101 lines
3.4 KiB
MLIR
101 lines
3.4 KiB
MLIR
// RUN: mlir-opt %s \
|
|
// RUN: --sparsification --sparse-tensor-conversion \
|
|
// RUN: --convert-vector-to-scf --convert-scf-to-std \
|
|
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
|
|
// RUN: --std-bufferize --finalizing-bufferize \
|
|
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \
|
|
// RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \
|
|
// RUN: TENSOR1="%mlir_integration_test_dir/data/zero.mtx" \
|
|
// RUN: mlir-cpu-runner \
|
|
// RUN: -e entry -entry-point-result=void \
|
|
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
|
// RUN: FileCheck %s
|
|
|
|
!Filename = type !llvm.ptr<i8>
|
|
|
|
#DenseMatrix = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "dense", "dense" ],
|
|
dimOrdering = affine_map<(i,j) -> (i,j)>
|
|
}>
|
|
|
|
#SparseMatrix = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "dense", "compressed" ],
|
|
dimOrdering = affine_map<(i,j) -> (i,j)>
|
|
}>
|
|
|
|
#trait_assign = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)>, // A
|
|
affine_map<(i,j) -> (i,j)> // X (out)
|
|
],
|
|
iterator_types = ["parallel", "parallel"],
|
|
doc = "X(i,j) = A(i,j)"
|
|
}
|
|
|
|
//
|
|
// Integration test that demonstrates assigning a sparse tensor
|
|
// to an all-dense annotated "sparse" tensor, which effectively
|
|
// result in inserting the nonzero elements into a linearized array.
|
|
//
|
|
// Note that there is a subtle difference between a non-annotated
|
|
// tensor and an all-dense annotated tensor. Both tensors are assumed
|
|
// dense, but the former remains an n-dimensional memref whereas the
|
|
// latter is linearized into a one-dimensional memref that is further
|
|
// lowered into a storage scheme that is backed by the runtime support
|
|
// library.
|
|
module {
|
|
//
|
|
// A kernel that assigns elements from A to an initially zero X.
|
|
//
|
|
func @dense_output(%arga: tensor<?x?xf64, #SparseMatrix>,
|
|
%argx: tensor<?x?xf64, #DenseMatrix>
|
|
{linalg.inplaceable = true})
|
|
-> tensor<?x?xf64, #DenseMatrix> {
|
|
%0 = linalg.generic #trait_assign
|
|
ins(%arga: tensor<?x?xf64, #SparseMatrix>)
|
|
outs(%argx: tensor<?x?xf64, #DenseMatrix>) {
|
|
^bb(%a: f64, %x: f64):
|
|
linalg.yield %a : f64
|
|
} -> tensor<?x?xf64, #DenseMatrix>
|
|
return %0 : tensor<?x?xf64, #DenseMatrix>
|
|
}
|
|
|
|
func private @getTensorFilename(index) -> (!Filename)
|
|
|
|
//
|
|
// Main driver that reads matrix from file and calls the kernel.
|
|
//
|
|
func @entry() {
|
|
%d0 = constant 0.0 : f64
|
|
%c0 = constant 0 : index
|
|
%c1 = constant 1 : index
|
|
|
|
// Read the sparse matrix from file, construct sparse storage.
|
|
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
|
|
%a = sparse_tensor.new %fileName
|
|
: !Filename to tensor<?x?xf64, #SparseMatrix>
|
|
|
|
// Initialize all-dense annotated "sparse" matrix to all zeros.
|
|
%fileZero = call @getTensorFilename(%c1) : (index) -> (!Filename)
|
|
%x = sparse_tensor.new %fileZero
|
|
: !Filename to tensor<?x?xf64, #DenseMatrix>
|
|
|
|
// Call the kernel.
|
|
%0 = call @dense_output(%a, %x)
|
|
: (tensor<?x?xf64, #SparseMatrix>,
|
|
tensor<?x?xf64, #DenseMatrix>) -> tensor<?x?xf64, #DenseMatrix>
|
|
|
|
//
|
|
// Print the linearized 5x5 result for verification.
|
|
//
|
|
// CHECK: ( 1, 0, 0, 1.4, 0, 0, 2, 0, 0, 2.5, 0, 0, 3, 0, 0, 4.1, 0, 0, 4, 0, 0, 5.2, 0, 0, 5 )
|
|
//
|
|
%m = sparse_tensor.values %0
|
|
: tensor<?x?xf64, #DenseMatrix> to memref<?xf64>
|
|
%v = vector.load %m[%c0] : memref<?xf64>, vector<25xf64>
|
|
vector.print %v : vector<25xf64>
|
|
|
|
return
|
|
}
|
|
}
|