80 lines
2.7 KiB
MLIR
80 lines
2.7 KiB
MLIR
// RUN: mlir-opt %s \
|
|
// RUN: --sparsification --sparse-tensor-conversion \
|
|
// RUN: --convert-vector-to-scf --convert-scf-to-std \
|
|
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
|
|
// RUN: --std-bufferize --finalizing-bufferize \
|
|
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \
|
|
// RUN: mlir-cpu-runner \
|
|
// RUN: -e entry -entry-point-result=void \
|
|
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
|
// RUN: FileCheck %s
|
|
|
|
#CSR = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>
|
|
|
|
#trait_scale = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)> // X (out)
|
|
],
|
|
iterator_types = ["parallel", "parallel"],
|
|
doc = "X(i,j) = X(i,j) * 2"
|
|
}
|
|
|
|
//
|
|
// Integration test that lowers a kernel annotated as sparse to actual sparse
|
|
// code, initializes a matching sparse storage scheme from a dense tensor,
|
|
// and runs the resulting code with the JIT compiler.
|
|
//
|
|
module {
|
|
//
|
|
// A kernel that scales a sparse matrix A by a factor of 2.0.
|
|
//
|
|
func @sparse_scale(%argx: tensor<8x8xf32, #CSR>
|
|
{linalg.inplaceable = true}) -> tensor<8x8xf32, #CSR> {
|
|
%c = constant 2.0 : f32
|
|
%0 = linalg.generic #trait_scale
|
|
outs(%argx: tensor<8x8xf32, #CSR>) {
|
|
^bb(%x: f32):
|
|
%1 = mulf %x, %c : f32
|
|
linalg.yield %1 : f32
|
|
} -> tensor<8x8xf32, #CSR>
|
|
return %0 : tensor<8x8xf32, #CSR>
|
|
}
|
|
|
|
//
|
|
// Main driver that converts a dense tensor into a sparse tensor
|
|
// and then calls the sparse scaling kernel with the sparse tensor
|
|
// as input argument.
|
|
//
|
|
func @entry() {
|
|
%c0 = constant 0 : index
|
|
%f0 = constant 0.0 : f32
|
|
|
|
// Initialize a dense tensor.
|
|
%0 = constant dense<[
|
|
[1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0],
|
|
[0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
|
[0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
|
[0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0],
|
|
[0.0, 1.0, 1.0, 0.0, 0.0, 6.0, 0.0, 0.0],
|
|
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 7.0, 1.0],
|
|
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 8.0]
|
|
]> : tensor<8x8xf32>
|
|
|
|
// Convert dense tensor to sparse tensor and call sparse kernel.
|
|
%1 = sparse_tensor.convert %0 : tensor<8x8xf32> to tensor<8x8xf32, #CSR>
|
|
%2 = call @sparse_scale(%1)
|
|
: (tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR>
|
|
|
|
// Print the resulting compacted values for verification.
|
|
//
|
|
// CHECK: ( 2, 2, 2, 4, 6, 8, 2, 10, 2, 2, 12, 2, 14, 2, 2, 16 )
|
|
//
|
|
%m = sparse_tensor.values %2 : tensor<8x8xf32, #CSR> to memref<?xf32>
|
|
%v = vector.transfer_read %m[%c0], %f0: memref<?xf32>, vector<16xf32>
|
|
vector.print %v : vector<16xf32>
|
|
|
|
return
|
|
}
|
|
}
|