1171 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1171 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a pattern matching instruction selector for PowerPC,
 | |
| // converting from a legalized dag to a PPC dag.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "ppc-codegen"
 | |
| #include "PPC.h"
 | |
| #include "PPCPredicates.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "PPCISelLowering.h"
 | |
| #include "PPCHazardRecognizers.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
 | |
|   /// instructions for SelectionDAG operations.
 | |
|   ///
 | |
|   class VISIBILITY_HIDDEN PPCDAGToDAGISel : public SelectionDAGISel {
 | |
|     PPCTargetMachine &TM;
 | |
|     PPCTargetLowering &PPCLowering;
 | |
|     const PPCSubtarget &PPCSubTarget;
 | |
|     unsigned GlobalBaseReg;
 | |
|   public:
 | |
|     explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
 | |
|       : SelectionDAGISel(tm), TM(tm),
 | |
|         PPCLowering(*TM.getTargetLowering()),
 | |
|         PPCSubTarget(*TM.getSubtargetImpl()) {}
 | |
|     
 | |
|     virtual bool runOnFunction(Function &Fn) {
 | |
|       // Do not codegen any 'available_externally' functions at all, they have
 | |
|       // definitions outside the translation unit.
 | |
|       if (Fn.hasAvailableExternallyLinkage())
 | |
|         return false;
 | |
| 
 | |
|       // Make sure we re-emit a set of the global base reg if necessary
 | |
|       GlobalBaseReg = 0;
 | |
|       SelectionDAGISel::runOnFunction(Fn);
 | |
|       
 | |
|       InsertVRSaveCode(Fn);
 | |
|       return true;
 | |
|     }
 | |
|    
 | |
|     /// getI32Imm - Return a target constant with the specified value, of type
 | |
|     /// i32.
 | |
|     inline SDValue getI32Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     /// getI64Imm - Return a target constant with the specified value, of type
 | |
|     /// i64.
 | |
|     inline SDValue getI64Imm(uint64_t Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i64);
 | |
|     }
 | |
|     
 | |
|     /// getSmallIPtrImm - Return a target constant of pointer type.
 | |
|     inline SDValue getSmallIPtrImm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
 | |
|     }
 | |
|     
 | |
|     /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s 
 | |
|     /// with any number of 0s on either side.  The 1s are allowed to wrap from
 | |
|     /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
 | |
|     /// 0x0F0F0000 is not, since all 1s are not contiguous.
 | |
|     static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
 | |
| 
 | |
| 
 | |
|     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
 | |
|     /// rotate and mask opcode and mask operation.
 | |
|     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
 | |
|                                 unsigned &SH, unsigned &MB, unsigned &ME);
 | |
|     
 | |
|     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
 | |
|     /// base register.  Return the virtual register that holds this value.
 | |
|     SDNode *getGlobalBaseReg();
 | |
|     
 | |
|     // Select - Convert the specified operand from a target-independent to a
 | |
|     // target-specific node if it hasn't already been changed.
 | |
|     SDNode *Select(SDValue Op);
 | |
|     
 | |
|     SDNode *SelectBitfieldInsert(SDNode *N);
 | |
| 
 | |
|     /// SelectCC - Select a comparison of the specified values with the
 | |
|     /// specified condition code, returning the CR# of the expression.
 | |
|     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl);
 | |
| 
 | |
|     /// SelectAddrImm - Returns true if the address N can be represented by
 | |
|     /// a base register plus a signed 16-bit displacement [r+imm].
 | |
|     bool SelectAddrImm(SDValue Op, SDValue N, SDValue &Disp,
 | |
|                        SDValue &Base) {
 | |
|       return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
 | |
|     }
 | |
|     
 | |
|     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
 | |
|     /// immediate field.  Because preinc imms have already been validated, just
 | |
|     /// accept it.
 | |
|     bool SelectAddrImmOffs(SDValue Op, SDValue N, SDValue &Out) const {
 | |
|       Out = N;
 | |
|       return true;
 | |
|     }
 | |
|       
 | |
|     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
 | |
|     /// represented as an indexed [r+r] operation.  Returns false if it can
 | |
|     /// be represented by [r+imm], which are preferred.
 | |
|     bool SelectAddrIdx(SDValue Op, SDValue N, SDValue &Base,
 | |
|                        SDValue &Index) {
 | |
|       return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
 | |
|     }
 | |
|     
 | |
|     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
 | |
|     /// represented as an indexed [r+r] operation.
 | |
|     bool SelectAddrIdxOnly(SDValue Op, SDValue N, SDValue &Base,
 | |
|                            SDValue &Index) {
 | |
|       return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
 | |
|     }
 | |
| 
 | |
|     /// SelectAddrImmShift - Returns true if the address N can be represented by
 | |
|     /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
 | |
|     /// for use by STD and friends.
 | |
|     bool SelectAddrImmShift(SDValue Op, SDValue N, SDValue &Disp,
 | |
|                             SDValue &Base) {
 | |
|       return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
 | |
|     }
 | |
|       
 | |
|     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | |
|     /// inline asm expressions.
 | |
|     virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | |
|                                               char ConstraintCode,
 | |
|                                               std::vector<SDValue> &OutOps) {
 | |
|       SDValue Op0, Op1;
 | |
|       switch (ConstraintCode) {
 | |
|       default: return true;
 | |
|       case 'm':   // memory
 | |
|         if (!SelectAddrIdx(Op, Op, Op0, Op1))
 | |
|           SelectAddrImm(Op, Op, Op0, Op1);
 | |
|         break;
 | |
|       case 'o':   // offsetable
 | |
|         if (!SelectAddrImm(Op, Op, Op0, Op1)) {
 | |
|           Op0 = Op;
 | |
|           Op1 = getSmallIPtrImm(0);
 | |
|         }
 | |
|         break;
 | |
|       case 'v':   // not offsetable
 | |
|         SelectAddrIdxOnly(Op, Op, Op0, Op1);
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|       OutOps.push_back(Op0);
 | |
|       OutOps.push_back(Op1);
 | |
|       return false;
 | |
|     }
 | |
|     
 | |
|     SDValue BuildSDIVSequence(SDNode *N);
 | |
|     SDValue BuildUDIVSequence(SDNode *N);
 | |
|     
 | |
|     /// InstructionSelect - This callback is invoked by
 | |
|     /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | |
|     virtual void InstructionSelect();
 | |
|     
 | |
|     void InsertVRSaveCode(Function &Fn);
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "PowerPC DAG->DAG Pattern Instruction Selection";
 | |
|     } 
 | |
|     
 | |
|     /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
 | |
|     /// this target when scheduling the DAG.
 | |
|     virtual ScheduleHazardRecognizer *CreateTargetHazardRecognizer() {
 | |
|       // Should use subtarget info to pick the right hazard recognizer.  For
 | |
|       // now, always return a PPC970 recognizer.
 | |
|       const TargetInstrInfo *II = TM.getInstrInfo();
 | |
|       assert(II && "No InstrInfo?");
 | |
|       return new PPCHazardRecognizer970(*II); 
 | |
|     }
 | |
| 
 | |
| // Include the pieces autogenerated from the target description.
 | |
| #include "PPCGenDAGISel.inc"
 | |
|     
 | |
| private:
 | |
|     SDNode *SelectSETCC(SDValue Op);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// InstructionSelect - This callback is invoked by
 | |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | |
| void PPCDAGToDAGISel::InstructionSelect() {
 | |
|   DEBUG(BB->dump());
 | |
| 
 | |
|   // Select target instructions for the DAG.
 | |
|   SelectRoot(*CurDAG);
 | |
|   CurDAG->RemoveDeadNodes();
 | |
| }
 | |
| 
 | |
| /// InsertVRSaveCode - Once the entire function has been instruction selected,
 | |
| /// all virtual registers are created and all machine instructions are built,
 | |
| /// check to see if we need to save/restore VRSAVE.  If so, do it.
 | |
| void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
 | |
|   // Check to see if this function uses vector registers, which means we have to
 | |
|   // save and restore the VRSAVE register and update it with the regs we use.  
 | |
|   //
 | |
|   // In this case, there will be virtual registers of vector type type created
 | |
|   // by the scheduler.  Detect them now.
 | |
|   MachineFunction &Fn = MachineFunction::get(&F);
 | |
|   bool HasVectorVReg = false;
 | |
|   for (unsigned i = TargetRegisterInfo::FirstVirtualRegister, 
 | |
|        e = RegInfo->getLastVirtReg()+1; i != e; ++i)
 | |
|     if (RegInfo->getRegClass(i) == &PPC::VRRCRegClass) {
 | |
|       HasVectorVReg = true;
 | |
|       break;
 | |
|     }
 | |
|   if (!HasVectorVReg) return;  // nothing to do.
 | |
|       
 | |
|   // If we have a vector register, we want to emit code into the entry and exit
 | |
|   // blocks to save and restore the VRSAVE register.  We do this here (instead
 | |
|   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
 | |
|   //
 | |
|   // 1. This (trivially) reduces the load on the register allocator, by not
 | |
|   //    having to represent the live range of the VRSAVE register.
 | |
|   // 2. This (more significantly) allows us to create a temporary virtual
 | |
|   //    register to hold the saved VRSAVE value, allowing this temporary to be
 | |
|   //    register allocated, instead of forcing it to be spilled to the stack.
 | |
| 
 | |
|   // Create two vregs - one to hold the VRSAVE register that is live-in to the
 | |
|   // function and one for the value after having bits or'd into it.
 | |
|   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|   
 | |
|   const TargetInstrInfo &TII = *TM.getInstrInfo();
 | |
|   MachineBasicBlock &EntryBB = *Fn.begin();
 | |
|   DebugLoc dl = DebugLoc::getUnknownLoc();
 | |
|   // Emit the following code into the entry block:
 | |
|   // InVRSAVE = MFVRSAVE
 | |
|   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
 | |
|   // MTVRSAVE UpdatedVRSAVE
 | |
|   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
 | |
|   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
 | |
|   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
 | |
|           UpdatedVRSAVE).addReg(InVRSAVE);
 | |
|   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
 | |
|   
 | |
|   // Find all return blocks, outputting a restore in each epilog.
 | |
|   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | |
|     if (!BB->empty() && BB->back().getDesc().isReturn()) {
 | |
|       IP = BB->end(); --IP;
 | |
|       
 | |
|       // Skip over all terminator instructions, which are part of the return
 | |
|       // sequence.
 | |
|       MachineBasicBlock::iterator I2 = IP;
 | |
|       while (I2 != BB->begin() && (--I2)->getDesc().isTerminator())
 | |
|         IP = I2;
 | |
|       
 | |
|       // Emit: MTVRSAVE InVRSave
 | |
|       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
 | |
|     }        
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getGlobalBaseReg - Output the instructions required to put the
 | |
| /// base address to use for accessing globals into a register.
 | |
| ///
 | |
| SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
 | |
|   if (!GlobalBaseReg) {
 | |
|     const TargetInstrInfo &TII = *TM.getInstrInfo();
 | |
|     // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|     MachineBasicBlock &FirstMBB = BB->getParent()->front();
 | |
|     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|     DebugLoc dl = DebugLoc::getUnknownLoc();
 | |
| 
 | |
|     if (PPCLowering.getPointerTy() == MVT::i32) {
 | |
|       GlobalBaseReg = RegInfo->createVirtualRegister(PPC::GPRCRegisterClass);
 | |
|       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR), PPC::LR);
 | |
|       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
 | |
|     } else {
 | |
|       GlobalBaseReg = RegInfo->createVirtualRegister(PPC::G8RCRegisterClass);
 | |
|       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8), PPC::LR8);
 | |
|       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
 | |
|     }
 | |
|   }
 | |
|   return CurDAG->getRegister(GlobalBaseReg,
 | |
|                              PPCLowering.getPointerTy()).getNode();
 | |
| }
 | |
| 
 | |
| /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | |
| /// or 64-bit immediate, and if the value can be accurately represented as a
 | |
| /// sign extension from a 16-bit value.  If so, this returns true and the
 | |
| /// immediate.
 | |
| static bool isIntS16Immediate(SDNode *N, short &Imm) {
 | |
|   if (N->getOpcode() != ISD::Constant)
 | |
|     return false;
 | |
| 
 | |
|   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   if (N->getValueType(0) == MVT::i32)
 | |
|     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   else
 | |
|     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
| }
 | |
| 
 | |
| static bool isIntS16Immediate(SDValue Op, short &Imm) {
 | |
|   return isIntS16Immediate(Op.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
 | |
| /// operand. If so Imm will receive the 32-bit value.
 | |
| static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
 | |
|   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
 | |
|     Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
 | |
| /// operand.  If so Imm will receive the 64-bit value.
 | |
| static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
 | |
|   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
 | |
|     Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isInt32Immediate - This method tests to see if a constant operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isInt32Immediate(SDValue N, unsigned &Imm) {
 | |
|   return isInt32Immediate(N.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| 
 | |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific
 | |
| // opcode and that it has a immediate integer right operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | |
|   return N->getOpcode() == Opc
 | |
|          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
 | |
| }
 | |
| 
 | |
| bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
 | |
|   if (isShiftedMask_32(Val)) {
 | |
|     // look for the first non-zero bit
 | |
|     MB = CountLeadingZeros_32(Val);
 | |
|     // look for the first zero bit after the run of ones
 | |
|     ME = CountLeadingZeros_32((Val - 1) ^ Val);
 | |
|     return true;
 | |
|   } else {
 | |
|     Val = ~Val; // invert mask
 | |
|     if (isShiftedMask_32(Val)) {
 | |
|       // effectively look for the first zero bit
 | |
|       ME = CountLeadingZeros_32(Val) - 1;
 | |
|       // effectively look for the first one bit after the run of zeros
 | |
|       MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   // no run present
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 
 | |
|                                       bool IsShiftMask, unsigned &SH, 
 | |
|                                       unsigned &MB, unsigned &ME) {
 | |
|   // Don't even go down this path for i64, since different logic will be
 | |
|   // necessary for rldicl/rldicr/rldimi.
 | |
|   if (N->getValueType(0) != MVT::i32)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Shift  = 32;
 | |
|   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
 | |
|   unsigned Opcode = N->getOpcode();
 | |
|   if (N->getNumOperands() != 2 ||
 | |
|       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
 | |
|     return false;
 | |
|   
 | |
|   if (Opcode == ISD::SHL) {
 | |
|     // apply shift left to mask if it comes first
 | |
|     if (IsShiftMask) Mask = Mask << Shift;
 | |
|     // determine which bits are made indeterminant by shift
 | |
|     Indeterminant = ~(0xFFFFFFFFu << Shift);
 | |
|   } else if (Opcode == ISD::SRL) { 
 | |
|     // apply shift right to mask if it comes first
 | |
|     if (IsShiftMask) Mask = Mask >> Shift;
 | |
|     // determine which bits are made indeterminant by shift
 | |
|     Indeterminant = ~(0xFFFFFFFFu >> Shift);
 | |
|     // adjust for the left rotate
 | |
|     Shift = 32 - Shift;
 | |
|   } else if (Opcode == ISD::ROTL) {
 | |
|     Indeterminant = 0;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // if the mask doesn't intersect any Indeterminant bits
 | |
|   if (Mask && !(Mask & Indeterminant)) {
 | |
|     SH = Shift & 31;
 | |
|     // make sure the mask is still a mask (wrap arounds may not be)
 | |
|     return isRunOfOnes(Mask, MB, ME);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectBitfieldInsert - turn an or of two masked values into
 | |
| /// the rotate left word immediate then mask insert (rlwimi) instruction.
 | |
| SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   
 | |
|   APInt LKZ, LKO, RKZ, RKO;
 | |
|   CurDAG->ComputeMaskedBits(Op0, APInt::getAllOnesValue(32), LKZ, LKO);
 | |
|   CurDAG->ComputeMaskedBits(Op1, APInt::getAllOnesValue(32), RKZ, RKO);
 | |
|   
 | |
|   unsigned TargetMask = LKZ.getZExtValue();
 | |
|   unsigned InsertMask = RKZ.getZExtValue();
 | |
|   
 | |
|   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
 | |
|     unsigned Op0Opc = Op0.getOpcode();
 | |
|     unsigned Op1Opc = Op1.getOpcode();
 | |
|     unsigned Value, SH = 0;
 | |
|     TargetMask = ~TargetMask;
 | |
|     InsertMask = ~InsertMask;
 | |
| 
 | |
|     // If the LHS has a foldable shift and the RHS does not, then swap it to the
 | |
|     // RHS so that we can fold the shift into the insert.
 | |
|     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
 | |
|       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
 | |
|           Op0.getOperand(0).getOpcode() == ISD::SRL) {
 | |
|         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | |
|             Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | |
|           std::swap(Op0, Op1);
 | |
|           std::swap(Op0Opc, Op1Opc);
 | |
|           std::swap(TargetMask, InsertMask);
 | |
|         }
 | |
|       }
 | |
|     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
 | |
|       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | |
|           Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | |
|         std::swap(Op0, Op1);
 | |
|         std::swap(Op0Opc, Op1Opc);
 | |
|         std::swap(TargetMask, InsertMask);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     unsigned MB, ME;
 | |
|     if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
 | |
|       SDValue Tmp1, Tmp2, Tmp3;
 | |
|       bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;
 | |
| 
 | |
|       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
 | |
|           isInt32Immediate(Op1.getOperand(1), Value)) {
 | |
|         Op1 = Op1.getOperand(0);
 | |
|         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
 | |
|       }
 | |
|       if (Op1Opc == ISD::AND) {
 | |
|         unsigned SHOpc = Op1.getOperand(0).getOpcode();
 | |
|         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
 | |
|             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
 | |
|           Op1 = Op1.getOperand(0).getOperand(0);
 | |
|           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
 | |
|         } else {
 | |
|           Op1 = Op1.getOperand(0);
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
 | |
|       SH &= 31;
 | |
|       SDValue Ops[] = { Tmp3, Op1, getI32Imm(SH), getI32Imm(MB),
 | |
|                           getI32Imm(ME) };
 | |
|       return CurDAG->getTargetNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SelectCC - Select a comparison of the specified values with the specified
 | |
| /// condition code, returning the CR# of the expression.
 | |
| SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
 | |
|                                     ISD::CondCode CC, DebugLoc dl) {
 | |
|   // Always select the LHS.
 | |
|   unsigned Opc;
 | |
|   
 | |
|   if (LHS.getValueType() == MVT::i32) {
 | |
|     unsigned Imm;
 | |
|     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | |
|       if (isInt32Immediate(RHS, Imm)) {
 | |
|         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | |
|         if (isUInt16(Imm))
 | |
|           return SDValue(CurDAG->getTargetNode(PPC::CMPLWI, dl, MVT::i32, LHS,
 | |
|                                                  getI32Imm(Imm & 0xFFFF)), 0);
 | |
|         // If this is a 16-bit signed immediate, fold it.
 | |
|         if (isInt16((int)Imm))
 | |
|           return SDValue(CurDAG->getTargetNode(PPC::CMPWI, dl, MVT::i32, LHS,
 | |
|                                                  getI32Imm(Imm & 0xFFFF)), 0);
 | |
|         
 | |
|         // For non-equality comparisons, the default code would materialize the
 | |
|         // constant, then compare against it, like this:
 | |
|         //   lis r2, 4660
 | |
|         //   ori r2, r2, 22136 
 | |
|         //   cmpw cr0, r3, r2
 | |
|         // Since we are just comparing for equality, we can emit this instead:
 | |
|         //   xoris r0,r3,0x1234
 | |
|         //   cmplwi cr0,r0,0x5678
 | |
|         //   beq cr0,L6
 | |
|         SDValue Xor(CurDAG->getTargetNode(PPC::XORIS, dl, MVT::i32, LHS,
 | |
|                                             getI32Imm(Imm >> 16)), 0);
 | |
|         return SDValue(CurDAG->getTargetNode(PPC::CMPLWI, dl, MVT::i32, Xor,
 | |
|                                                getI32Imm(Imm & 0xFFFF)), 0);
 | |
|       }
 | |
|       Opc = PPC::CMPLW;
 | |
|     } else if (ISD::isUnsignedIntSetCC(CC)) {
 | |
|       if (isInt32Immediate(RHS, Imm) && isUInt16(Imm))
 | |
|         return SDValue(CurDAG->getTargetNode(PPC::CMPLWI, dl, MVT::i32, LHS,
 | |
|                                                getI32Imm(Imm & 0xFFFF)), 0);
 | |
|       Opc = PPC::CMPLW;
 | |
|     } else {
 | |
|       short SImm;
 | |
|       if (isIntS16Immediate(RHS, SImm))
 | |
|         return SDValue(CurDAG->getTargetNode(PPC::CMPWI, dl, MVT::i32, LHS,
 | |
|                                                getI32Imm((int)SImm & 0xFFFF)),
 | |
|                          0);
 | |
|       Opc = PPC::CMPW;
 | |
|     }
 | |
|   } else if (LHS.getValueType() == MVT::i64) {
 | |
|     uint64_t Imm;
 | |
|     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | |
|       if (isInt64Immediate(RHS.getNode(), Imm)) {
 | |
|         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | |
|         if (isUInt16(Imm))
 | |
|           return SDValue(CurDAG->getTargetNode(PPC::CMPLDI, dl, MVT::i64, LHS,
 | |
|                                                  getI32Imm(Imm & 0xFFFF)), 0);
 | |
|         // If this is a 16-bit signed immediate, fold it.
 | |
|         if (isInt16(Imm))
 | |
|           return SDValue(CurDAG->getTargetNode(PPC::CMPDI, dl, MVT::i64, LHS,
 | |
|                                                  getI32Imm(Imm & 0xFFFF)), 0);
 | |
|         
 | |
|         // For non-equality comparisons, the default code would materialize the
 | |
|         // constant, then compare against it, like this:
 | |
|         //   lis r2, 4660
 | |
|         //   ori r2, r2, 22136 
 | |
|         //   cmpd cr0, r3, r2
 | |
|         // Since we are just comparing for equality, we can emit this instead:
 | |
|         //   xoris r0,r3,0x1234
 | |
|         //   cmpldi cr0,r0,0x5678
 | |
|         //   beq cr0,L6
 | |
|         if (isUInt32(Imm)) {
 | |
|           SDValue Xor(CurDAG->getTargetNode(PPC::XORIS8, dl, MVT::i64, LHS,
 | |
|                                               getI64Imm(Imm >> 16)), 0);
 | |
|           return SDValue(CurDAG->getTargetNode(PPC::CMPLDI, dl, MVT::i64, Xor,
 | |
|                                                  getI64Imm(Imm & 0xFFFF)), 0);
 | |
|         }
 | |
|       }
 | |
|       Opc = PPC::CMPLD;
 | |
|     } else if (ISD::isUnsignedIntSetCC(CC)) {
 | |
|       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt16(Imm))
 | |
|         return SDValue(CurDAG->getTargetNode(PPC::CMPLDI, dl, MVT::i64, LHS,
 | |
|                                                getI64Imm(Imm & 0xFFFF)), 0);
 | |
|       Opc = PPC::CMPLD;
 | |
|     } else {
 | |
|       short SImm;
 | |
|       if (isIntS16Immediate(RHS, SImm))
 | |
|         return SDValue(CurDAG->getTargetNode(PPC::CMPDI, dl, MVT::i64, LHS,
 | |
|                                                getI64Imm(SImm & 0xFFFF)),
 | |
|                          0);
 | |
|       Opc = PPC::CMPD;
 | |
|     }
 | |
|   } else if (LHS.getValueType() == MVT::f32) {
 | |
|     Opc = PPC::FCMPUS;
 | |
|   } else {
 | |
|     assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
 | |
|     Opc = PPC::FCMPUD;
 | |
|   }
 | |
|   return SDValue(CurDAG->getTargetNode(Opc, dl, MVT::i32, LHS, RHS), 0);
 | |
| }
 | |
| 
 | |
| static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETONE:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETOGE:
 | |
|     assert(0 && "Should be lowered by legalize!");
 | |
|   default: assert(0 && "Unknown condition!"); abort();
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETEQ:  return PPC::PRED_EQ;
 | |
|   case ISD::SETUNE:
 | |
|   case ISD::SETNE:  return PPC::PRED_NE;
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETLT:  return PPC::PRED_LT;
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:  return PPC::PRED_LE;
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETGT:  return PPC::PRED_GT;
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:  return PPC::PRED_GE;
 | |
|   case ISD::SETO:   return PPC::PRED_NU;
 | |
|   case ISD::SETUO:  return PPC::PRED_UN;
 | |
|     // These two are invalid for floating point.  Assume we have int.
 | |
|   case ISD::SETULT: return PPC::PRED_LT;
 | |
|   case ISD::SETUGT: return PPC::PRED_GT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getCRIdxForSetCC - Return the index of the condition register field
 | |
| /// associated with the SetCC condition, and whether or not the field is
 | |
| /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
 | |
| ///
 | |
| /// If this returns with Other != -1, then the returned comparison is an or of
 | |
| /// two simpler comparisons.  In this case, Invert is guaranteed to be false.
 | |
| static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
 | |
|   Invert = false;
 | |
|   Other = -1;
 | |
|   switch (CC) {
 | |
|   default: assert(0 && "Unknown condition!"); abort();
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
 | |
|   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
 | |
|   case ISD::SETUNE:
 | |
|   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
 | |
|   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
 | |
|   case ISD::SETUEQ: 
 | |
|   case ISD::SETOGE: 
 | |
|   case ISD::SETOLE: 
 | |
|   case ISD::SETONE:
 | |
|     assert(0 && "Invalid branch code: should be expanded by legalize");
 | |
|   // These are invalid for floating point.  Assume integer.
 | |
|   case ISD::SETULT: return 0;
 | |
|   case ISD::SETUGT: return 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| SDNode *PPCDAGToDAGISel::SelectSETCC(SDValue Op) {
 | |
|   SDNode *N = Op.getNode();
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   unsigned Imm;
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | |
|   if (isInt32Immediate(N->getOperand(1), Imm)) {
 | |
|     // We can codegen setcc op, imm very efficiently compared to a brcond.
 | |
|     // Check for those cases here.
 | |
|     // setcc op, 0
 | |
|     if (Imm == 0) {
 | |
|       SDValue Op = N->getOperand(0);
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ: {
 | |
|         Op = SDValue(CurDAG->getTargetNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
 | |
|         SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|       }
 | |
|       case ISD::SETNE: {
 | |
|         SDValue AD =
 | |
|           SDValue(CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
 | |
|                                           Op, getI32Imm(~0U)), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 
 | |
|                                     AD.getValue(1));
 | |
|       }
 | |
|       case ISD::SETLT: {
 | |
|         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|       }
 | |
|       case ISD::SETGT: {
 | |
|         SDValue T =
 | |
|           SDValue(CurDAG->getTargetNode(PPC::NEG, dl, MVT::i32, Op), 0);
 | |
|         T = SDValue(CurDAG->getTargetNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
 | |
|         SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|       }
 | |
|       }
 | |
|     } else if (Imm == ~0U) {        // setcc op, -1
 | |
|       SDValue Op = N->getOperand(0);
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ:
 | |
|         Op = SDValue(CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
 | |
|                                              Op, getI32Imm(1)), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
 | |
|                               SDValue(CurDAG->getTargetNode(PPC::LI, dl, 
 | |
|                                                             MVT::i32,
 | |
|                                                             getI32Imm(0)), 0),
 | |
|                                       Op.getValue(1));
 | |
|       case ISD::SETNE: {
 | |
|         Op = SDValue(CurDAG->getTargetNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
 | |
|         SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
 | |
|                                            Op, getI32Imm(~0U));
 | |
|         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
 | |
|                                     Op, SDValue(AD, 1));
 | |
|       }
 | |
|       case ISD::SETLT: {
 | |
|         SDValue AD = SDValue(CurDAG->getTargetNode(PPC::ADDI, dl, MVT::i32, Op,
 | |
|                                                        getI32Imm(1)), 0);
 | |
|         SDValue AN = SDValue(CurDAG->getTargetNode(PPC::AND, dl, MVT::i32, AD,
 | |
|                                                        Op), 0);
 | |
|         SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|       }
 | |
|       case ISD::SETGT: {
 | |
|         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
 | |
|         Op = SDValue(CurDAG->getTargetNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 
 | |
|                      0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, 
 | |
|                                     getI32Imm(1));
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   bool Inv;
 | |
|   int OtherCondIdx;
 | |
|   unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
 | |
|   SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
 | |
|   SDValue IntCR;
 | |
|   
 | |
|   // Force the ccreg into CR7.
 | |
|   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
 | |
|   
 | |
|   SDValue InFlag(0, 0);  // Null incoming flag value.
 | |
|   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 
 | |
|                                InFlag).getValue(1);
 | |
|   
 | |
|   if (PPCSubTarget.isGigaProcessor() && OtherCondIdx == -1)
 | |
|     IntCR = SDValue(CurDAG->getTargetNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
 | |
|                                             CCReg), 0);
 | |
|   else
 | |
|     IntCR = SDValue(CurDAG->getTargetNode(PPC::MFCR, dl, MVT::i32, CCReg), 0);
 | |
|   
 | |
|   SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
 | |
|                       getI32Imm(31), getI32Imm(31) };
 | |
|   if (OtherCondIdx == -1 && !Inv)
 | |
|     return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
| 
 | |
|   // Get the specified bit.
 | |
|   SDValue Tmp =
 | |
|     SDValue(CurDAG->getTargetNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
 | |
|   if (Inv) {
 | |
|     assert(OtherCondIdx == -1 && "Can't have split plus negation");
 | |
|     return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
 | |
|   // We already got the bit for the first part of the comparison (e.g. SETULE).
 | |
| 
 | |
|   // Get the other bit of the comparison.
 | |
|   Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
 | |
|   SDValue OtherCond = 
 | |
|     SDValue(CurDAG->getTargetNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
 | |
| 
 | |
|   return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Select - Convert the specified operand from a target-independent to a
 | |
| // target-specific node if it hasn't already been changed.
 | |
| SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
 | |
|   SDNode *N = Op.getNode();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   if (N->isMachineOpcode())
 | |
|     return NULL;   // Already selected.
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   
 | |
|   case ISD::Constant: {
 | |
|     if (N->getValueType(0) == MVT::i64) {
 | |
|       // Get 64 bit value.
 | |
|       int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | |
|       // Assume no remaining bits.
 | |
|       unsigned Remainder = 0;
 | |
|       // Assume no shift required.
 | |
|       unsigned Shift = 0;
 | |
|       
 | |
|       // If it can't be represented as a 32 bit value.
 | |
|       if (!isInt32(Imm)) {
 | |
|         Shift = CountTrailingZeros_64(Imm);
 | |
|         int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
 | |
|         
 | |
|         // If the shifted value fits 32 bits.
 | |
|         if (isInt32(ImmSh)) {
 | |
|           // Go with the shifted value.
 | |
|           Imm = ImmSh;
 | |
|         } else {
 | |
|           // Still stuck with a 64 bit value.
 | |
|           Remainder = Imm;
 | |
|           Shift = 32;
 | |
|           Imm >>= 32;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Intermediate operand.
 | |
|       SDNode *Result;
 | |
| 
 | |
|       // Handle first 32 bits.
 | |
|       unsigned Lo = Imm & 0xFFFF;
 | |
|       unsigned Hi = (Imm >> 16) & 0xFFFF;
 | |
|       
 | |
|       // Simple value.
 | |
|       if (isInt16(Imm)) {
 | |
|        // Just the Lo bits.
 | |
|         Result = CurDAG->getTargetNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
 | |
|       } else if (Lo) {
 | |
|         // Handle the Hi bits.
 | |
|         unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
 | |
|         Result = CurDAG->getTargetNode(OpC, dl, MVT::i64, getI32Imm(Hi));
 | |
|         // And Lo bits.
 | |
|         Result = CurDAG->getTargetNode(PPC::ORI8, dl, MVT::i64,
 | |
|                                        SDValue(Result, 0), getI32Imm(Lo));
 | |
|       } else {
 | |
|        // Just the Hi bits.
 | |
|         Result = CurDAG->getTargetNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
 | |
|       }
 | |
|       
 | |
|       // If no shift, we're done.
 | |
|       if (!Shift) return Result;
 | |
| 
 | |
|       // Shift for next step if the upper 32-bits were not zero.
 | |
|       if (Imm) {
 | |
|         Result = CurDAG->getTargetNode(PPC::RLDICR, dl, MVT::i64,
 | |
|                                        SDValue(Result, 0),
 | |
|                                        getI32Imm(Shift), getI32Imm(63 - Shift));
 | |
|       }
 | |
| 
 | |
|       // Add in the last bits as required.
 | |
|       if ((Hi = (Remainder >> 16) & 0xFFFF)) {
 | |
|         Result = CurDAG->getTargetNode(PPC::ORIS8, dl, MVT::i64,
 | |
|                                        SDValue(Result, 0), getI32Imm(Hi));
 | |
|       } 
 | |
|       if ((Lo = Remainder & 0xFFFF)) {
 | |
|         Result = CurDAG->getTargetNode(PPC::ORI8, dl, MVT::i64,
 | |
|                                        SDValue(Result, 0), getI32Imm(Lo));
 | |
|       }
 | |
|       
 | |
|       return Result;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   case ISD::SETCC:
 | |
|     return SelectSETCC(Op);
 | |
|   case PPCISD::GlobalBaseReg:
 | |
|     return getGlobalBaseReg();
 | |
|     
 | |
|   case ISD::FrameIndex: {
 | |
|     int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|     SDValue TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
 | |
|     unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
 | |
|     if (N->hasOneUse())
 | |
|       return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
 | |
|                                   getSmallIPtrImm(0));
 | |
|     return CurDAG->getTargetNode(Opc, dl, Op.getValueType(), TFI,
 | |
|                                  getSmallIPtrImm(0));
 | |
|   }
 | |
| 
 | |
|   case PPCISD::MFCR: {
 | |
|     SDValue InFlag = N->getOperand(1);
 | |
|     // Use MFOCRF if supported.
 | |
|     if (PPCSubTarget.isGigaProcessor())
 | |
|       return CurDAG->getTargetNode(PPC::MFOCRF, dl, MVT::i32,
 | |
|                                    N->getOperand(0), InFlag);
 | |
|     else
 | |
|       return CurDAG->getTargetNode(PPC::MFCR, dl, MVT::i32, InFlag);
 | |
|   }
 | |
|     
 | |
|   case ISD::SDIV: {
 | |
|     // FIXME: since this depends on the setting of the carry flag from the srawi
 | |
|     //        we should really be making notes about that for the scheduler.
 | |
|     // FIXME: It sure would be nice if we could cheaply recognize the 
 | |
|     //        srl/add/sra pattern the dag combiner will generate for this as
 | |
|     //        sra/addze rather than having to handle sdiv ourselves.  oh well.
 | |
|     unsigned Imm;
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm)) {
 | |
|       SDValue N0 = N->getOperand(0);
 | |
|       if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
 | |
|         SDNode *Op =
 | |
|           CurDAG->getTargetNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag,
 | |
|                                 N0, getI32Imm(Log2_32(Imm)));
 | |
|         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
 | |
|                                     SDValue(Op, 0), SDValue(Op, 1));
 | |
|       } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
 | |
|         SDNode *Op =
 | |
|           CurDAG->getTargetNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag,
 | |
|                                 N0, getI32Imm(Log2_32(-Imm)));
 | |
|         SDValue PT =
 | |
|           SDValue(CurDAG->getTargetNode(PPC::ADDZE, dl, MVT::i32,
 | |
|                                           SDValue(Op, 0), SDValue(Op, 1)),
 | |
|                     0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|     
 | |
|   case ISD::LOAD: {
 | |
|     // Handle preincrement loads.
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|     MVT LoadedVT = LD->getMemoryVT();
 | |
|     
 | |
|     // Normal loads are handled by code generated from the .td file.
 | |
|     if (LD->getAddressingMode() != ISD::PRE_INC)
 | |
|       break;
 | |
|     
 | |
|     SDValue Offset = LD->getOffset();
 | |
|     if (isa<ConstantSDNode>(Offset) ||
 | |
|         Offset.getOpcode() == ISD::TargetGlobalAddress) {
 | |
|       
 | |
|       unsigned Opcode;
 | |
|       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|       if (LD->getValueType(0) != MVT::i64) {
 | |
|         // Handle PPC32 integer and normal FP loads.
 | |
|         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | |
|         switch (LoadedVT.getSimpleVT()) {
 | |
|           default: assert(0 && "Invalid PPC load type!");
 | |
|           case MVT::f64: Opcode = PPC::LFDU; break;
 | |
|           case MVT::f32: Opcode = PPC::LFSU; break;
 | |
|           case MVT::i32: Opcode = PPC::LWZU; break;
 | |
|           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
 | |
|           case MVT::i1:
 | |
|           case MVT::i8:  Opcode = PPC::LBZU; break;
 | |
|         }
 | |
|       } else {
 | |
|         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
 | |
|         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | |
|         switch (LoadedVT.getSimpleVT()) {
 | |
|           default: assert(0 && "Invalid PPC load type!");
 | |
|           case MVT::i64: Opcode = PPC::LDU; break;
 | |
|           case MVT::i32: Opcode = PPC::LWZU8; break;
 | |
|           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
 | |
|           case MVT::i1:
 | |
|           case MVT::i8:  Opcode = PPC::LBZU8; break;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       SDValue Chain = LD->getChain();
 | |
|       SDValue Base = LD->getBasePtr();
 | |
|       SDValue Ops[] = { Offset, Base, Chain };
 | |
|       // FIXME: PPC64
 | |
|       return CurDAG->getTargetNode(Opcode, dl, LD->getValueType(0),
 | |
|                                    PPCLowering.getPointerTy(),
 | |
|                                    MVT::Other, Ops, 3);
 | |
|     } else {
 | |
|       assert(0 && "R+R preindex loads not supported yet!");
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   case ISD::AND: {
 | |
|     unsigned Imm, Imm2, SH, MB, ME;
 | |
| 
 | |
|     // If this is an and of a value rotated between 0 and 31 bits and then and'd
 | |
|     // with a mask, emit rlwinm
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) &&
 | |
|         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
 | |
|       SDValue Val = N->getOperand(0).getOperand(0);
 | |
|       SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|     }
 | |
|     // If this is just a masked value where the input is not handled above, and
 | |
|     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) &&
 | |
|         isRunOfOnes(Imm, MB, ME) && 
 | |
|         N->getOperand(0).getOpcode() != ISD::ROTL) {
 | |
|       SDValue Val = N->getOperand(0);
 | |
|       SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|     }
 | |
|     // AND X, 0 -> 0, not "rlwinm 32".
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
 | |
|       ReplaceUses(SDValue(N, 0), N->getOperand(1));
 | |
|       return NULL;
 | |
|     }
 | |
|     // ISD::OR doesn't get all the bitfield insertion fun.
 | |
|     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) && 
 | |
|         N->getOperand(0).getOpcode() == ISD::OR &&
 | |
|         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
 | |
|       unsigned MB, ME;
 | |
|       Imm = ~(Imm^Imm2);
 | |
|       if (isRunOfOnes(Imm, MB, ME)) {
 | |
|         SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                             N->getOperand(0).getOperand(1),
 | |
|                             getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
 | |
|         return CurDAG->getTargetNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::OR:
 | |
|     if (N->getValueType(0) == MVT::i32)
 | |
|       if (SDNode *I = SelectBitfieldInsert(N))
 | |
|         return I;
 | |
|       
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   case ISD::SHL: {
 | |
|     unsigned Imm, SH, MB, ME;
 | |
|     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
 | |
|         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | |
|       SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|     }
 | |
|     
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SRL: {
 | |
|     unsigned Imm, SH, MB, ME;
 | |
|     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
 | |
|         isRotateAndMask(N, Imm, true, SH, MB, ME)) { 
 | |
|       SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
 | |
|     }
 | |
|     
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT_CC: {
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | |
|     
 | |
|     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
 | |
|     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
 | |
|       if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
 | |
|         if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
 | |
|           if (N1C->isNullValue() && N3C->isNullValue() &&
 | |
|               N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
 | |
|               // FIXME: Implement this optzn for PPC64.
 | |
|               N->getValueType(0) == MVT::i32) {
 | |
|             SDNode *Tmp =
 | |
|               CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
 | |
|                                     N->getOperand(0), getI32Imm(~0U));
 | |
|             return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
 | |
|                                         SDValue(Tmp, 0), N->getOperand(0),
 | |
|                                         SDValue(Tmp, 1));
 | |
|           }
 | |
| 
 | |
|     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
 | |
|     unsigned BROpc = getPredicateForSetCC(CC);
 | |
| 
 | |
|     unsigned SelectCCOp;
 | |
|     if (N->getValueType(0) == MVT::i32)
 | |
|       SelectCCOp = PPC::SELECT_CC_I4;
 | |
|     else if (N->getValueType(0) == MVT::i64)
 | |
|       SelectCCOp = PPC::SELECT_CC_I8;
 | |
|     else if (N->getValueType(0) == MVT::f32)
 | |
|       SelectCCOp = PPC::SELECT_CC_F4;
 | |
|     else if (N->getValueType(0) == MVT::f64)
 | |
|       SelectCCOp = PPC::SELECT_CC_F8;
 | |
|     else
 | |
|       SelectCCOp = PPC::SELECT_CC_VRRC;
 | |
| 
 | |
|     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
 | |
|                         getI32Imm(BROpc) };
 | |
|     return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
 | |
|   }
 | |
|   case PPCISD::COND_BRANCH: {
 | |
|     // Op #0 is the Chain.
 | |
|     // Op #1 is the PPC::PRED_* number.
 | |
|     // Op #2 is the CR#
 | |
|     // Op #3 is the Dest MBB
 | |
|     // Op #4 is the Flag.
 | |
|     // Prevent PPC::PRED_* from being selected into LI.
 | |
|     SDValue Pred =
 | |
|       getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
 | |
|     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
 | |
|       N->getOperand(0), N->getOperand(4) };
 | |
|     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
 | |
|   }
 | |
|   case ISD::BR_CC: {
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | |
|     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
 | |
|     SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode, 
 | |
|                         N->getOperand(4), N->getOperand(0) };
 | |
|     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
 | |
|   }
 | |
|   case ISD::BRIND: {
 | |
|     // FIXME: Should custom lower this.
 | |
|     SDValue Chain = N->getOperand(0);
 | |
|     SDValue Target = N->getOperand(1);
 | |
|     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
 | |
|     Chain = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Target,
 | |
|                                             Chain), 0);
 | |
|     return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
 | |
|   }
 | |
|   case ISD::DECLARE: {
 | |
|     SDValue Chain = N->getOperand(0);
 | |
|     SDValue N1 = N->getOperand(1);
 | |
|     SDValue N2 = N->getOperand(2);
 | |
|     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
 | |
|     
 | |
|     // FIXME: We need to handle this for VLAs.
 | |
|     if (!FINode) {
 | |
|       ReplaceUses(Op.getValue(0), Chain);
 | |
|       return NULL;
 | |
|     }
 | |
|     
 | |
|     if (N2.getOpcode() == ISD::ADD) {
 | |
|       if (N2.getOperand(0).getOpcode() == ISD::ADD &&
 | |
|           N2.getOperand(0).getOperand(0).getOpcode() == PPCISD::GlobalBaseReg &&
 | |
|           N2.getOperand(0).getOperand(1).getOpcode() == PPCISD::Hi &&
 | |
|           N2.getOperand(1).getOpcode() == PPCISD::Lo)
 | |
|         N2 = N2.getOperand(0).getOperand(1).getOperand(0);
 | |
|       else if (N2.getOperand(0).getOpcode() == ISD::ADD &&
 | |
|           N2.getOperand(0).getOperand(0).getOpcode() == PPCISD::GlobalBaseReg &&
 | |
|           N2.getOperand(0).getOperand(1).getOpcode() == PPCISD::Lo &&
 | |
|                N2.getOperand(1).getOpcode() == PPCISD::Hi)
 | |
|         N2 = N2.getOperand(0).getOperand(1).getOperand(0);
 | |
|       else if (N2.getOperand(0).getOpcode() == PPCISD::Hi &&
 | |
|                N2.getOperand(1).getOpcode() == PPCISD::Lo)
 | |
|         N2 = N2.getOperand(0).getOperand(0);
 | |
|     }
 | |
|     
 | |
|     // If we don't have a global address here, the debug info is mangled, just
 | |
|     // drop it.
 | |
|     if (!isa<GlobalAddressSDNode>(N2)) {
 | |
|       ReplaceUses(Op.getValue(0), Chain);
 | |
|       return NULL;
 | |
|     }
 | |
|     int FI = cast<FrameIndexSDNode>(N1)->getIndex();
 | |
|     GlobalValue *GV = cast<GlobalAddressSDNode>(N2)->getGlobal();
 | |
|     SDValue Tmp1 = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
 | |
|     SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());
 | |
|     return CurDAG->SelectNodeTo(N, TargetInstrInfo::DECLARE,
 | |
|                                 MVT::Other, Tmp1, Tmp2, Chain);
 | |
|   }
 | |
|   }
 | |
|   
 | |
|   return SelectCode(Op);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// createPPCISelDag - This pass converts a legalized DAG into a 
 | |
| /// PowerPC-specific DAG, ready for instruction scheduling.
 | |
| ///
 | |
| FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
 | |
|   return new PPCDAGToDAGISel(TM);
 | |
| }
 | |
| 
 |