722 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			722 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a flow-sensitive, path-insensitive analysis of
 | 
						|
// determining reachable blocks within a CFG.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Analysis/Analyses/ReachableCode.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/ParentMap.h"
 | 
						|
#include "clang/AST/StmtCXX.h"
 | 
						|
#include "clang/Analysis/AnalysisDeclContext.h"
 | 
						|
#include "clang/Analysis/CFG.h"
 | 
						|
#include "clang/Basic/Builtins.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Core Reachability Analysis routines.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool isEnumConstant(const Expr *Ex) {
 | 
						|
  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
 | 
						|
  if (!DR)
 | 
						|
    return false;
 | 
						|
  return isa<EnumConstantDecl>(DR->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
static bool isTrivialExpression(const Expr *Ex) {
 | 
						|
  Ex = Ex->IgnoreParenCasts();
 | 
						|
  return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
 | 
						|
         isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
 | 
						|
         isa<CharacterLiteral>(Ex) ||
 | 
						|
         isEnumConstant(Ex);
 | 
						|
}
 | 
						|
 | 
						|
static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
 | 
						|
  // Check if the block ends with a do...while() and see if 'S' is the
 | 
						|
  // condition.
 | 
						|
  if (const Stmt *Term = B->getTerminatorStmt()) {
 | 
						|
    if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
 | 
						|
      const Expr *Cond = DS->getCond()->IgnoreParenCasts();
 | 
						|
      return Cond == S && isTrivialExpression(Cond);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isBuiltinUnreachable(const Stmt *S) {
 | 
						|
  if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
 | 
						|
    if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
 | 
						|
      return FDecl->getIdentifier() &&
 | 
						|
             FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
 | 
						|
                                 ASTContext &C) {
 | 
						|
  if (B->empty())  {
 | 
						|
    // Happens if S is B's terminator and B contains nothing else
 | 
						|
    // (e.g. a CFGBlock containing only a goto).
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
 | 
						|
    if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
 | 
						|
      return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
 | 
						|
  // Look to see if the current control flow ends with a 'return', and see if
 | 
						|
  // 'S' is a substatement. The 'return' may not be the last element in the
 | 
						|
  // block, or may be in a subsequent block because of destructors.
 | 
						|
  const CFGBlock *Current = B;
 | 
						|
  while (true) {
 | 
						|
    for (CFGBlock::const_reverse_iterator I = Current->rbegin(),
 | 
						|
                                          E = Current->rend();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
 | 
						|
        if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
 | 
						|
          if (RS == S)
 | 
						|
            return true;
 | 
						|
          if (const Expr *RE = RS->getRetValue()) {
 | 
						|
            RE = RE->IgnoreParenCasts();
 | 
						|
            if (RE == S)
 | 
						|
              return true;
 | 
						|
            ParentMap PM(const_cast<Expr *>(RE));
 | 
						|
            // If 'S' is in the ParentMap, it is a subexpression of
 | 
						|
            // the return statement.
 | 
						|
            return PM.getParent(S);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Note also that we are restricting the search for the return statement
 | 
						|
    // to stop at control-flow; only part of a return statement may be dead,
 | 
						|
    // without the whole return statement being dead.
 | 
						|
    if (Current->getTerminator().isTemporaryDtorsBranch()) {
 | 
						|
      // Temporary destructors have a predictable control flow, thus we want to
 | 
						|
      // look into the next block for the return statement.
 | 
						|
      // We look into the false branch, as we know the true branch only contains
 | 
						|
      // the call to the destructor.
 | 
						|
      assert(Current->succ_size() == 2);
 | 
						|
      Current = *(Current->succ_begin() + 1);
 | 
						|
    } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
 | 
						|
      // If there is only one successor, we're not dealing with outgoing control
 | 
						|
      // flow. Thus, look into the next block.
 | 
						|
      Current = *Current->succ_begin();
 | 
						|
      if (Current->pred_size() > 1) {
 | 
						|
        // If there is more than one predecessor, we're dealing with incoming
 | 
						|
        // control flow - if the return statement is in that block, it might
 | 
						|
        // well be reachable via a different control flow, thus it's not dead.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // We hit control flow or a dead end. Stop searching.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Broke out of infinite loop.");
 | 
						|
}
 | 
						|
 | 
						|
static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
 | 
						|
  assert(Loc.isMacroID());
 | 
						|
  SourceLocation Last;
 | 
						|
  while (Loc.isMacroID()) {
 | 
						|
    Last = Loc;
 | 
						|
    Loc = SM.getImmediateMacroCallerLoc(Loc);
 | 
						|
  }
 | 
						|
  return Last;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the statement is expanded from a configuration macro.
 | 
						|
static bool isExpandedFromConfigurationMacro(const Stmt *S,
 | 
						|
                                             Preprocessor &PP,
 | 
						|
                                             bool IgnoreYES_NO = false) {
 | 
						|
  // FIXME: This is not very precise.  Here we just check to see if the
 | 
						|
  // value comes from a macro, but we can do much better.  This is likely
 | 
						|
  // to be over conservative.  This logic is factored into a separate function
 | 
						|
  // so that we can refine it later.
 | 
						|
  SourceLocation L = S->getBeginLoc();
 | 
						|
  if (L.isMacroID()) {
 | 
						|
    SourceManager &SM = PP.getSourceManager();
 | 
						|
    if (IgnoreYES_NO) {
 | 
						|
      // The Objective-C constant 'YES' and 'NO'
 | 
						|
      // are defined as macros.  Do not treat them
 | 
						|
      // as configuration values.
 | 
						|
      SourceLocation TopL = getTopMostMacro(L, SM);
 | 
						|
      StringRef MacroName = PP.getImmediateMacroName(TopL);
 | 
						|
      if (MacroName == "YES" || MacroName == "NO")
 | 
						|
        return false;
 | 
						|
    } else if (!PP.getLangOpts().CPlusPlus) {
 | 
						|
      // Do not treat C 'false' and 'true' macros as configuration values.
 | 
						|
      SourceLocation TopL = getTopMostMacro(L, SM);
 | 
						|
      StringRef MacroName = PP.getImmediateMacroName(TopL);
 | 
						|
      if (MacroName == "false" || MacroName == "true")
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
 | 
						|
 | 
						|
/// Returns true if the statement represents a configuration value.
 | 
						|
///
 | 
						|
/// A configuration value is something usually determined at compile-time
 | 
						|
/// to conditionally always execute some branch.  Such guards are for
 | 
						|
/// "sometimes unreachable" code.  Such code is usually not interesting
 | 
						|
/// to report as unreachable, and may mask truly unreachable code within
 | 
						|
/// those blocks.
 | 
						|
static bool isConfigurationValue(const Stmt *S,
 | 
						|
                                 Preprocessor &PP,
 | 
						|
                                 SourceRange *SilenceableCondVal = nullptr,
 | 
						|
                                 bool IncludeIntegers = true,
 | 
						|
                                 bool WrappedInParens = false) {
 | 
						|
  if (!S)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const auto *Ex = dyn_cast<Expr>(S))
 | 
						|
    S = Ex->IgnoreImplicit();
 | 
						|
 | 
						|
  if (const auto *Ex = dyn_cast<Expr>(S))
 | 
						|
    S = Ex->IgnoreCasts();
 | 
						|
 | 
						|
  // Special case looking for the sigil '()' around an integer literal.
 | 
						|
  if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
 | 
						|
    if (!PE->getBeginLoc().isMacroID())
 | 
						|
      return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
 | 
						|
                                  IncludeIntegers, true);
 | 
						|
 | 
						|
  if (const Expr *Ex = dyn_cast<Expr>(S))
 | 
						|
    S = Ex->IgnoreCasts();
 | 
						|
 | 
						|
  bool IgnoreYES_NO = false;
 | 
						|
 | 
						|
  switch (S->getStmtClass()) {
 | 
						|
    case Stmt::CallExprClass: {
 | 
						|
      const FunctionDecl *Callee =
 | 
						|
        dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
 | 
						|
      return Callee ? Callee->isConstexpr() : false;
 | 
						|
    }
 | 
						|
    case Stmt::DeclRefExprClass:
 | 
						|
      return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
 | 
						|
    case Stmt::ObjCBoolLiteralExprClass:
 | 
						|
      IgnoreYES_NO = true;
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case Stmt::CXXBoolLiteralExprClass:
 | 
						|
    case Stmt::IntegerLiteralClass: {
 | 
						|
      const Expr *E = cast<Expr>(S);
 | 
						|
      if (IncludeIntegers) {
 | 
						|
        if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
 | 
						|
          *SilenceableCondVal = E->getSourceRange();
 | 
						|
        return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    case Stmt::MemberExprClass:
 | 
						|
      return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
 | 
						|
    case Stmt::UnaryExprOrTypeTraitExprClass:
 | 
						|
      return true;
 | 
						|
    case Stmt::BinaryOperatorClass: {
 | 
						|
      const BinaryOperator *B = cast<BinaryOperator>(S);
 | 
						|
      // Only include raw integers (not enums) as configuration
 | 
						|
      // values if they are used in a logical or comparison operator
 | 
						|
      // (not arithmetic).
 | 
						|
      IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
 | 
						|
      return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
 | 
						|
                                  IncludeIntegers) ||
 | 
						|
             isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
 | 
						|
                                  IncludeIntegers);
 | 
						|
    }
 | 
						|
    case Stmt::UnaryOperatorClass: {
 | 
						|
      const UnaryOperator *UO = cast<UnaryOperator>(S);
 | 
						|
      if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
 | 
						|
        return false;
 | 
						|
      bool SilenceableCondValNotSet =
 | 
						|
          SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
 | 
						|
      bool IsSubExprConfigValue =
 | 
						|
          isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
 | 
						|
                               IncludeIntegers, WrappedInParens);
 | 
						|
      // Update the silenceable condition value source range only if the range
 | 
						|
      // was set directly by the child expression.
 | 
						|
      if (SilenceableCondValNotSet &&
 | 
						|
          SilenceableCondVal->getBegin().isValid() &&
 | 
						|
          *SilenceableCondVal ==
 | 
						|
              UO->getSubExpr()->IgnoreCasts()->getSourceRange())
 | 
						|
        *SilenceableCondVal = UO->getSourceRange();
 | 
						|
      return IsSubExprConfigValue;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
 | 
						|
  if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
 | 
						|
    return isConfigurationValue(ED->getInitExpr(), PP);
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    // As a heuristic, treat globals as configuration values.  Note
 | 
						|
    // that we only will get here if Sema evaluated this
 | 
						|
    // condition to a constant expression, which means the global
 | 
						|
    // had to be declared in a way to be a truly constant value.
 | 
						|
    // We could generalize this to local variables, but it isn't
 | 
						|
    // clear if those truly represent configuration values that
 | 
						|
    // gate unreachable code.
 | 
						|
    if (!VD->hasLocalStorage())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // As a heuristic, locals that have been marked 'const' explicitly
 | 
						|
    // can be treated as configuration values as well.
 | 
						|
    return VD->getType().isLocalConstQualified();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if we should always explore all successors of a block.
 | 
						|
static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
 | 
						|
                                             Preprocessor &PP) {
 | 
						|
  if (const Stmt *Term = B->getTerminatorStmt()) {
 | 
						|
    if (isa<SwitchStmt>(Term))
 | 
						|
      return true;
 | 
						|
    // Specially handle '||' and '&&'.
 | 
						|
    if (isa<BinaryOperator>(Term)) {
 | 
						|
      return isConfigurationValue(Term, PP);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
 | 
						|
  return isConfigurationValue(Cond, PP);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned scanFromBlock(const CFGBlock *Start,
 | 
						|
                              llvm::BitVector &Reachable,
 | 
						|
                              Preprocessor *PP,
 | 
						|
                              bool IncludeSometimesUnreachableEdges) {
 | 
						|
  unsigned count = 0;
 | 
						|
 | 
						|
  // Prep work queue
 | 
						|
  SmallVector<const CFGBlock*, 32> WL;
 | 
						|
 | 
						|
  // The entry block may have already been marked reachable
 | 
						|
  // by the caller.
 | 
						|
  if (!Reachable[Start->getBlockID()]) {
 | 
						|
    ++count;
 | 
						|
    Reachable[Start->getBlockID()] = true;
 | 
						|
  }
 | 
						|
 | 
						|
  WL.push_back(Start);
 | 
						|
 | 
						|
  // Find the reachable blocks from 'Start'.
 | 
						|
  while (!WL.empty()) {
 | 
						|
    const CFGBlock *item = WL.pop_back_val();
 | 
						|
 | 
						|
    // There are cases where we want to treat all successors as reachable.
 | 
						|
    // The idea is that some "sometimes unreachable" code is not interesting,
 | 
						|
    // and that we should forge ahead and explore those branches anyway.
 | 
						|
    // This allows us to potentially uncover some "always unreachable" code
 | 
						|
    // within the "sometimes unreachable" code.
 | 
						|
    // Look at the successors and mark then reachable.
 | 
						|
    Optional<bool> TreatAllSuccessorsAsReachable;
 | 
						|
    if (!IncludeSometimesUnreachableEdges)
 | 
						|
      TreatAllSuccessorsAsReachable = false;
 | 
						|
 | 
						|
    for (CFGBlock::const_succ_iterator I = item->succ_begin(),
 | 
						|
         E = item->succ_end(); I != E; ++I) {
 | 
						|
      const CFGBlock *B = *I;
 | 
						|
      if (!B) do {
 | 
						|
        const CFGBlock *UB = I->getPossiblyUnreachableBlock();
 | 
						|
        if (!UB)
 | 
						|
          break;
 | 
						|
 | 
						|
        if (!TreatAllSuccessorsAsReachable.hasValue()) {
 | 
						|
          assert(PP);
 | 
						|
          TreatAllSuccessorsAsReachable =
 | 
						|
            shouldTreatSuccessorsAsReachable(item, *PP);
 | 
						|
        }
 | 
						|
 | 
						|
        if (TreatAllSuccessorsAsReachable.getValue()) {
 | 
						|
          B = UB;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      while (false);
 | 
						|
 | 
						|
      if (B) {
 | 
						|
        unsigned blockID = B->getBlockID();
 | 
						|
        if (!Reachable[blockID]) {
 | 
						|
          Reachable.set(blockID);
 | 
						|
          WL.push_back(B);
 | 
						|
          ++count;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
 | 
						|
                                            Preprocessor &PP,
 | 
						|
                                            llvm::BitVector &Reachable) {
 | 
						|
  return scanFromBlock(Start, Reachable, &PP, true);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Dead Code Scanner.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  class DeadCodeScan {
 | 
						|
    llvm::BitVector Visited;
 | 
						|
    llvm::BitVector &Reachable;
 | 
						|
    SmallVector<const CFGBlock *, 10> WorkList;
 | 
						|
    Preprocessor &PP;
 | 
						|
    ASTContext &C;
 | 
						|
 | 
						|
    typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
 | 
						|
    DeferredLocsTy;
 | 
						|
 | 
						|
    DeferredLocsTy DeferredLocs;
 | 
						|
 | 
						|
  public:
 | 
						|
    DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
 | 
						|
    : Visited(reachable.size()),
 | 
						|
      Reachable(reachable),
 | 
						|
      PP(PP), C(C) {}
 | 
						|
 | 
						|
    void enqueue(const CFGBlock *block);
 | 
						|
    unsigned scanBackwards(const CFGBlock *Start,
 | 
						|
    clang::reachable_code::Callback &CB);
 | 
						|
 | 
						|
    bool isDeadCodeRoot(const CFGBlock *Block);
 | 
						|
 | 
						|
    const Stmt *findDeadCode(const CFGBlock *Block);
 | 
						|
 | 
						|
    void reportDeadCode(const CFGBlock *B,
 | 
						|
                        const Stmt *S,
 | 
						|
                        clang::reachable_code::Callback &CB);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void DeadCodeScan::enqueue(const CFGBlock *block) {
 | 
						|
  unsigned blockID = block->getBlockID();
 | 
						|
  if (Reachable[blockID] || Visited[blockID])
 | 
						|
    return;
 | 
						|
  Visited[blockID] = true;
 | 
						|
  WorkList.push_back(block);
 | 
						|
}
 | 
						|
 | 
						|
bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
 | 
						|
  bool isDeadRoot = true;
 | 
						|
 | 
						|
  for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
 | 
						|
       E = Block->pred_end(); I != E; ++I) {
 | 
						|
    if (const CFGBlock *PredBlock = *I) {
 | 
						|
      unsigned blockID = PredBlock->getBlockID();
 | 
						|
      if (Visited[blockID]) {
 | 
						|
        isDeadRoot = false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!Reachable[blockID]) {
 | 
						|
        isDeadRoot = false;
 | 
						|
        Visited[blockID] = true;
 | 
						|
        WorkList.push_back(PredBlock);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return isDeadRoot;
 | 
						|
}
 | 
						|
 | 
						|
static bool isValidDeadStmt(const Stmt *S) {
 | 
						|
  if (S->getBeginLoc().isInvalid())
 | 
						|
    return false;
 | 
						|
  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
 | 
						|
    return BO->getOpcode() != BO_Comma;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
 | 
						|
  for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
 | 
						|
    if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
 | 
						|
      const Stmt *S = CS->getStmt();
 | 
						|
      if (isValidDeadStmt(S))
 | 
						|
        return S;
 | 
						|
    }
 | 
						|
 | 
						|
  CFGTerminator T = Block->getTerminator();
 | 
						|
  if (T.isStmtBranch()) {
 | 
						|
    const Stmt *S = T.getStmt();
 | 
						|
    if (S && isValidDeadStmt(S))
 | 
						|
      return S;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
 | 
						|
                  const std::pair<const CFGBlock *, const Stmt *> *p2) {
 | 
						|
  if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
 | 
						|
    return -1;
 | 
						|
  if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
 | 
						|
    return 1;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
 | 
						|
                                     clang::reachable_code::Callback &CB) {
 | 
						|
 | 
						|
  unsigned count = 0;
 | 
						|
  enqueue(Start);
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    const CFGBlock *Block = WorkList.pop_back_val();
 | 
						|
 | 
						|
    // It is possible that this block has been marked reachable after
 | 
						|
    // it was enqueued.
 | 
						|
    if (Reachable[Block->getBlockID()])
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Look for any dead code within the block.
 | 
						|
    const Stmt *S = findDeadCode(Block);
 | 
						|
 | 
						|
    if (!S) {
 | 
						|
      // No dead code.  Possibly an empty block.  Look at dead predecessors.
 | 
						|
      for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
 | 
						|
           E = Block->pred_end(); I != E; ++I) {
 | 
						|
        if (const CFGBlock *predBlock = *I)
 | 
						|
          enqueue(predBlock);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Specially handle macro-expanded code.
 | 
						|
    if (S->getBeginLoc().isMacroID()) {
 | 
						|
      count += scanMaybeReachableFromBlock(Block, PP, Reachable);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isDeadCodeRoot(Block)) {
 | 
						|
      reportDeadCode(Block, S, CB);
 | 
						|
      count += scanMaybeReachableFromBlock(Block, PP, Reachable);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // Record this statement as the possibly best location in a
 | 
						|
      // strongly-connected component of dead code for emitting a
 | 
						|
      // warning.
 | 
						|
      DeferredLocs.push_back(std::make_pair(Block, S));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't find a dead root, then report the dead code with the
 | 
						|
  // earliest location.
 | 
						|
  if (!DeferredLocs.empty()) {
 | 
						|
    llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
 | 
						|
    for (DeferredLocsTy::iterator I = DeferredLocs.begin(),
 | 
						|
         E = DeferredLocs.end(); I != E; ++I) {
 | 
						|
      const CFGBlock *Block = I->first;
 | 
						|
      if (Reachable[Block->getBlockID()])
 | 
						|
        continue;
 | 
						|
      reportDeadCode(Block, I->second, CB);
 | 
						|
      count += scanMaybeReachableFromBlock(Block, PP, Reachable);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
static SourceLocation GetUnreachableLoc(const Stmt *S,
 | 
						|
                                        SourceRange &R1,
 | 
						|
                                        SourceRange &R2) {
 | 
						|
  R1 = R2 = SourceRange();
 | 
						|
 | 
						|
  if (const Expr *Ex = dyn_cast<Expr>(S))
 | 
						|
    S = Ex->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  switch (S->getStmtClass()) {
 | 
						|
    case Expr::BinaryOperatorClass: {
 | 
						|
      const BinaryOperator *BO = cast<BinaryOperator>(S);
 | 
						|
      return BO->getOperatorLoc();
 | 
						|
    }
 | 
						|
    case Expr::UnaryOperatorClass: {
 | 
						|
      const UnaryOperator *UO = cast<UnaryOperator>(S);
 | 
						|
      R1 = UO->getSubExpr()->getSourceRange();
 | 
						|
      return UO->getOperatorLoc();
 | 
						|
    }
 | 
						|
    case Expr::CompoundAssignOperatorClass: {
 | 
						|
      const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
 | 
						|
      R1 = CAO->getLHS()->getSourceRange();
 | 
						|
      R2 = CAO->getRHS()->getSourceRange();
 | 
						|
      return CAO->getOperatorLoc();
 | 
						|
    }
 | 
						|
    case Expr::BinaryConditionalOperatorClass:
 | 
						|
    case Expr::ConditionalOperatorClass: {
 | 
						|
      const AbstractConditionalOperator *CO =
 | 
						|
      cast<AbstractConditionalOperator>(S);
 | 
						|
      return CO->getQuestionLoc();
 | 
						|
    }
 | 
						|
    case Expr::MemberExprClass: {
 | 
						|
      const MemberExpr *ME = cast<MemberExpr>(S);
 | 
						|
      R1 = ME->getSourceRange();
 | 
						|
      return ME->getMemberLoc();
 | 
						|
    }
 | 
						|
    case Expr::ArraySubscriptExprClass: {
 | 
						|
      const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
 | 
						|
      R1 = ASE->getLHS()->getSourceRange();
 | 
						|
      R2 = ASE->getRHS()->getSourceRange();
 | 
						|
      return ASE->getRBracketLoc();
 | 
						|
    }
 | 
						|
    case Expr::CStyleCastExprClass: {
 | 
						|
      const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
 | 
						|
      R1 = CSC->getSubExpr()->getSourceRange();
 | 
						|
      return CSC->getLParenLoc();
 | 
						|
    }
 | 
						|
    case Expr::CXXFunctionalCastExprClass: {
 | 
						|
      const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
 | 
						|
      R1 = CE->getSubExpr()->getSourceRange();
 | 
						|
      return CE->getBeginLoc();
 | 
						|
    }
 | 
						|
    case Stmt::CXXTryStmtClass: {
 | 
						|
      return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
 | 
						|
    }
 | 
						|
    case Expr::ObjCBridgedCastExprClass: {
 | 
						|
      const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
 | 
						|
      R1 = CSC->getSubExpr()->getSourceRange();
 | 
						|
      return CSC->getLParenLoc();
 | 
						|
    }
 | 
						|
    default: ;
 | 
						|
  }
 | 
						|
  R1 = S->getSourceRange();
 | 
						|
  return S->getBeginLoc();
 | 
						|
}
 | 
						|
 | 
						|
void DeadCodeScan::reportDeadCode(const CFGBlock *B,
 | 
						|
                                  const Stmt *S,
 | 
						|
                                  clang::reachable_code::Callback &CB) {
 | 
						|
  // Classify the unreachable code found, or suppress it in some cases.
 | 
						|
  reachable_code::UnreachableKind UK = reachable_code::UK_Other;
 | 
						|
 | 
						|
  if (isa<BreakStmt>(S)) {
 | 
						|
    UK = reachable_code::UK_Break;
 | 
						|
  } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
 | 
						|
             isBuiltinAssumeFalse(B, S, C)) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  else if (isDeadReturn(B, S)) {
 | 
						|
    UK = reachable_code::UK_Return;
 | 
						|
  }
 | 
						|
 | 
						|
  SourceRange SilenceableCondVal;
 | 
						|
 | 
						|
  if (UK == reachable_code::UK_Other) {
 | 
						|
    // Check if the dead code is part of the "loop target" of
 | 
						|
    // a for/for-range loop.  This is the block that contains
 | 
						|
    // the increment code.
 | 
						|
    if (const Stmt *LoopTarget = B->getLoopTarget()) {
 | 
						|
      SourceLocation Loc = LoopTarget->getBeginLoc();
 | 
						|
      SourceRange R1(Loc, Loc), R2;
 | 
						|
 | 
						|
      if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
 | 
						|
        const Expr *Inc = FS->getInc();
 | 
						|
        Loc = Inc->getBeginLoc();
 | 
						|
        R2 = Inc->getSourceRange();
 | 
						|
      }
 | 
						|
 | 
						|
      CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
 | 
						|
                           Loc, SourceRange(), SourceRange(Loc, Loc), R2);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if the dead block has a predecessor whose branch has
 | 
						|
    // a configuration value that *could* be modified to
 | 
						|
    // silence the warning.
 | 
						|
    CFGBlock::const_pred_iterator PI = B->pred_begin();
 | 
						|
    if (PI != B->pred_end()) {
 | 
						|
      if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
 | 
						|
        const Stmt *TermCond =
 | 
						|
            PredBlock->getTerminatorCondition(/* strip parens */ false);
 | 
						|
        isConfigurationValue(TermCond, PP, &SilenceableCondVal);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SourceRange R1, R2;
 | 
						|
  SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
 | 
						|
  CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Reachability APIs.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace clang { namespace reachable_code {
 | 
						|
 | 
						|
void Callback::anchor() { }
 | 
						|
 | 
						|
unsigned ScanReachableFromBlock(const CFGBlock *Start,
 | 
						|
                                llvm::BitVector &Reachable) {
 | 
						|
  return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
 | 
						|
}
 | 
						|
 | 
						|
void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
 | 
						|
                         Callback &CB) {
 | 
						|
 | 
						|
  CFG *cfg = AC.getCFG();
 | 
						|
  if (!cfg)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Scan for reachable blocks from the entrance of the CFG.
 | 
						|
  // If there are no unreachable blocks, we're done.
 | 
						|
  llvm::BitVector reachable(cfg->getNumBlockIDs());
 | 
						|
  unsigned numReachable =
 | 
						|
    scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
 | 
						|
  if (numReachable == cfg->getNumBlockIDs())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If there aren't explicit EH edges, we should include the 'try' dispatch
 | 
						|
  // blocks as roots.
 | 
						|
  if (!AC.getCFGBuildOptions().AddEHEdges) {
 | 
						|
    for (CFG::try_block_iterator I = cfg->try_blocks_begin(),
 | 
						|
         E = cfg->try_blocks_end() ; I != E; ++I) {
 | 
						|
      numReachable += scanMaybeReachableFromBlock(*I, PP, reachable);
 | 
						|
    }
 | 
						|
    if (numReachable == cfg->getNumBlockIDs())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // There are some unreachable blocks.  We need to find the root blocks that
 | 
						|
  // contain code that should be considered unreachable.
 | 
						|
  for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
 | 
						|
    const CFGBlock *block = *I;
 | 
						|
    // A block may have been marked reachable during this loop.
 | 
						|
    if (reachable[block->getBlockID()])
 | 
						|
      continue;
 | 
						|
 | 
						|
    DeadCodeScan DS(reachable, PP, AC.getASTContext());
 | 
						|
    numReachable += DS.scanBackwards(block, CB);
 | 
						|
 | 
						|
    if (numReachable == cfg->getNumBlockIDs())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
}} // end namespace clang::reachable_code
 |