272 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- TargetMachine.cpp - General Target Information ---------------------==//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file describes the general parts of a Target machine.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/LegacyPassManager.h"
 | 
						|
#include "llvm/IR/Mangler.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/MC/MCInstrInfo.h"
 | 
						|
#include "llvm/MC/MCSectionMachO.h"
 | 
						|
#include "llvm/MC/MCTargetOptions.h"
 | 
						|
#include "llvm/MC/SectionKind.h"
 | 
						|
#include "llvm/Target/TargetLoweringObjectFile.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// TargetMachine Class
 | 
						|
//
 | 
						|
 | 
						|
TargetMachine::TargetMachine(const Target &T, StringRef DataLayoutString,
 | 
						|
                             const Triple &TT, StringRef CPU, StringRef FS,
 | 
						|
                             const TargetOptions &Options)
 | 
						|
    : TheTarget(T), DL(DataLayoutString), TargetTriple(TT),
 | 
						|
      TargetCPU(std::string(CPU)), TargetFS(std::string(FS)), AsmInfo(nullptr),
 | 
						|
      MRI(nullptr), MII(nullptr), STI(nullptr), RequireStructuredCFG(false),
 | 
						|
      O0WantsFastISel(false), DefaultOptions(Options), Options(Options) {}
 | 
						|
 | 
						|
TargetMachine::~TargetMachine() = default;
 | 
						|
 | 
						|
bool TargetMachine::isPositionIndependent() const {
 | 
						|
  return getRelocationModel() == Reloc::PIC_;
 | 
						|
}
 | 
						|
 | 
						|
/// Reset the target options based on the function's attributes.
 | 
						|
/// setFunctionAttributes should have made the raw attribute value consistent
 | 
						|
/// with the command line flag if used.
 | 
						|
//
 | 
						|
// FIXME: This function needs to go away for a number of reasons:
 | 
						|
// a) global state on the TargetMachine is terrible in general,
 | 
						|
// b) these target options should be passed only on the function
 | 
						|
//    and not on the TargetMachine (via TargetOptions) at all.
 | 
						|
void TargetMachine::resetTargetOptions(const Function &F) const {
 | 
						|
#define RESET_OPTION(X, Y)                                              \
 | 
						|
  do {                                                                  \
 | 
						|
    Options.X = (F.getFnAttribute(Y).getValueAsString() == "true");     \
 | 
						|
  } while (0)
 | 
						|
 | 
						|
  RESET_OPTION(UnsafeFPMath, "unsafe-fp-math");
 | 
						|
  RESET_OPTION(NoInfsFPMath, "no-infs-fp-math");
 | 
						|
  RESET_OPTION(NoNaNsFPMath, "no-nans-fp-math");
 | 
						|
  RESET_OPTION(NoSignedZerosFPMath, "no-signed-zeros-fp-math");
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the code generation relocation model. The choices are static, PIC,
 | 
						|
/// and dynamic-no-pic.
 | 
						|
Reloc::Model TargetMachine::getRelocationModel() const { return RM; }
 | 
						|
 | 
						|
/// Returns the code model. The choices are small, kernel, medium, large, and
 | 
						|
/// target default.
 | 
						|
CodeModel::Model TargetMachine::getCodeModel() const { return CMModel; }
 | 
						|
 | 
						|
/// Get the IR-specified TLS model for Var.
 | 
						|
static TLSModel::Model getSelectedTLSModel(const GlobalValue *GV) {
 | 
						|
  switch (GV->getThreadLocalMode()) {
 | 
						|
  case GlobalVariable::NotThreadLocal:
 | 
						|
    llvm_unreachable("getSelectedTLSModel for non-TLS variable");
 | 
						|
    break;
 | 
						|
  case GlobalVariable::GeneralDynamicTLSModel:
 | 
						|
    return TLSModel::GeneralDynamic;
 | 
						|
  case GlobalVariable::LocalDynamicTLSModel:
 | 
						|
    return TLSModel::LocalDynamic;
 | 
						|
  case GlobalVariable::InitialExecTLSModel:
 | 
						|
    return TLSModel::InitialExec;
 | 
						|
  case GlobalVariable::LocalExecTLSModel:
 | 
						|
    return TLSModel::LocalExec;
 | 
						|
  }
 | 
						|
  llvm_unreachable("invalid TLS model");
 | 
						|
}
 | 
						|
 | 
						|
bool TargetMachine::shouldAssumeDSOLocal(const Module &M,
 | 
						|
                                         const GlobalValue *GV) const {
 | 
						|
  // If the IR producer requested that this GV be treated as dso local, obey.
 | 
						|
  if (GV && GV->isDSOLocal())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we are not supossed to use a PLT, we cannot assume that intrinsics are
 | 
						|
  // local since the linker can convert some direct access to access via plt.
 | 
						|
  if (M.getRtLibUseGOT() && !GV)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // According to the llvm language reference, we should be able to
 | 
						|
  // just return false in here if we have a GV, as we know it is
 | 
						|
  // dso_preemptable.  At this point in time, the various IR producers
 | 
						|
  // have not been transitioned to always produce a dso_local when it
 | 
						|
  // is possible to do so.
 | 
						|
  // In the case of intrinsics, GV is null and there is nowhere to put
 | 
						|
  // dso_local. Returning false for those will produce worse code in some
 | 
						|
  // architectures. For example, on x86 the caller has to set ebx before calling
 | 
						|
  // a plt.
 | 
						|
  // As a result we still have some logic in here to improve the quality of the
 | 
						|
  // generated code.
 | 
						|
  // FIXME: Add a module level metadata for whether intrinsics should be assumed
 | 
						|
  // local.
 | 
						|
 | 
						|
  Reloc::Model RM = getRelocationModel();
 | 
						|
  const Triple &TT = getTargetTriple();
 | 
						|
 | 
						|
  // DLLImport explicitly marks the GV as external.
 | 
						|
  if (GV && GV->hasDLLImportStorageClass())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // On MinGW, variables that haven't been declared with DLLImport may still
 | 
						|
  // end up automatically imported by the linker. To make this feasible,
 | 
						|
  // don't assume the variables to be DSO local unless we actually know
 | 
						|
  // that for sure. This only has to be done for variables; for functions
 | 
						|
  // the linker can insert thunks for calling functions from another DLL.
 | 
						|
  if (TT.isWindowsGNUEnvironment() && TT.isOSBinFormatCOFF() && GV &&
 | 
						|
      GV->isDeclarationForLinker() && isa<GlobalVariable>(GV))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
 | 
						|
  // remain unresolved in the link, they can be resolved to zero, which is
 | 
						|
  // outside the current DSO.
 | 
						|
  if (TT.isOSBinFormatCOFF() && GV && GV->hasExternalWeakLinkage())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Every other GV is local on COFF.
 | 
						|
  // Make an exception for windows OS in the triple: Some firmware builds use
 | 
						|
  // *-win32-macho triples. This (accidentally?) produced windows relocations
 | 
						|
  // without GOT tables in older clang versions; Keep this behaviour.
 | 
						|
  // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables
 | 
						|
  // either.
 | 
						|
  if (TT.isOSBinFormatCOFF() || TT.isOSWindows())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Most PIC code sequences that assume that a symbol is local cannot
 | 
						|
  // produce a 0 if it turns out the symbol is undefined. While this
 | 
						|
  // is ABI and relocation depended, it seems worth it to handle it
 | 
						|
  // here.
 | 
						|
  if (GV && isPositionIndependent() && GV->hasExternalWeakLinkage())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (GV && !GV->hasDefaultVisibility())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (TT.isOSBinFormatMachO()) {
 | 
						|
    if (RM == Reloc::Static)
 | 
						|
      return true;
 | 
						|
    return GV && GV->isStrongDefinitionForLinker();
 | 
						|
  }
 | 
						|
 | 
						|
  // Due to the AIX linkage model, any global with default visibility is
 | 
						|
  // considered non-local.
 | 
						|
  if (TT.isOSBinFormatXCOFF())
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(TT.isOSBinFormatELF() || TT.isOSBinFormatWasm());
 | 
						|
  assert(RM != Reloc::DynamicNoPIC);
 | 
						|
 | 
						|
  bool IsExecutable =
 | 
						|
      RM == Reloc::Static || M.getPIELevel() != PIELevel::Default;
 | 
						|
  if (IsExecutable) {
 | 
						|
    // If the symbol is defined, it cannot be preempted.
 | 
						|
    if (GV && !GV->isDeclarationForLinker())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // A symbol marked nonlazybind should not be accessed with a plt. If the
 | 
						|
    // symbol turns out to be external, the linker will convert a direct
 | 
						|
    // access to an access via the plt, so don't assume it is local.
 | 
						|
    const Function *F = dyn_cast_or_null<Function>(GV);
 | 
						|
    if (F && F->hasFnAttribute(Attribute::NonLazyBind))
 | 
						|
      return false;
 | 
						|
    Triple::ArchType Arch = TT.getArch();
 | 
						|
 | 
						|
    // PowerPC prefers avoiding copy relocations.
 | 
						|
    if (Arch == Triple::ppc || TT.isPPC64())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Check if we can use copy relocations.
 | 
						|
    if (!(GV && GV->isThreadLocal()) && RM == Reloc::Static)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // ELF & wasm support preemption of other symbols.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TargetMachine::useEmulatedTLS() const {
 | 
						|
  // Returns Options.EmulatedTLS if the -emulated-tls or -no-emulated-tls
 | 
						|
  // was specified explicitly; otherwise uses target triple to decide default.
 | 
						|
  if (Options.ExplicitEmulatedTLS)
 | 
						|
    return Options.EmulatedTLS;
 | 
						|
  return getTargetTriple().hasDefaultEmulatedTLS();
 | 
						|
}
 | 
						|
 | 
						|
TLSModel::Model TargetMachine::getTLSModel(const GlobalValue *GV) const {
 | 
						|
  bool IsPIE = GV->getParent()->getPIELevel() != PIELevel::Default;
 | 
						|
  Reloc::Model RM = getRelocationModel();
 | 
						|
  bool IsSharedLibrary = RM == Reloc::PIC_ && !IsPIE;
 | 
						|
  bool IsLocal = shouldAssumeDSOLocal(*GV->getParent(), GV);
 | 
						|
 | 
						|
  TLSModel::Model Model;
 | 
						|
  if (IsSharedLibrary) {
 | 
						|
    if (IsLocal)
 | 
						|
      Model = TLSModel::LocalDynamic;
 | 
						|
    else
 | 
						|
      Model = TLSModel::GeneralDynamic;
 | 
						|
  } else {
 | 
						|
    if (IsLocal)
 | 
						|
      Model = TLSModel::LocalExec;
 | 
						|
    else
 | 
						|
      Model = TLSModel::InitialExec;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the user specified a more specific model, use that.
 | 
						|
  TLSModel::Model SelectedModel = getSelectedTLSModel(GV);
 | 
						|
  if (SelectedModel > Model)
 | 
						|
    return SelectedModel;
 | 
						|
 | 
						|
  return Model;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the optimization level: None, Less, Default, or Aggressive.
 | 
						|
CodeGenOpt::Level TargetMachine::getOptLevel() const { return OptLevel; }
 | 
						|
 | 
						|
void TargetMachine::setOptLevel(CodeGenOpt::Level Level) { OptLevel = Level; }
 | 
						|
 | 
						|
TargetTransformInfo TargetMachine::getTargetTransformInfo(const Function &F) {
 | 
						|
  return TargetTransformInfo(F.getParent()->getDataLayout());
 | 
						|
}
 | 
						|
 | 
						|
void TargetMachine::getNameWithPrefix(SmallVectorImpl<char> &Name,
 | 
						|
                                      const GlobalValue *GV, Mangler &Mang,
 | 
						|
                                      bool MayAlwaysUsePrivate) const {
 | 
						|
  if (MayAlwaysUsePrivate || !GV->hasPrivateLinkage()) {
 | 
						|
    // Simple case: If GV is not private, it is not important to find out if
 | 
						|
    // private labels are legal in this case or not.
 | 
						|
    Mang.getNameWithPrefix(Name, GV, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  const TargetLoweringObjectFile *TLOF = getObjFileLowering();
 | 
						|
  TLOF->getNameWithPrefix(Name, GV, *this);
 | 
						|
}
 | 
						|
 | 
						|
MCSymbol *TargetMachine::getSymbol(const GlobalValue *GV) const {
 | 
						|
  const TargetLoweringObjectFile *TLOF = getObjFileLowering();
 | 
						|
  SmallString<128> NameStr;
 | 
						|
  getNameWithPrefix(NameStr, GV, TLOF->getMangler());
 | 
						|
  return TLOF->getContext().getOrCreateSymbol(NameStr);
 | 
						|
}
 | 
						|
 | 
						|
TargetIRAnalysis TargetMachine::getTargetIRAnalysis() {
 | 
						|
  // Since Analysis can't depend on Target, use a std::function to invert the
 | 
						|
  // dependency.
 | 
						|
  return TargetIRAnalysis(
 | 
						|
      [this](const Function &F) { return this->getTargetTransformInfo(F); });
 | 
						|
}
 |