207 lines
7.9 KiB
C++
207 lines
7.9 KiB
C++
//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVMatInt.h"
|
|
#include "MCTargetDesc/RISCVMCTargetDesc.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace llvm;
|
|
|
|
static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
|
|
if (!HasRVC)
|
|
return Res.size();
|
|
|
|
int Cost = 0;
|
|
for (auto Instr : Res) {
|
|
bool Compressed;
|
|
switch (Instr.Opc) {
|
|
default: llvm_unreachable("Unexpected opcode");
|
|
case RISCV::SLLI:
|
|
case RISCV::SRLI:
|
|
Compressed = true;
|
|
break;
|
|
case RISCV::ADDI:
|
|
case RISCV::ADDIW:
|
|
case RISCV::LUI:
|
|
Compressed = isInt<6>(Instr.Imm);
|
|
break;
|
|
case RISCV::ADDUW:
|
|
Compressed = false;
|
|
break;
|
|
}
|
|
// Two RVC instructions take the same space as one RVI instruction, but
|
|
// can take longer to execute than the single RVI instruction. Thus, we
|
|
// consider that two RVC instruction are slightly more costly than one
|
|
// RVI instruction. For longer sequences of RVC instructions the space
|
|
// savings can be worth it, though. The costs below try to model that.
|
|
if (!Compressed)
|
|
Cost += 100; // Baseline cost of one RVI instruction: 100%.
|
|
else
|
|
Cost += 70; // 70% cost of baseline.
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
// Recursively generate a sequence for materializing an integer.
|
|
static void generateInstSeqImpl(int64_t Val,
|
|
const FeatureBitset &ActiveFeatures,
|
|
RISCVMatInt::InstSeq &Res) {
|
|
bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
|
|
|
|
if (isInt<32>(Val)) {
|
|
// Depending on the active bits in the immediate Value v, the following
|
|
// instruction sequences are emitted:
|
|
//
|
|
// v == 0 : ADDI
|
|
// v[0,12) != 0 && v[12,32) == 0 : ADDI
|
|
// v[0,12) == 0 && v[12,32) != 0 : LUI
|
|
// v[0,32) != 0 : LUI+ADDI(W)
|
|
int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
|
|
int64_t Lo12 = SignExtend64<12>(Val);
|
|
|
|
if (Hi20)
|
|
Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20));
|
|
|
|
if (Lo12 || Hi20 == 0) {
|
|
unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
|
|
Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12));
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
|
|
|
|
// In the worst case, for a full 64-bit constant, a sequence of 8 instructions
|
|
// (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emmitted. Note
|
|
// that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
|
|
// while the following ADDI instructions contribute up to 12 bits each.
|
|
//
|
|
// On the first glance, implementing this seems to be possible by simply
|
|
// emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
|
|
// shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
|
|
// fact that ADDI performs a sign extended addition, doing it like that would
|
|
// only be possible when at most 11 bits of the ADDI instructions are used.
|
|
// Using all 12 bits of the ADDI instructions, like done by GAS, actually
|
|
// requires that the constant is processed starting with the least significant
|
|
// bit.
|
|
//
|
|
// In the following, constants are processed from LSB to MSB but instruction
|
|
// emission is performed from MSB to LSB by recursively calling
|
|
// generateInstSeq. In each recursion, first the lowest 12 bits are removed
|
|
// from the constant and the optimal shift amount, which can be greater than
|
|
// 12 bits if the constant is sparse, is determined. Then, the shifted
|
|
// remaining constant is processed recursively and gets emitted as soon as it
|
|
// fits into 32 bits. The emission of the shifts and additions is subsequently
|
|
// performed when the recursion returns.
|
|
|
|
int64_t Lo12 = SignExtend64<12>(Val);
|
|
int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12;
|
|
int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
|
|
Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);
|
|
|
|
// If the remaining bits don't fit in 12 bits, we might be able to reduce the
|
|
// shift amount in order to use LUI which will zero the lower 12 bits.
|
|
if (ShiftAmount > 12 && !isInt<12>(Hi52) && isInt<32>((uint64_t)Hi52 << 12)) {
|
|
// Reduce the shift amount and add zeros to the LSBs so it will match LUI.
|
|
ShiftAmount -= 12;
|
|
Hi52 = (uint64_t)Hi52 << 12;
|
|
}
|
|
|
|
generateInstSeqImpl(Hi52, ActiveFeatures, Res);
|
|
|
|
Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount));
|
|
if (Lo12)
|
|
Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
|
|
}
|
|
|
|
namespace llvm {
|
|
namespace RISCVMatInt {
|
|
InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) {
|
|
RISCVMatInt::InstSeq Res;
|
|
generateInstSeqImpl(Val, ActiveFeatures, Res);
|
|
|
|
// If the constant is positive we might be able to generate a shifted constant
|
|
// with no leading zeros and use a final SRLI to restore them.
|
|
if (Val > 0 && Res.size() > 2) {
|
|
assert(ActiveFeatures[RISCV::Feature64Bit] &&
|
|
"Expected RV32 to only need 2 instructions");
|
|
unsigned LeadingZeros = countLeadingZeros((uint64_t)Val);
|
|
uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
|
|
// Fill in the bits that will be shifted out with 1s. An example where this
|
|
// helps is trailing one masks with 32 or more ones. This will generate
|
|
// ADDI -1 and an SRLI.
|
|
ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
|
|
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
|
|
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
|
|
|
|
// Keep the new sequence if it is an improvement.
|
|
if (TmpSeq.size() < Res.size()) {
|
|
Res = TmpSeq;
|
|
// A 2 instruction sequence is the best we can do.
|
|
if (Res.size() <= 2)
|
|
return Res;
|
|
}
|
|
|
|
// Some cases can benefit from filling the lower bits with zeros instead.
|
|
ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
|
|
TmpSeq.clear();
|
|
generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
|
|
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
|
|
|
|
// Keep the new sequence if it is an improvement.
|
|
if (TmpSeq.size() < Res.size()) {
|
|
Res = TmpSeq;
|
|
// A 2 instruction sequence is the best we can do.
|
|
if (Res.size() <= 2)
|
|
return Res;
|
|
}
|
|
|
|
// If we have exactly 32 leading zeros and Zba, we can try using zext.w at
|
|
// the end of the sequence.
|
|
if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureExtZba]) {
|
|
// Try replacing upper bits with 1.
|
|
uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
|
|
TmpSeq.clear();
|
|
generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq);
|
|
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDUW, 0));
|
|
|
|
// Keep the new sequence if it is an improvement.
|
|
if (TmpSeq.size() < Res.size()) {
|
|
Res = TmpSeq;
|
|
// A 2 instruction sequence is the best we can do.
|
|
if (Res.size() <= 2)
|
|
return Res;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
int getIntMatCost(const APInt &Val, unsigned Size,
|
|
const FeatureBitset &ActiveFeatures,
|
|
bool CompressionCost) {
|
|
bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
|
|
bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC];
|
|
int PlatRegSize = IsRV64 ? 64 : 32;
|
|
|
|
// Split the constant into platform register sized chunks, and calculate cost
|
|
// of each chunk.
|
|
int Cost = 0;
|
|
for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
|
|
APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
|
|
InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures);
|
|
Cost += getInstSeqCost(MatSeq, HasRVC);
|
|
}
|
|
return std::max(1, Cost);
|
|
}
|
|
} // namespace RISCVMatInt
|
|
} // namespace llvm
|