2238 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2238 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Hexagon.h"
 | 
						|
#include "HexagonISelDAGToDAG.h"
 | 
						|
#include "HexagonISelLowering.h"
 | 
						|
#include "HexagonTargetMachine.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
 | 
						|
#include <deque>
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#define DEBUG_TYPE "hexagon-isel"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// --------------------------------------------------------------------
 | 
						|
// Implementation of permutation networks.
 | 
						|
 | 
						|
// Implementation of the node routing through butterfly networks:
 | 
						|
// - Forward delta.
 | 
						|
// - Reverse delta.
 | 
						|
// - Benes.
 | 
						|
//
 | 
						|
//
 | 
						|
// Forward delta network consists of log(N) steps, where N is the number
 | 
						|
// of inputs. In each step, an input can stay in place, or it can get
 | 
						|
// routed to another position[1]. The step after that consists of two
 | 
						|
// networks, each half in size in terms of the number of nodes. In those
 | 
						|
// terms, in the given step, an input can go to either the upper or the
 | 
						|
// lower network in the next step.
 | 
						|
//
 | 
						|
// [1] Hexagon's vdelta/vrdelta allow an element to be routed to both
 | 
						|
// positions as long as there is no conflict.
 | 
						|
 | 
						|
// Here's a delta network for 8 inputs, only the switching routes are
 | 
						|
// shown:
 | 
						|
//
 | 
						|
//         Steps:
 | 
						|
//         |- 1 ---------------|- 2 -----|- 3 -|
 | 
						|
//
 | 
						|
// Inp[0] ***                 ***       ***   *** Out[0]
 | 
						|
//           \               /   \     /   \ /
 | 
						|
//            \             /     \   /     X
 | 
						|
//             \           /       \ /     / \
 | 
						|
// Inp[1] ***   \         /   ***   X   ***   *** Out[1]
 | 
						|
//           \   \       /   /   \ / \ /
 | 
						|
//            \   \     /   /     X   X
 | 
						|
//             \   \   /   /     / \ / \
 | 
						|
// Inp[2] ***   \   \ /   /   ***   X   ***   *** Out[2]
 | 
						|
//           \   \   X   /   /     / \     \ /
 | 
						|
//            \   \ / \ /   /     /   \     X
 | 
						|
//             \   X   X   /     /     \   / \
 | 
						|
// Inp[3] ***   \ / \ / \ /   ***       ***   *** Out[3]
 | 
						|
//           \   X   X   X   /
 | 
						|
//            \ / \ / \ / \ /
 | 
						|
//             X   X   X   X
 | 
						|
//            / \ / \ / \ / \
 | 
						|
//           /   X   X   X   \
 | 
						|
// Inp[4] ***   / \ / \ / \   ***       ***   *** Out[4]
 | 
						|
//             /   X   X   \     \     /   \ /
 | 
						|
//            /   / \ / \   \     \   /     X
 | 
						|
//           /   /   X   \   \     \ /     / \
 | 
						|
// Inp[5] ***   /   / \   \   ***   X   ***   *** Out[5]
 | 
						|
//             /   /   \   \     \ / \ /
 | 
						|
//            /   /     \   \     X   X
 | 
						|
//           /   /       \   \   / \ / \
 | 
						|
// Inp[6] ***   /         \   ***   X   ***   *** Out[6]
 | 
						|
//             /           \       / \     \ /
 | 
						|
//            /             \     /   \     X
 | 
						|
//           /               \   /     \   / \
 | 
						|
// Inp[7] ***                 ***       ***   *** Out[7]
 | 
						|
//
 | 
						|
//
 | 
						|
// Reverse delta network is same as delta network, with the steps in
 | 
						|
// the opposite order.
 | 
						|
//
 | 
						|
//
 | 
						|
// Benes network is a forward delta network immediately followed by
 | 
						|
// a reverse delta network.
 | 
						|
 | 
						|
enum class ColorKind { None, Red, Black };
 | 
						|
 | 
						|
// Graph coloring utility used to partition nodes into two groups:
 | 
						|
// they will correspond to nodes routed to the upper and lower networks.
 | 
						|
struct Coloring {
 | 
						|
  using Node = int;
 | 
						|
  using MapType = std::map<Node, ColorKind>;
 | 
						|
  static constexpr Node Ignore = Node(-1);
 | 
						|
 | 
						|
  Coloring(ArrayRef<Node> Ord) : Order(Ord) {
 | 
						|
    build();
 | 
						|
    if (!color())
 | 
						|
      Colors.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  const MapType &colors() const {
 | 
						|
    return Colors;
 | 
						|
  }
 | 
						|
 | 
						|
  ColorKind other(ColorKind Color) {
 | 
						|
    if (Color == ColorKind::None)
 | 
						|
      return ColorKind::Red;
 | 
						|
    return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DUMP_METHOD void dump() const;
 | 
						|
 | 
						|
private:
 | 
						|
  ArrayRef<Node> Order;
 | 
						|
  MapType Colors;
 | 
						|
  std::set<Node> Needed;
 | 
						|
 | 
						|
  using NodeSet = std::set<Node>;
 | 
						|
  std::map<Node,NodeSet> Edges;
 | 
						|
 | 
						|
  Node conj(Node Pos) {
 | 
						|
    Node Num = Order.size();
 | 
						|
    return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2;
 | 
						|
  }
 | 
						|
 | 
						|
  ColorKind getColor(Node N) {
 | 
						|
    auto F = Colors.find(N);
 | 
						|
    return F != Colors.end() ? F->second : ColorKind::None;
 | 
						|
  }
 | 
						|
 | 
						|
  std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes);
 | 
						|
 | 
						|
  void build();
 | 
						|
  bool color();
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) {
 | 
						|
  auto Color = ColorKind::None;
 | 
						|
  for (Node N : Nodes) {
 | 
						|
    ColorKind ColorN = getColor(N);
 | 
						|
    if (ColorN == ColorKind::None)
 | 
						|
      continue;
 | 
						|
    if (Color == ColorKind::None)
 | 
						|
      Color = ColorN;
 | 
						|
    else if (Color != ColorKind::None && Color != ColorN)
 | 
						|
      return { false, ColorKind::None };
 | 
						|
  }
 | 
						|
  return { true, Color };
 | 
						|
}
 | 
						|
 | 
						|
void Coloring::build() {
 | 
						|
  // Add Order[P] and Order[conj(P)] to Edges.
 | 
						|
  for (unsigned P = 0; P != Order.size(); ++P) {
 | 
						|
    Node I = Order[P];
 | 
						|
    if (I != Ignore) {
 | 
						|
      Needed.insert(I);
 | 
						|
      Node PC = Order[conj(P)];
 | 
						|
      if (PC != Ignore && PC != I)
 | 
						|
        Edges[I].insert(PC);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Add I and conj(I) to Edges.
 | 
						|
  for (unsigned I = 0; I != Order.size(); ++I) {
 | 
						|
    if (!Needed.count(I))
 | 
						|
      continue;
 | 
						|
    Node C = conj(I);
 | 
						|
    // This will create an entry in the edge table, even if I is not
 | 
						|
    // connected to any other node. This is necessary, because it still
 | 
						|
    // needs to be colored.
 | 
						|
    NodeSet &Is = Edges[I];
 | 
						|
    if (Needed.count(C))
 | 
						|
      Is.insert(C);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Coloring::color() {
 | 
						|
  SetVector<Node> FirstQ;
 | 
						|
  auto Enqueue = [this,&FirstQ] (Node N) {
 | 
						|
    SetVector<Node> Q;
 | 
						|
    Q.insert(N);
 | 
						|
    for (unsigned I = 0; I != Q.size(); ++I) {
 | 
						|
      NodeSet &Ns = Edges[Q[I]];
 | 
						|
      Q.insert(Ns.begin(), Ns.end());
 | 
						|
    }
 | 
						|
    FirstQ.insert(Q.begin(), Q.end());
 | 
						|
  };
 | 
						|
  for (Node N : Needed)
 | 
						|
    Enqueue(N);
 | 
						|
 | 
						|
  for (Node N : FirstQ) {
 | 
						|
    if (Colors.count(N))
 | 
						|
      continue;
 | 
						|
    NodeSet &Ns = Edges[N];
 | 
						|
    auto P = getUniqueColor(Ns);
 | 
						|
    if (!P.first)
 | 
						|
      return false;
 | 
						|
    Colors[N] = other(P.second);
 | 
						|
  }
 | 
						|
 | 
						|
  // First, color nodes that don't have any dups.
 | 
						|
  for (auto E : Edges) {
 | 
						|
    Node N = E.first;
 | 
						|
    if (!Needed.count(conj(N)) || Colors.count(N))
 | 
						|
      continue;
 | 
						|
    auto P = getUniqueColor(E.second);
 | 
						|
    if (!P.first)
 | 
						|
      return false;
 | 
						|
    Colors[N] = other(P.second);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now, nodes that are still uncolored. Since the graph can be modified
 | 
						|
  // in this step, create a work queue.
 | 
						|
  std::vector<Node> WorkQ;
 | 
						|
  for (auto E : Edges) {
 | 
						|
    Node N = E.first;
 | 
						|
    if (!Colors.count(N))
 | 
						|
      WorkQ.push_back(N);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned I = 0; I < WorkQ.size(); ++I) {
 | 
						|
    Node N = WorkQ[I];
 | 
						|
    NodeSet &Ns = Edges[N];
 | 
						|
    auto P = getUniqueColor(Ns);
 | 
						|
    if (P.first) {
 | 
						|
      Colors[N] = other(P.second);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Coloring failed. Split this node.
 | 
						|
    Node C = conj(N);
 | 
						|
    ColorKind ColorN = other(ColorKind::None);
 | 
						|
    ColorKind ColorC = other(ColorN);
 | 
						|
    NodeSet &Cs = Edges[C];
 | 
						|
    NodeSet CopyNs = Ns;
 | 
						|
    for (Node M : CopyNs) {
 | 
						|
      ColorKind ColorM = getColor(M);
 | 
						|
      if (ColorM == ColorC) {
 | 
						|
        // Connect M with C, disconnect M from N.
 | 
						|
        Cs.insert(M);
 | 
						|
        Edges[M].insert(C);
 | 
						|
        Ns.erase(M);
 | 
						|
        Edges[M].erase(N);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Colors[N] = ColorN;
 | 
						|
    Colors[C] = ColorC;
 | 
						|
  }
 | 
						|
 | 
						|
  // Explicitly assign "None" to all uncolored nodes.
 | 
						|
  for (unsigned I = 0; I != Order.size(); ++I)
 | 
						|
    if (Colors.count(I) == 0)
 | 
						|
      Colors[I] = ColorKind::None;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void Coloring::dump() const {
 | 
						|
  dbgs() << "{ Order:   {";
 | 
						|
  for (unsigned I = 0; I != Order.size(); ++I) {
 | 
						|
    Node P = Order[I];
 | 
						|
    if (P != Ignore)
 | 
						|
      dbgs() << ' ' << P;
 | 
						|
    else
 | 
						|
      dbgs() << " -";
 | 
						|
  }
 | 
						|
  dbgs() << " }\n";
 | 
						|
  dbgs() << "  Needed: {";
 | 
						|
  for (Node N : Needed)
 | 
						|
    dbgs() << ' ' << N;
 | 
						|
  dbgs() << " }\n";
 | 
						|
 | 
						|
  dbgs() << "  Edges: {\n";
 | 
						|
  for (auto E : Edges) {
 | 
						|
    dbgs() << "    " << E.first << " -> {";
 | 
						|
    for (auto N : E.second)
 | 
						|
      dbgs() << ' ' << N;
 | 
						|
    dbgs() << " }\n";
 | 
						|
  }
 | 
						|
  dbgs() << "  }\n";
 | 
						|
 | 
						|
  auto ColorKindToName = [](ColorKind C) {
 | 
						|
    switch (C) {
 | 
						|
    case ColorKind::None:
 | 
						|
      return "None";
 | 
						|
    case ColorKind::Red:
 | 
						|
      return "Red";
 | 
						|
    case ColorKind::Black:
 | 
						|
      return "Black";
 | 
						|
    }
 | 
						|
    llvm_unreachable("all ColorKinds should be handled by the switch above");
 | 
						|
  };
 | 
						|
 | 
						|
  dbgs() << "  Colors: {\n";
 | 
						|
  for (auto C : Colors)
 | 
						|
    dbgs() << "    " << C.first << " -> " << ColorKindToName(C.second) << "\n";
 | 
						|
  dbgs() << "  }\n}\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
// Base class of for reordering networks. They don't strictly need to be
 | 
						|
// permutations, as outputs with repeated occurrences of an input element
 | 
						|
// are allowed.
 | 
						|
struct PermNetwork {
 | 
						|
  using Controls = std::vector<uint8_t>;
 | 
						|
  using ElemType = int;
 | 
						|
  static constexpr ElemType Ignore = ElemType(-1);
 | 
						|
 | 
						|
  enum : uint8_t {
 | 
						|
    None,
 | 
						|
    Pass,
 | 
						|
    Switch
 | 
						|
  };
 | 
						|
  enum : uint8_t {
 | 
						|
    Forward,
 | 
						|
    Reverse
 | 
						|
  };
 | 
						|
 | 
						|
  PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) {
 | 
						|
    Order.assign(Ord.data(), Ord.data()+Ord.size());
 | 
						|
    Log = 0;
 | 
						|
 | 
						|
    unsigned S = Order.size();
 | 
						|
    while (S >>= 1)
 | 
						|
      ++Log;
 | 
						|
 | 
						|
    Table.resize(Order.size());
 | 
						|
    for (RowType &Row : Table)
 | 
						|
      Row.resize(Mult*Log, None);
 | 
						|
  }
 | 
						|
 | 
						|
  void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const {
 | 
						|
    unsigned Size = Order.size();
 | 
						|
    V.resize(Size);
 | 
						|
    for (unsigned I = 0; I != Size; ++I) {
 | 
						|
      unsigned W = 0;
 | 
						|
      for (unsigned L = 0; L != Log; ++L) {
 | 
						|
        unsigned C = ctl(I, StartAt+L) == Switch;
 | 
						|
        if (Dir == Forward)
 | 
						|
          W |= C << (Log-1-L);
 | 
						|
        else
 | 
						|
          W |= C << L;
 | 
						|
      }
 | 
						|
      assert(isUInt<8>(W));
 | 
						|
      V[I] = uint8_t(W);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  uint8_t ctl(ElemType Pos, unsigned Step) const {
 | 
						|
    return Table[Pos][Step];
 | 
						|
  }
 | 
						|
  unsigned size() const {
 | 
						|
    return Order.size();
 | 
						|
  }
 | 
						|
  unsigned steps() const {
 | 
						|
    return Log;
 | 
						|
  }
 | 
						|
 | 
						|
protected:
 | 
						|
  unsigned Log;
 | 
						|
  std::vector<ElemType> Order;
 | 
						|
  using RowType = std::vector<uint8_t>;
 | 
						|
  std::vector<RowType> Table;
 | 
						|
};
 | 
						|
 | 
						|
struct ForwardDeltaNetwork : public PermNetwork {
 | 
						|
  ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
 | 
						|
 | 
						|
  bool run(Controls &V) {
 | 
						|
    if (!route(Order.data(), Table.data(), size(), 0))
 | 
						|
      return false;
 | 
						|
    getControls(V, 0, Forward);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
 | 
						|
};
 | 
						|
 | 
						|
struct ReverseDeltaNetwork : public PermNetwork {
 | 
						|
  ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
 | 
						|
 | 
						|
  bool run(Controls &V) {
 | 
						|
    if (!route(Order.data(), Table.data(), size(), 0))
 | 
						|
      return false;
 | 
						|
    getControls(V, 0, Reverse);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
 | 
						|
};
 | 
						|
 | 
						|
struct BenesNetwork : public PermNetwork {
 | 
						|
  BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {}
 | 
						|
 | 
						|
  bool run(Controls &F, Controls &R) {
 | 
						|
    if (!route(Order.data(), Table.data(), size(), 0))
 | 
						|
      return false;
 | 
						|
 | 
						|
    getControls(F, 0, Forward);
 | 
						|
    getControls(R, Log, Reverse);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
 | 
						|
                                unsigned Step) {
 | 
						|
  bool UseUp = false, UseDown = false;
 | 
						|
  ElemType Num = Size;
 | 
						|
 | 
						|
  // Cannot use coloring here, because coloring is used to determine
 | 
						|
  // the "big" switch, i.e. the one that changes halves, and in a forward
 | 
						|
  // network, a color can be simultaneously routed to both halves in the
 | 
						|
  // step we're working on.
 | 
						|
  for (ElemType J = 0; J != Num; ++J) {
 | 
						|
    ElemType I = P[J];
 | 
						|
    // I is the position in the input,
 | 
						|
    // J is the position in the output.
 | 
						|
    if (I == Ignore)
 | 
						|
      continue;
 | 
						|
    uint8_t S;
 | 
						|
    if (I < Num/2)
 | 
						|
      S = (J < Num/2) ? Pass : Switch;
 | 
						|
    else
 | 
						|
      S = (J < Num/2) ? Switch : Pass;
 | 
						|
 | 
						|
    // U is the element in the table that needs to be updated.
 | 
						|
    ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2);
 | 
						|
    if (U < Num/2)
 | 
						|
      UseUp = true;
 | 
						|
    else
 | 
						|
      UseDown = true;
 | 
						|
    if (T[U][Step] != S && T[U][Step] != None)
 | 
						|
      return false;
 | 
						|
    T[U][Step] = S;
 | 
						|
  }
 | 
						|
 | 
						|
  for (ElemType J = 0; J != Num; ++J)
 | 
						|
    if (P[J] != Ignore && P[J] >= Num/2)
 | 
						|
      P[J] -= Num/2;
 | 
						|
 | 
						|
  if (Step+1 < Log) {
 | 
						|
    if (UseUp   && !route(P,        T,        Size/2, Step+1))
 | 
						|
      return false;
 | 
						|
    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
 | 
						|
                                unsigned Step) {
 | 
						|
  unsigned Pets = Log-1 - Step;
 | 
						|
  bool UseUp = false, UseDown = false;
 | 
						|
  ElemType Num = Size;
 | 
						|
 | 
						|
  // In this step half-switching occurs, so coloring can be used.
 | 
						|
  Coloring G({P,Size});
 | 
						|
  const Coloring::MapType &M = G.colors();
 | 
						|
  if (M.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  ColorKind ColorUp = ColorKind::None;
 | 
						|
  for (ElemType J = 0; J != Num; ++J) {
 | 
						|
    ElemType I = P[J];
 | 
						|
    // I is the position in the input,
 | 
						|
    // J is the position in the output.
 | 
						|
    if (I == Ignore)
 | 
						|
      continue;
 | 
						|
    ColorKind C = M.at(I);
 | 
						|
    if (C == ColorKind::None)
 | 
						|
      continue;
 | 
						|
    // During "Step", inputs cannot switch halves, so if the "up" color
 | 
						|
    // is still unknown, make sure that it is selected in such a way that
 | 
						|
    // "I" will stay in the same half.
 | 
						|
    bool InpUp = I < Num/2;
 | 
						|
    if (ColorUp == ColorKind::None)
 | 
						|
      ColorUp = InpUp ? C : G.other(C);
 | 
						|
    if ((C == ColorUp) != InpUp) {
 | 
						|
      // If I should go to a different half than where is it now, give up.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    uint8_t S;
 | 
						|
    if (InpUp) {
 | 
						|
      S = (J < Num/2) ? Pass : Switch;
 | 
						|
      UseUp = true;
 | 
						|
    } else {
 | 
						|
      S = (J < Num/2) ? Switch : Pass;
 | 
						|
      UseDown = true;
 | 
						|
    }
 | 
						|
    T[J][Pets] = S;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reorder the working permutation according to the computed switch table
 | 
						|
  // for the last step (i.e. Pets).
 | 
						|
  for (ElemType J = 0, E = Size / 2; J != E; ++J) {
 | 
						|
    ElemType PJ = P[J];         // Current values of P[J]
 | 
						|
    ElemType PC = P[J+Size/2];  // and P[conj(J)]
 | 
						|
    ElemType QJ = PJ;           // New values of P[J]
 | 
						|
    ElemType QC = PC;           // and P[conj(J)]
 | 
						|
    if (T[J][Pets] == Switch)
 | 
						|
      QC = PJ;
 | 
						|
    if (T[J+Size/2][Pets] == Switch)
 | 
						|
      QJ = PC;
 | 
						|
    P[J] = QJ;
 | 
						|
    P[J+Size/2] = QC;
 | 
						|
  }
 | 
						|
 | 
						|
  for (ElemType J = 0; J != Num; ++J)
 | 
						|
    if (P[J] != Ignore && P[J] >= Num/2)
 | 
						|
      P[J] -= Num/2;
 | 
						|
 | 
						|
  if (Step+1 < Log) {
 | 
						|
    if (UseUp && !route(P, T, Size/2, Step+1))
 | 
						|
      return false;
 | 
						|
    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size,
 | 
						|
                         unsigned Step) {
 | 
						|
  Coloring G({P,Size});
 | 
						|
  const Coloring::MapType &M = G.colors();
 | 
						|
  if (M.empty())
 | 
						|
    return false;
 | 
						|
  ElemType Num = Size;
 | 
						|
 | 
						|
  unsigned Pets = 2*Log-1 - Step;
 | 
						|
  bool UseUp = false, UseDown = false;
 | 
						|
 | 
						|
  // Both assignments, i.e. Red->Up and Red->Down are valid, but they will
 | 
						|
  // result in different controls. Let's pick the one where the first
 | 
						|
  // control will be "Pass".
 | 
						|
  ColorKind ColorUp = ColorKind::None;
 | 
						|
  for (ElemType J = 0; J != Num; ++J) {
 | 
						|
    ElemType I = P[J];
 | 
						|
    if (I == Ignore)
 | 
						|
      continue;
 | 
						|
    ColorKind C = M.at(I);
 | 
						|
    if (C == ColorKind::None)
 | 
						|
      continue;
 | 
						|
    if (ColorUp == ColorKind::None) {
 | 
						|
      ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black;
 | 
						|
    }
 | 
						|
    unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2;
 | 
						|
    if (C == ColorUp) {
 | 
						|
      if (I < Num/2)
 | 
						|
        T[I][Step] = Pass;
 | 
						|
      else
 | 
						|
        T[CI][Step] = Switch;
 | 
						|
      T[J][Pets] = (J < Num/2) ? Pass : Switch;
 | 
						|
      UseUp = true;
 | 
						|
    } else { // Down
 | 
						|
      if (I < Num/2)
 | 
						|
        T[CI][Step] = Switch;
 | 
						|
      else
 | 
						|
        T[I][Step] = Pass;
 | 
						|
      T[J][Pets] = (J < Num/2) ? Switch : Pass;
 | 
						|
      UseDown = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Reorder the working permutation according to the computed switch table
 | 
						|
  // for the last step (i.e. Pets).
 | 
						|
  for (ElemType J = 0; J != Num/2; ++J) {
 | 
						|
    ElemType PJ = P[J];         // Current values of P[J]
 | 
						|
    ElemType PC = P[J+Num/2];   // and P[conj(J)]
 | 
						|
    ElemType QJ = PJ;           // New values of P[J]
 | 
						|
    ElemType QC = PC;           // and P[conj(J)]
 | 
						|
    if (T[J][Pets] == Switch)
 | 
						|
      QC = PJ;
 | 
						|
    if (T[J+Num/2][Pets] == Switch)
 | 
						|
      QJ = PC;
 | 
						|
    P[J] = QJ;
 | 
						|
    P[J+Num/2] = QC;
 | 
						|
  }
 | 
						|
 | 
						|
  for (ElemType J = 0; J != Num; ++J)
 | 
						|
    if (P[J] != Ignore && P[J] >= Num/2)
 | 
						|
      P[J] -= Num/2;
 | 
						|
 | 
						|
  if (Step+1 < Log) {
 | 
						|
    if (UseUp && !route(P, T, Size/2, Step+1))
 | 
						|
      return false;
 | 
						|
    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// --------------------------------------------------------------------
 | 
						|
// Support for building selection results (output instructions that are
 | 
						|
// parts of the final selection).
 | 
						|
 | 
						|
namespace {
 | 
						|
struct OpRef {
 | 
						|
  OpRef(SDValue V) : OpV(V) {}
 | 
						|
  bool isValue() const { return OpV.getNode() != nullptr; }
 | 
						|
  bool isValid() const { return isValue() || !(OpN & Invalid); }
 | 
						|
  static OpRef res(int N) { return OpRef(Whole | (N & Index)); }
 | 
						|
  static OpRef fail() { return OpRef(Invalid); }
 | 
						|
 | 
						|
  static OpRef lo(const OpRef &R) {
 | 
						|
    assert(!R.isValue());
 | 
						|
    return OpRef(R.OpN & (Undef | Index | LoHalf));
 | 
						|
  }
 | 
						|
  static OpRef hi(const OpRef &R) {
 | 
						|
    assert(!R.isValue());
 | 
						|
    return OpRef(R.OpN & (Undef | Index | HiHalf));
 | 
						|
  }
 | 
						|
  static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); }
 | 
						|
 | 
						|
  // Direct value.
 | 
						|
  SDValue OpV = SDValue();
 | 
						|
 | 
						|
  // Reference to the operand of the input node:
 | 
						|
  // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the
 | 
						|
  // operand index:
 | 
						|
  // If bit 30 is set, it's the high half of the operand.
 | 
						|
  // If bit 29 is set, it's the low half of the operand.
 | 
						|
  unsigned OpN = 0;
 | 
						|
 | 
						|
  enum : unsigned {
 | 
						|
    Invalid = 0x10000000,
 | 
						|
    LoHalf  = 0x20000000,
 | 
						|
    HiHalf  = 0x40000000,
 | 
						|
    Whole   = LoHalf | HiHalf,
 | 
						|
    Undef   = 0x80000000,
 | 
						|
    Index   = 0x0FFFFFFF,  // Mask of the index value.
 | 
						|
    IndexBits = 28,
 | 
						|
  };
 | 
						|
 | 
						|
  LLVM_DUMP_METHOD
 | 
						|
  void print(raw_ostream &OS, const SelectionDAG &G) const;
 | 
						|
 | 
						|
private:
 | 
						|
  OpRef(unsigned N) : OpN(N) {}
 | 
						|
};
 | 
						|
 | 
						|
struct NodeTemplate {
 | 
						|
  NodeTemplate() = default;
 | 
						|
  unsigned Opc = 0;
 | 
						|
  MVT Ty = MVT::Other;
 | 
						|
  std::vector<OpRef> Ops;
 | 
						|
 | 
						|
  LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const;
 | 
						|
};
 | 
						|
 | 
						|
struct ResultStack {
 | 
						|
  ResultStack(SDNode *Inp)
 | 
						|
    : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {}
 | 
						|
  SDNode *InpNode;
 | 
						|
  MVT InpTy;
 | 
						|
  unsigned push(const NodeTemplate &Res) {
 | 
						|
    List.push_back(Res);
 | 
						|
    return List.size()-1;
 | 
						|
  }
 | 
						|
  unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) {
 | 
						|
    NodeTemplate Res;
 | 
						|
    Res.Opc = Opc;
 | 
						|
    Res.Ty = Ty;
 | 
						|
    Res.Ops = Ops;
 | 
						|
    return push(Res);
 | 
						|
  }
 | 
						|
  bool empty() const { return List.empty(); }
 | 
						|
  unsigned size() const { return List.size(); }
 | 
						|
  unsigned top() const { return size()-1; }
 | 
						|
  const NodeTemplate &operator[](unsigned I) const { return List[I]; }
 | 
						|
  unsigned reset(unsigned NewTop) {
 | 
						|
    List.resize(NewTop+1);
 | 
						|
    return NewTop;
 | 
						|
  }
 | 
						|
 | 
						|
  using BaseType = std::vector<NodeTemplate>;
 | 
						|
  BaseType::iterator begin() { return List.begin(); }
 | 
						|
  BaseType::iterator end()   { return List.end(); }
 | 
						|
  BaseType::const_iterator begin() const { return List.begin(); }
 | 
						|
  BaseType::const_iterator end() const   { return List.end(); }
 | 
						|
 | 
						|
  BaseType List;
 | 
						|
 | 
						|
  LLVM_DUMP_METHOD
 | 
						|
  void print(raw_ostream &OS, const SelectionDAG &G) const;
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const {
 | 
						|
  if (isValue()) {
 | 
						|
    OpV.getNode()->print(OS, &G);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (OpN & Invalid) {
 | 
						|
    OS << "invalid";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (OpN & Undef) {
 | 
						|
    OS << "undef";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if ((OpN & Whole) != Whole) {
 | 
						|
    assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf);
 | 
						|
    if (OpN & LoHalf)
 | 
						|
      OS << "lo ";
 | 
						|
    else
 | 
						|
      OS << "hi ";
 | 
						|
  }
 | 
						|
  OS << '#' << SignExtend32(OpN & Index, IndexBits);
 | 
						|
}
 | 
						|
 | 
						|
void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const {
 | 
						|
  const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo();
 | 
						|
  OS << format("%8s", EVT(Ty).getEVTString().c_str()) << "  "
 | 
						|
     << TII.getName(Opc);
 | 
						|
  bool Comma = false;
 | 
						|
  for (const auto &R : Ops) {
 | 
						|
    if (Comma)
 | 
						|
      OS << ',';
 | 
						|
    Comma = true;
 | 
						|
    OS << ' ';
 | 
						|
    R.print(OS, G);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const {
 | 
						|
  OS << "Input node:\n";
 | 
						|
#ifndef NDEBUG
 | 
						|
  InpNode->dumpr(&G);
 | 
						|
#endif
 | 
						|
  OS << "Result templates:\n";
 | 
						|
  for (unsigned I = 0, E = List.size(); I != E; ++I) {
 | 
						|
    OS << '[' << I << "] ";
 | 
						|
    List[I].print(OS, G);
 | 
						|
    OS << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
struct ShuffleMask {
 | 
						|
  ShuffleMask(ArrayRef<int> M) : Mask(M) {
 | 
						|
    for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
 | 
						|
      int M = Mask[I];
 | 
						|
      if (M == -1)
 | 
						|
        continue;
 | 
						|
      MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M);
 | 
						|
      MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ArrayRef<int> Mask;
 | 
						|
  int MinSrc = -1, MaxSrc = -1;
 | 
						|
 | 
						|
  ShuffleMask lo() const {
 | 
						|
    size_t H = Mask.size()/2;
 | 
						|
    return ShuffleMask(Mask.take_front(H));
 | 
						|
  }
 | 
						|
  ShuffleMask hi() const {
 | 
						|
    size_t H = Mask.size()/2;
 | 
						|
    return ShuffleMask(Mask.take_back(H));
 | 
						|
  }
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const {
 | 
						|
    OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {";
 | 
						|
    for (int M : Mask)
 | 
						|
      OS << ' ' << M;
 | 
						|
    OS << " }";
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
// --------------------------------------------------------------------
 | 
						|
// The HvxSelector class.
 | 
						|
 | 
						|
static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) {
 | 
						|
  return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo());
 | 
						|
}
 | 
						|
static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) {
 | 
						|
  return static_cast<const HexagonSubtarget&>(G.getSubtarget());
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  struct HvxSelector {
 | 
						|
    const HexagonTargetLowering &Lower;
 | 
						|
    HexagonDAGToDAGISel &ISel;
 | 
						|
    SelectionDAG &DAG;
 | 
						|
    const HexagonSubtarget &HST;
 | 
						|
    const unsigned HwLen;
 | 
						|
 | 
						|
    HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G)
 | 
						|
      : Lower(getHexagonLowering(G)),  ISel(HS), DAG(G),
 | 
						|
        HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {}
 | 
						|
 | 
						|
    MVT getSingleVT(MVT ElemTy) const {
 | 
						|
      unsigned NumElems = HwLen / (ElemTy.getSizeInBits()/8);
 | 
						|
      return MVT::getVectorVT(ElemTy, NumElems);
 | 
						|
    }
 | 
						|
 | 
						|
    MVT getPairVT(MVT ElemTy) const {
 | 
						|
      unsigned NumElems = (2*HwLen) / (ElemTy.getSizeInBits()/8);
 | 
						|
      return MVT::getVectorVT(ElemTy, NumElems);
 | 
						|
    }
 | 
						|
 | 
						|
    void selectShuffle(SDNode *N);
 | 
						|
    void selectRor(SDNode *N);
 | 
						|
    void selectVAlign(SDNode *N);
 | 
						|
 | 
						|
  private:
 | 
						|
    void materialize(const ResultStack &Results);
 | 
						|
 | 
						|
    SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl);
 | 
						|
 | 
						|
    enum : unsigned {
 | 
						|
      None,
 | 
						|
      PackMux,
 | 
						|
    };
 | 
						|
    OpRef concat(OpRef Va, OpRef Vb, ResultStack &Results);
 | 
						|
    OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
 | 
						|
                MutableArrayRef<int> NewMask, unsigned Options = None);
 | 
						|
    OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
 | 
						|
                MutableArrayRef<int> NewMask);
 | 
						|
    OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
 | 
						|
                ResultStack &Results);
 | 
						|
    OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
 | 
						|
                ResultStack &Results);
 | 
						|
 | 
						|
    OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results);
 | 
						|
    OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
 | 
						|
    OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results);
 | 
						|
    OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
 | 
						|
 | 
						|
    OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results);
 | 
						|
    OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
 | 
						|
    OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results);
 | 
						|
    OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results);
 | 
						|
 | 
						|
    bool selectVectorConstants(SDNode *N);
 | 
						|
    bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy,
 | 
						|
                          SDValue Va, SDValue Vb, SDNode *N);
 | 
						|
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL,
 | 
						|
                      MutableArrayRef<int> MaskR) {
 | 
						|
  unsigned VecLen = Mask.size();
 | 
						|
  assert(MaskL.size() == VecLen && MaskR.size() == VecLen);
 | 
						|
  for (unsigned I = 0; I != VecLen; ++I) {
 | 
						|
    int M = Mask[I];
 | 
						|
    if (M < 0) {
 | 
						|
      MaskL[I] = MaskR[I] = -1;
 | 
						|
    } else if (unsigned(M) < VecLen) {
 | 
						|
      MaskL[I] = M;
 | 
						|
      MaskR[I] = -1;
 | 
						|
    } else {
 | 
						|
      MaskL[I] = -1;
 | 
						|
      MaskR[I] = M-VecLen;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc,
 | 
						|
                                         unsigned MaxLen) {
 | 
						|
  assert(A.size() > 0 && A.size() >= MaxLen);
 | 
						|
  int F = A[0];
 | 
						|
  int E = F;
 | 
						|
  for (unsigned I = 1; I != MaxLen; ++I) {
 | 
						|
    if (A[I] - E != Inc)
 | 
						|
      return { F, I };
 | 
						|
    E = A[I];
 | 
						|
  }
 | 
						|
  return { F, MaxLen };
 | 
						|
}
 | 
						|
 | 
						|
static bool isUndef(ArrayRef<int> Mask) {
 | 
						|
  for (int Idx : Mask)
 | 
						|
    if (Idx != -1)
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isIdentity(ArrayRef<int> Mask) {
 | 
						|
  for (int I = 0, E = Mask.size(); I != E; ++I) {
 | 
						|
    int M = Mask[I];
 | 
						|
    if (M >= 0 && M != I)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isPermutation(ArrayRef<int> Mask) {
 | 
						|
  // Check by adding all numbers only works if there is no overflow.
 | 
						|
  assert(Mask.size() < 0x00007FFF && "Sanity failure");
 | 
						|
  int Sum = 0;
 | 
						|
  for (int Idx : Mask) {
 | 
						|
    if (Idx == -1)
 | 
						|
      return false;
 | 
						|
    Sum += Idx;
 | 
						|
  }
 | 
						|
  int N = Mask.size();
 | 
						|
  return 2*Sum == N*(N-1);
 | 
						|
}
 | 
						|
 | 
						|
bool HvxSelector::selectVectorConstants(SDNode *N) {
 | 
						|
  // Constant vectors are generated as loads from constant pools or as
 | 
						|
  // splats of a constant value. Since they are generated during the
 | 
						|
  // selection process, the main selection algorithm is not aware of them.
 | 
						|
  // Select them directly here.
 | 
						|
  SmallVector<SDNode*,4> Nodes;
 | 
						|
  SetVector<SDNode*> WorkQ;
 | 
						|
 | 
						|
  // The one-use test for VSPLATW's operand may fail due to dead nodes
 | 
						|
  // left over in the DAG.
 | 
						|
  DAG.RemoveDeadNodes();
 | 
						|
 | 
						|
  // The DAG can change (due to CSE) during selection, so cache all the
 | 
						|
  // unselected nodes first to avoid traversing a mutating DAG.
 | 
						|
 | 
						|
  auto IsNodeToSelect = [] (SDNode *N) {
 | 
						|
    if (N->isMachineOpcode())
 | 
						|
      return false;
 | 
						|
    switch (N->getOpcode()) {
 | 
						|
      case HexagonISD::VZERO:
 | 
						|
      case HexagonISD::VSPLATW:
 | 
						|
        return true;
 | 
						|
      case ISD::LOAD: {
 | 
						|
        SDValue Addr = cast<LoadSDNode>(N)->getBasePtr();
 | 
						|
        unsigned AddrOpc = Addr.getOpcode();
 | 
						|
        if (AddrOpc == HexagonISD::AT_PCREL || AddrOpc == HexagonISD::CP)
 | 
						|
          if (Addr.getOperand(0).getOpcode() == ISD::TargetConstantPool)
 | 
						|
            return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    // Make sure to select the operand of VSPLATW.
 | 
						|
    bool IsSplatOp = N->hasOneUse() &&
 | 
						|
                     N->use_begin()->getOpcode() == HexagonISD::VSPLATW;
 | 
						|
    return IsSplatOp;
 | 
						|
  };
 | 
						|
 | 
						|
  WorkQ.insert(N);
 | 
						|
  for (unsigned i = 0; i != WorkQ.size(); ++i) {
 | 
						|
    SDNode *W = WorkQ[i];
 | 
						|
    if (IsNodeToSelect(W))
 | 
						|
      Nodes.push_back(W);
 | 
						|
    for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j)
 | 
						|
      WorkQ.insert(W->getOperand(j).getNode());
 | 
						|
  }
 | 
						|
 | 
						|
  for (SDNode *L : Nodes)
 | 
						|
    ISel.Select(L);
 | 
						|
 | 
						|
  return !Nodes.empty();
 | 
						|
}
 | 
						|
 | 
						|
void HvxSelector::materialize(const ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {
 | 
						|
    dbgs() << "Materializing\n";
 | 
						|
    Results.print(dbgs(), DAG);
 | 
						|
  });
 | 
						|
  if (Results.empty())
 | 
						|
    return;
 | 
						|
  const SDLoc &dl(Results.InpNode);
 | 
						|
  std::vector<SDValue> Output;
 | 
						|
 | 
						|
  for (unsigned I = 0, E = Results.size(); I != E; ++I) {
 | 
						|
    const NodeTemplate &Node = Results[I];
 | 
						|
    std::vector<SDValue> Ops;
 | 
						|
    for (const OpRef &R : Node.Ops) {
 | 
						|
      assert(R.isValid());
 | 
						|
      if (R.isValue()) {
 | 
						|
        Ops.push_back(R.OpV);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (R.OpN & OpRef::Undef) {
 | 
						|
        MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index);
 | 
						|
        Ops.push_back(ISel.selectUndef(dl, MVT(SVT)));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // R is an index of a result.
 | 
						|
      unsigned Part = R.OpN & OpRef::Whole;
 | 
						|
      int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits);
 | 
						|
      if (Idx < 0)
 | 
						|
        Idx += I;
 | 
						|
      assert(Idx >= 0 && unsigned(Idx) < Output.size());
 | 
						|
      SDValue Op = Output[Idx];
 | 
						|
      MVT OpTy = Op.getValueType().getSimpleVT();
 | 
						|
      if (Part != OpRef::Whole) {
 | 
						|
        assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf);
 | 
						|
        MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(),
 | 
						|
                                      OpTy.getVectorNumElements()/2);
 | 
						|
        unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo
 | 
						|
                                               : Hexagon::vsub_hi;
 | 
						|
        Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op);
 | 
						|
      }
 | 
						|
      Ops.push_back(Op);
 | 
						|
    } // for (Node : Results)
 | 
						|
 | 
						|
    assert(Node.Ty != MVT::Other);
 | 
						|
    SDNode *ResN = (Node.Opc == TargetOpcode::COPY)
 | 
						|
                      ? Ops.front().getNode()
 | 
						|
                      : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops);
 | 
						|
    Output.push_back(SDValue(ResN, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  SDNode *OutN = Output.back().getNode();
 | 
						|
  SDNode *InpN = Results.InpNode;
 | 
						|
  DEBUG_WITH_TYPE("isel", {
 | 
						|
    dbgs() << "Generated node:\n";
 | 
						|
    OutN->dumpr(&DAG);
 | 
						|
  });
 | 
						|
 | 
						|
  ISel.ReplaceNode(InpN, OutN);
 | 
						|
  selectVectorConstants(OutN);
 | 
						|
  DAG.RemoveDeadNodes();
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::concat(OpRef Lo, OpRef Hi, ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  const SDLoc &dl(Results.InpNode);
 | 
						|
  Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), {
 | 
						|
    DAG.getTargetConstant(Hexagon::HvxWRRegClassID, dl, MVT::i32),
 | 
						|
    Lo, DAG.getTargetConstant(Hexagon::vsub_lo, dl, MVT::i32),
 | 
						|
    Hi, DAG.getTargetConstant(Hexagon::vsub_hi, dl, MVT::i32),
 | 
						|
  });
 | 
						|
  return OpRef::res(Results.top());
 | 
						|
}
 | 
						|
 | 
						|
// Va, Vb are single vectors, SM can be arbitrarily long.
 | 
						|
OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb,
 | 
						|
                         ResultStack &Results, MutableArrayRef<int> NewMask,
 | 
						|
                         unsigned Options) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  if (!Va.isValid() || !Vb.isValid())
 | 
						|
    return OpRef::fail();
 | 
						|
 | 
						|
  int VecLen = SM.Mask.size();
 | 
						|
  MVT Ty = getSingleVT(MVT::i8);
 | 
						|
 | 
						|
  auto IsExtSubvector = [] (ShuffleMask M) {
 | 
						|
    assert(M.MinSrc >= 0 && M.MaxSrc >= 0);
 | 
						|
    for (int I = 0, E = M.Mask.size(); I != E; ++I) {
 | 
						|
      if (M.Mask[I] >= 0 && M.Mask[I]-I != M.MinSrc)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  if (SM.MaxSrc - SM.MinSrc < int(HwLen)) {
 | 
						|
    if (SM.MinSrc == 0 || SM.MinSrc == int(HwLen) || !IsExtSubvector(SM)) {
 | 
						|
      // If the mask picks elements from only one of the operands, return
 | 
						|
      // that operand, and update the mask to use index 0 to refer to the
 | 
						|
      // first element of that operand.
 | 
						|
      // If the mask extracts a subvector, it will be handled below, so
 | 
						|
      // skip it here.
 | 
						|
      if (SM.MaxSrc < int(HwLen)) {
 | 
						|
        memcpy(NewMask.data(), SM.Mask.data(), sizeof(int)*VecLen);
 | 
						|
        return Va;
 | 
						|
      }
 | 
						|
      if (SM.MinSrc >= int(HwLen)) {
 | 
						|
        for (int I = 0; I != VecLen; ++I) {
 | 
						|
          int M = SM.Mask[I];
 | 
						|
          if (M != -1)
 | 
						|
            M -= HwLen;
 | 
						|
          NewMask[I] = M;
 | 
						|
        }
 | 
						|
        return Vb;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    int MinSrc = SM.MinSrc;
 | 
						|
    if (SM.MaxSrc < int(HwLen)) {
 | 
						|
      Vb = Va;
 | 
						|
    } else if (SM.MinSrc > int(HwLen)) {
 | 
						|
      Va = Vb;
 | 
						|
      MinSrc = SM.MinSrc - HwLen;
 | 
						|
    }
 | 
						|
    const SDLoc &dl(Results.InpNode);
 | 
						|
    if (isUInt<3>(MinSrc) || isUInt<3>(HwLen-MinSrc)) {
 | 
						|
      bool IsRight = isUInt<3>(MinSrc); // Right align.
 | 
						|
      SDValue S = DAG.getTargetConstant(IsRight ? MinSrc : HwLen-MinSrc,
 | 
						|
                                        dl, MVT::i32);
 | 
						|
      unsigned Opc = IsRight ? Hexagon::V6_valignbi
 | 
						|
                             : Hexagon::V6_vlalignbi;
 | 
						|
      Results.push(Opc, Ty, {Vb, Va, S});
 | 
						|
    } else {
 | 
						|
      SDValue S = DAG.getTargetConstant(MinSrc, dl, MVT::i32);
 | 
						|
      Results.push(Hexagon::A2_tfrsi, MVT::i32, {S});
 | 
						|
      unsigned Top = Results.top();
 | 
						|
      Results.push(Hexagon::V6_valignb, Ty, {Vb, Va, OpRef::res(Top)});
 | 
						|
    }
 | 
						|
    for (int I = 0; I != VecLen; ++I) {
 | 
						|
      int M = SM.Mask[I];
 | 
						|
      if (M != -1)
 | 
						|
        M -= SM.MinSrc;
 | 
						|
      NewMask[I] = M;
 | 
						|
    }
 | 
						|
    return OpRef::res(Results.top());
 | 
						|
  }
 | 
						|
 | 
						|
  if (Options & PackMux) {
 | 
						|
    // If elements picked from Va and Vb have all different (source) indexes
 | 
						|
    // (relative to the start of the argument), do a mux, and update the mask.
 | 
						|
    BitVector Picked(HwLen);
 | 
						|
    SmallVector<uint8_t,128> MuxBytes(HwLen);
 | 
						|
    bool CanMux = true;
 | 
						|
    for (int I = 0; I != VecLen; ++I) {
 | 
						|
      int M = SM.Mask[I];
 | 
						|
      if (M == -1)
 | 
						|
        continue;
 | 
						|
      if (M >= int(HwLen))
 | 
						|
        M -= HwLen;
 | 
						|
      else
 | 
						|
        MuxBytes[M] = 0xFF;
 | 
						|
      if (Picked[M]) {
 | 
						|
        CanMux = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      NewMask[I] = M;
 | 
						|
    }
 | 
						|
    if (CanMux)
 | 
						|
      return vmuxs(MuxBytes, Va, Vb, Results);
 | 
						|
  }
 | 
						|
 | 
						|
  return OpRef::fail();
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb,
 | 
						|
                         ResultStack &Results, MutableArrayRef<int> NewMask) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  unsigned HalfMask = 0;
 | 
						|
  unsigned LogHw = Log2_32(HwLen);
 | 
						|
  for (int M : SM.Mask) {
 | 
						|
    if (M == -1)
 | 
						|
      continue;
 | 
						|
    HalfMask |= (1u << (M >> LogHw));
 | 
						|
  }
 | 
						|
 | 
						|
  if (HalfMask == 0)
 | 
						|
    return OpRef::undef(getPairVT(MVT::i8));
 | 
						|
 | 
						|
  // If more than two halves are used, bail.
 | 
						|
  // TODO: be more aggressive here?
 | 
						|
  if (countPopulation(HalfMask) > 2)
 | 
						|
    return OpRef::fail();
 | 
						|
 | 
						|
  MVT HalfTy = getSingleVT(MVT::i8);
 | 
						|
 | 
						|
  OpRef Inp[2] = { Va, Vb };
 | 
						|
  OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) };
 | 
						|
 | 
						|
  uint8_t HalfIdx[4] = { 0xFF, 0xFF, 0xFF, 0xFF };
 | 
						|
  unsigned Idx = 0;
 | 
						|
  for (unsigned I = 0; I != 4; ++I) {
 | 
						|
    if ((HalfMask & (1u << I)) == 0)
 | 
						|
      continue;
 | 
						|
    assert(Idx < 2);
 | 
						|
    OpRef Op = Inp[I/2];
 | 
						|
    Out[Idx] = (I & 1) ? OpRef::hi(Op) : OpRef::lo(Op);
 | 
						|
    HalfIdx[I] = Idx++;
 | 
						|
  }
 | 
						|
 | 
						|
  int VecLen = SM.Mask.size();
 | 
						|
  for (int I = 0; I != VecLen; ++I) {
 | 
						|
    int M = SM.Mask[I];
 | 
						|
    if (M >= 0) {
 | 
						|
      uint8_t Idx = HalfIdx[M >> LogHw];
 | 
						|
      assert(Idx == 0 || Idx == 1);
 | 
						|
      M = (M & (HwLen-1)) + HwLen*Idx;
 | 
						|
    }
 | 
						|
    NewMask[I] = M;
 | 
						|
  }
 | 
						|
 | 
						|
  return concat(Out[0], Out[1], Results);
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
 | 
						|
                         ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  MVT ByteTy = getSingleVT(MVT::i8);
 | 
						|
  MVT BoolTy = MVT::getVectorVT(MVT::i1, 8*HwLen); // XXX
 | 
						|
  const SDLoc &dl(Results.InpNode);
 | 
						|
  SDValue B = getVectorConstant(Bytes, dl);
 | 
						|
  Results.push(Hexagon::V6_vd0, ByteTy, {});
 | 
						|
  Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)});
 | 
						|
  Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va});
 | 
						|
  return OpRef::res(Results.top());
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
 | 
						|
                         ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  size_t S = Bytes.size() / 2;
 | 
						|
  OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results);
 | 
						|
  OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results);
 | 
						|
  return concat(L, H, Results);
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  unsigned VecLen = SM.Mask.size();
 | 
						|
  assert(HwLen == VecLen);
 | 
						|
  (void)VecLen;
 | 
						|
  assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); }));
 | 
						|
 | 
						|
  if (isIdentity(SM.Mask))
 | 
						|
    return Va;
 | 
						|
  if (isUndef(SM.Mask))
 | 
						|
    return OpRef::undef(getSingleVT(MVT::i8));
 | 
						|
 | 
						|
  OpRef P = perfect(SM, Va, Results);
 | 
						|
  if (P.isValid())
 | 
						|
    return P;
 | 
						|
  return butterfly(SM, Va, Results);
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb,
 | 
						|
                           ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  if (isUndef(SM.Mask))
 | 
						|
    return OpRef::undef(getSingleVT(MVT::i8));
 | 
						|
 | 
						|
  OpRef C = contracting(SM, Va, Vb, Results);
 | 
						|
  if (C.isValid())
 | 
						|
    return C;
 | 
						|
 | 
						|
  int VecLen = SM.Mask.size();
 | 
						|
  SmallVector<int,128> NewMask(VecLen);
 | 
						|
  OpRef P = packs(SM, Va, Vb, Results, NewMask);
 | 
						|
  if (P.isValid())
 | 
						|
    return shuffs1(ShuffleMask(NewMask), P, Results);
 | 
						|
 | 
						|
  SmallVector<int,128> MaskL(VecLen), MaskR(VecLen);
 | 
						|
  splitMask(SM.Mask, MaskL, MaskR);
 | 
						|
 | 
						|
  OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results);
 | 
						|
  OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results);
 | 
						|
  if (!L.isValid() || !R.isValid())
 | 
						|
    return OpRef::fail();
 | 
						|
 | 
						|
  SmallVector<uint8_t,128> Bytes(VecLen);
 | 
						|
  for (int I = 0; I != VecLen; ++I) {
 | 
						|
    if (MaskL[I] != -1)
 | 
						|
      Bytes[I] = 0xFF;
 | 
						|
  }
 | 
						|
  return vmuxs(Bytes, L, R, Results);
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  int VecLen = SM.Mask.size();
 | 
						|
 | 
						|
  if (isIdentity(SM.Mask))
 | 
						|
    return Va;
 | 
						|
  if (isUndef(SM.Mask))
 | 
						|
    return OpRef::undef(getPairVT(MVT::i8));
 | 
						|
 | 
						|
  SmallVector<int,128> PackedMask(VecLen);
 | 
						|
  OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask);
 | 
						|
  if (P.isValid()) {
 | 
						|
    ShuffleMask PM(PackedMask);
 | 
						|
    OpRef E = expanding(PM, P, Results);
 | 
						|
    if (E.isValid())
 | 
						|
      return E;
 | 
						|
 | 
						|
    OpRef L = shuffs1(PM.lo(), P, Results);
 | 
						|
    OpRef H = shuffs1(PM.hi(), P, Results);
 | 
						|
    if (L.isValid() && H.isValid())
 | 
						|
      return concat(L, H, Results);
 | 
						|
  }
 | 
						|
 | 
						|
  OpRef R = perfect(SM, Va, Results);
 | 
						|
  if (R.isValid())
 | 
						|
    return R;
 | 
						|
  // TODO commute the mask and try the opposite order of the halves.
 | 
						|
 | 
						|
  OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results);
 | 
						|
  OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results);
 | 
						|
  if (L.isValid() && H.isValid())
 | 
						|
    return concat(L, H, Results);
 | 
						|
 | 
						|
  return OpRef::fail();
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb,
 | 
						|
                           ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  if (isUndef(SM.Mask))
 | 
						|
    return OpRef::undef(getPairVT(MVT::i8));
 | 
						|
 | 
						|
  int VecLen = SM.Mask.size();
 | 
						|
  SmallVector<int,256> PackedMask(VecLen);
 | 
						|
  OpRef P = packp(SM, Va, Vb, Results, PackedMask);
 | 
						|
  if (P.isValid())
 | 
						|
    return shuffp1(ShuffleMask(PackedMask), P, Results);
 | 
						|
 | 
						|
  SmallVector<int,256> MaskL(VecLen), MaskR(VecLen);
 | 
						|
  splitMask(SM.Mask, MaskL, MaskR);
 | 
						|
 | 
						|
  OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results);
 | 
						|
  OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results);
 | 
						|
  if (!L.isValid() || !R.isValid())
 | 
						|
    return OpRef::fail();
 | 
						|
 | 
						|
  // Mux the results.
 | 
						|
  SmallVector<uint8_t,256> Bytes(VecLen);
 | 
						|
  for (int I = 0; I != VecLen; ++I) {
 | 
						|
    if (MaskL[I] != -1)
 | 
						|
      Bytes[I] = 0xFF;
 | 
						|
  }
 | 
						|
  return vmuxp(Bytes, L, R, Results);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct Deleter : public SelectionDAG::DAGNodeDeletedListener {
 | 
						|
    template <typename T>
 | 
						|
    Deleter(SelectionDAG &D, T &C)
 | 
						|
      : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) {
 | 
						|
                                                  C.erase(N);
 | 
						|
                                                }) {}
 | 
						|
  };
 | 
						|
 | 
						|
  template <typename T>
 | 
						|
  struct NullifyingVector : public T {
 | 
						|
    DenseMap<SDNode*, SDNode**> Refs;
 | 
						|
    NullifyingVector(T &&V) : T(V) {
 | 
						|
      for (unsigned i = 0, e = T::size(); i != e; ++i) {
 | 
						|
        SDNode *&N = T::operator[](i);
 | 
						|
        Refs[N] = &N;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    void erase(SDNode *N) {
 | 
						|
      auto F = Refs.find(N);
 | 
						|
      if (F != Refs.end())
 | 
						|
        *F->second = nullptr;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl,
 | 
						|
                                   MVT ResTy, SDValue Va, SDValue Vb,
 | 
						|
                                   SDNode *N) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  MVT ElemTy = ResTy.getVectorElementType();
 | 
						|
  assert(ElemTy == MVT::i8);
 | 
						|
  unsigned VecLen = Mask.size();
 | 
						|
  bool HavePairs = (2*HwLen == VecLen);
 | 
						|
  MVT SingleTy = getSingleVT(MVT::i8);
 | 
						|
 | 
						|
  // The prior attempts to handle this shuffle may have left a bunch of
 | 
						|
  // dead nodes in the DAG (such as constants). These nodes will be added
 | 
						|
  // at the end of DAG's node list, which at that point had already been
 | 
						|
  // sorted topologically. In the main selection loop, the node list is
 | 
						|
  // traversed backwards from the root node, which means that any new
 | 
						|
  // nodes (from the end of the list) will not be visited.
 | 
						|
  // Scalarization will replace the shuffle node with the scalarized
 | 
						|
  // expression, and if that expression reused any if the leftoever (dead)
 | 
						|
  // nodes, these nodes would not be selected (since the "local" selection
 | 
						|
  // only visits nodes that are not in AllNodes).
 | 
						|
  // To avoid this issue, remove all dead nodes from the DAG now.
 | 
						|
  DAG.RemoveDeadNodes();
 | 
						|
  DenseSet<SDNode*> AllNodes;
 | 
						|
  for (SDNode &S : DAG.allnodes())
 | 
						|
    AllNodes.insert(&S);
 | 
						|
 | 
						|
  Deleter DUA(DAG, AllNodes);
 | 
						|
 | 
						|
  SmallVector<SDValue,128> Ops;
 | 
						|
  LLVMContext &Ctx = *DAG.getContext();
 | 
						|
  MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT();
 | 
						|
  for (int I : Mask) {
 | 
						|
    if (I < 0) {
 | 
						|
      Ops.push_back(ISel.selectUndef(dl, LegalTy));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    SDValue Vec;
 | 
						|
    unsigned M = I;
 | 
						|
    if (M < VecLen) {
 | 
						|
      Vec = Va;
 | 
						|
    } else {
 | 
						|
      Vec = Vb;
 | 
						|
      M -= VecLen;
 | 
						|
    }
 | 
						|
    if (HavePairs) {
 | 
						|
      if (M < HwLen) {
 | 
						|
        Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec);
 | 
						|
      } else {
 | 
						|
        Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec);
 | 
						|
        M -= HwLen;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    SDValue Idx = DAG.getConstant(M, dl, MVT::i32);
 | 
						|
    SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx});
 | 
						|
    SDValue L = Lower.LowerOperation(Ex, DAG);
 | 
						|
    assert(L.getNode());
 | 
						|
    Ops.push_back(L);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue LV;
 | 
						|
  if (2*HwLen == VecLen) {
 | 
						|
    SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen});
 | 
						|
    SDValue L0 = Lower.LowerOperation(B0, DAG);
 | 
						|
    SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen});
 | 
						|
    SDValue L1 = Lower.LowerOperation(B1, DAG);
 | 
						|
    // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering)
 | 
						|
    // functions may expect to be called only for illegal operations, so
 | 
						|
    // make sure that they are not called for legal ones. Develop a better
 | 
						|
    // mechanism for dealing with this.
 | 
						|
    LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1});
 | 
						|
  } else {
 | 
						|
    SDValue BV = DAG.getBuildVector(ResTy, dl, Ops);
 | 
						|
    LV = Lower.LowerOperation(BV, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!N->use_empty());
 | 
						|
  ISel.ReplaceNode(N, LV.getNode());
 | 
						|
 | 
						|
  if (AllNodes.count(LV.getNode())) {
 | 
						|
    DAG.RemoveDeadNodes();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // The lowered build-vector node will now need to be selected. It needs
 | 
						|
  // to be done here because this node and its submodes are not included
 | 
						|
  // in the main selection loop.
 | 
						|
  // Implement essentially the same topological ordering algorithm as is
 | 
						|
  // used in SelectionDAGISel.
 | 
						|
 | 
						|
  SetVector<SDNode*> SubNodes, TmpQ;
 | 
						|
  std::map<SDNode*,unsigned> NumOps;
 | 
						|
 | 
						|
  SubNodes.insert(LV.getNode());
 | 
						|
  for (unsigned I = 0; I != SubNodes.size(); ++I) {
 | 
						|
    unsigned OpN = 0;
 | 
						|
    SDNode *S = SubNodes[I];
 | 
						|
    for (SDValue Op : S->ops()) {
 | 
						|
      if (AllNodes.count(Op.getNode()))
 | 
						|
        continue;
 | 
						|
      SubNodes.insert(Op.getNode());
 | 
						|
      ++OpN;
 | 
						|
    }
 | 
						|
    NumOps.insert({S, OpN});
 | 
						|
    if (OpN == 0)
 | 
						|
      TmpQ.insert(S);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned I = 0; I != TmpQ.size(); ++I) {
 | 
						|
    SDNode *S = TmpQ[I];
 | 
						|
    for (SDNode *U : S->uses()) {
 | 
						|
      if (!SubNodes.count(U))
 | 
						|
        continue;
 | 
						|
      auto F = NumOps.find(U);
 | 
						|
      assert(F != NumOps.end());
 | 
						|
      assert(F->second > 0);
 | 
						|
      if (!--F->second)
 | 
						|
        TmpQ.insert(F->first);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(SubNodes.size() == TmpQ.size());
 | 
						|
  NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector());
 | 
						|
 | 
						|
  Deleter DUQ(DAG, Queue);
 | 
						|
  for (SDNode *S : reverse(Queue))
 | 
						|
    if (S != nullptr)
 | 
						|
      ISel.Select(S);
 | 
						|
 | 
						|
  DAG.RemoveDeadNodes();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb,
 | 
						|
                               ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  if (!Va.isValid() || !Vb.isValid())
 | 
						|
    return OpRef::fail();
 | 
						|
 | 
						|
  // Contracting shuffles, i.e. instructions that always discard some bytes
 | 
						|
  // from the operand vectors.
 | 
						|
  //
 | 
						|
  // V6_vshuff{e,o}b
 | 
						|
  // V6_vdealb4w
 | 
						|
  // V6_vpack{e,o}{b,h}
 | 
						|
 | 
						|
  int VecLen = SM.Mask.size();
 | 
						|
  std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
 | 
						|
  MVT ResTy = getSingleVT(MVT::i8);
 | 
						|
 | 
						|
  // The following shuffles only work for bytes and halfwords. This requires
 | 
						|
  // the strip length to be 1 or 2.
 | 
						|
  if (Strip.second != 1 && Strip.second != 2)
 | 
						|
    return OpRef::fail();
 | 
						|
 | 
						|
  // The patterns for the shuffles, in terms of the starting offsets of the
 | 
						|
  // consecutive strips (L = length of the strip, N = VecLen):
 | 
						|
  //
 | 
						|
  // vpacke:    0, 2L, 4L ... N+0, N+2L, N+4L ...      L = 1 or 2
 | 
						|
  // vpacko:    L, 3L, 5L ... N+L, N+3L, N+5L ...      L = 1 or 2
 | 
						|
  //
 | 
						|
  // vshuffe:   0, N+0, 2L, N+2L, 4L ...               L = 1 or 2
 | 
						|
  // vshuffo:   L, N+L, 3L, N+3L, 5L ...               L = 1 or 2
 | 
						|
  //
 | 
						|
  // vdealb4w:  0, 4, 8 ... 2, 6, 10 ... N+0, N+4, N+8 ... N+2, N+6, N+10 ...
 | 
						|
 | 
						|
  // The value of the element in the mask following the strip will decide
 | 
						|
  // what kind of a shuffle this can be.
 | 
						|
  int NextInMask = SM.Mask[Strip.second];
 | 
						|
 | 
						|
  // Check if NextInMask could be 2L, 3L or 4, i.e. if it could be a mask
 | 
						|
  // for vpack or vdealb4w. VecLen > 4, so NextInMask for vdealb4w would
 | 
						|
  // satisfy this.
 | 
						|
  if (NextInMask < VecLen) {
 | 
						|
    // vpack{e,o} or vdealb4w
 | 
						|
    if (Strip.first == 0 && Strip.second == 1 && NextInMask == 4) {
 | 
						|
      int N = VecLen;
 | 
						|
      // Check if this is vdealb4w (L=1).
 | 
						|
      for (int I = 0; I != N/4; ++I)
 | 
						|
        if (SM.Mask[I] != 4*I)
 | 
						|
          return OpRef::fail();
 | 
						|
      for (int I = 0; I != N/4; ++I)
 | 
						|
        if (SM.Mask[I+N/4] != 2 + 4*I)
 | 
						|
          return OpRef::fail();
 | 
						|
      for (int I = 0; I != N/4; ++I)
 | 
						|
        if (SM.Mask[I+N/2] != N + 4*I)
 | 
						|
          return OpRef::fail();
 | 
						|
      for (int I = 0; I != N/4; ++I)
 | 
						|
        if (SM.Mask[I+3*N/4] != N+2 + 4*I)
 | 
						|
          return OpRef::fail();
 | 
						|
      // Matched mask for vdealb4w.
 | 
						|
      Results.push(Hexagon::V6_vdealb4w, ResTy, {Vb, Va});
 | 
						|
      return OpRef::res(Results.top());
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if this is vpack{e,o}.
 | 
						|
    int N = VecLen;
 | 
						|
    int L = Strip.second;
 | 
						|
    // Check if the first strip starts at 0 or at L.
 | 
						|
    if (Strip.first != 0 && Strip.first != L)
 | 
						|
      return OpRef::fail();
 | 
						|
    // Examine the rest of the mask.
 | 
						|
    for (int I = L; I < N; I += L) {
 | 
						|
      auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
 | 
						|
      // Check whether the mask element at the beginning of each strip
 | 
						|
      // increases by 2L each time.
 | 
						|
      if (S.first - Strip.first != 2*I)
 | 
						|
        return OpRef::fail();
 | 
						|
      // Check whether each strip is of the same length.
 | 
						|
      if (S.second != unsigned(L))
 | 
						|
        return OpRef::fail();
 | 
						|
    }
 | 
						|
 | 
						|
    // Strip.first == 0  =>  vpacke
 | 
						|
    // Strip.first == L  =>  vpacko
 | 
						|
    assert(Strip.first == 0 || Strip.first == L);
 | 
						|
    using namespace Hexagon;
 | 
						|
    NodeTemplate Res;
 | 
						|
    Res.Opc = Strip.second == 1 // Number of bytes.
 | 
						|
                  ? (Strip.first == 0 ? V6_vpackeb : V6_vpackob)
 | 
						|
                  : (Strip.first == 0 ? V6_vpackeh : V6_vpackoh);
 | 
						|
    Res.Ty = ResTy;
 | 
						|
    Res.Ops = { Vb, Va };
 | 
						|
    Results.push(Res);
 | 
						|
    return OpRef::res(Results.top());
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if this is vshuff{e,o}.
 | 
						|
  int N = VecLen;
 | 
						|
  int L = Strip.second;
 | 
						|
  std::pair<int,unsigned> PrevS = Strip;
 | 
						|
  bool Flip = false;
 | 
						|
  for (int I = L; I < N; I += L) {
 | 
						|
    auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
 | 
						|
    if (S.second != PrevS.second)
 | 
						|
      return OpRef::fail();
 | 
						|
    int Diff = Flip ? PrevS.first - S.first + 2*L
 | 
						|
                    : S.first - PrevS.first;
 | 
						|
    if (Diff != N)
 | 
						|
      return OpRef::fail();
 | 
						|
    Flip ^= true;
 | 
						|
    PrevS = S;
 | 
						|
  }
 | 
						|
  // Strip.first == 0  =>  vshuffe
 | 
						|
  // Strip.first == L  =>  vshuffo
 | 
						|
  assert(Strip.first == 0 || Strip.first == L);
 | 
						|
  using namespace Hexagon;
 | 
						|
  NodeTemplate Res;
 | 
						|
  Res.Opc = Strip.second == 1 // Number of bytes.
 | 
						|
                ? (Strip.first == 0 ? V6_vshuffeb : V6_vshuffob)
 | 
						|
                : (Strip.first == 0 ?  V6_vshufeh :  V6_vshufoh);
 | 
						|
  Res.Ty = ResTy;
 | 
						|
  Res.Ops = { Vb, Va };
 | 
						|
  Results.push(Res);
 | 
						|
  return OpRef::res(Results.top());
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  // Expanding shuffles (using all elements and inserting into larger vector):
 | 
						|
  //
 | 
						|
  // V6_vunpacku{b,h} [*]
 | 
						|
  //
 | 
						|
  // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask.
 | 
						|
  //
 | 
						|
  // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so
 | 
						|
  // they are not shuffles.
 | 
						|
  //
 | 
						|
  // The argument is a single vector.
 | 
						|
 | 
						|
  int VecLen = SM.Mask.size();
 | 
						|
  assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type");
 | 
						|
 | 
						|
  std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
 | 
						|
 | 
						|
  // The patterns for the unpacks, in terms of the starting offsets of the
 | 
						|
  // consecutive strips (L = length of the strip, N = VecLen):
 | 
						|
  //
 | 
						|
  // vunpacku:  0, -1, L, -1, 2L, -1 ...
 | 
						|
 | 
						|
  if (Strip.first != 0)
 | 
						|
    return OpRef::fail();
 | 
						|
 | 
						|
  // The vunpackus only handle byte and half-word.
 | 
						|
  if (Strip.second != 1 && Strip.second != 2)
 | 
						|
    return OpRef::fail();
 | 
						|
 | 
						|
  int N = VecLen;
 | 
						|
  int L = Strip.second;
 | 
						|
 | 
						|
  // First, check the non-ignored strips.
 | 
						|
  for (int I = 2*L; I < 2*N; I += 2*L) {
 | 
						|
    auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
 | 
						|
    if (S.second != unsigned(L))
 | 
						|
      return OpRef::fail();
 | 
						|
    if (2*S.first != I)
 | 
						|
      return OpRef::fail();
 | 
						|
  }
 | 
						|
  // Check the -1s.
 | 
						|
  for (int I = L; I < 2*N; I += 2*L) {
 | 
						|
    auto S = findStrip(SM.Mask.drop_front(I), 0, N-I);
 | 
						|
    if (S.first != -1 || S.second != unsigned(L))
 | 
						|
      return OpRef::fail();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub
 | 
						|
                                   : Hexagon::V6_vunpackuh;
 | 
						|
  Results.push(Opc, getPairVT(MVT::i8), {Va});
 | 
						|
  return OpRef::res(Results.top());
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  // V6_vdeal{b,h}
 | 
						|
  // V6_vshuff{b,h}
 | 
						|
 | 
						|
  // V6_vshufoe{b,h}  those are quivalent to vshuffvdd(..,{1,2})
 | 
						|
  // V6_vshuffvdd (V6_vshuff)
 | 
						|
  // V6_dealvdd (V6_vdeal)
 | 
						|
 | 
						|
  int VecLen = SM.Mask.size();
 | 
						|
  assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8);
 | 
						|
  unsigned LogLen = Log2_32(VecLen);
 | 
						|
  unsigned HwLog = Log2_32(HwLen);
 | 
						|
  // The result length must be the same as the length of a single vector,
 | 
						|
  // or a vector pair.
 | 
						|
  assert(LogLen == HwLog || LogLen == HwLog+1);
 | 
						|
  bool Extend = (LogLen == HwLog);
 | 
						|
 | 
						|
  if (!isPermutation(SM.Mask))
 | 
						|
    return OpRef::fail();
 | 
						|
 | 
						|
  SmallVector<unsigned,8> Perm(LogLen);
 | 
						|
 | 
						|
  // Check if this could be a perfect shuffle, or a combination of perfect
 | 
						|
  // shuffles.
 | 
						|
  //
 | 
						|
  // Consider this permutation (using hex digits to make the ASCII diagrams
 | 
						|
  // easier to read):
 | 
						|
  //   { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }.
 | 
						|
  // This is a "deal" operation: divide the input into two halves, and
 | 
						|
  // create the output by picking elements by alternating between these two
 | 
						|
  // halves:
 | 
						|
  //   0 1 2 3 4 5 6 7    -->    0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F  [*]
 | 
						|
  //   8 9 A B C D E F
 | 
						|
  //
 | 
						|
  // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides
 | 
						|
  // a somwehat different mechanism that could be used to perform shuffle/
 | 
						|
  // deal operations: a 2x2 transpose.
 | 
						|
  // Consider the halves of inputs again, they can be interpreted as a 2x8
 | 
						|
  // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated
 | 
						|
  // together. Now, when considering 2 elements at a time, it will be a 2x4
 | 
						|
  // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices:
 | 
						|
  //   01 23  45 67
 | 
						|
  //   89 AB  CD EF
 | 
						|
  // With groups of 4, this will become a single 2x2 matrix, and so on.
 | 
						|
  //
 | 
						|
  // The 2x2 transpose instruction works by transposing each of the 2x2
 | 
						|
  // matrices (or "sub-matrices"), given a specific group size. For example,
 | 
						|
  // if the group size is 1 (i.e. each element is its own group), there
 | 
						|
  // will be four transposes of the four 2x2 matrices that form the 2x8.
 | 
						|
  // For example, with the inputs as above, the result will be:
 | 
						|
  //   0 8  2 A  4 C  6 E
 | 
						|
  //   1 9  3 B  5 D  7 F
 | 
						|
  // Now, this result can be tranposed again, but with the group size of 2:
 | 
						|
  //   08 19  4C 5D
 | 
						|
  //   2A 3B  6E 7F
 | 
						|
  // If we then transpose that result, but with the group size of 4, we get:
 | 
						|
  //   0819 2A3B
 | 
						|
  //   4C5D 6E7F
 | 
						|
  // If we concatenate these two rows, it will be
 | 
						|
  //   0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F
 | 
						|
  // which is the same as the "deal" [*] above.
 | 
						|
  //
 | 
						|
  // In general, a "deal" of individual elements is a series of 2x2 transposes,
 | 
						|
  // with changing group size. HVX has two instructions:
 | 
						|
  //   Vdd = V6_vdealvdd Vu, Vv, Rt
 | 
						|
  //   Vdd = V6_shufvdd  Vu, Vv, Rt
 | 
						|
  // that perform exactly that. The register Rt controls which transposes are
 | 
						|
  // going to happen: a bit at position n (counting from 0) indicates that a
 | 
						|
  // transpose with a group size of 2^n will take place. If multiple bits are
 | 
						|
  // set, multiple transposes will happen: vdealvdd will perform them starting
 | 
						|
  // with the largest group size, vshuffvdd will do them in the reverse order.
 | 
						|
  //
 | 
						|
  // The main observation is that each 2x2 transpose corresponds to swapping
 | 
						|
  // columns of bits in the binary representation of the values.
 | 
						|
  //
 | 
						|
  // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits
 | 
						|
  // in a given column. The * denote the columns that will be swapped.
 | 
						|
  // The transpose with the group size 2^n corresponds to swapping columns
 | 
						|
  // 3 (the highest log) and log2(n):
 | 
						|
  //
 | 
						|
  //     3 2 1 0         0 2 1 3         0 2 3 1
 | 
						|
  //     *     *             * *           * *
 | 
						|
  //  0  0 0 0 0      0  0 0 0 0      0  0 0 0 0      0  0 0 0 0
 | 
						|
  //  1  0 0 0 1      8  1 0 0 0      8  1 0 0 0      8  1 0 0 0
 | 
						|
  //  2  0 0 1 0      2  0 0 1 0      1  0 0 0 1      1  0 0 0 1
 | 
						|
  //  3  0 0 1 1      A  1 0 1 0      9  1 0 0 1      9  1 0 0 1
 | 
						|
  //  4  0 1 0 0      4  0 1 0 0      4  0 1 0 0      2  0 0 1 0
 | 
						|
  //  5  0 1 0 1      C  1 1 0 0      C  1 1 0 0      A  1 0 1 0
 | 
						|
  //  6  0 1 1 0      6  0 1 1 0      5  0 1 0 1      3  0 0 1 1
 | 
						|
  //  7  0 1 1 1      E  1 1 1 0      D  1 1 0 1      B  1 0 1 1
 | 
						|
  //  8  1 0 0 0      1  0 0 0 1      2  0 0 1 0      4  0 1 0 0
 | 
						|
  //  9  1 0 0 1      9  1 0 0 1      A  1 0 1 0      C  1 1 0 0
 | 
						|
  //  A  1 0 1 0      3  0 0 1 1      3  0 0 1 1      5  0 1 0 1
 | 
						|
  //  B  1 0 1 1      B  1 0 1 1      B  1 0 1 1      D  1 1 0 1
 | 
						|
  //  C  1 1 0 0      5  0 1 0 1      6  0 1 1 0      6  0 1 1 0
 | 
						|
  //  D  1 1 0 1      D  1 1 0 1      E  1 1 1 0      E  1 1 1 0
 | 
						|
  //  E  1 1 1 0      7  0 1 1 1      7  0 1 1 1      7  0 1 1 1
 | 
						|
  //  F  1 1 1 1      F  1 1 1 1      F  1 1 1 1      F  1 1 1 1
 | 
						|
 | 
						|
  auto XorPow2 = [] (ArrayRef<int> Mask, unsigned Num) {
 | 
						|
    unsigned X = Mask[0] ^ Mask[Num/2];
 | 
						|
    // Check that the first half has the X's bits clear.
 | 
						|
    if ((Mask[0] & X) != 0)
 | 
						|
      return 0u;
 | 
						|
    for (unsigned I = 1; I != Num/2; ++I) {
 | 
						|
      if (unsigned(Mask[I] ^ Mask[I+Num/2]) != X)
 | 
						|
        return 0u;
 | 
						|
      if ((Mask[I] & X) != 0)
 | 
						|
        return 0u;
 | 
						|
    }
 | 
						|
    return X;
 | 
						|
  };
 | 
						|
 | 
						|
  // Create a vector of log2's for each column: Perm[i] corresponds to
 | 
						|
  // the i-th bit (lsb is 0).
 | 
						|
  assert(VecLen > 2);
 | 
						|
  for (unsigned I = VecLen; I >= 2; I >>= 1) {
 | 
						|
    // Examine the initial segment of Mask of size I.
 | 
						|
    unsigned X = XorPow2(SM.Mask, I);
 | 
						|
    if (!isPowerOf2_32(X))
 | 
						|
      return OpRef::fail();
 | 
						|
    // Check the other segments of Mask.
 | 
						|
    for (int J = I; J < VecLen; J += I) {
 | 
						|
      if (XorPow2(SM.Mask.slice(J, I), I) != X)
 | 
						|
        return OpRef::fail();
 | 
						|
    }
 | 
						|
    Perm[Log2_32(X)] = Log2_32(I)-1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Once we have Perm, represent it as cycles. Denote the maximum log2
 | 
						|
  // (equal to log2(VecLen)-1) as M. The cycle containing M can then be
 | 
						|
  // written as (M a1 a2 a3 ... an). That cycle can be broken up into
 | 
						|
  // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition
 | 
						|
  // order being from left to right. Any (contiguous) segment where the
 | 
						|
  // values ai, ai+1...aj are either all increasing or all decreasing,
 | 
						|
  // can be implemented via a single vshuffvdd/vdealvdd respectively.
 | 
						|
  //
 | 
						|
  // If there is a cycle (a1 a2 ... an) that does not involve M, it can
 | 
						|
  // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can
 | 
						|
  // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure
 | 
						|
  // can be used to generate a sequence of vshuffvdd/vdealvdd.
 | 
						|
  //
 | 
						|
  // Example:
 | 
						|
  // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written
 | 
						|
  // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply
 | 
						|
  //   (4 0 1)(4 0)(4 2 3)(4 2).
 | 
						|
  // It can then be expanded into swaps as
 | 
						|
  //   (4 0)(4 1)(4 0)(4 2)(4 3)(4 2),
 | 
						|
  // and broken up into "increasing" segments as
 | 
						|
  //   [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)].
 | 
						|
  // This is equivalent to
 | 
						|
  //   (4 0 1)(4 0 2 3)(4 2),
 | 
						|
  // which can be implemented as 3 vshufvdd instructions.
 | 
						|
 | 
						|
  using CycleType = SmallVector<unsigned,8>;
 | 
						|
  std::set<CycleType> Cycles;
 | 
						|
  std::set<unsigned> All;
 | 
						|
 | 
						|
  for (unsigned I : Perm)
 | 
						|
    All.insert(I);
 | 
						|
 | 
						|
  // If the cycle contains LogLen-1, move it to the front of the cycle.
 | 
						|
  // Otherwise, return the cycle unchanged.
 | 
						|
  auto canonicalize = [LogLen](const CycleType &C) -> CycleType {
 | 
						|
    unsigned LogPos, N = C.size();
 | 
						|
    for (LogPos = 0; LogPos != N; ++LogPos)
 | 
						|
      if (C[LogPos] == LogLen-1)
 | 
						|
        break;
 | 
						|
    if (LogPos == N)
 | 
						|
      return C;
 | 
						|
 | 
						|
    CycleType NewC(C.begin()+LogPos, C.end());
 | 
						|
    NewC.append(C.begin(), C.begin()+LogPos);
 | 
						|
    return NewC;
 | 
						|
  };
 | 
						|
 | 
						|
  auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) {
 | 
						|
    // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6),
 | 
						|
    // for bytes zero is included, for halfwords is not.
 | 
						|
    if (Cs.size() != 1)
 | 
						|
      return 0u;
 | 
						|
    const CycleType &C = *Cs.begin();
 | 
						|
    if (C[0] != Len-1)
 | 
						|
      return 0u;
 | 
						|
    int D = Len - C.size();
 | 
						|
    if (D != 0 && D != 1)
 | 
						|
      return 0u;
 | 
						|
 | 
						|
    bool IsDeal = true, IsShuff = true;
 | 
						|
    for (unsigned I = 1; I != Len-D; ++I) {
 | 
						|
      if (C[I] != Len-1-I)
 | 
						|
        IsDeal = false;
 | 
						|
      if (C[I] != I-(1-D))  // I-1, I
 | 
						|
        IsShuff = false;
 | 
						|
    }
 | 
						|
    // At most one, IsDeal or IsShuff, can be non-zero.
 | 
						|
    assert(!(IsDeal || IsShuff) || IsDeal != IsShuff);
 | 
						|
    static unsigned Deals[] = { Hexagon::V6_vdealb, Hexagon::V6_vdealh };
 | 
						|
    static unsigned Shufs[] = { Hexagon::V6_vshuffb, Hexagon::V6_vshuffh };
 | 
						|
    return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0);
 | 
						|
  };
 | 
						|
 | 
						|
  while (!All.empty()) {
 | 
						|
    unsigned A = *All.begin();
 | 
						|
    All.erase(A);
 | 
						|
    CycleType C;
 | 
						|
    C.push_back(A);
 | 
						|
    for (unsigned B = Perm[A]; B != A; B = Perm[B]) {
 | 
						|
      C.push_back(B);
 | 
						|
      All.erase(B);
 | 
						|
    }
 | 
						|
    if (C.size() <= 1)
 | 
						|
      continue;
 | 
						|
    Cycles.insert(canonicalize(C));
 | 
						|
  }
 | 
						|
 | 
						|
  MVT SingleTy = getSingleVT(MVT::i8);
 | 
						|
  MVT PairTy = getPairVT(MVT::i8);
 | 
						|
 | 
						|
  // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}.
 | 
						|
  if (unsigned(VecLen) == HwLen) {
 | 
						|
    if (unsigned SingleOpc = pfs(Cycles, LogLen)) {
 | 
						|
      Results.push(SingleOpc, SingleTy, {Va});
 | 
						|
      return OpRef::res(Results.top());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<unsigned,8> SwapElems;
 | 
						|
  if (HwLen == unsigned(VecLen))
 | 
						|
    SwapElems.push_back(LogLen-1);
 | 
						|
 | 
						|
  for (const CycleType &C : Cycles) {
 | 
						|
    unsigned First = (C[0] == LogLen-1) ? 1 : 0;
 | 
						|
    SwapElems.append(C.begin()+First, C.end());
 | 
						|
    if (First == 0)
 | 
						|
      SwapElems.push_back(C[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  const SDLoc &dl(Results.InpNode);
 | 
						|
  OpRef Arg = !Extend ? Va
 | 
						|
                      : concat(Va, OpRef::undef(SingleTy), Results);
 | 
						|
 | 
						|
  for (unsigned I = 0, E = SwapElems.size(); I != E; ) {
 | 
						|
    bool IsInc = I == E-1 || SwapElems[I] < SwapElems[I+1];
 | 
						|
    unsigned S = (1u << SwapElems[I]);
 | 
						|
    if (I < E-1) {
 | 
						|
      while (++I < E-1 && IsInc == (SwapElems[I] < SwapElems[I+1]))
 | 
						|
        S |= 1u << SwapElems[I];
 | 
						|
      // The above loop will not add a bit for the final SwapElems[I+1],
 | 
						|
      // so add it here.
 | 
						|
      S |= 1u << SwapElems[I];
 | 
						|
    }
 | 
						|
    ++I;
 | 
						|
 | 
						|
    NodeTemplate Res;
 | 
						|
    Results.push(Hexagon::A2_tfrsi, MVT::i32,
 | 
						|
                 { DAG.getTargetConstant(S, dl, MVT::i32) });
 | 
						|
    Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd;
 | 
						|
    Res.Ty = PairTy;
 | 
						|
    Res.Ops = { OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1) };
 | 
						|
    Results.push(Res);
 | 
						|
    Arg = OpRef::res(Results.top());
 | 
						|
  }
 | 
						|
 | 
						|
  return !Extend ? Arg : OpRef::lo(Arg);
 | 
						|
}
 | 
						|
 | 
						|
OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
 | 
						|
  // Butterfly shuffles.
 | 
						|
  //
 | 
						|
  // V6_vdelta
 | 
						|
  // V6_vrdelta
 | 
						|
  // V6_vror
 | 
						|
 | 
						|
  // The assumption here is that all elements picked by Mask are in the
 | 
						|
  // first operand to the vector_shuffle. This assumption is enforced
 | 
						|
  // by the caller.
 | 
						|
 | 
						|
  MVT ResTy = getSingleVT(MVT::i8);
 | 
						|
  PermNetwork::Controls FC, RC;
 | 
						|
  const SDLoc &dl(Results.InpNode);
 | 
						|
  int VecLen = SM.Mask.size();
 | 
						|
 | 
						|
  for (int M : SM.Mask) {
 | 
						|
    if (M != -1 && M >= VecLen)
 | 
						|
      return OpRef::fail();
 | 
						|
  }
 | 
						|
 | 
						|
  // Try the deltas/benes for both single vectors and vector pairs.
 | 
						|
  ForwardDeltaNetwork FN(SM.Mask);
 | 
						|
  if (FN.run(FC)) {
 | 
						|
    SDValue Ctl = getVectorConstant(FC, dl);
 | 
						|
    Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)});
 | 
						|
    return OpRef::res(Results.top());
 | 
						|
  }
 | 
						|
 | 
						|
  // Try reverse delta.
 | 
						|
  ReverseDeltaNetwork RN(SM.Mask);
 | 
						|
  if (RN.run(RC)) {
 | 
						|
    SDValue Ctl = getVectorConstant(RC, dl);
 | 
						|
    Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)});
 | 
						|
    return OpRef::res(Results.top());
 | 
						|
  }
 | 
						|
 | 
						|
  // Do Benes.
 | 
						|
  BenesNetwork BN(SM.Mask);
 | 
						|
  if (BN.run(FC, RC)) {
 | 
						|
    SDValue CtlF = getVectorConstant(FC, dl);
 | 
						|
    SDValue CtlR = getVectorConstant(RC, dl);
 | 
						|
    Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)});
 | 
						|
    Results.push(Hexagon::V6_vrdelta, ResTy,
 | 
						|
                 {OpRef::res(-1), OpRef(CtlR)});
 | 
						|
    return OpRef::res(Results.top());
 | 
						|
  }
 | 
						|
 | 
						|
  return OpRef::fail();
 | 
						|
}
 | 
						|
 | 
						|
SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data,
 | 
						|
                                       const SDLoc &dl) {
 | 
						|
  SmallVector<SDValue, 128> Elems;
 | 
						|
  for (uint8_t C : Data)
 | 
						|
    Elems.push_back(DAG.getConstant(C, dl, MVT::i8));
 | 
						|
  MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size());
 | 
						|
  SDValue BV = DAG.getBuildVector(VecTy, dl, Elems);
 | 
						|
  SDValue LV = Lower.LowerOperation(BV, DAG);
 | 
						|
  DAG.RemoveDeadNode(BV.getNode());
 | 
						|
  return LV;
 | 
						|
}
 | 
						|
 | 
						|
void HvxSelector::selectShuffle(SDNode *N) {
 | 
						|
  DEBUG_WITH_TYPE("isel", {
 | 
						|
    dbgs() << "Starting " << __func__ << " on node:\n";
 | 
						|
    N->dump(&DAG);
 | 
						|
  });
 | 
						|
  MVT ResTy = N->getValueType(0).getSimpleVT();
 | 
						|
  // Assume that vector shuffles operate on vectors of bytes.
 | 
						|
  assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8);
 | 
						|
 | 
						|
  auto *SN = cast<ShuffleVectorSDNode>(N);
 | 
						|
  std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end());
 | 
						|
  // This shouldn't really be necessary. Is it?
 | 
						|
  for (int &Idx : Mask)
 | 
						|
    if (Idx != -1 && Idx < 0)
 | 
						|
      Idx = -1;
 | 
						|
 | 
						|
  unsigned VecLen = Mask.size();
 | 
						|
  bool HavePairs = (2*HwLen == VecLen);
 | 
						|
  assert(ResTy.getSizeInBits() / 8 == VecLen);
 | 
						|
 | 
						|
  // Vd = vector_shuffle Va, Vb, Mask
 | 
						|
  //
 | 
						|
 | 
						|
  bool UseLeft = false, UseRight = false;
 | 
						|
  for (unsigned I = 0; I != VecLen; ++I) {
 | 
						|
    if (Mask[I] == -1)
 | 
						|
      continue;
 | 
						|
    unsigned Idx = Mask[I];
 | 
						|
    assert(Idx < 2*VecLen);
 | 
						|
    if (Idx < VecLen)
 | 
						|
      UseLeft = true;
 | 
						|
    else
 | 
						|
      UseRight = true;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG_WITH_TYPE("isel", {
 | 
						|
    dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft="
 | 
						|
           << UseLeft << " UseRight=" << UseRight << " HavePairs="
 | 
						|
           << HavePairs << '\n';
 | 
						|
  });
 | 
						|
  // If the mask is all -1's, generate "undef".
 | 
						|
  if (!UseLeft && !UseRight) {
 | 
						|
    ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Vec0 = N->getOperand(0);
 | 
						|
  SDValue Vec1 = N->getOperand(1);
 | 
						|
  ResultStack Results(SN);
 | 
						|
  Results.push(TargetOpcode::COPY, ResTy, {Vec0});
 | 
						|
  Results.push(TargetOpcode::COPY, ResTy, {Vec1});
 | 
						|
  OpRef Va = OpRef::res(Results.top()-1);
 | 
						|
  OpRef Vb = OpRef::res(Results.top());
 | 
						|
 | 
						|
  OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results)
 | 
						|
                         : shuffp2(ShuffleMask(Mask), Va, Vb, Results);
 | 
						|
 | 
						|
  bool Done = Res.isValid();
 | 
						|
  if (Done) {
 | 
						|
    // Make sure that Res is on the stack before materializing.
 | 
						|
    Results.push(TargetOpcode::COPY, ResTy, {Res});
 | 
						|
    materialize(Results);
 | 
						|
  } else {
 | 
						|
    Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Done) {
 | 
						|
#ifndef NDEBUG
 | 
						|
    dbgs() << "Unhandled shuffle:\n";
 | 
						|
    SN->dumpr(&DAG);
 | 
						|
#endif
 | 
						|
    llvm_unreachable("Failed to select vector shuffle");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void HvxSelector::selectRor(SDNode *N) {
 | 
						|
  // If this is a rotation by less than 8, use V6_valignbi.
 | 
						|
  MVT Ty = N->getValueType(0).getSimpleVT();
 | 
						|
  const SDLoc &dl(N);
 | 
						|
  SDValue VecV = N->getOperand(0);
 | 
						|
  SDValue RotV = N->getOperand(1);
 | 
						|
  SDNode *NewN = nullptr;
 | 
						|
 | 
						|
  if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) {
 | 
						|
    unsigned S = CN->getZExtValue() % HST.getVectorLength();
 | 
						|
    if (S == 0) {
 | 
						|
      NewN = VecV.getNode();
 | 
						|
    } else if (isUInt<3>(S)) {
 | 
						|
      SDValue C = DAG.getTargetConstant(S, dl, MVT::i32);
 | 
						|
      NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty,
 | 
						|
                                {VecV, VecV, C});
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!NewN)
 | 
						|
    NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV});
 | 
						|
 | 
						|
  ISel.ReplaceNode(N, NewN);
 | 
						|
}
 | 
						|
 | 
						|
void HvxSelector::selectVAlign(SDNode *N) {
 | 
						|
  SDValue Vv = N->getOperand(0);
 | 
						|
  SDValue Vu = N->getOperand(1);
 | 
						|
  SDValue Rt = N->getOperand(2);
 | 
						|
  SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N),
 | 
						|
                                    N->getValueType(0), {Vv, Vu, Rt});
 | 
						|
  ISel.ReplaceNode(N, NewN);
 | 
						|
  DAG.RemoveDeadNode(N);
 | 
						|
}
 | 
						|
 | 
						|
void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) {
 | 
						|
  HvxSelector(*this, *CurDAG).selectShuffle(N);
 | 
						|
}
 | 
						|
 | 
						|
void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) {
 | 
						|
  HvxSelector(*this, *CurDAG).selectRor(N);
 | 
						|
}
 | 
						|
 | 
						|
void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) {
 | 
						|
  HvxSelector(*this, *CurDAG).selectVAlign(N);
 | 
						|
}
 | 
						|
 | 
						|
void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) {
 | 
						|
  const SDLoc &dl(N);
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  SDValue Address = N->getOperand(2);
 | 
						|
  SDValue Predicate = N->getOperand(3);
 | 
						|
  SDValue Base = N->getOperand(4);
 | 
						|
  SDValue Modifier = N->getOperand(5);
 | 
						|
  SDValue Offset = N->getOperand(6);
 | 
						|
 | 
						|
  unsigned Opcode;
 | 
						|
  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | 
						|
  switch (IntNo) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected HVX gather intrinsic.");
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhq:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhq_128B:
 | 
						|
    Opcode = Hexagon::V6_vgathermhq_pseudo;
 | 
						|
    break;
 | 
						|
  case Intrinsic::hexagon_V6_vgathermwq:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermwq_128B:
 | 
						|
    Opcode = Hexagon::V6_vgathermwq_pseudo;
 | 
						|
    break;
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhwq:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhwq_128B:
 | 
						|
    Opcode = Hexagon::V6_vgathermhwq_pseudo;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  SDVTList VTs = CurDAG->getVTList(MVT::Other);
 | 
						|
  SDValue Ops[] = { Address, Predicate, Base, Modifier, Offset, Chain };
 | 
						|
  SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
 | 
						|
 | 
						|
  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
 | 
						|
 | 
						|
  ReplaceNode(N, Result);
 | 
						|
}
 | 
						|
 | 
						|
void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) {
 | 
						|
  const SDLoc &dl(N);
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  SDValue Address = N->getOperand(2);
 | 
						|
  SDValue Base = N->getOperand(3);
 | 
						|
  SDValue Modifier = N->getOperand(4);
 | 
						|
  SDValue Offset = N->getOperand(5);
 | 
						|
 | 
						|
  unsigned Opcode;
 | 
						|
  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | 
						|
  switch (IntNo) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected HVX gather intrinsic.");
 | 
						|
  case Intrinsic::hexagon_V6_vgathermh:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermh_128B:
 | 
						|
    Opcode = Hexagon::V6_vgathermh_pseudo;
 | 
						|
    break;
 | 
						|
  case Intrinsic::hexagon_V6_vgathermw:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermw_128B:
 | 
						|
    Opcode = Hexagon::V6_vgathermw_pseudo;
 | 
						|
    break;
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhw:
 | 
						|
  case Intrinsic::hexagon_V6_vgathermhw_128B:
 | 
						|
    Opcode = Hexagon::V6_vgathermhw_pseudo;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  SDVTList VTs = CurDAG->getVTList(MVT::Other);
 | 
						|
  SDValue Ops[] = { Address, Base, Modifier, Offset, Chain };
 | 
						|
  SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
 | 
						|
 | 
						|
  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
 | 
						|
 | 
						|
  ReplaceNode(N, Result);
 | 
						|
}
 | 
						|
 | 
						|
void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) {
 | 
						|
  unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | 
						|
  SDNode *Result;
 | 
						|
  switch (IID) {
 | 
						|
  case Intrinsic::hexagon_V6_vaddcarry: {
 | 
						|
    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
 | 
						|
                                    N->getOperand(3) };
 | 
						|
    SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1);
 | 
						|
    Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::hexagon_V6_vaddcarry_128B: {
 | 
						|
    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
 | 
						|
                                    N->getOperand(3) };
 | 
						|
    SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1);
 | 
						|
    Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::hexagon_V6_vsubcarry: {
 | 
						|
    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
 | 
						|
                                    N->getOperand(3) };
 | 
						|
    SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v512i1);
 | 
						|
    Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::hexagon_V6_vsubcarry_128B: {
 | 
						|
    SmallVector<SDValue, 3> Ops = { N->getOperand(1), N->getOperand(2),
 | 
						|
                                    N->getOperand(3) };
 | 
						|
    SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v1024i1);
 | 
						|
    Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected HVX dual output intrinsic.");
 | 
						|
  }
 | 
						|
  ReplaceUses(N, Result);
 | 
						|
  ReplaceUses(SDValue(N, 0), SDValue(Result, 0));
 | 
						|
  ReplaceUses(SDValue(N, 1), SDValue(Result, 1));
 | 
						|
  CurDAG->RemoveDeadNode(N);
 | 
						|
}
 |