979 lines
41 KiB
C++
979 lines
41 KiB
C++
//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the linalg dialect Fusion pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include <set>
|
|
|
|
#define DEBUG_TYPE "linalg-fusion"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
using llvm::dbgs;
|
|
|
|
/// Implements a simple high-level fusion pass on linalg structured operations.
|
|
///
|
|
/// In each block, linalg ops are processed in reverse textual order.
|
|
/// Given a linalg op `O`, fusion occurs by:
|
|
/// 1. inspecting the linalg ops that write into the views read by `O`. There
|
|
/// are 2 cases:
|
|
/// a) buffer case: use the SSA value of the views and a simple alias
|
|
/// analysis on subview ops to determine producer-consumer dependences;
|
|
/// b) tensor case: use SSA use-def chains on extract_slice ops;
|
|
/// 2. greedily fuse the linalg ops that produce the subview/extract_slice.
|
|
/// 3. inspect the fused ops and determine whether they have other remaining
|
|
/// LinalgOp uses. If not, then erase the original producing linalg op.
|
|
///
|
|
/// More advanced use cases, analyses as well as profitability heuristics are
|
|
/// left for future work.
|
|
|
|
struct ShapeDimension {
|
|
Value shape;
|
|
unsigned dimension;
|
|
};
|
|
|
|
// Given an `op`, returns the first (`shape`, `dimension`) pair that identifies
|
|
// the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
|
|
// guarantees at least one such dimension is found. If multiple candidates exist
|
|
// they must agree by construction (i.e. have the same size) and we just return
|
|
// the first one.
|
|
static ShapeDimension
|
|
getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth,
|
|
bool fromSubViewOpOnly = false) {
|
|
// Iterate over the inputs and outputs in order.
|
|
// Extract the subranges from the linearized ranges.
|
|
for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
|
|
// The method `getRangeFromOperandShape` requires using SubViewOp or
|
|
// ExtractSliceOps. If the value isn't defined from there continue.
|
|
// todo: The method should be adapted to get the values from
|
|
// `ViewInterface`. The interface needs a `getOrCreateRanges` method which
|
|
// currently returns a `linalg.range`. The fix here is to move this op to
|
|
// `std` dialect and add the method to `ViewInterface`.
|
|
if (fromSubViewOpOnly &&
|
|
!isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>(
|
|
opOperand->get().getDefiningOp()))
|
|
continue;
|
|
|
|
AffineMap map = op.getTiedIndexingMap(opOperand);
|
|
LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: "
|
|
<< opOperand->getOperandNumber() << "\n");
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "getShapeDefiningLoopRange map: " << map << "\n");
|
|
SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr);
|
|
for (auto en : llvm::enumerate(map.getResults())) {
|
|
auto dimExpr = en.value().dyn_cast<AffineDimExpr>();
|
|
if (!dimExpr)
|
|
continue;
|
|
if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: "
|
|
<< loopDepth << "\n");
|
|
LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: "
|
|
<< opOperand->get() << "\n");
|
|
return ShapeDimension{opOperand->get(),
|
|
static_cast<unsigned>(en.index())};
|
|
}
|
|
}
|
|
}
|
|
llvm_unreachable("Expect to be able to extract a shape defining loop range");
|
|
}
|
|
|
|
// Return tiled operands for the fused producer op. When fusing into
|
|
// `linalg.tiled_loop` one has to update `input` and `output` arguments of the
|
|
// loop correspondingly.
|
|
// Each input tensor of the producer op has to be added to `inputs` of the
|
|
// `tiled_loop` if it is not present there already. Each output tensor has to
|
|
// be added either to `inputs` or to `outputs` of `linalg.tiled_loop` depending
|
|
// on whether the correponding result is an input or an output to the loop.
|
|
//
|
|
// NOTE: This way of updating the arguments of the `tiled_loop` assumes that the
|
|
// intermediate result is not used by any other operation but the consumer. A
|
|
// more generic way is to append all missing output tensors of the producer to
|
|
// the tiled loop outputs and hence modify the number of the results, since we
|
|
// would need to add the intermediate results to `linalg.yield`. After that a
|
|
// canonicalization pass would move the unused output args of the `tiled_loop`
|
|
// to the `input` section.
|
|
static SmallVector<Value> getTiledOperands(OpBuilder &b, LinalgOp producer) {
|
|
auto tiledLoop = dyn_cast<TiledLoopOp>(b.getBlock()->getParentOp());
|
|
if (!tiledLoop)
|
|
return producer.getInputAndOutputOperands();
|
|
|
|
SmallVector<Value> tiledOperands;
|
|
assert(producer.hasTensorSemantics() &&
|
|
"only fusion on tensors is currently supported for TiledLinalgOp");
|
|
|
|
for (OpOperand *producerInput : producer.getInputOperands()) {
|
|
OpOperand *addedInput = tiledLoop.findInputOperand(producerInput->get());
|
|
if (addedInput == nullptr)
|
|
addedInput = &tiledLoop.appendInputOperand(b, producerInput->get());
|
|
BlockArgument addedBlockArg = tiledLoop.getTiedBlockArgument(*addedInput);
|
|
tiledOperands.push_back(addedBlockArg);
|
|
}
|
|
for (OpOperand *producerOutput : producer.getOutputOperands()) {
|
|
OpResult result = producer.getTiedOpResult(producerOutput);
|
|
OpOperand *resultInputOperand = tiledLoop.findInputOperand(result);
|
|
OpOperand *resultOutputOperand = tiledLoop.findOutputOperand(result);
|
|
assert((resultInputOperand != nullptr) ^ (resultOutputOperand != nullptr) &&
|
|
"The result should be present in `input` or `output` args of "
|
|
"`tiled_loop");
|
|
|
|
bool isInput = resultInputOperand;
|
|
int opNumber = isInput ? resultInputOperand->getOperandNumber()
|
|
: resultOutputOperand->getOperandNumber();
|
|
|
|
OpOperand *addedOutput = tiledLoop.findOutputOperand(producerOutput->get());
|
|
if (addedOutput == nullptr)
|
|
addedOutput =
|
|
isInput ? &tiledLoop.appendInputOperand(b, producerOutput->get())
|
|
: &tiledLoop.appendOutputOperand(b, producerOutput->get());
|
|
|
|
OpOperand &resultOperand = tiledLoop->getOpOperand(opNumber);
|
|
auto addedBlockArg = tiledLoop.getTiedBlockArgument(*addedOutput);
|
|
auto resultOperandBlockArg = tiledLoop.getTiedBlockArgument(resultOperand);
|
|
resultOperandBlockArg.replaceAllUsesWith(addedBlockArg);
|
|
tiledLoop.eraseOperand(b, resultOperand);
|
|
tiledOperands.push_back(addedBlockArg);
|
|
}
|
|
return tiledOperands;
|
|
}
|
|
|
|
/// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges`
|
|
/// provides the loop range information for the fused loops. The rest are
|
|
/// obtained from the producer itself, since they are not tiled + fused.
|
|
static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
|
|
const DenseMap<unsigned, Range> &fusedLoopsAndRanges) {
|
|
SmallVector<Value, 8> ivs, tileSizes, sizeBounds;
|
|
SmallVector<Range, 8> loopRanges;
|
|
Location loc = producer.getLoc();
|
|
auto zero = b.create<ConstantIndexOp>(loc, 0);
|
|
auto one = b.create<ConstantIndexOp>(loc, 1);
|
|
|
|
for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) {
|
|
auto it = fusedLoopsAndRanges.find(i);
|
|
if (it != fusedLoopsAndRanges.end()) {
|
|
ivs.push_back(it->second.offset);
|
|
tileSizes.push_back(it->second.size);
|
|
sizeBounds.push_back(nullptr);
|
|
loopRanges.push_back(it->second);
|
|
LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange "
|
|
<< loopRanges.back() << "\n");
|
|
} else {
|
|
auto shapeDim = getShapeDefiningLoopRange(producer, i);
|
|
Value dim = createOrFoldDimOp(b, loc, shapeDim.shape, shapeDim.dimension);
|
|
tileSizes.push_back(zero);
|
|
sizeBounds.push_back(dim);
|
|
loopRanges.push_back(Range{zero, dim, one});
|
|
LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange "
|
|
<< loopRanges.back() << "\n");
|
|
}
|
|
}
|
|
|
|
SmallVector<Value, 8> clonedShapes;
|
|
clonedShapes.reserve(producer.getNumInputsAndOutputs());
|
|
|
|
// Compute subranges for all tensor input/output operands.
|
|
clonedShapes.append(makeTiledShapes(b, loc, producer,
|
|
getTiledOperands(b, producer), ivs,
|
|
tileSizes, sizeBounds));
|
|
|
|
// Iterate over the results in order.
|
|
// Extract the subtensor type from the linearized range.
|
|
// Since we do not enforce any canonicalizations on the fly, this is always
|
|
// fully dynamic at construction time.
|
|
SmallVector<Type, 4> resultTypes;
|
|
resultTypes.reserve(producer->getNumResults());
|
|
for (RankedTensorType t : producer.getOutputTensorTypes()) {
|
|
unsigned rank = t.getRank();
|
|
SmallVector<int64_t, 4> staticOffsetsVector(
|
|
rank, ShapedType::kDynamicStrideOrOffset);
|
|
SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
|
|
SmallVector<int64_t, 4> staticStridesVector(
|
|
rank, ShapedType::kDynamicStrideOrOffset);
|
|
resultTypes.push_back(tensor::ExtractSliceOp::inferResultType(
|
|
t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector,
|
|
staticStridesVector));
|
|
}
|
|
|
|
Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes);
|
|
// When the producer has index semantics, we have to transform the indices of
|
|
// the producer according to the tiling of the consumer, i.e. offset them by
|
|
// the values computed in `loopRanges`.
|
|
if (producer.hasIndexSemantics()) {
|
|
assert(clonedOp->getNumRegions() == 1 &&
|
|
clonedOp->getRegion(0).getBlocks().size() == 1 &&
|
|
"expected producer to have one block.");
|
|
// Shift all indices by the tile offset.
|
|
Block &block = clonedOp->getRegion(0).front();
|
|
for (IndexOp indexOp : block.getOps<IndexOp>()) {
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPointAfter(indexOp);
|
|
AffineExpr index, offset;
|
|
bindDims(b.getContext(), index, offset);
|
|
AffineApplyOp applyOp = b.create<AffineApplyOp>(
|
|
indexOp.getLoc(), index + offset,
|
|
ValueRange{indexOp.getResult(), loopRanges[indexOp.dim()].offset});
|
|
indexOp.getResult().replaceAllUsesExcept(applyOp, applyOp);
|
|
}
|
|
}
|
|
|
|
return clonedOp;
|
|
}
|
|
|
|
/// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is
|
|
/// expected to be defined by a subview op or an extract_slice op.
|
|
static Range getRangeFromOperandShape(OpBuilder &b, Location loc,
|
|
Value shapedOperand, unsigned dim) {
|
|
Operation *shapeProducingOp = shapedOperand.getDefiningOp();
|
|
if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp))
|
|
return subViewOp.getOrCreateRanges(b, loc)[dim];
|
|
if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp))
|
|
return sliceOp.getOrCreateRanges(b, loc)[dim];
|
|
llvm_unreachable("SubviewOp or ExtractSliceOp expected");
|
|
}
|
|
|
|
/// Fuses the producer into the loop immediately enclosing the consumer.
|
|
/// This is achieved by "recomputing" the producer at the time it
|
|
/// is needed just before the consumer.
|
|
static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap,
|
|
OpOperand &consumerOpOperand) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n");
|
|
DenseMap<unsigned, Range> fusedLoopsAndRanges;
|
|
Value shapedOperand = consumerOpOperand.get();
|
|
for (auto en : llvm::enumerate(producerMap.getResults())) {
|
|
unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
|
|
fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape(
|
|
b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index());
|
|
}
|
|
return fuse(b, producerOp, fusedLoopsAndRanges);
|
|
}
|
|
|
|
// Encode structural fusion safety preconditions.
|
|
// Some of these will be lifted in the future with better analysis.
|
|
static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
|
|
LinalgOp consumer) {
|
|
assert(producer.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
assert(consumer.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
if (producer.getNumOutputs() != 1) {
|
|
LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)");
|
|
return false;
|
|
}
|
|
// Only fuse when the producer block dominates.
|
|
DominanceInfo dom(producer.getOperation());
|
|
if (!dom.dominates(producer->getBlock(), consumer->getBlock())) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "\nNot structurally fusable (producer block does not dominate)");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
|
|
LinalgOp consumer,
|
|
Value consumedView,
|
|
LinalgOp producer) {
|
|
assert(producer.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
assert(consumer.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
// Make some simple structural checks that alleviate the need for more
|
|
// complex analyses.
|
|
if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t"
|
|
<< *producer.getOperation());
|
|
return false;
|
|
}
|
|
// Check for any interleaved write to consumedView.
|
|
if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t"
|
|
<< *producer.getOperation());
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
|
|
LinalgOp consumer, Value consumedView,
|
|
LinalgOp producer) {
|
|
assert(producer.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
assert(consumer.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
|
|
return false;
|
|
// Check for any fusion-preventing dependence to any shape read/written that
|
|
// would violate dependences.
|
|
if (!graph.findCoveringDependences(producer, consumer).empty()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "\n***Not fusable due to an interleaved dependence:\t"
|
|
<< *producer.getOperation());
|
|
return false;
|
|
}
|
|
if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
|
|
// TODO: add a level of indirection to linalg.generic.
|
|
if (convOp.padding())
|
|
return false;
|
|
}
|
|
if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
|
|
// TODO: add a level of indirection to linalg.generic.
|
|
if (convOp.padding())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// For `consumer` with buffer semantics, find the Linalg operation on buffers
|
|
/// that is the last writer of `consumerOpOperand`. For now the fusable
|
|
/// dependence is returned as an instance of the `dependenceGraph`.
|
|
static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
|
|
findFusableProducer(OpOperand &consumerOpOperand,
|
|
const LinalgDependenceGraph &dependenceGraph) {
|
|
LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: "
|
|
<< consumerOpOperand.get() << " @"
|
|
<< consumerOpOperand.getOperandNumber() << " in "
|
|
<< *consumerOpOperand.getOwner() << "\n");
|
|
LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
|
|
if (!consumerOp)
|
|
return {};
|
|
|
|
// Only consider RAW and WAW atm.
|
|
for (auto depType : {
|
|
LinalgDependenceGraph::DependenceType::RAW,
|
|
LinalgDependenceGraph::DependenceType::WAW,
|
|
}) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Dependencies into: " << *consumerOp.getOperation() << "\n");
|
|
for (auto dependence : llvm::make_filter_range(
|
|
dependenceGraph.getDependencesInto(consumerOp, depType),
|
|
[&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: "
|
|
<< elem.getIndexingValue() << " and "
|
|
<< elem.getDependentValue() << "\n");
|
|
Value v = elem.getIndexingValue();
|
|
Optional<unsigned> operandNum =
|
|
elem.getIndexingOpViewOperandNum();
|
|
return isa<LinalgOp>(elem.getDependentOp()) &&
|
|
v == consumerOpOperand.get() && operandNum &&
|
|
operandNum.getValue() ==
|
|
consumerOpOperand.getOperandNumber();
|
|
})) {
|
|
// Consumer consumes this view, `isStructurallyFusableProducer` also
|
|
// checks whether it is a strict subview of the producer view.
|
|
auto producer = cast<LinalgOp>(dependence.getDependentOp());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "\n"
|
|
<< LinalgDependenceGraph::getDependenceTypeStr(depType)
|
|
<< "producer: " << *dependence.getDependentOp()
|
|
<< " view: " << dependence.getDependentValue() << "\n");
|
|
|
|
// If the producer and consumer have tensor semantics, the only dependence
|
|
// between them is through a RAW dependence and they are fusable by
|
|
// construction. For buffer semantics need additional checks.
|
|
if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() &&
|
|
isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(),
|
|
producer))
|
|
return dependence;
|
|
if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) {
|
|
assert(dependence.dependenceType ==
|
|
LinalgDependenceGraph::DependenceType::RAW);
|
|
return dependence;
|
|
}
|
|
}
|
|
}
|
|
return {};
|
|
}
|
|
|
|
Optional<FusionInfo>
|
|
mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand,
|
|
const LinalgDependenceGraph &graph) {
|
|
Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
|
|
findFusableProducer(consumerOpOperand, graph);
|
|
if (!fusableDependence)
|
|
return llvm::None;
|
|
|
|
LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
|
|
if (!producerOp)
|
|
return llvm::None;
|
|
|
|
// If producer is already in the same block as consumer, we are done.
|
|
if (consumerOpOperand.get().getParentBlock() ==
|
|
fusableDependence->getDependentValue().getParentBlock())
|
|
return llvm::None;
|
|
|
|
Optional<AffineMap> producerMap =
|
|
fusableDependence->getDependentOpViewIndexingMap();
|
|
if (!producerMap)
|
|
return llvm::None;
|
|
|
|
// Must be a subview or an extract_slice to guarantee there are loops we can
|
|
// fuse into.
|
|
auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>();
|
|
if (!subView) {
|
|
LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)");
|
|
return llvm::None;
|
|
}
|
|
|
|
// Fuse `producer` just before `consumer`.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(consumerOpOperand.getOwner());
|
|
LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: "
|
|
<< *consumerOpOperand.getOwner() << "\n");
|
|
|
|
auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand);
|
|
return FusionInfo{producerOp, fusedProducer};
|
|
}
|
|
|
|
/// Walk back use-def chain through scf::For yields.
|
|
/// Sets `producer` and `outputIndex` if it finds a producer LinalgOp
|
|
|
|
// TODO(ravishankarm, ntv): This can be moved into the dependence graphs
|
|
// dependence tracking since the dependence tracking is similar to what is done
|
|
// w.r.t to buffers.
|
|
static void getProducerOfTensor(Value tensor, OpResult &opResult) {
|
|
if (!tensor.getType().isa<RankedTensorType>())
|
|
return;
|
|
|
|
while (true) {
|
|
LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor);
|
|
if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) {
|
|
opResult = tensor.cast<OpResult>();
|
|
return;
|
|
}
|
|
if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) {
|
|
tensor = sliceOp.source();
|
|
continue;
|
|
}
|
|
if (auto blockArg = tensor.dyn_cast<BlockArgument>()) {
|
|
if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) {
|
|
tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber());
|
|
continue;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
Optional<FusionInfo>
|
|
mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) {
|
|
Value inputTensor = consumerOpOperand.get();
|
|
OpResult producerOpResult;
|
|
getProducerOfTensor(inputTensor, producerOpResult);
|
|
if (!producerOpResult) {
|
|
LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer");
|
|
return {};
|
|
}
|
|
return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand);
|
|
}
|
|
|
|
Optional<FusionInfo>
|
|
mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult,
|
|
OpOperand &consumerOpOperand) {
|
|
auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner());
|
|
if (!producerOp)
|
|
return llvm::None;
|
|
|
|
LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
|
|
if (!consumerOp)
|
|
return llvm::None;
|
|
|
|
Value inputTensor = consumerOpOperand.get();
|
|
|
|
// Must be an extract_slice op to guarantee there are loops we can fuse into.
|
|
auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>();
|
|
if (!sliceOp) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "\nNot fusable, not an extract_slice op: " << inputTensor);
|
|
return {};
|
|
}
|
|
|
|
// If producer is already in the same block as consumer, we are done.
|
|
if (consumerOpOperand.get().getParentBlock() ==
|
|
producerOpResult.getParentBlock())
|
|
return {};
|
|
|
|
// Insert fused `producer` just before `consumer`.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(consumerOp);
|
|
LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n");
|
|
OpOperand *opOperand =
|
|
producerOp.getOutputOperand(producerOpResult.getResultNumber());
|
|
LinalgOp fusedProducer =
|
|
fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand),
|
|
consumerOpOperand);
|
|
|
|
// Replace use.
|
|
// Canonicalizations are not guaranteed to have happened before constructing
|
|
// `fusedProducer`. In the tensor case this can result in temporary type
|
|
// mismatches. Insert a `tensor.cast` op to propagate the transformation
|
|
// invariant that types are compatible.
|
|
Value def = fusedProducer->getResult(producerOpResult.getResultNumber());
|
|
Type consumerType = consumerOpOperand.get().getType();
|
|
if (consumerType != def.getType())
|
|
def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def);
|
|
consumerOpOperand.set(def);
|
|
return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer};
|
|
}
|
|
|
|
/// Prune all dimensions that are of reduction iterator type from `map`.
|
|
static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes,
|
|
AffineMap map) {
|
|
llvm::SmallDenseSet<unsigned> projectedDims;
|
|
for (auto attr : llvm::enumerate(iteratorTypes)) {
|
|
if (!isParallelIterator(attr.value()))
|
|
projectedDims.insert(attr.index());
|
|
}
|
|
return getProjectedMap(map, projectedDims);
|
|
}
|
|
|
|
/// Returns the mapping from iterations in the consumer that write to the same
|
|
/// location as the iterations in the producer. To do so use
|
|
/// - indexing map of the fused view in the consumer : consumerIndexMap
|
|
/// - indexing map of the fused view in the producer : producerIndexMap
|
|
/// consumerLoopToProducerLoop =
|
|
/// inverse(producerIndexMap).compose(consumerIndexMap)
|
|
static Optional<AffineMap> getConsumerLoopToProducerLoopMap(
|
|
LinalgDependenceGraph::LinalgDependenceGraphElem dependence) {
|
|
auto producer = dyn_cast<LinalgOp>(dependence.getDependentOp());
|
|
if (!producer)
|
|
return None;
|
|
|
|
Optional<AffineMap> producerIndexingMap =
|
|
dependence.getDependentOpViewIndexingMap();
|
|
Optional<AffineMap> consumerIndexingMap =
|
|
dependence.getIndexingOpViewIndexingMap();
|
|
if (!producerIndexingMap || !consumerIndexingMap)
|
|
return None;
|
|
|
|
AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap(
|
|
producer.iterator_types().getValue(), *producerIndexingMap);
|
|
if (!prunedProducerIndexingMap.isPermutation())
|
|
return None;
|
|
|
|
if (consumerIndexingMap->getNumResults() !=
|
|
prunedProducerIndexingMap.getNumResults())
|
|
return None;
|
|
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "\t producerMap : ";
|
|
producerIndexingMap->print(llvm::dbgs());
|
|
llvm::dbgs() << " pruned : ";
|
|
prunedProducerIndexingMap.print(llvm::dbgs());
|
|
llvm::dbgs() << "\n";
|
|
llvm::dbgs() << "\t consumerMap : ";
|
|
consumerIndexingMap->print(llvm::dbgs());
|
|
llvm::dbgs() << "\n";
|
|
});
|
|
|
|
AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap);
|
|
if (!invProducerIndexMap)
|
|
return None;
|
|
|
|
return invProducerIndexMap.compose(*consumerIndexingMap);
|
|
}
|
|
|
|
/// Given a projected permutation `map`, returns true if the map changes the
|
|
/// order in which the fused loop dimension appear.
|
|
static bool doesTransposeAccess(AffineMap map,
|
|
const std::set<unsigned> &fusableLoops) {
|
|
Optional<unsigned> lastFusableLoop;
|
|
for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) {
|
|
return expr.cast<AffineDimExpr>().getPosition();
|
|
})) {
|
|
if (!fusableLoops.count(pos))
|
|
continue;
|
|
if (!lastFusableLoop) {
|
|
lastFusableLoop = pos;
|
|
continue;
|
|
}
|
|
if (pos <= lastFusableLoop.getValue())
|
|
return true;
|
|
lastFusableLoop = pos;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns the positions of the loop in `op` that can be tiled based on the
|
|
/// operations that are to be fused with it. For example, in a
|
|
///
|
|
/// linalg.matmul ins(%a, %b : ...) outs(%c : ...)
|
|
///
|
|
/// if the producer of %a needs to be fused with this op, only the `i` loop of
|
|
/// the matmul can be tiled while fusing. If producer of %a, and %b are to be
|
|
/// fused, then no loops can be tiled while fusing. The conditions used are:
|
|
/// 1. Only parallel loops can be used for tile + fuse. Find the number of
|
|
/// common outer parallel loops between the op and its producers being fused.
|
|
/// 2. Of the parallel loops only some can be fused. Only those loops can be
|
|
/// fused such where the fusable loops iteration space only touches one tile
|
|
/// of the fused operation. This is because the producer (which is writing
|
|
/// the fused subview) has update semantics.
|
|
///
|
|
/// Since an inverse computation is needed, we need to consider the projection
|
|
/// of the producerIndexMap w.r.t the parallel loops. The actual fusable loops
|
|
/// are the dimensions of the consumerLoopToProducerLoop map that correspond to
|
|
/// parallel loops and appear in the result of the map
|
|
///
|
|
/// Example 1:
|
|
/// linalg.fill(%cst, %c)
|
|
/// linalg.matmul ins(%a, %b) outs(%c)
|
|
/// Number of parallel loops : 2
|
|
/// producerIndexMap = affine_map<(i, j) ->(i , j)>
|
|
/// consumerIndexMap = affine_map<(i, j, k) -> (i, j)>
|
|
/// consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)>
|
|
/// Fused dimensions : i, j
|
|
///
|
|
/// Example 2:
|
|
/// linalg.matmul ins(%a, %b) outs(%c)
|
|
/// linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ...
|
|
/// iterator_types = ["parallel", "parallel"]}
|
|
/// ins(%c) ...
|
|
///
|
|
/// Number of parallel loops = 2:
|
|
/// producerIndexMap (projected to parallel loops) =
|
|
/// affine_map<(i, j) -> (i, j)>
|
|
/// consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)>
|
|
/// Fused dimensions : i, j
|
|
///
|
|
/// Example 3:
|
|
/// linalg.copy(%s, %b)
|
|
/// linalg.matmul ins(%a, %b) outs(%c)
|
|
///
|
|
/// Number of parallel loops = 2
|
|
/// produceIndexMap : affine_map<(i, j) -> (i, j)>
|
|
/// consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)>
|
|
/// submap with only parallel loops = affine_map<(i, j) -> (j)>
|
|
/// Fused dimensions : j
|
|
static std::set<unsigned>
|
|
collectFusableLoops(ArrayRef<LinalgOp> ops,
|
|
const FusableOpDependencesTy &fusableDependences) {
|
|
assert(!ops.empty());
|
|
auto getNumOuterParallelLoops = [](LinalgOp linalgOp) {
|
|
return linalgOp.iterator_types()
|
|
.getValue()
|
|
.take_while([](Attribute attr) -> bool {
|
|
return attr.cast<StringAttr>().getValue() ==
|
|
getParallelIteratorTypeName();
|
|
})
|
|
.size();
|
|
};
|
|
|
|
size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back());
|
|
for (auto op : ops.drop_back()) {
|
|
numOuterParallelLoops =
|
|
std::min(numOuterParallelLoops, getNumOuterParallelLoops(op));
|
|
}
|
|
|
|
std::set<unsigned> fusableLoops;
|
|
auto range = llvm::seq<unsigned>(0, numOuterParallelLoops);
|
|
fusableLoops.insert(range.begin(), range.end());
|
|
|
|
for (auto op : reverse(ops)) {
|
|
for (auto dependence : fusableDependences.lookup(op)) {
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "\t fusable :";
|
|
for (unsigned i : fusableLoops)
|
|
llvm::dbgs() << " " << i;
|
|
llvm::dbgs() << "\n";
|
|
});
|
|
|
|
Optional<AffineMap> consumerLoopToProducerLoop =
|
|
getConsumerLoopToProducerLoopMap(dependence);
|
|
if (!consumerLoopToProducerLoop) {
|
|
op.emitRemark("failed to get map from consumer loop to producer loop");
|
|
return {};
|
|
}
|
|
// todo: This condition is only an implementation limitation. When fusing
|
|
// the operation, if the accesses in the producer/consumer are transposes
|
|
// of each other, the loop bounds for the tiled producer can be
|
|
// manipulated accordingly. This requires some additional bookkeeping in
|
|
// the implementation of tile+fuse that is deferred to later.
|
|
if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) {
|
|
op.emitRemark("unhandled fusion when fusion requires permutation");
|
|
return {};
|
|
}
|
|
|
|
std::set<unsigned> candidates;
|
|
for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) {
|
|
unsigned position = expr.cast<AffineDimExpr>().getPosition();
|
|
if (fusableLoops.count(position))
|
|
candidates.insert(position);
|
|
}
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "\t candidates :";
|
|
for (unsigned i : candidates)
|
|
llvm::dbgs() << " " << i;
|
|
llvm::dbgs() << "\n";
|
|
});
|
|
if (candidates.empty())
|
|
return {};
|
|
std::swap(candidates, fusableLoops);
|
|
}
|
|
}
|
|
|
|
return fusableLoops;
|
|
}
|
|
|
|
/// Find all dependences that are fusable.
|
|
FusableOpDependencesTy mlir::linalg::findAllFusableDependences(
|
|
ArrayRef<LinalgOp> ops, const LinalgDependenceGraph &dependenceGraph) {
|
|
FusableOpDependencesTy fusableDependences;
|
|
DenseMap<Operation *, SmallVector<AffineMap, 1>> fusedProducerIndexingMap;
|
|
for (LinalgOp op : reverse(ops)) {
|
|
for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
|
|
Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
|
|
fusableDependence = findFusableProducer(*opOperand, dependenceGraph);
|
|
if (!fusableDependence)
|
|
continue;
|
|
LinalgOp producerOp =
|
|
dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
|
|
if (!producerOp)
|
|
continue;
|
|
// Do not fuse dependences that are to operations not in the same basic
|
|
// block. This avoid moving fused operations across loops that might
|
|
// themselves carry dependency making the fusion illegal.
|
|
if (producerOp->getBlock() != op->getBlock())
|
|
continue;
|
|
|
|
// Make sure that the indexing map of the view used for fusion in the
|
|
// producer is a projected permutation.
|
|
Optional<AffineMap> producerMap =
|
|
fusableDependence->getDependentOpViewIndexingMap();
|
|
Optional<AffineMap> consumerMap =
|
|
fusableDependence->getIndexingOpViewIndexingMap();
|
|
assert(
|
|
consumerMap &&
|
|
"unable to find indexing map of operand/result of indexing OpView");
|
|
fusedProducerIndexingMap[producerOp.getOperation()].push_back(
|
|
*consumerMap);
|
|
if (!producerMap || !producerMap->isProjectedPermutation() ||
|
|
!consumerMap->isProjectedPermutation())
|
|
continue;
|
|
|
|
fusableDependences[producerOp.getOperation()].push_back(
|
|
*fusableDependence);
|
|
}
|
|
}
|
|
// TODO: Currently fusion would not be legal if the fusable dependence is to
|
|
// the same producer but different indexing map in the consumer. Fix this, but
|
|
// in the meanwhile disallow such a fusion.
|
|
for (auto useIndexingMapsList : fusedProducerIndexingMap) {
|
|
AffineMap map1 = useIndexingMapsList.second.front();
|
|
for (AffineMap map2 :
|
|
ArrayRef<AffineMap>(useIndexingMapsList.second).drop_front()) {
|
|
if (map1 != map2) {
|
|
fusableDependences.erase(useIndexingMapsList.first);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return fusableDependences;
|
|
}
|
|
|
|
/// Tile the fused loops in the root operation, by setting the tile sizes for
|
|
/// all other loops to zero (those will be tiled later).
|
|
static Optional<TiledLinalgOp>
|
|
tileRootOperation(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizeVector,
|
|
const LinalgTilingOptions &options,
|
|
const std::set<unsigned> &fusedLoops) {
|
|
SmallVector<Value, 4> tileSizes(tileSizeVector.begin(), tileSizeVector.end());
|
|
auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0);
|
|
for (unsigned i = 0, e = tileSizes.size(); i != e; ++i)
|
|
if (!fusedLoops.count(i))
|
|
tileSizes[i] = zero;
|
|
LinalgTilingOptions tileFusedLoopsOptions = options;
|
|
tileFusedLoopsOptions.setTileSizes(tileSizes);
|
|
return tileLinalgOp(b, op, tileFusedLoopsOptions);
|
|
}
|
|
|
|
/// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected
|
|
/// to be a tiled operation such that it is valid to fuse all operations in
|
|
/// `fusionCandidates`, i.e. move the operation within the inter-tile loops of
|
|
/// `tiledOp`.
|
|
static SmallVector<LinalgOp, 1>
|
|
fuseOperations(OpBuilder &b, LinalgOp rootOp, TiledLinalgOp tiledLinalgOp,
|
|
ArrayRef<LinalgOp> fusionCandidates,
|
|
const FusableOpDependencesTy &fusableDependences,
|
|
const std::set<unsigned> &fusedLoops) {
|
|
LinalgOp tiledOp = tiledLinalgOp.op;
|
|
OpBuilder::InsertionGuard guard(b);
|
|
b.setInsertionPoint(tiledOp);
|
|
|
|
DenseMap<unsigned, Range> fusedLoopsAndRanges;
|
|
for (unsigned loop : fusedLoops) {
|
|
ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop, true);
|
|
fusedLoopsAndRanges[loop] = getRangeFromOperandShape(
|
|
b, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension);
|
|
}
|
|
|
|
SmallVector<LinalgOp, 1> fusedOps(fusionCandidates.size());
|
|
DenseMap<Operation *, LinalgOp> origOpToFusedOp;
|
|
origOpToFusedOp[rootOp.getOperation()] = tiledOp;
|
|
for (auto candidate : enumerate(llvm::reverse(fusionCandidates))) {
|
|
LinalgOp origOp = candidate.value();
|
|
LinalgOp fusedOp = fuse(b, origOp, fusedLoopsAndRanges);
|
|
origOpToFusedOp[origOp.getOperation()] = fusedOp;
|
|
fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp;
|
|
|
|
// Prepare the builder for the next insertion point.
|
|
auto guard = llvm::make_scope_exit([&]() { b.setInsertionPoint(fusedOp); });
|
|
if (!origOp.hasTensorSemantics())
|
|
continue;
|
|
|
|
// If the producer consumer operations are linalg operations on tensors, the
|
|
// dependence is due to value produced (as a return tensor) by the producer
|
|
// and used in the consumer. The returned value of the fused op needs to be
|
|
// made the operand of the tiled/fused consumer operation. By construction
|
|
// the value returned by the producer is the value used by the consumer.
|
|
for (auto &dependence : fusableDependences.lookup(origOp.getOperation())) {
|
|
if (dependence.dependenceType !=
|
|
LinalgDependenceGraph::DependenceType::RAW)
|
|
continue;
|
|
|
|
unsigned resultIndex =
|
|
dependence.getDependentOpViewResultNum().getValue();
|
|
LinalgOp consumer = origOpToFusedOp.lookup(dependence.getIndexingOp());
|
|
if (!consumer)
|
|
continue;
|
|
|
|
Value replacementValue = fusedOp.getOperation()->getResult(resultIndex);
|
|
consumer.getOperation()->setOperand(
|
|
dependence.getIndexingOpViewOperandNum().getValue(),
|
|
replacementValue);
|
|
}
|
|
|
|
// At this point, all Linalg uses of the tensors produced by `origOp` have
|
|
// been replaced. However, there may still be "output tensor"-like uses
|
|
// coming from WAW dependencies.
|
|
// All these uses are iter_args of the outermost loop (TODO: add a check).
|
|
// Such iter_args uses serve 2 purposes:
|
|
// 1. give a shape to the output
|
|
// 2. encode destructive updates that may be inplaceable by bufferization.
|
|
// To keep the second type of information while letting the unfused op die
|
|
// unused, we need to forward the producer output operand.
|
|
if (auto forOp = dyn_cast<scf::ForOp>(tiledLinalgOp.loops.front())) {
|
|
for (auto &operand : forOp.getIterOpOperands()) {
|
|
if (auto opResult = operand.get().dyn_cast<OpResult>()) {
|
|
if (opResult.getOwner() == origOp) {
|
|
Value output =
|
|
origOp.getOutputOperand(opResult.getResultNumber())->get();
|
|
assert(output.getType().isa<RankedTensorType>());
|
|
operand.set(output);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return fusedOps;
|
|
}
|
|
|
|
static Optional<TiledAndFusedLinalgOps>
|
|
tileAndFuseLinalgOpsImpl(OpBuilder &b, ArrayRef<LinalgOp> ops,
|
|
const LinalgDependenceGraph &dependenceGraph,
|
|
const LinalgTilingOptions &tilingOptions) {
|
|
if (ops.size() < 2)
|
|
return llvm::None;
|
|
LinalgOp rootOp = ops.back();
|
|
if (!llvm::all_of(
|
|
ops,
|
|
[](LinalgOp linalgOp) { return linalgOp.hasBufferSemantics(); }) &&
|
|
!llvm::all_of(ops, [](LinalgOp linalgOp) {
|
|
return linalgOp.hasTensorSemantics();
|
|
})) {
|
|
rootOp.emitError(
|
|
"unable to fuse operations that have tensor semantics with operations "
|
|
"that have buffer semantics and viceversa.");
|
|
return llvm::None;
|
|
}
|
|
// TODO: Support interchange with tile + fuse. This might actually help do
|
|
// better fusion.
|
|
if (!tilingOptions.interchangeVector.empty()) {
|
|
rootOp.emitRemark("unable to handle tile and fuse with interchange");
|
|
return llvm::None;
|
|
}
|
|
|
|
OpBuilder::InsertionGuard guard(b);
|
|
b.setInsertionPoint(rootOp);
|
|
|
|
// Find all the producers.
|
|
LLVM_DEBUG(llvm::dbgs() << "findAllFusableDependences\n");
|
|
FusableOpDependencesTy fusableDependences =
|
|
findAllFusableDependences(ops, dependenceGraph);
|
|
if (fusableDependences.empty()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "no fusable dependencies found\n");
|
|
return llvm::None;
|
|
}
|
|
|
|
TiledAndFusedLinalgOps ret;
|
|
// Find the loops that can be tiled and fused.
|
|
LLVM_DEBUG(llvm::dbgs() << "collectFusableLoops\n");
|
|
ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences);
|
|
|
|
// If there are no fusable dependences or there are no tile+fusable loops,
|
|
// just return.
|
|
if (ret.fusedLoopDims.empty()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "no fusable loops found\n");
|
|
return llvm::None;
|
|
}
|
|
|
|
// Tile the fused loops in the last operation in the list.
|
|
SmallVector<Value, 4> tileSizeVector =
|
|
tilingOptions.tileSizeComputationFunction(b, rootOp);
|
|
Optional<TiledLinalgOp> tiledRootOp = tileRootOperation(
|
|
b, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims);
|
|
if (!tiledRootOp) {
|
|
rootOp.emitRemark("failed to tile the fused loops");
|
|
return llvm::None;
|
|
}
|
|
ret.op = tiledRootOp->op;
|
|
ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end());
|
|
|
|
// Fuse the other operations into the fused inter-tile loops produced above.
|
|
ret.fusedProducers = fuseOperations(b, rootOp, *tiledRootOp, ops.drop_back(),
|
|
fusableDependences, ret.fusedLoopDims);
|
|
|
|
return ret;
|
|
}
|
|
|
|
Optional<TiledAndFusedLinalgOps>
|
|
mlir::linalg::tileAndFuseLinalgOps(OpBuilder &b, ArrayRef<LinalgOp> ops,
|
|
const LinalgDependenceGraph &dependenceGraph,
|
|
const LinalgTilingOptions &tilingOptions) {
|
|
switch (tilingOptions.loopType) {
|
|
case LinalgTilingLoopType::Loops:
|
|
case LinalgTilingLoopType::ParallelLoops:
|
|
case LinalgTilingLoopType::TiledLoops:
|
|
return tileAndFuseLinalgOpsImpl(b, ops, dependenceGraph, tilingOptions);
|
|
default:;
|
|
}
|
|
return llvm::None;
|
|
}
|