llvm-project/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp

647 lines
26 KiB
C++

//===- Loops.cpp - conversion from Linalg named and generic ops to loops --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::linalg;
static SmallVector<Value> makeCanonicalAffineApplies(OpBuilder &b, Location loc,
AffineMap map,
ArrayRef<Value> vals) {
if (map.isEmpty())
return {};
assert(map.getNumInputs() == vals.size());
SmallVector<Value> res;
res.reserve(map.getNumResults());
auto dims = map.getNumDims();
for (auto e : map.getResults()) {
auto exprMap = AffineMap::get(dims, map.getNumSymbols(), e);
SmallVector<Value> operands(vals.begin(), vals.end());
canonicalizeMapAndOperands(&exprMap, &operands);
res.push_back(b.create<AffineApplyOp>(loc, exprMap, operands));
}
return res;
}
template <typename LoadOpTy, typename StoreOpTy, typename OpType>
static void inlineRegionAndEmitStore(OpBuilder &b, Location loc, OpType op,
ArrayRef<Value> indexedValues,
ArrayRef<SmallVector<Value>> indexing,
ArrayRef<Value> outputBuffers) {
auto &block = op->getRegion(0).front();
BlockAndValueMapping map;
map.map(block.getArguments(), indexedValues);
for (auto &op : block.without_terminator()) {
auto *newOp = b.clone(op, map);
map.map(op.getResults(), newOp->getResults());
}
Operation *terminator = block.getTerminator();
for (OpOperand &operand : terminator->getOpOperands()) {
Value toStore = map.lookupOrDefault(operand.get());
b.create<StoreOpTy>(loc, toStore, outputBuffers[operand.getOperandNumber()],
indexing[operand.getOperandNumber()]);
}
}
// Returns a pair that contains input indices and output indices of a
// SingleInputPoolingOp `op`.
struct InputAndOutputIndices {
SmallVector<Value> inputs;
SmallVector<Value> outputs;
};
template <typename SingleInputPoolingOp>
static InputAndOutputIndices
getInputAndOutputIndices(OpBuilder &b, Location loc, ArrayRef<Value> allIvs,
SingleInputPoolingOp op) {
auto mapsRange = op.indexing_maps().template getAsRange<AffineMapAttr>();
auto maps = llvm::to_vector<8>(
llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
return InputAndOutputIndices{
makeCanonicalAffineApplies(b, loc, maps[0], allIvs),
makeCanonicalAffineApplies(b, loc, maps[2], allIvs)};
}
/// Emits the MLIR for the scalar part of the generic op by:
/// 1. Emitting load ops for each input and output view in order. This is
/// achieved by applying the appropriate input or output map to the
/// enclosing induction variables.
/// 2. Emitting a call to `op.fun()` that takes as arguments the scalars
/// from point 1. above.
/// 3. Emitting store ops to store the results of 2. to the output
/// views.
///
/// An example output may resemble:
///
/// ```
/// scf.for %i = %c0 to %0 step %c1 {
/// scf.for %j = %c0 to %1 step %c1 {
/// scf.for %k = %c0 to %4 step %c1 {
/// %11 = load %arg0[%i, %j] :
/// memref<?x?xf32, stride_specification>
/// %12 = load %arg1[%i, %j, %k] :
/// memref<?x?x?xf32, stride_specification>
/// %13 = load %arg2[%i, %k, %j] :
/// memref<?x?x?xf32, stride_specification>
/// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32)
/// store %14#0, %arg1[%i, %j, %k] :
/// memref<?x?x?Xf32, stride_specification>
/// store %14#1, %arg2[%i, %k, %j] :
/// memref<?x?x?Xf32, stride_specification>
/// }
/// }
/// }
/// ```
template <typename LoadOpTy, typename StoreOpTy>
static void emitScalarImplementation(OpBuilder &b, Location loc,
ArrayRef<Value> allIvs,
LinalgOp linalgOp) {
assert(linalgOp.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
SmallVector<Value> indexedValues;
indexedValues.reserve(linalgOp.getNumInputsAndOutputs());
auto allIvsPlusDims = SmallVector<Value>(allIvs.begin(), allIvs.end());
// TODO: Avoid the loads if the corresponding argument of the
// region has no uses.
// 1.a. Emit load from input operand or for scalars access the operand itself.
for (OpOperand *inputOperand : linalgOp.getInputOperands()) {
if (linalgOp.isScalar(inputOperand)) {
indexedValues.push_back(inputOperand->get());
continue;
}
auto indexing = makeCanonicalAffineApplies(
b, loc, linalgOp.getTiedIndexingMap(inputOperand), allIvsPlusDims);
indexedValues.push_back(
b.create<LoadOpTy>(loc, inputOperand->get(), indexing));
}
// 1.b. Emit load from output views.
for (OpOperand *outputOperand : linalgOp.getOutputOperands()) {
SmallVector<Value> indexing = makeCanonicalAffineApplies(
b, loc, linalgOp.getTiedIndexingMap(outputOperand), allIvsPlusDims);
indexedValues.push_back(
b.create<LoadOpTy>(loc, outputOperand->get(), indexing));
}
// TODO: When a region inliner exists, use it.
// 2. Inline region, currently only works for a single basic block.
// 3. Emit store.
SmallVector<SmallVector<Value>, 8> indexing;
SmallVector<Value> outputBuffers;
for (OpOperand *outputOperand : linalgOp.getOutputBufferOperands()) {
indexing.push_back(makeCanonicalAffineApplies(
b, loc, linalgOp.getTiedIndexingMap(outputOperand), allIvsPlusDims));
outputBuffers.push_back(outputOperand->get());
}
inlineRegionAndEmitStore<LoadOpTy, StoreOpTy>(b, loc, linalgOp, indexedValues,
indexing, outputBuffers);
}
// Create a padded view into the given `input` tensor using the 'indices'
// to access the tensor. `skipPadding` lists the dimensions for which no padding
// is needed e.g. the non-spatial dimensions for convolutions.
Value getPaddedInput(OpBuilder &b, Location loc, Value input,
ArrayRef<Value> indices, ArrayRef<int> skipPadding,
Value padValue) {
Value zeroIndex = b.create<ConstantIndexOp>(loc, 0);
SmallVector<Value> conds;
SmallVector<Value> clampedImIdx;
for (auto iter : llvm::enumerate(indices)) {
int idx = iter.index();
auto dim = iter.value();
if (is_contained(skipPadding, idx)) {
clampedImIdx.push_back(dim);
continue;
}
Value leftOutOfBound =
b.create<CmpIOp>(loc, CmpIPredicate::slt, dim, zeroIndex);
if (conds.empty())
conds.push_back(leftOutOfBound);
else
conds.push_back(b.create<OrOp>(loc, conds.back(), leftOutOfBound));
Value rightBound = createOrFoldDimOp(b, loc, input, idx);
Value rightOutOfBound =
b.create<CmpIOp>(loc, CmpIPredicate::sge, dim, rightBound);
conds.push_back(b.create<OrOp>(loc, conds.back(), rightOutOfBound));
// When padding is involved, the indices will only be shifted to negative,
// so having a max op is enough.
MLIRContext *ctx = input.getContext();
AffineExpr m = getAffineDimExpr(/*position=*/0, ctx),
zero = getAffineConstantExpr(0, ctx);
AffineMap maxMap =
AffineMap::inferFromExprList(ArrayRef<ArrayRef<AffineExpr>>{{m, zero}})
.front();
clampedImIdx.push_back(b.create<AffineMaxOp>(loc, maxMap, ValueRange{dim}));
}
Value readInput = b.create<memref::LoadOp>(loc, input, clampedImIdx);
if (conds.empty())
return readInput;
return b.create<SelectOp>(loc, conds.back(), padValue, readInput);
}
namespace {
/// The padding value for a given Op depends on the semantics of the Op.
/// The identity value for ConvOp and PoolingSumOp is 0, for PoolingMaxOp is
/// -inf or minInt and for PoolingMinOp is inf or maxInt.
template <typename OpType> Attribute getPadValueAttr(Type type) {
llvm_unreachable("Unexpected op type for getPadValueAttr");
return {};
}
template <> Attribute getPadValueAttr<PoolingMaxOp>(Type type) {
if (auto floatType = type.dyn_cast<FloatType>()) {
return OpBuilder(type.getContext())
.getFloatAttr(floatType, APFloat::getInf(floatType.getFloatSemantics(),
/*Negative*/ true));
}
if (auto intType = type.dyn_cast<IntegerType>()) {
unsigned width = intType.getWidth();
// The select instruction used to lower the PoolingMin uses a signed
// comparison, use a signed constant irrespective of the signedness of the
// integer type.
return OpBuilder(type.getContext())
.getIntegerAttr(intType, APInt::getSignedMinValue(width));
}
llvm_unreachable("Unsupported data type for PoolingMaxOp");
return {};
}
template <> Attribute getPadValueAttr<PoolingMinOp>(Type type) {
if (auto floatType = type.dyn_cast<FloatType>()) {
return OpBuilder(type.getContext())
.getFloatAttr(floatType,
APFloat::getInf(floatType.getFloatSemantics()));
}
if (auto intType = type.dyn_cast<IntegerType>()) {
unsigned width = intType.getWidth();
// The select instruction used to lower the PoolingMin uses a signed
// comparison, use a signed constant irrespective of the signedness of the
// integer type.
return OpBuilder(type.getContext())
.getIntegerAttr(intType, APInt::getSignedMaxValue(width));
}
llvm_unreachable("Unsupported data type for PoolingMinOp");
return {};
}
template <> Attribute getPadValueAttr<PoolingSumOp>(Type type) {
return OpBuilder(type.getContext()).getZeroAttr(type);
}
template <> Attribute getPadValueAttr<ConvOp>(Type type) {
return OpBuilder(type.getContext()).getZeroAttr(type);
}
} // namespace
/// Returns true is `convOp` has a non-zero padding.
static bool hasPadding(ConvOp convOp) {
for (unsigned i = 0, e = convOp.getNumSpatialDimensions(); i < e; ++i) {
if (convOp.getLowPad(i) > 0 || convOp.getHighPad(i) > 0)
return true;
}
return false;
}
template <typename LoadOpTy, typename StoreOpTy>
static void emitScalarImplementation(OpBuilder &b, Location loc,
ArrayRef<Value> allIvs, ConvOp convOp) {
assert(convOp.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
auto mapsRange = convOp.indexing_maps().getAsRange<AffineMapAttr>();
auto maps = llvm::to_vector<8>(
llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
SmallVector<Value> fIdx(makeCanonicalAffineApplies(b, loc, maps[0], allIvs));
SmallVector<Value> imIdx(makeCanonicalAffineApplies(b, loc, maps[1], allIvs));
SmallVector<Value> oIdx(makeCanonicalAffineApplies(b, loc, maps[2], allIvs));
Value filter = convOp.filter(), output = convOp.output();
// Emit scalar form. Padded conv involves an affine.max in the memory access
// which is not allowed by affine.load. Override to use an MemRefIndexedValue
// when there is non-zero padding.
if (hasPadding(convOp)) {
Type type = convOp.input().getType().cast<MemRefType>().getElementType();
Value padValue =
b.create<ConstantOp>(loc, type, getPadValueAttr<ConvOp>(type));
Value paddedInput =
getPaddedInput(b, loc, convOp.input(), imIdx,
/* Only need to pad the window dimensions */
{0, static_cast<int>(imIdx.size()) - 1}, padValue);
Value filterVal = b.create<LoadOpTy>(loc, filter, fIdx);
Value mulVal = ArithBuilder(b, loc).mul(filterVal, paddedInput);
Value outputVal = b.create<LoadOpTy>(loc, output, oIdx);
Value addVal = ArithBuilder(b, loc).add(mulVal, outputVal);
b.create<StoreOpTy>(loc, addVal, output, oIdx);
} else {
Value inputVal = b.create<LoadOpTy>(loc, convOp.input(), imIdx);
Value filterVal = b.create<LoadOpTy>(loc, filter, fIdx);
Value mulVal = ArithBuilder(b, loc).mul(filterVal, inputVal);
Value outputVal = b.create<LoadOpTy>(loc, output, oIdx);
Value addVal = ArithBuilder(b, loc).add(mulVal, outputVal);
b.create<StoreOpTy>(loc, addVal, output, oIdx);
}
}
template <typename PoolingOp> static bool hasPadding(PoolingOp poolingOp) {
for (unsigned i = 0, e = poolingOp.getNumWindowLoops(); i < e; ++i) {
if (poolingOp.getLowPad(i) > 0 || poolingOp.getHighPad(i) > 0)
return true;
}
return false;
}
template <typename LoadOpTy, typename StoreOpTy, typename PoolingOp>
static Value getPoolingInput(OpBuilder &b, Location loc, PoolingOp op,
ArrayRef<Value> inputIndices) {
if (hasPadding(op)) {
Type type =
op.input().getType().template cast<MemRefType>().getElementType();
Value padValue =
b.create<ConstantOp>(loc, type, getPadValueAttr<PoolingOp>(type));
return getPaddedInput(b, loc, op.input(), inputIndices,
/*Pad every dimension*/ {}, padValue);
}
return b.create<LoadOpTy>(loc, op.input(), inputIndices);
}
template <typename LoadOpTy, typename StoreOpTy, typename OpType>
void emitPoolingMinMaxScalarImplementation(OpBuilder &b, Location loc,
ArrayRef<Value> allIvs, OpType op) {
InputAndOutputIndices indices = getInputAndOutputIndices(b, loc, allIvs, op);
Value lhs = b.create<LoadOpTy>(loc, op.output(), indices.outputs);
Value rhs = getPoolingInput<LoadOpTy, StoreOpTy>(b, loc, op, indices.inputs);
Value value = llvm::TypeSwitch<Operation *, Value>(op)
.Case([&](PoolingMinOp poolingOp) {
return ArithBuilder(b, loc).select(
ArithBuilder(b, loc).slt(lhs, rhs), lhs, rhs);
})
.Case([&](PoolingMaxOp poolingOp) {
return ArithBuilder(b, loc).select(
ArithBuilder(b, loc).sgt(lhs, rhs), lhs, rhs);
})
.Default([&](auto) { return Value(); });
b.create<StoreOpTy>(loc, value, op.output(), indices.outputs);
}
template <typename LoadOpTy, typename StoreOpTy>
static void emitScalarImplementation(OpBuilder &b, Location loc,
ArrayRef<Value> allIvs, PoolingMaxOp op) {
emitPoolingMinMaxScalarImplementation<LoadOpTy, StoreOpTy, PoolingMaxOp>(
b, loc, allIvs, op);
}
template <typename LoadOpTy, typename StoreOpTy>
static void emitScalarImplementation(OpBuilder &b, Location loc,
ArrayRef<Value> allIvs, PoolingMinOp op) {
emitPoolingMinMaxScalarImplementation<LoadOpTy, StoreOpTy, PoolingMinOp>(
b, loc, allIvs, op);
}
template <typename LoadOpTy, typename StoreOpTy>
static void emitScalarImplementation(OpBuilder &b, Location loc,
ArrayRef<Value> allIvs, PoolingSumOp op) {
auto indices = getInputAndOutputIndices(b, loc, allIvs, op);
Value inputVal =
getPoolingInput<LoadOpTy, StoreOpTy>(b, loc, op, indices.inputs);
Value outputVal = b.create<LoadOpTy>(loc, op.output(), indices.outputs);
Value added = ArithBuilder(b, loc).add(outputVal, inputVal);
b.create<StoreOpTy>(loc, added, op.output(), indices.outputs);
}
/// Replace the index operations in the body of the loop nest by the matching
/// induction variables.
static void replaceIndexOpsByInductionVariables(LinalgOp linalgOp,
PatternRewriter &rewriter,
ArrayRef<Operation *> loopOps) {
// Extract the induction variables of the loop nest from outer to inner.
SmallVector<Value> allIvs;
for (Operation *loopOp : loopOps) {
llvm::TypeSwitch<Operation *>(loopOp)
.Case([&](scf::ParallelOp parallelOp) {
allIvs.append(parallelOp.getInductionVars().begin(),
parallelOp.getInductionVars().end());
})
.Case([&](scf::ForOp forOp) {
allIvs.push_back(forOp.getInductionVar());
})
.Case([&](AffineForOp affineForOp) {
allIvs.push_back(affineForOp.getInductionVar());
})
.Default([&](Operation *op) { assert(false && "unexpected op"); });
}
assert(linalgOp.getNumLoops() == allIvs.size() &&
"expected the number of loops and induction variables to match");
// Replace the index operations in the body of the innermost loop op.
if (!loopOps.empty()) {
LoopLikeOpInterface loopOp = loopOps.back();
for (IndexOp indexOp :
llvm::make_early_inc_range(loopOp.getLoopBody().getOps<IndexOp>()))
rewriter.replaceOp(indexOp, allIvs[indexOp.dim()]);
}
}
template <typename LoopTy>
static Optional<LinalgLoops> linalgOpToLoopsImpl(PatternRewriter &rewriter,
LinalgOp linalgOp) {
using LoadOpTy =
typename std::conditional<std::is_same<LoopTy, AffineForOp>::value,
AffineLoadOp, memref::LoadOp>::type;
using StoreOpTy =
typename std::conditional<std::is_same<LoopTy, AffineForOp>::value,
AffineStoreOp, memref::StoreOp>::type;
// The flattened loopToOperandRangesMaps is expected to be an invertible
// permutation map (which is asserted in the inverse calculation).
assert(linalgOp.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
auto loopRanges = linalgOp.createLoopRanges(rewriter, linalgOp.getLoc());
auto iteratorTypes = llvm::to_vector<4>(linalgOp.iterator_types().getValue());
SmallVector<Value> allIvs;
GenerateLoopNest<LoopTy>::doit(
rewriter, linalgOp.getLoc(), loopRanges, linalgOp, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange ivs,
ValueRange iterArgs) -> scf::ValueVector {
assert(iterArgs.empty() && "unexpected iterArgs");
allIvs.append(ivs.begin(), ivs.end());
llvm::TypeSwitch<Operation *>(linalgOp)
.Case<ConvOp, PoolingMaxOp, PoolingMinOp, PoolingSumOp, LinalgOp>(
[&](auto op) {
emitScalarImplementation<LoadOpTy, StoreOpTy>(b, loc, allIvs,
op);
})
.Default([&](Operation *op) { assert(false && "unexpected op"); });
return scf::ValueVector{};
});
// Number of loop ops might be different from the number of ivs since some
// loops like affine.parallel and scf.parallel have multiple ivs.
SetVector<Operation *> loopSet;
for (Value iv : allIvs) {
if (!iv)
return {};
// The induction variable is a block argument of the entry block of the
// loop operation.
BlockArgument ivVal = iv.dyn_cast<BlockArgument>();
if (!ivVal)
return {};
loopSet.insert(ivVal.getOwner()->getParentOp());
}
LinalgLoops loops(loopSet.begin(), loopSet.end());
// Replace all index operations in the loop body.
replaceIndexOpsByInductionVariables(linalgOp, rewriter, loops);
return loops;
}
namespace {
template <typename LoopType>
class LinalgRewritePattern : public RewritePattern {
public:
LinalgRewritePattern(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto linalgOp = dyn_cast<LinalgOp>(op);
if (!isa<LinalgOp>(op))
return failure();
if (!linalgOpToLoopsImpl<LoopType>(rewriter, linalgOp))
return failure();
rewriter.eraseOp(op);
return success();
}
};
struct TiledLoopToSCFPattern : public OpRewritePattern<TiledLoopOp> {
using OpRewritePattern<TiledLoopOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TiledLoopOp tiledLoop,
PatternRewriter &rewriter) const override {
Location loc = tiledLoop.getLoc();
// Fail conversion if the `tiled_loop` has not been bufferized.
if (!llvm::all_of(tiledLoop.outputs(), [&](Value arg) {
return arg.getType().isa<MemRefType>();
}))
return failure();
// TODO: Build loop nest with `scf.for` and `scf.parallel` depending on the
// iterator type.
scf::buildLoopNest(rewriter, loc, tiledLoop.lowerBound(),
tiledLoop.upperBound(), tiledLoop.step(),
[&](OpBuilder &builder, Location loc, ValueRange ivs) {
// Move body without its terminator.
SmallVector<Value> newBlockArgs;
newBlockArgs.append(ivs.begin(), ivs.end());
newBlockArgs.append(tiledLoop.inputs().begin(),
tiledLoop.inputs().end());
newBlockArgs.append(tiledLoop.outputs().begin(),
tiledLoop.outputs().end());
Block *newBody = rewriter.getInsertionBlock();
rewriter.mergeBlocks(tiledLoop.getBody(), newBody,
newBlockArgs);
rewriter.eraseOp(newBody->getTerminator());
});
rewriter.eraseOp(tiledLoop);
return success();
}
};
/// Local folding pattern for AffineApplyOp that we can apply greedily.
/// This replaces AffineApplyOp by the proper value in cases where the
/// associated map is trivial.
/// A trivial map here is defined as a map with a single result and either:
/// 1. Zero operand + returns a single AffineConstantExpr
/// 2. One operand + returns a single AffineDimExpr
/// 3. One operand + returns a single AffineSymbolExpr
//
/// In the first case, the AffineApplyOp is replaced by a new constant. In the
/// other cases, it is replaced by its unique operand.
struct FoldAffineOp : public RewritePattern {
FoldAffineOp(MLIRContext *context)
: RewritePattern(AffineApplyOp::getOperationName(), 0, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
AffineApplyOp affineApplyOp = cast<AffineApplyOp>(op);
auto map = affineApplyOp.getAffineMap();
if (map.getNumResults() != 1 || map.getNumInputs() > 1)
return failure();
AffineExpr expr = map.getResult(0);
if (map.getNumInputs() == 0) {
if (auto val = expr.dyn_cast<AffineConstantExpr>()) {
rewriter.replaceOpWithNewOp<ConstantIndexOp>(op, val.getValue());
return success();
}
return failure();
}
if (expr.dyn_cast<AffineDimExpr>() || expr.dyn_cast<AffineSymbolExpr>()) {
rewriter.replaceOp(op, op->getOperand(0));
return success();
}
return failure();
}
};
template <typename LoopType>
static void lowerLinalgToLoopsImpl(FuncOp funcOp) {
MLIRContext *context = funcOp.getContext();
RewritePatternSet patterns(context);
patterns.add<LinalgRewritePattern<LoopType>>(context);
memref::DimOp::getCanonicalizationPatterns(patterns, context);
tensor::DimOp::getCanonicalizationPatterns(patterns, context);
AffineApplyOp::getCanonicalizationPatterns(patterns, context);
patterns.add<FoldAffineOp>(context);
// Just apply the patterns greedily.
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
struct LowerToAffineLoops
: public LinalgLowerToAffineLoopsBase<LowerToAffineLoops> {
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<memref::MemRefDialect>();
}
void runOnFunction() override {
lowerLinalgToLoopsImpl<AffineForOp>(getFunction());
}
};
struct LowerToLoops : public LinalgLowerToLoopsBase<LowerToLoops> {
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<memref::MemRefDialect, scf::SCFDialect>();
}
void runOnFunction() override {
lowerLinalgToLoopsImpl<scf::ForOp>(getFunction());
}
};
struct LowerToParallelLoops
: public LinalgLowerToParallelLoopsBase<LowerToParallelLoops> {
void runOnFunction() override {
lowerLinalgToLoopsImpl<scf::ParallelOp>(getFunction());
}
};
struct LowerTiledLoopsToSCF
: public LinalgLowerTiledLoopsToSCFBase<LowerTiledLoopsToSCF> {
void runOnFunction() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
populateTiledLoopToSCFPattern(patterns);
(void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns));
}
};
} // namespace
void mlir::linalg::populateTiledLoopToSCFPattern(RewritePatternSet &patterns) {
patterns.add<TiledLoopToSCFPattern>(patterns.getContext());
}
std::unique_ptr<OperationPass<FuncOp>>
mlir::createConvertLinalgTiledLoopsToSCFPass() {
return std::make_unique<LowerTiledLoopsToSCF>();
}
std::unique_ptr<OperationPass<FuncOp>> mlir::createConvertLinalgToLoopsPass() {
return std::make_unique<LowerToLoops>();
}
std::unique_ptr<OperationPass<FuncOp>>
mlir::createConvertLinalgToParallelLoopsPass() {
return std::make_unique<LowerToParallelLoops>();
}
std::unique_ptr<OperationPass<FuncOp>>
mlir::createConvertLinalgToAffineLoopsPass() {
return std::make_unique<LowerToAffineLoops>();
}
/// Emits a loop nest of `affine.for` with the proper body for `linalgOp`.
Optional<LinalgLoops>
mlir::linalg::linalgOpToAffineLoops(PatternRewriter &rewriter,
LinalgOp linalgOp) {
return linalgOpToLoopsImpl<AffineForOp>(rewriter, linalgOp);
}
/// Emits a loop nest of `scf.for` with the proper body for `linalgOp`.
Optional<LinalgLoops> mlir::linalg::linalgOpToLoops(PatternRewriter &rewriter,
LinalgOp linalgOp) {
return linalgOpToLoopsImpl<scf::ForOp>(rewriter, linalgOp);
}
/// Emits a loop nest of `scf.parallel` with the proper body for `linalgOp`.
Optional<LinalgLoops>
mlir::linalg::linalgOpToParallelLoops(PatternRewriter &rewriter,
LinalgOp linalgOp) {
return linalgOpToLoopsImpl<scf::ParallelOp>(rewriter, linalgOp);
}