llvm-project/mlir/lib/Dialect/Linalg/Utils/Utils.cpp

668 lines
28 KiB
C++

//===- Utils.cpp - Utilities to support the Linalg dialect ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for the Linalg dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/LoopUtils.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "linalg-utils"
using namespace mlir;
using namespace mlir::linalg;
using namespace mlir::scf;
static bool isZero(Value v) {
if (auto cst = v.getDefiningOp<ConstantIndexOp>())
return cst.getValue() == 0;
return false;
}
namespace {
// Helper visitor to determine whether an AffineExpr is tiled.
// This is achieved by traversing every AffineDimExpr with position `pos` and
// checking whether the corresponding `tileSizes[pos]` is non-zero.
// This also enforces only positive coefficients occur in multiplications.
//
// Example:
// `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
//
struct TileCheck : public AffineExprVisitor<TileCheck> {
TileCheck(ValueRange tileSizes) : isTiled(false), tileSizes(tileSizes) {}
void visitDimExpr(AffineDimExpr expr) {
isTiled |= !isZero(tileSizes[expr.getPosition()]);
}
void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
visit(expr.getLHS());
visit(expr.getRHS());
if (expr.getKind() == mlir::AffineExprKind::Mul)
assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 &&
"nonpositive multiplying coefficient");
}
bool isTiled;
ValueRange tileSizes;
};
} // namespace
static bool isTiled(AffineExpr expr, ValueRange tileSizes) {
if (!expr)
return false;
TileCheck t(tileSizes);
t.visit(expr);
return t.isTiled;
}
// Checks whether the `map varies with respect to a non-zero `tileSize`.
static bool isTiled(AffineMap map, ValueRange tileSizes) {
if (!map)
return false;
for (unsigned r = 0; r < map.getNumResults(); ++r)
if (isTiled(map.getResult(r), tileSizes))
return true;
return false;
}
Optional<RegionMatcher::BinaryOpKind>
RegionMatcher::matchAsScalarBinaryOp(GenericOp op) {
auto &region = op.region();
if (!llvm::hasSingleElement(region))
return llvm::None;
Block &block = region.front();
if (block.getNumArguments() != 2 ||
!block.getArgument(0).getType().isSignlessIntOrFloat() ||
!block.getArgument(1).getType().isSignlessIntOrFloat())
return llvm::None;
auto &ops = block.getOperations();
if (!llvm::hasSingleElement(block.without_terminator()))
return llvm::None;
using mlir::matchers::m_Val;
auto a = m_Val(block.getArgument(0));
auto b = m_Val(block.getArgument(1));
auto addPattern = m_Op<linalg::YieldOp>(m_Op<AddIOp>(a, b));
if (addPattern.match(&ops.back()))
return BinaryOpKind::IAdd;
return llvm::None;
}
/// Explicit instantiation of loop nest generator for different loop types.
template struct mlir::linalg::GenerateLoopNest<scf::ForOp>;
template struct mlir::linalg::GenerateLoopNest<scf::ParallelOp>;
template struct mlir::linalg::GenerateLoopNest<AffineForOp>;
template struct mlir::linalg::GenerateLoopNest<TiledLoopOp>;
/// Given a list of subview ranges, extract individual values for lower, upper
/// bounds and steps and put them into the corresponding vectors.
static void unpackRanges(ArrayRef<Range> ranges, SmallVectorImpl<Value> &lbs,
SmallVectorImpl<Value> &ubs,
SmallVectorImpl<Value> &steps) {
for (Range range : ranges) {
lbs.emplace_back(range.offset);
ubs.emplace_back(range.size);
steps.emplace_back(range.stride);
}
}
namespace mlir {
namespace linalg {
/// Helper function that creates a memref::DimOp or tensor::DimOp depending on
/// the type of `source`.
Value createOrFoldDimOp(OpBuilder &b, Location loc, Value source, int64_t dim) {
if (source.getType().isa<UnrankedMemRefType, MemRefType>())
return b.createOrFold<memref::DimOp>(loc, source, dim);
if (source.getType().isa<UnrankedTensorType, RankedTensorType>())
return b.createOrFold<tensor::DimOp>(loc, source, dim);
llvm_unreachable("Expected MemRefType or TensorType");
}
/// Given an operation, retrieves the value of each dynamic dimension through
/// constructing the necessary DimOp operators.
SmallVector<Value, 4> getDynOperands(Location loc, Value val, OpBuilder &b) {
SmallVector<Value, 4> dynOperands;
auto shapedType = val.getType().cast<ShapedType>();
for (auto dim : llvm::enumerate(shapedType.getShape())) {
if (dim.value() == ShapedType::kDynamicSize)
dynOperands.push_back(createOrFoldDimOp(b, loc, val, dim.index()));
}
return dynOperands;
}
/// If `size` comes from an AffineMinOp and one of the values of AffineMinOp
/// is a constant then return a new value set to the smallest such constant.
/// Otherwise returngetSmallestBoundingIndex nullptr.
IntegerAttr getSmallestBoundingIndex(Value size) {
Optional<int64_t> boundingConst = {};
if (auto affineMinOp = size.getDefiningOp<AffineMinOp>()) {
for (auto e : affineMinOp.getAffineMap().getResults())
if (auto cst = e.dyn_cast<AffineConstantExpr>())
boundingConst = boundingConst
? std::min(boundingConst.getValue(), cst.getValue())
: cst.getValue();
} else if (auto constIndexOp = size.getDefiningOp<ConstantOp>()) {
if (constIndexOp.getType().isa<IndexType>())
boundingConst = constIndexOp.value().cast<IntegerAttr>().getInt();
} else if (auto affineApplyOp = size.getDefiningOp<AffineApplyOp>()) {
if (auto cExpr = affineApplyOp.getAffineMap()
.getResult(0)
.dyn_cast<AffineConstantExpr>())
boundingConst = cExpr.getValue();
} else if (auto dimOp = size.getDefiningOp<tensor::DimOp>()) {
auto shape = dimOp.source().getType().dyn_cast<ShapedType>();
if (auto constOp = dimOp.index().getDefiningOp<ConstantOp>()) {
if (auto indexAttr = constOp.value().dyn_cast<IntegerAttr>()) {
auto dimIndex = indexAttr.getInt();
if (!shape.isDynamicDim(dimIndex)) {
boundingConst = shape.getShape()[dimIndex];
}
}
}
}
if (boundingConst && *boundingConst >= 0)
return Builder(size.getContext()).getIndexAttr(*boundingConst);
return nullptr;
}
/// Specialization to build an scf "for" nest.
template <>
void GenerateLoopNest<scf::ForOp>::doit(
OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp,
ArrayRef<Attribute> iteratorTypes,
function_ref<scf::ValueVector(OpBuilder &, Location, ValueRange,
ValueRange)>
bodyBuilderFn,
Optional<LinalgLoopDistributionOptions> distributionOptions,
ArrayRef<StringRef> distributionTypes) {
SmallVector<Value> iterArgInitValues = linalgOp.getOutputTensorOperands();
// Create procInfo so it dominates loops, if appropriate.
SmallVector<ProcInfo, 4> procInfo;
SmallVector<DistributionMethod, 0> distributionMethod;
if (distributionOptions.hasValue()) {
// Collect loop ranges for parallel dimensions.
SmallVector<Range, 2> parallelLoopRanges;
for (auto iteratorType : enumerate(iteratorTypes))
if (isParallelIterator(iteratorType.value()))
parallelLoopRanges.push_back(loopRanges[iteratorType.index()]);
// Get their distribution schemes.
distributionMethod = distributionOptions->distributionMethod;
if (distributionMethod.size() < parallelLoopRanges.size())
parallelLoopRanges.resize(distributionMethod.size());
procInfo = distributionOptions->procInfo(b, loc, parallelLoopRanges);
}
SmallVector<Value, 4> lbs, ubs, steps;
unpackRanges(loopRanges, lbs, ubs, steps);
LoopNest loopNest = mlir::scf::buildLoopNest(
b, loc, lbs, ubs, steps, iterArgInitValues, bodyBuilderFn);
if (!distributionOptions || loopNest.loops.empty())
return;
// Filter out scf.for loops that were created out of parallel dimensions.
SmallVector<scf::ForOp, 4> loops;
for (auto iteratorType : enumerate(iteratorTypes))
if (isParallelIterator(iteratorType.value()))
loops.push_back(loopNest.loops[iteratorType.index()]);
// Distribute - only supports cyclic distribution for now.
for (auto it : llvm::zip(loops, procInfo, distributionMethod))
if (std::get<2>(it) == DistributionMethod::Cyclic)
mapLoopToProcessorIds(std::get<0>(it), std::get<1>(it).procId,
std::get<1>(it).nprocs);
}
/// Specialization to build affine "for" nest.
template <>
void GenerateLoopNest<AffineForOp>::doit(
OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp,
ArrayRef<Attribute> iteratorTypes,
function_ref<scf::ValueVector(OpBuilder &, Location, ValueRange,
ValueRange)>
bodyBuilderFn,
Optional<LinalgLoopDistributionOptions>, ArrayRef<StringRef>) {
SmallVector<Value> iterArgInitValues = linalgOp.getOutputTensorOperands();
assert(iterArgInitValues.empty() && "unexpected AffineForOp init values");
SmallVector<Value, 4> lbs, ubs, steps;
unpackRanges(loopRanges, lbs, ubs, steps);
// Affine loops require constant steps.
SmallVector<int64_t, 4> constantSteps;
constantSteps.reserve(steps.size());
for (Value v : steps) {
auto op = v.getDefiningOp<ConstantIndexOp>();
assert(op && "Affine loops require constant steps");
constantSteps.push_back(op.getValue());
}
mlir::buildAffineLoopNest(b, loc, lbs, ubs, constantSteps,
[&](OpBuilder &b, Location loc, ValueRange ivs) {
bodyBuilderFn(b, loc, ivs, {});
});
}
/// Specialization to build an linalg.tiled_loop
template <>
void GenerateLoopNest<TiledLoopOp>::doit(
OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp,
ArrayRef<Attribute> iteratorTypes,
function_ref<scf::ValueVector(OpBuilder &, Location, ValueRange,
ValueRange)>
bodyBuilderFn,
Optional<LinalgLoopDistributionOptions> distributionOptions,
ArrayRef<StringRef> distributionTypes) {
SmallVector<ProcInfo, 2> procInfo;
SmallVector<Value, 4> lbs, ubs, steps;
unpackRanges(loopRanges, lbs, ubs, steps);
auto wrappedBuilderFn = [&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange ivs, ValueRange inputs,
ValueRange outputs) {
SmallVector<Value> outputTensors = linalgOp.getOutputTensorOperands();
scf::ValueVector results =
bodyBuilderFn(nestedBuilder, nestedLoc, ivs, outputTensors);
nestedBuilder.create<linalg::YieldOp>(nestedLoc, results);
};
SmallVector<Value> inputOperands = linalgOp.getInputOperands();
SmallVector<Value> outputOperands = linalgOp.getOutputOperands();
auto tiledLoop =
b.create<TiledLoopOp>(loc, lbs, ubs, steps, inputOperands, outputOperands,
b.getArrayAttr(iteratorTypes), wrappedBuilderFn);
if (!distributionTypes.empty())
tiledLoop.setDistributionTypes(b, distributionTypes);
// Replace inputs/outputs with the corresponding region args.
auto isInsideTiledLoop = [&](OpOperand &operand) {
return operand.getOwner()->getBlock() == tiledLoop.getBody();
};
for (auto it : llvm::zip(inputOperands, tiledLoop.getRegionInputArgs()))
std::get<0>(it).replaceUsesWithIf(std::get<1>(it), isInsideTiledLoop);
for (auto it : llvm::zip(outputOperands, tiledLoop.getRegionOutputArgs()))
std::get<0>(it).replaceUsesWithIf(std::get<1>(it), isInsideTiledLoop);
}
/// Update the `lb`, `ub` and `step` to get per processor `lb`, `ub` and `step`.
void updateBoundsForCyclicDistribution(OpBuilder &b, Location loc, Value procId,
Value nprocs, Value &lb, Value &ub,
Value &step) {
AffineExpr d0, d1;
bindDims(b.getContext(), d0, d1);
AffineExpr s0 = getAffineSymbolExpr(0, b.getContext());
lb = makeComposedAffineApply(b, loc, d0 + d1 * s0, {lb, procId, step});
step = makeComposedAffineApply(b, loc, d0 * s0, {nprocs, step});
}
/// Generates a loop nest consisting of scf.parallel and scf.for, depending
/// on the `iteratorTypes.` Consecutive parallel loops create a single
/// scf.parallel operation; each sequential loop creates a new scf.for
/// operation. The body of the innermost loop is populated by
/// `bodyBuilderFn` that accepts a range of induction variables for all
/// loops. `ivStorage` is used to store the partial list of induction
/// variables.
// TODO: this function can be made iterative instead. However, it
// will have at most as many recursive calls as nested loops, which rarely
// exceeds 10.
static void generateParallelLoopNest(
OpBuilder &b, Location loc, ValueRange lbs, ValueRange ubs,
ValueRange steps, ArrayRef<Attribute> iteratorTypes,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn,
SmallVectorImpl<Value> &ivStorage,
ArrayRef<DistributionMethod> distributionMethod = {}) {
assert(lbs.size() == ubs.size());
assert(lbs.size() == steps.size());
assert(lbs.size() == iteratorTypes.size());
// If there are no (more) loops to be generated, generate the body and be
// done with it.
if (iteratorTypes.empty()) {
bodyBuilderFn(b, loc, ivStorage);
return;
}
// Find the outermost parallel loops and drop their types from the list.
unsigned nLoops = iteratorTypes.size();
unsigned nOuterPar =
nLoops - iteratorTypes.drop_while(isParallelIterator).size();
// If there are no outer parallel loops, generate one sequential loop and
// recurse. Note that we wouldn't have dropped anything from `iteratorTypes`
// in this case.
if (nOuterPar == 0) {
LoopNest singleLoop = buildLoopNest(
b, loc, lbs.take_front(), ubs.take_front(), steps.take_front(),
[&](OpBuilder &b, Location loc, ValueRange ivs) {
ivStorage.append(ivs.begin(), ivs.end());
generateParallelLoopNest(b, loc, lbs.drop_front(), ubs.drop_front(),
steps.drop_front(),
iteratorTypes.drop_front(), bodyBuilderFn,
ivStorage, distributionMethod);
});
return;
}
if (distributionMethod.empty()) {
// Generate a single parallel loop-nest operation for all outermost
// parallel loops and recurse.
b.create<scf::ParallelOp>(
loc, lbs.take_front(nOuterPar), ubs.take_front(nOuterPar),
steps.take_front(nOuterPar),
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange localIvs) {
ivStorage.append(localIvs.begin(), localIvs.end());
generateParallelLoopNest(
nestedBuilder, nestedLoc, lbs.drop_front(nOuterPar),
ubs.drop_front(nOuterPar), steps.drop_front(nOuterPar),
iteratorTypes.drop_front(nOuterPar), bodyBuilderFn, ivStorage,
(distributionMethod.size() < nOuterPar)
? ArrayRef<DistributionMethod>()
: distributionMethod.drop_front(nOuterPar));
});
return;
}
// Process all consecutive similarly distributed loops simultaneously.
DistributionMethod methodToUse = distributionMethod[0];
unsigned numProcessed = 1;
for (unsigned i = 1; i < nOuterPar && i < distributionMethod.size(); ++i) {
if (distributionMethod[i] != methodToUse)
break;
numProcessed++;
}
switch (methodToUse) {
case DistributionMethod::Cyclic: {
// Generate a single parallel loop-nest operation for all outermost
// parallel loops and recurse.
b.create<scf::ParallelOp>(
loc, lbs.take_front(numProcessed), ubs.take_front(numProcessed),
steps.take_front(numProcessed),
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange localIvs) {
ivStorage.append(localIvs.begin(), localIvs.end());
generateParallelLoopNest(
nestedBuilder, nestedLoc, lbs.drop_front(numProcessed),
ubs.drop_front(numProcessed), steps.drop_front(numProcessed),
iteratorTypes.drop_front(numProcessed), bodyBuilderFn, ivStorage,
(distributionMethod.size() < numProcessed)
? ArrayRef<DistributionMethod>()
: distributionMethod.drop_front(numProcessed));
});
return;
}
case DistributionMethod::CyclicNumProcsGeNumIters: {
// Check (for the processed loops) that the iteration is in-bounds.
ArithBuilder ab(b, loc);
Value cond = ab.slt(lbs[0], ubs[0]);
for (unsigned i = 1; i < numProcessed; ++i)
cond = ab._and(cond, ab.slt(lbs[i], ubs[i]));
ivStorage.append(lbs.begin(), std::next(lbs.begin(), numProcessed));
b.create<scf::IfOp>(loc, cond, [&](OpBuilder &b, Location loc) {
generateParallelLoopNest(
b, loc, lbs.drop_front(numProcessed), ubs.drop_front(numProcessed),
steps.drop_front(numProcessed),
iteratorTypes.drop_front(numProcessed), bodyBuilderFn, ivStorage,
distributionMethod.drop_front(numProcessed));
b.create<scf::YieldOp>(loc, ValueRange{});
});
return;
}
case DistributionMethod::CyclicNumProcsEqNumIters:
// No check/loops needed here. Set the `%iv` to be the `%lb` and proceed
// with inner loop generation.
ivStorage.append(lbs.begin(), std::next(lbs.begin(), numProcessed));
generateParallelLoopNest(
b, loc, lbs.drop_front(numProcessed), ubs.drop_front(numProcessed),
steps.drop_front(numProcessed), iteratorTypes.drop_front(numProcessed),
bodyBuilderFn, ivStorage, distributionMethod.drop_front(numProcessed));
return;
}
}
/// Specialization for generating a mix of parallel and sequential scf loops.
template <>
void GenerateLoopNest<scf::ParallelOp>::doit(
OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp,
ArrayRef<Attribute> iteratorTypes,
function_ref<scf::ValueVector(OpBuilder &, Location, ValueRange,
ValueRange)>
bodyBuilderFn,
Optional<LinalgLoopDistributionOptions> distributionOptions,
ArrayRef<StringRef> distributionTypes) {
SmallVector<Value> iterArgInitValues = linalgOp.getOutputTensorOperands();
assert(iterArgInitValues.empty() && "unexpected ParallelOp init values");
// This function may be passed more iterator types than ranges.
assert(iteratorTypes.size() >= loopRanges.size() &&
"expected iterator type for all ranges");
iteratorTypes = iteratorTypes.take_front(loopRanges.size());
SmallVector<Value, 8> lbsStorage, ubsStorage, stepsStorage, ivs;
unsigned numLoops = iteratorTypes.size();
ivs.reserve(numLoops);
lbsStorage.reserve(numLoops);
ubsStorage.reserve(numLoops);
stepsStorage.reserve(numLoops);
// Get the loop lb, ub, and step.
unpackRanges(loopRanges, lbsStorage, ubsStorage, stepsStorage);
// Modify the lb, ub, and step based on the distribution options.
SmallVector<DistributionMethod, 0> distributionMethod;
if (distributionOptions) {
auto &options = distributionOptions.getValue();
distributionMethod.assign(distributionOptions->distributionMethod.begin(),
distributionOptions->distributionMethod.end());
SmallVector<Range, 2> parallelLoopRanges;
for (auto iteratorType : enumerate(iteratorTypes)) {
if (isParallelIterator(iteratorType.value()))
parallelLoopRanges.push_back(loopRanges[iteratorType.index()]);
}
if (distributionMethod.size() < parallelLoopRanges.size())
parallelLoopRanges.resize(distributionMethod.size());
SmallVector<ProcInfo, 2> procInfo =
options.procInfo(b, loc, parallelLoopRanges);
unsigned index = 0;
for (auto iteratorType : enumerate(iteratorTypes)) {
if (index >= procInfo.size())
break;
if (isParallelIterator(iteratorType.value())) {
unsigned i = iteratorType.index();
updateBoundsForCyclicDistribution(b, loc, procInfo[index].procId,
procInfo[index].nprocs, lbsStorage[i],
ubsStorage[i], stepsStorage[i]);
index++;
}
}
}
ValueRange lbs(lbsStorage), ubs(ubsStorage), steps(stepsStorage);
generateParallelLoopNest(
b, loc, lbs, ubs, steps, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange ivs) {
bodyBuilderFn(b, loc, ivs, {});
},
ivs, distributionMethod);
assert(ivs.size() == iteratorTypes.size() && "did not generate enough loops");
}
Value makeTiledShape(OpBuilder &builder, Location loc, Value valueToTile,
ValueRange tileSizes, AffineMap map, ValueRange lbs,
ValueRange subShapeSizes) {
auto shapedType = valueToTile.getType().dyn_cast<ShapedType>();
assert(shapedType && "only shaped types can be tiled");
ArrayRef<int64_t> shape = shapedType.getShape();
int64_t rank = shapedType.getRank();
// Construct a new subview / extract_slice for the tile.
SmallVector<OpFoldResult, 4> offsets, sizes, strides;
offsets.reserve(rank);
sizes.reserve(rank);
strides.reserve(rank);
for (unsigned r = 0; r < rank; ++r) {
LLVM_DEBUG(llvm::dbgs() << "makeTiledShape: for dim#" << r);
if (!isTiled(map.getSubMap({r}), tileSizes)) {
offsets.push_back(builder.getIndexAttr(0));
Value dim = createOrFoldDimOp(builder, loc, valueToTile, r);
sizes.push_back(getAsOpFoldResult(dim));
strides.push_back(builder.getIndexAttr(1));
LLVM_DEBUG(llvm::dbgs() << ": not tiled: use size: " << dim << "\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << ": tiled: figure out subsize...\n");
// Tiling creates a new slice at the proper index, the slice step is 1
// (i.e. the op does not subsample, stepping occurs in the loop).
auto m = map.getSubMap({r});
LLVM_DEBUG(llvm::dbgs() << "makeTiledShape: submap: " << m << "\n");
auto offset = applyMapToValues(builder, loc, m, lbs).front();
offsets.push_back(offset);
auto closedIntSize =
applyMapToValues(builder, loc, m, subShapeSizes).front();
// Resulting size needs to be made half open interval again.
AffineExpr s0 = getAffineSymbolExpr(0, builder.getContext());
Value size = makeComposedAffineApply(builder, loc, s0 + 1, closedIntSize);
LLVM_DEBUG(llvm::dbgs() << "makeTiledShape: raw size: " << size << "\n");
// The size of the subview / extract_slice should be trimmed to avoid
// out-of-bounds accesses, unless we statically know the subshape size
// divides the shape size evenly.
int64_t shapeSize = shape[r];
auto sizeCst = size.getDefiningOp<ConstantIndexOp>();
if (ShapedType::isDynamic(shapeSize) || !sizeCst ||
(shapeSize % sizeCst.getValue()) != 0) {
LLVM_DEBUG(llvm::dbgs() << "makeTiledShape: shapeSize=" << shapeSize
<< ", size: " << size
<< ": make sure in bound with affine.min\n");
AffineExpr dim0, dim1, dim2;
bindDims(builder.getContext(), dim0, dim1, dim2);
// Compute min(size, dim - offset) to avoid out-of-bounds accesses.
AffineMap minMap =
AffineMap::inferFromExprList(
ArrayRef<ArrayRef<AffineExpr>>{{dim0, dim1 - dim2}})
.front();
Value d = createOrFoldDimOp(builder, loc, valueToTile, r);
SmallVector<Value, 4> operands{size, d, offset};
fullyComposeAffineMapAndOperands(&minMap, &operands);
size = builder.create<AffineMinOp>(loc, builder.getIndexType(), minMap,
operands);
}
sizes.push_back(size);
LLVM_DEBUG(llvm::dbgs()
<< "makeTiledShape: new offset: " << offset << "\n");
LLVM_DEBUG(llvm::dbgs() << "makeTiledShape: new size: " << size << "\n");
strides.push_back(builder.getIndexAttr(1));
}
Operation *sliceOp = shapedType.isa<MemRefType>()
? builder
.create<memref::SubViewOp>(
loc, valueToTile, offsets, sizes, strides)
.getOperation()
: builder
.create<tensor::ExtractSliceOp>(
loc, valueToTile, offsets, sizes, strides)
.getOperation();
return sliceOp->getResult(0);
}
SmallVector<Value> computeTileOffsets(OpBuilder &b, Location loc,
ValueRange ivs, ValueRange tileSizes) {
SmallVector<Value> offsets;
for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) {
LLVM_DEBUG(llvm::dbgs() << "makeTiledShapes: for loop#" << idx << "\n");
bool isTiled = !isZero(tileSizes[idx]);
offsets.push_back(isTiled ? ivs[idxIvs++]
: b.create<ConstantIndexOp>(loc, 0).getResult());
LLVM_DEBUG(llvm::dbgs()
<< "computeTileOffsets: " << offsets.back() << "\n");
}
return offsets;
}
SmallVector<Value> computeTileSizes(OpBuilder &b, Location loc, ValueRange ivs,
ValueRange tileSizes,
ArrayRef<Value> sizeBounds) {
SmallVector<Value> sizes;
for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) {
bool isTiled = !isZero(tileSizes[idx]);
// Before composing, we need to make range a closed interval.
Value size = isTiled ? tileSizes[idx] : sizeBounds[idx];
AffineExpr d0 = getAffineDimExpr(0, b.getContext());
sizes.push_back(makeComposedAffineApply(b, loc, d0 - 1, size));
LLVM_DEBUG(llvm::dbgs() << "computeTileSizes: " << sizes.back() << "\n");
}
return sizes;
}
SmallVector<Value, 4> makeTiledShapes(OpBuilder &b, Location loc,
LinalgOp linalgOp,
ArrayRef<Value> valuesToTile,
ValueRange ivs, ValueRange tileSizes,
ArrayRef<Value> sizeBounds) {
assert(ivs.size() == static_cast<size_t>(llvm::count_if(
llvm::make_range(tileSizes.begin(), tileSizes.end()),
[](Value v) { return !isZero(v); })) &&
"expected as many ivs as non-zero sizes");
// Construct (potentially temporary) mins and maxes on which to apply maps
// that define tile subshapes.
SmallVector<Value> lbs = computeTileOffsets(b, loc, ivs, tileSizes);
SmallVector<Value> subShapeSizes =
computeTileSizes(b, loc, ivs, tileSizes, sizeBounds);
assert(static_cast<int64_t>(valuesToTile.size()) ==
linalgOp.getNumInputsAndOutputs() &&
"expected one value to tile for every operand");
SmallVector<Value, 4> tiledShapes;
tiledShapes.reserve(valuesToTile.size());
for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) {
Value shapedOp = valuesToTile[opOperand->getOperandNumber()];
LLVM_DEBUG(llvm::dbgs() << "makeTiledShapes: for operand " << shapedOp);
AffineMap map = linalgOp.getTiedIndexingMap(opOperand);
// If the shape is not tiled, we can use it as is.
if (!isTiled(map, tileSizes)) {
tiledShapes.push_back(shapedOp);
LLVM_DEBUG(llvm::dbgs() << ": not tiled: use shape: "
<< opOperand->get().getType() << "\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << ": tiled: figure out subshape...\n");
tiledShapes.push_back(
makeTiledShape(b, loc, shapedOp, tileSizes, map, lbs, subShapeSizes));
}
return tiledShapes;
}
} // namespace linalg
} // namespace mlir