin(), SE=X.symbol_end();SI!=SE;++SI)
 | 
						|
    SymReaper.markLive(*SI);
 | 
						|
}
 | 
						|
 | 
						|
Store RegionStoreManager::RemoveDeadBindings(const GRState* state, Stmt* Loc, 
 | 
						|
                                             SymbolReaper& SymReaper,
 | 
						|
                           llvm::SmallVectorImpl<const MemRegion*>& RegionRoots)
 | 
						|
{
 | 
						|
 | 
						|
  Store store = state->getStore();
 | 
						|
  RegionBindingsTy B = GetRegionBindings(store);
 | 
						|
  
 | 
						|
  // Lazily constructed backmap from MemRegions to SubRegions.
 | 
						|
  typedef llvm::ImmutableSet<const MemRegion*> SubRegionsTy;
 | 
						|
  typedef llvm::ImmutableMap<const MemRegion*, SubRegionsTy> SubRegionsMapTy;
 | 
						|
  
 | 
						|
  // FIXME: As a future optimization we can modifiy BumpPtrAllocator to have
 | 
						|
  // the ability to reuse memory.  This way we can keep TmpAlloc around as
 | 
						|
  // an instance variable of RegionStoreManager (avoiding repeated malloc
 | 
						|
  // overhead).
 | 
						|
  llvm::BumpPtrAllocator TmpAlloc;
 | 
						|
  
 | 
						|
  // Factory objects.
 | 
						|
  SubRegionsMapTy::Factory SubRegMapF(TmpAlloc);
 | 
						|
  SubRegionsTy::Factory SubRegF(TmpAlloc);
 | 
						|
  
 | 
						|
  // The backmap from regions to subregions.
 | 
						|
  SubRegionsMapTy SubRegMap = SubRegMapF.GetEmptyMap();
 | 
						|
  
 | 
						|
  // Do a pass over the regions in the store.  For VarRegions we check if
 | 
						|
  // the variable is still live and if so add it to the list of live roots.
 | 
						|
  // For other regions we populate our region backmap.
 | 
						|
  for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | 
						|
    const MemRegion* R = I.getKey();
 | 
						|
    if (const VarRegion* VR = dyn_cast<VarRegion>(R)) {
 | 
						|
      if (SymReaper.isLive(Loc, VR->getDecl()))
 | 
						|
        RegionRoots.push_back(VR); // This is a live "root".
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // Get the super region for R.
 | 
						|
      const MemRegion* SuperR = cast<SubRegion>(R)->getSuperRegion();
 | 
						|
      // Get the current set of subregions for SuperR.
 | 
						|
      const SubRegionsTy* SRptr = SubRegMap.lookup(SuperR);
 | 
						|
      SubRegionsTy SR = SRptr ? *SRptr : SubRegF.GetEmptySet();
 | 
						|
      // Add R to the subregions of SuperR.
 | 
						|
      SubRegMap = SubRegMapF.Add(SubRegMap, SuperR, SubRegF.Add(SR, R));
 | 
						|
      
 | 
						|
      // Finally, check if SuperR is a VarRegion.  We need to do this
 | 
						|
      // to also mark SuperR as a root (as it may not have a value directly
 | 
						|
      // bound to it in the store).
 | 
						|
      if (const VarRegion* VR = dyn_cast<VarRegion>(SuperR)) {
 | 
						|
        if (SymReaper.isLive(Loc, VR->getDecl()))
 | 
						|
          RegionRoots.push_back(VR); // This is a live "root".
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Process the worklist of RegionRoots.  This performs a "mark-and-sweep"
 | 
						|
  // of the store.  We want to find all live symbols and dead regions.  
 | 
						|
  llvm::SmallPtrSet<const MemRegion*, 10> Marked;
 | 
						|
  
 | 
						|
  while (!RegionRoots.empty()) {
 | 
						|
    // Dequeue the next region on the worklist.
 | 
						|
    const MemRegion* R = RegionRoots.back();
 | 
						|
    RegionRoots.pop_back();
 | 
						|
 | 
						|
    // Check if we have already processed this region.
 | 
						|
    if (Marked.count(R)) continue;
 | 
						|
 | 
						|
    // Mark this region as processed.  This is needed for termination in case
 | 
						|
    // a region is referenced more than once.
 | 
						|
    Marked.insert(R);
 | 
						|
    
 | 
						|
    // Mark the symbol for any live SymbolicRegion as "live".  This means we
 | 
						|
    // should continue to track that symbol.
 | 
						|
    if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(R))
 | 
						|
      SymReaper.markLive(SymR->getSymbol());
 | 
						|
 | 
						|
    // Get the data binding for R (if any).
 | 
						|
    RegionBindingsTy::data_type* Xptr = B.lookup(R);
 | 
						|
    if (Xptr) {
 | 
						|
      SVal X = *Xptr;
 | 
						|
      UpdateLiveSymbols(X, SymReaper); // Update the set of live symbols.
 | 
						|
    
 | 
						|
      // If X is a region, then add it the RegionRoots.
 | 
						|
      if (loc::MemRegionVal* RegionX = dyn_cast<loc::MemRegionVal>(&X))
 | 
						|
        RegionRoots.push_back(RegionX->getRegion());
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Get the subregions of R.  These are RegionRoots as well since they
 | 
						|
    // represent values that are also bound to R.
 | 
						|
    const SubRegionsTy* SRptr = SubRegMap.lookup(R);      
 | 
						|
    if (!SRptr) continue;
 | 
						|
    SubRegionsTy SR = *SRptr;
 | 
						|
    
 | 
						|
    for (SubRegionsTy::iterator I=SR.begin(), E=SR.end(); I!=E; ++I)
 | 
						|
      RegionRoots.push_back(*I);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We have now scanned the store, marking reachable regions and symbols
 | 
						|
  // as live.  We now remove all the regions that are dead from the store
 | 
						|
  // as well as update DSymbols with the set symbols that are now dead.  
 | 
						|
  for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | 
						|
    const MemRegion* R = I.getKey();
 | 
						|
    
 | 
						|
    // If this region live?  Is so, none of its symbols are dead.
 | 
						|
    if (Marked.count(R))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Remove this dead region from the store.
 | 
						|
    store = Remove(store, Loc::MakeVal(R));
 | 
						|
 | 
						|
    // Mark all non-live symbols that this region references as dead.
 | 
						|
    if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(R))
 | 
						|
      SymReaper.maybeDead(SymR->getSymbol());
 | 
						|
 | 
						|
    SVal X = I.getData();
 | 
						|
    SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
 | 
						|
    for (; SI != SE; ++SI) SymReaper.maybeDead(*SI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return store;
 | 
						|
}
 | 
						|
 | 
						|
void RegionStoreManager::print(Store store, std::ostream& Out, 
 | 
						|
                               const char* nl, const char *sep) {
 | 
						|
  llvm::raw_os_ostream OS(Out);
 | 
						|
  RegionBindingsTy B = GetRegionBindings(store);
 | 
						|
  OS << "Store:" << nl;
 | 
						|
 | 
						|
  for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | 
						|
    OS << ' '; I.getKey()->print(OS); OS << " : ";
 | 
						|
    I.getData().print(OS); OS << nl;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const GRState* RegionStoreManager::BindArray(const GRState* St, 
 | 
						|
                                             const TypedRegion* R, SVal Init) {
 | 
						|
  
 | 
						|
  // FIXME: Verify we should use getLValueType or getRValueType.
 | 
						|
  QualType T = R->getRValueType(getContext());
 | 
						|
  assert(T->isArrayType());
 | 
						|
 | 
						|
  // When we are binding the whole array, it always has default value 0.
 | 
						|
  GRStateRef state(St, StateMgr);
 | 
						|
  St = state.set<RegionDefaultValue>(R, NonLoc::MakeIntVal(getBasicVals(), 0, 
 | 
						|
                                                           false));
 | 
						|
 | 
						|
  ConstantArrayType* CAT = cast<ConstantArrayType>(T.getTypePtr());
 | 
						|
 | 
						|
  llvm::APSInt Size(CAT->getSize(), false);
 | 
						|
  llvm::APSInt i = getBasicVals().getValue(0, Size.getBitWidth(),
 | 
						|
                                           Size.isUnsigned());
 | 
						|
 | 
						|
  // Check if the init expr is a StringLiteral.
 | 
						|
  if (isa<loc::MemRegionVal>(Init)) {
 | 
						|
    const MemRegion* InitR = cast<loc::MemRegionVal>(Init).getRegion();
 | 
						|
    const StringLiteral* S = cast<StringRegion>(InitR)->getStringLiteral();
 | 
						|
    const char* str = S->getStrData();
 | 
						|
    unsigned len = S->getByteLength();
 | 
						|
    unsigned j = 0;
 | 
						|
 | 
						|
    // Copy bytes from the string literal into the target array. Trailing bytes
 | 
						|
    // in the array that are not covered by the string literal are initialized
 | 
						|
    // to zero.
 | 
						|
    for (; i < Size; ++i, ++j) {
 | 
						|
      if (j >= len)
 | 
						|
        break;
 | 
						|
 | 
						|
      SVal Idx = NonLoc::MakeVal(getBasicVals(), i);
 | 
						|
      ElementRegion* ER = MRMgr.getElementRegion(Idx, R);
 | 
						|
 | 
						|
      SVal V = NonLoc::MakeVal(getBasicVals(), str[j], sizeof(char)*8, true);
 | 
						|
      St = Bind(St, loc::MemRegionVal(ER), V);
 | 
						|
    }
 | 
						|
 | 
						|
    return St;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
 | 
						|
 | 
						|
  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
 | 
						|
 | 
						|
  for (; i < Size; ++i, ++VI) {
 | 
						|
    // The init list might be shorter than the array decl.
 | 
						|
    if (VI == VE)
 | 
						|
      break;
 | 
						|
 | 
						|
    SVal Idx = NonLoc::MakeVal(getBasicVals(), i);
 | 
						|
    ElementRegion* ER = MRMgr.getElementRegion(Idx, R);
 | 
						|
 | 
						|
    if (CAT->getElementType()->isStructureType())
 | 
						|
      St = BindStruct(St, ER, *VI);
 | 
						|
    else
 | 
						|
      St = Bind(St, Loc::MakeVal(ER), *VI);
 | 
						|
  }
 | 
						|
 | 
						|
  return St;
 | 
						|
}
 | 
						|
 | 
						|
const GRState*
 | 
						|
RegionStoreManager::BindStruct(const GRState* St, const TypedRegion* R, SVal V){
 | 
						|
  // FIXME: Verify that we should use getRValueType or getLValueType.
 | 
						|
  QualType T = R->getRValueType(getContext());
 | 
						|
  assert(T->isStructureType());
 | 
						|
 | 
						|
  RecordType* RT = cast<RecordType>(T.getTypePtr());
 | 
						|
  RecordDecl* RD = RT->getDecl();
 | 
						|
  assert(RD->isDefinition());
 | 
						|
 | 
						|
  if (V.isUnknown())
 | 
						|
    return KillStruct(St, R);
 | 
						|
 | 
						|
  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
 | 
						|
  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
 | 
						|
  RecordDecl::field_iterator FI = RD->field_begin(), FE = RD->field_end();
 | 
						|
 | 
						|
  for (; FI != FE; ++FI, ++VI) {
 | 
						|
 | 
						|
    // There may be fewer values than fields only when we are initializing a
 | 
						|
    // struct decl. In this case, mark the region as having default value.
 | 
						|
    if (VI == VE) {
 | 
						|
      GRStateRef state(St, StateMgr);
 | 
						|
      const NonLoc& Idx = NonLoc::MakeIntVal(getBasicVals(), 0, false);
 | 
						|
      St = state.set<RegionDefaultValue>(R, Idx);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    QualType FTy = (*FI)->getType();
 | 
						|
    FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
 | 
						|
 | 
						|
    if (Loc::IsLocType(FTy) || FTy->isIntegerType())
 | 
						|
      St = Bind(St, Loc::MakeVal(FR), *VI);
 | 
						|
    
 | 
						|
    else if (FTy->isArrayType())
 | 
						|
      St = BindArray(St, FR, *VI);
 | 
						|
 | 
						|
    else if (FTy->isStructureType())
 | 
						|
      St = BindStruct(St, FR, *VI);
 | 
						|
  }
 | 
						|
 | 
						|
  return St;
 | 
						|
}
 | 
						|
 | 
						|
const GRState* RegionStoreManager::KillStruct(const GRState* St,
 | 
						|
                                              const TypedRegion* R){
 | 
						|
  GRStateRef state(St, StateMgr);
 | 
						|
 | 
						|
  // Kill the struct region because it is assigned "unknown".
 | 
						|
  St = state.add<RegionKills>(R);
 | 
						|
  
 | 
						|
  // Set the default value of the struct region to "unknown".
 | 
						|
  St = state.set<RegionDefaultValue>(R, UnknownVal());
 | 
						|
 | 
						|
  Store store = St->getStore();
 | 
						|
  RegionBindingsTy B = GetRegionBindings(store);
 | 
						|
 | 
						|
  // Remove all bindings for the subregions of the struct.
 | 
						|
  for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | 
						|
    const MemRegion* r = I.getKey();
 | 
						|
    if (const SubRegion* sr = dyn_cast<SubRegion>(r))
 | 
						|
      if (sr->isSubRegionOf(R))
 | 
						|
        store = Remove(store, Loc::MakeVal(sr));
 | 
						|
    // FIXME: Maybe we should also remove the bindings for the "views" of the
 | 
						|
    // subregions.
 | 
						|
  }
 | 
						|
 | 
						|
  return StateMgr.MakeStateWithStore(St, store);
 | 
						|
}
 | 
						|
 | 
						|
const GRState* RegionStoreManager::AddRegionView(const GRState* St,
 | 
						|
                                                 const MemRegion* View,
 | 
						|
                                                 const MemRegion* Base) {
 | 
						|
  GRStateRef state(St, StateMgr);
 | 
						|
 | 
						|
  // First, retrieve the region view of the base region.
 | 
						|
  const RegionViews* d = state.get<RegionViewMap>(Base);
 | 
						|
  RegionViews L = d ? *d : RVFactory.GetEmptySet();
 | 
						|
 | 
						|
  // Now add View to the region view.
 | 
						|
  L = RVFactory.Add(L, View);
 | 
						|
 | 
						|
  // Create a new state with the new region view.
 | 
						|
  return state.set<RegionViewMap>(Base, L);
 | 
						|
}
 | 
						|
 | 
						|
const GRState* RegionStoreManager::RemoveRegionView(const GRState* St,
 | 
						|
                                                    const MemRegion* View,
 | 
						|
                                                    const MemRegion* Base) {
 | 
						|
  GRStateRef state(St, StateMgr);
 | 
						|
 | 
						|
  // Retrieve the region view of the base region.
 | 
						|
  const RegionViews* d = state.get<RegionViewMap>(Base);
 | 
						|
 | 
						|
  // If the base region has no view, return.
 | 
						|
  if (!d)
 | 
						|
    return St;
 | 
						|
 | 
						|
  // Remove the view.
 | 
						|
  RegionViews V = *d;
 | 
						|
  V = RVFactory.Remove(V, View);
 | 
						|
 | 
						|
  return state.set<RegionViewMap>(Base, V);
 | 
						|
}
 |