llvm-project/mlir/lib/Dialect/Math/Transforms/PolynomialApproximation.cpp

773 lines
29 KiB
C++

//===- PolynomialApproximation.cpp - Approximate math operations ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements expansion of math operations to fast approximations
// that do not rely on any of the library functions.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Math/Transforms/Passes.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/Transforms/Bufferize.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <climits>
using namespace mlir;
using namespace mlir::vector;
using TypePredicate = llvm::function_ref<bool(Type)>;
// Returns vector width if the element type is matching the predicate (scalars
// that do match the predicate have width equal to `1`).
static Optional<int> vectorWidth(Type type, TypePredicate pred) {
// If the type matches the predicate then its width is `1`.
if (pred(type))
return 1;
// Otherwise check if the type is a vector type.
auto vectorType = type.dyn_cast<VectorType>();
if (vectorType && pred(vectorType.getElementType())) {
assert(vectorType.getRank() == 1 && "only 1d vectors are supported");
return vectorType.getDimSize(0);
}
return llvm::None;
}
// Returns vector width of the type. If the type is a scalar returns `1`.
static int vectorWidth(Type type) {
auto vectorType = type.dyn_cast<VectorType>();
return vectorType ? vectorType.getDimSize(0) : 1;
}
// Returns vector element type. If the type is a scalar returns the argument.
LLVM_ATTRIBUTE_UNUSED static Type elementType(Type type) {
auto vectorType = type.dyn_cast<VectorType>();
return vectorType ? vectorType.getElementType() : type;
}
LLVM_ATTRIBUTE_UNUSED static bool isF32(Type type) { return type.isF32(); }
LLVM_ATTRIBUTE_UNUSED static bool isI32(Type type) {
return type.isInteger(32);
}
//----------------------------------------------------------------------------//
// Broadcast scalar types and values into vector types and values.
//----------------------------------------------------------------------------//
// Broadcasts scalar type into vector type (iff width is greater then 1).
static Type broadcast(Type type, int width) {
assert(!type.isa<VectorType>() && "must be scalar type");
return width > 1 ? VectorType::get({width}, type) : type;
}
// Broadcasts scalar value into vector (iff width is greater then 1).
static Value broadcast(ImplicitLocOpBuilder &builder, Value value, int width) {
assert(!value.getType().isa<VectorType>() && "must be scalar value");
auto type = broadcast(value.getType(), width);
return width > 1 ? builder.create<BroadcastOp>(type, value) : value;
}
//----------------------------------------------------------------------------//
// Helper functions to create constants.
//----------------------------------------------------------------------------//
static Value f32Cst(ImplicitLocOpBuilder &builder, float value) {
return builder.create<ConstantOp>(builder.getF32Type(),
builder.getF32FloatAttr(value));
}
static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) {
return builder.create<ConstantOp>(builder.getI32Type(),
builder.getI32IntegerAttr(value));
}
static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) {
Value i32Value = i32Cst(builder, static_cast<int32_t>(bits));
return builder.create<BitcastOp>(builder.getF32Type(), i32Value);
}
//----------------------------------------------------------------------------//
// Helper functions to build math functions approximations.
//----------------------------------------------------------------------------//
static Value min(ImplicitLocOpBuilder &builder, Value a, Value b) {
return builder.create<SelectOp>(
builder.create<CmpFOp>(CmpFPredicate::OLT, a, b), a, b);
}
static Value max(ImplicitLocOpBuilder &builder, Value a, Value b) {
return builder.create<SelectOp>(
builder.create<CmpFOp>(CmpFPredicate::OGT, a, b), a, b);
}
static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound,
Value upperBound) {
return max(builder, min(builder, value, upperBound), lowerBound);
}
// Decomposes given floating point value `arg` into a normalized fraction and
// an integral power of two (see std::frexp). Returned values have float type.
static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg,
bool is_positive = false) {
assert(isF32(elementType(arg.getType())) && "argument must be f32 type");
int width = vectorWidth(arg.getType());
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, width);
};
auto i32 = builder.getIntegerType(32);
auto i32Vec = broadcast(i32, width);
auto f32Vec = broadcast(builder.getF32Type(), width);
Value cst126f = f32Cst(builder, 126.0f);
Value cstHalf = f32Cst(builder, 0.5f);
Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u);
// Bitcast to i32 for bitwise operations.
Value i32Half = builder.create<BitcastOp>(i32, cstHalf);
Value i32InvMantMask = builder.create<BitcastOp>(i32, cstInvMantMask);
Value i32Arg = builder.create<BitcastOp>(i32Vec, arg);
// Compute normalized fraction.
Value tmp0 = builder.create<AndOp>(i32Arg, bcast(i32InvMantMask));
Value tmp1 = builder.create<OrOp>(tmp0, bcast(i32Half));
Value normalizedFraction = builder.create<BitcastOp>(f32Vec, tmp1);
// Compute exponent.
Value arg0 = is_positive ? arg : builder.create<AbsFOp>(arg);
Value biasedExponentBits = builder.create<UnsignedShiftRightOp>(
builder.create<BitcastOp>(i32Vec, arg0), bcast(i32Cst(builder, 23)));
Value biasedExponent = builder.create<SIToFPOp>(f32Vec, biasedExponentBits);
Value exponent = builder.create<SubFOp>(biasedExponent, bcast(cst126f));
return {normalizedFraction, exponent};
}
// Computes exp2 for an i32 argument.
static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) {
assert(isI32(elementType(arg.getType())) && "argument must be i32 type");
int width = vectorWidth(arg.getType());
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, width);
};
auto f32Vec = broadcast(builder.getF32Type(), width);
// The exponent of f32 located at 23-bit.
auto exponetBitLocation = bcast(i32Cst(builder, 23));
// Set the exponent bias to zero.
auto bias = bcast(i32Cst(builder, 127));
Value biasedArg = builder.create<AddIOp>(arg, bias);
Value exp2ValueInt =
builder.create<ShiftLeftOp>(biasedArg, exponetBitLocation);
Value exp2ValueF32 = builder.create<BitcastOp>(f32Vec, exp2ValueInt);
return exp2ValueF32;
}
//----------------------------------------------------------------------------//
// TanhOp approximation.
//----------------------------------------------------------------------------//
namespace {
struct TanhApproximation : public OpRewritePattern<math::TanhOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::TanhOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
TanhApproximation::matchAndRewrite(math::TanhOp op,
PatternRewriter &rewriter) const {
auto width = vectorWidth(op.operand().getType(), isF32);
if (!width.hasValue())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, *width);
};
// Clamp operand into [plusClamp, minusClamp] range.
Value minusClamp = bcast(f32Cst(builder, -7.9053111076354980f));
Value plusClamp = bcast(f32Cst(builder, 7.90531110763549805f));
Value x = clamp(builder, op.operand(), minusClamp, plusClamp);
// Mask for tiny values that are approximated with `operand`.
Value tiny = bcast(f32Cst(builder, 0.0004f));
Value tinyMask = builder.create<CmpFOp>(
CmpFPredicate::OLT, builder.create<AbsFOp>(op.operand()), tiny);
// The monomial coefficients of the numerator polynomial (odd).
Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f));
Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f));
Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f));
Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f));
Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f));
Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f));
Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f));
// The monomial coefficients of the denominator polynomial (even).
Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f));
Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f));
Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f));
Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f));
// Since the polynomials are odd/even, we need x^2.
Value x2 = builder.create<MulFOp>(x, x);
// Evaluate the numerator polynomial p.
Value p = builder.create<FmaFOp>(x2, alpha13, alpha11);
p = builder.create<FmaFOp>(x2, p, alpha9);
p = builder.create<FmaFOp>(x2, p, alpha7);
p = builder.create<FmaFOp>(x2, p, alpha5);
p = builder.create<FmaFOp>(x2, p, alpha3);
p = builder.create<FmaFOp>(x2, p, alpha1);
p = builder.create<MulFOp>(x, p);
// Evaluate the denominator polynomial q.
Value q = builder.create<FmaFOp>(x2, beta6, beta4);
q = builder.create<FmaFOp>(x2, q, beta2);
q = builder.create<FmaFOp>(x2, q, beta0);
// Divide the numerator by the denominator.
Value res =
builder.create<SelectOp>(tinyMask, x, builder.create<DivFOp>(p, q));
rewriter.replaceOp(op, res);
return success();
}
#define LN2_VALUE \
0.693147180559945309417232121458176568075500134360255254120680009493393621L
#define LOG2E_VALUE \
1.442695040888963407359924681001892137426645954152985934135449406931109219L
//----------------------------------------------------------------------------//
// LogOp and Log2Op approximation.
//----------------------------------------------------------------------------//
namespace {
template <typename Op>
struct LogApproximationBase : public OpRewritePattern<Op> {
using OpRewritePattern<Op>::OpRewritePattern;
/// Base 2 if 'base2' is set; natural logarithm (base e) otherwise.
LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter,
bool base2) const;
};
} // namespace
// This approximation comes from Julien Pommier's SSE math library.
// Link: http://gruntthepeon.free.fr/ssemath
template <typename Op>
LogicalResult
LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter,
bool base2) const {
auto width = vectorWidth(op.operand().getType(), isF32);
if (!width.hasValue())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, *width);
};
Value cstZero = bcast(f32Cst(builder, 0.0f));
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
// The smallest non denormalized float number.
Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u));
Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
Value cstNan = bcast(f32FromBits(builder, 0x7fc00000));
// Polynomial coefficients.
Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f));
Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f));
Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f));
Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f));
Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f));
Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f));
Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f));
Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f));
Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f));
Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f));
Value x = op.operand();
// Truncate input values to the minimum positive normal.
x = max(builder, x, cstMinNormPos);
// Extract significant in the range [0.5,1) and exponent.
std::pair<Value, Value> pair = frexp(builder, x, /*is_positive=*/true);
x = pair.first;
Value e = pair.second;
// Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift
// by -1.0. The values are then centered around 0, which improves the
// stability of the polynomial evaluation:
//
// if( x < SQRTHF ) {
// e -= 1;
// x = x + x - 1.0;
// } else { x = x - 1.0; }
Value mask = builder.create<CmpFOp>(CmpFPredicate::OLT, x, cstCephesSQRTHF);
Value tmp = builder.create<SelectOp>(mask, x, cstZero);
x = builder.create<SubFOp>(x, cstOne);
e = builder.create<SubFOp>(e,
builder.create<SelectOp>(mask, cstOne, cstZero));
x = builder.create<AddFOp>(x, tmp);
Value x2 = builder.create<MulFOp>(x, x);
Value x3 = builder.create<MulFOp>(x2, x);
// Evaluate the polynomial approximant of degree 8 in three parts.
Value y0, y1, y2;
y0 = builder.create<FmaFOp>(cstCephesLogP0, x, cstCephesLogP1);
y1 = builder.create<FmaFOp>(cstCephesLogP3, x, cstCephesLogP4);
y2 = builder.create<FmaFOp>(cstCephesLogP6, x, cstCephesLogP7);
y0 = builder.create<FmaFOp>(y0, x, cstCephesLogP2);
y1 = builder.create<FmaFOp>(y1, x, cstCephesLogP5);
y2 = builder.create<FmaFOp>(y2, x, cstCephesLogP8);
y0 = builder.create<FmaFOp>(y0, x3, y1);
y0 = builder.create<FmaFOp>(y0, x3, y2);
y0 = builder.create<MulFOp>(y0, x3);
y0 = builder.create<FmaFOp>(cstNegHalf, x2, y0);
x = builder.create<AddFOp>(x, y0);
if (base2) {
Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE)));
x = builder.create<FmaFOp>(x, cstLog2e, e);
} else {
Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
x = builder.create<FmaFOp>(e, cstLn2, x);
}
Value invalidMask =
builder.create<CmpFOp>(CmpFPredicate::ULT, op.operand(), cstZero);
Value zeroMask =
builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstZero);
Value posInfMask =
builder.create<CmpFOp>(CmpFPredicate::OEQ, op.operand(), cstPosInf);
// Filter out invalid values:
// • x == 0 -> -INF
// • x < 0 -> NAN
// • x == +INF -> +INF
Value aproximation = builder.create<SelectOp>(
zeroMask, cstMinusInf,
builder.create<SelectOp>(
invalidMask, cstNan,
builder.create<SelectOp>(posInfMask, cstPosInf, x)));
rewriter.replaceOp(op, aproximation);
return success();
}
namespace {
struct LogApproximation : public LogApproximationBase<math::LogOp> {
using LogApproximationBase::LogApproximationBase;
LogicalResult matchAndRewrite(math::LogOp op,
PatternRewriter &rewriter) const final {
return logMatchAndRewrite(op, rewriter, /*base2=*/false);
}
};
} // namespace
namespace {
struct Log2Approximation : public LogApproximationBase<math::Log2Op> {
using LogApproximationBase::LogApproximationBase;
LogicalResult matchAndRewrite(math::Log2Op op,
PatternRewriter &rewriter) const final {
return logMatchAndRewrite(op, rewriter, /*base2=*/true);
}
};
} // namespace
//----------------------------------------------------------------------------//
// Log1p approximation.
//----------------------------------------------------------------------------//
namespace {
struct Log1pApproximation : public OpRewritePattern<math::Log1pOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::Log1pOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
// Approximate log(1+x).
LogicalResult
Log1pApproximation::matchAndRewrite(math::Log1pOp op,
PatternRewriter &rewriter) const {
auto width = vectorWidth(op.operand().getType(), isF32);
if (!width.hasValue())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, *width);
};
// Approximate log(1+x) using the following, due to W. Kahan:
// u = x + 1.0;
// if (u == 1.0 || u == inf) return x;
// return x * log(u) / (u - 1.0);
// ^^^^^^^^^^^^^^^^^^^^^^
// "logLarge" below.
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value x = op.operand();
Value u = builder.create<AddFOp>(x, cstOne);
Value uSmall = builder.create<CmpFOp>(CmpFPredicate::OEQ, u, cstOne);
Value logU = builder.create<math::LogOp>(u);
Value uInf = builder.create<CmpFOp>(CmpFPredicate::OEQ, u, logU);
Value logLarge = builder.create<MulFOp>(
x, builder.create<DivFOp>(logU, builder.create<SubFOp>(u, cstOne)));
Value approximation =
builder.create<SelectOp>(builder.create<OrOp>(uSmall, uInf), x, logLarge);
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
// Exp approximation.
//----------------------------------------------------------------------------//
namespace {
struct ExpApproximation : public OpRewritePattern<math::ExpOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::ExpOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
// Approximate exp(x) using its reduced range exp(y) where y is in the range
// [0, ln(2)], let y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2), exp(x)
// = exp(y) * 2^k. exp(y).
LogicalResult
ExpApproximation::matchAndRewrite(math::ExpOp op,
PatternRewriter &rewriter) const {
auto width = vectorWidth(op.operand().getType(), isF32);
if (!width.hasValue())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
// TODO: Consider a common pattern rewriter with all methods below to
// write the approximations.
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, *width);
};
auto fmla = [&](Value a, Value b, Value c) {
return builder.create<FmaFOp>(a, b, c);
};
auto mul = [&](Value a, Value b) -> Value {
return builder.create<MulFOp>(a, b);
};
auto sub = [&](Value a, Value b) -> Value {
return builder.create<SubFOp>(a, b);
};
auto floor = [&](Value a) { return builder.create<FloorFOp>(a); };
Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
Value cstLog2E = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE)));
// Polynomial coefficients.
Value cstCephesExpP0 = bcast(f32Cst(builder, 1.0));
Value cstCephesExpP1 = bcast(f32Cst(builder, 1.0));
Value cstCephesExpP2 = bcast(f32Cst(builder, 0.49970514590562437052f));
Value cstCephesExpP3 = bcast(f32Cst(builder, 0.16873890085469545053f));
Value cstCephesExpP4 = bcast(f32Cst(builder, 0.03668965196652099192f));
Value cstCephesExpP5 = bcast(f32Cst(builder, 0.01314350012789660196f));
Value x = op.operand();
// Reduced y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2)
Value xL2Inv = mul(x, cstLog2E);
Value kF32 = floor(xL2Inv);
Value kLn2 = mul(kF32, cstLn2);
Value y = sub(x, kLn2);
// Use Estrin's evaluation scheme with 3 independent parts:
// P(y)^y : (c0 + c1 y) + (c2 + c3 y) y^2 + (c4 + c5 y) y^4
Value y2 = mul(y, y);
Value y4 = mul(y2, y2);
Value q0 = fmla(cstCephesExpP1, y, cstCephesExpP0);
Value q1 = fmla(cstCephesExpP3, y, cstCephesExpP2);
Value q2 = fmla(cstCephesExpP5, y, cstCephesExpP4);
Value expY = fmla(q1, y2, q0);
expY = fmla(q2, y4, expY);
auto i32Vec = broadcast(builder.getI32Type(), *width);
// exp2(k)
Value k = builder.create<FPToSIOp>(kF32, i32Vec);
Value exp2KValue = exp2I32(builder, k);
// exp(x) = exp(y) * exp2(k)
expY = mul(expY, exp2KValue);
// Handle overflow, inf and underflow of exp(x). exp(x) range is [0, inf], its
// partitioned as the following:
// exp(x) = 0, x <= -inf
// exp(x) = underflow (min_float), x <= -88
// exp(x) = inf (min_float), x >= 88
// Note: |k| = 127 is the value where the 8-bits exponent saturates.
Value zerof32Const = bcast(f32Cst(builder, 0));
auto constPosInfinity =
bcast(f32Cst(builder, std::numeric_limits<float>::infinity()));
auto constNegIfinity =
bcast(f32Cst(builder, -std::numeric_limits<float>::infinity()));
auto underflow = bcast(f32Cst(builder, std::numeric_limits<float>::min()));
Value kMaxConst = bcast(i32Cst(builder, 127));
Value kMaxNegConst = bcast(i32Cst(builder, -127));
Value rightBound = builder.create<CmpIOp>(CmpIPredicate::sle, k, kMaxConst);
Value leftBound = builder.create<CmpIOp>(CmpIPredicate::sge, k, kMaxNegConst);
Value isNegInfinityX =
builder.create<CmpFOp>(CmpFPredicate::OEQ, x, constNegIfinity);
Value isPostiveX =
builder.create<CmpFOp>(CmpFPredicate::OGT, x, zerof32Const);
Value isComputable = builder.create<AndOp>(rightBound, leftBound);
expY = builder.create<SelectOp>(
isComputable, expY,
builder.create<SelectOp>(
isPostiveX, constPosInfinity,
builder.create<SelectOp>(isNegInfinityX, zerof32Const, underflow)));
rewriter.replaceOp(op, expY);
return success();
}
//----------------------------------------------------------------------------//
// ExpM1 approximation.
//----------------------------------------------------------------------------//
namespace {
struct ExpM1Approximation : public OpRewritePattern<math::ExpM1Op> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::ExpM1Op op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
ExpM1Approximation::matchAndRewrite(math::ExpM1Op op,
PatternRewriter &rewriter) const {
auto width = vectorWidth(op.operand().getType(), isF32);
if (!width.hasValue())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, *width);
};
// expm1(x) = exp(x) - 1 = u - 1.
// We have to handle it carefully when x is near 0, i.e. u ~= 1,
// and when the input is ~= -inf, i.e. u - 1 ~= -1.
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value cstNegOne = bcast(f32Cst(builder, -1.0f));
Value x = op.operand();
Value u = builder.create<math::ExpOp>(x);
Value uEqOne = builder.create<CmpFOp>(CmpFPredicate::OEQ, u, cstOne);
Value uMinusOne = builder.create<SubFOp>(u, cstOne);
Value uMinusOneEqNegOne =
builder.create<CmpFOp>(CmpFPredicate::OEQ, uMinusOne, cstNegOne);
// logU = log(u) ~= x
Value logU = builder.create<math::LogOp>(u);
// Detect exp(x) = +inf; written this way to avoid having to form +inf.
Value isInf = builder.create<CmpFOp>(CmpFPredicate::OEQ, logU, u);
// (u - 1) * (x / ~x)
Value expm1 =
builder.create<MulFOp>(uMinusOne, builder.create<DivFOp>(x, logU));
expm1 = builder.create<SelectOp>(isInf, u, expm1);
Value approximation = builder.create<SelectOp>(
uEqOne, x, builder.create<SelectOp>(uMinusOneEqNegOne, cstNegOne, expm1));
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
// Sin and Cos approximation.
//----------------------------------------------------------------------------//
namespace {
template <bool isSine, typename OpTy>
struct SinAndCosApproximation : public OpRewritePattern<OpTy> {
public:
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final;
};
} // namespace
#define TWO_OVER_PI \
0.6366197723675813430755350534900574481378385829618257949906693762L
#define PI_OVER_2 \
1.5707963267948966192313216916397514420985846996875529104874722961L
// Approximates sin(x) or cos(x) by finding the best approximation polynomial in
// the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the
// reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y).
template <bool isSine, typename OpTy>
LogicalResult SinAndCosApproximation<isSine, OpTy>::matchAndRewrite(
OpTy op, PatternRewriter &rewriter) const {
static_assert(
llvm::is_one_of<OpTy, math::SinOp, math::CosOp>::value,
"SinAndCosApproximation pattern expects math::SinOp or math::CosOp");
auto width = vectorWidth(op.operand().getType(), isF32);
if (!width.hasValue())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, *width);
};
auto mul = [&](Value a, Value b) -> Value {
return builder.create<MulFOp>(a, b);
};
auto sub = [&](Value a, Value b) -> Value {
return builder.create<SubFOp>(a, b);
};
auto floor = [&](Value a) { return builder.create<FloorFOp>(a); };
auto i32Vec = broadcast(builder.getI32Type(), *width);
auto fPToSingedInteger = [&](Value a) -> Value {
return builder.create<FPToSIOp>(a, i32Vec);
};
auto modulo4 = [&](Value a) -> Value {
return builder.create<AndOp>(a, bcast(i32Cst(builder, 3)));
};
auto isEqualTo = [&](Value a, Value b) -> Value {
return builder.create<CmpIOp>(CmpIPredicate::eq, a, b);
};
auto isGreaterThan = [&](Value a, Value b) -> Value {
return builder.create<CmpIOp>(CmpIPredicate::sgt, a, b);
};
auto select = [&](Value cond, Value t, Value f) -> Value {
return builder.create<SelectOp>(cond, t, f);
};
auto fmla = [&](Value a, Value b, Value c) {
return builder.create<FmaFOp>(a, b, c);
};
auto bitwiseOr = [&](Value a, Value b) { return builder.create<OrOp>(a, b); };
Value twoOverPi = bcast(f32Cst(builder, TWO_OVER_PI));
Value piOverTwo = bcast(f32Cst(builder, PI_OVER_2));
Value x = op.operand();
Value k = floor(mul(x, twoOverPi));
Value y = sub(x, mul(k, piOverTwo));
Value cstOne = bcast(f32Cst(builder, 1.0));
Value cstNegativeOne = bcast(f32Cst(builder, -1.0));
Value cstSC2 = bcast(f32Cst(builder, -0.16666667163372039794921875f));
Value cstSC4 = bcast(f32Cst(builder, 8.333347737789154052734375e-3f));
Value cstSC6 = bcast(f32Cst(builder, -1.9842604524455964565277099609375e-4f));
Value cstSC8 =
bcast(f32Cst(builder, 2.760012648650445044040679931640625e-6f));
Value cstSC10 =
bcast(f32Cst(builder, -2.50293279435709337121807038784027099609375e-8f));
Value cstCC2 = bcast(f32Cst(builder, -0.5f));
Value cstCC4 = bcast(f32Cst(builder, 4.166664183139801025390625e-2f));
Value cstCC6 = bcast(f32Cst(builder, -1.388833043165504932403564453125e-3f));
Value cstCC8 = bcast(f32Cst(builder, 2.47562347794882953166961669921875e-5f));
Value cstCC10 =
bcast(f32Cst(builder, -2.59630184018533327616751194000244140625e-7f));
Value kMod4 = modulo4(fPToSingedInteger(k));
Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, 0)));
Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, 1)));
Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, 2)));
Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, 3)));
Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2);
Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, 1)))
: bitwiseOr(kR1, kR2);
Value y2 = mul(y, y);
Value base = select(sinuseCos, cstOne, y);
Value cstC2 = select(sinuseCos, cstCC2, cstSC2);
Value cstC4 = select(sinuseCos, cstCC4, cstSC4);
Value cstC6 = select(sinuseCos, cstCC6, cstSC6);
Value cstC8 = select(sinuseCos, cstCC8, cstSC8);
Value cstC10 = select(sinuseCos, cstCC10, cstSC10);
Value v1 = fmla(y2, cstC10, cstC8);
Value v2 = fmla(y2, v1, cstC6);
Value v3 = fmla(y2, v2, cstC4);
Value v4 = fmla(y2, v3, cstC2);
Value v5 = fmla(y2, v4, cstOne);
Value v6 = mul(base, v5);
Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6);
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
void mlir::populateMathPolynomialApproximationPatterns(
RewritePatternSet &patterns) {
patterns.add<TanhApproximation, LogApproximation, Log2Approximation,
Log1pApproximation, ExpApproximation, ExpM1Approximation,
SinAndCosApproximation<true, math::SinOp>,
SinAndCosApproximation<false, math::CosOp>>(
patterns.getContext());
}