2546 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2546 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines a meta-engine for path-sensitive dataflow analysis that
 | 
						|
//  is built on GREngine, but provides the boilerplate to execute transfer
 | 
						|
//  functions and build the ExplodedGraph at the expression level.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
 | 
						|
#include "clang/Analysis/PathSensitive/BugReporter.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "llvm/Support/Streams.h"
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
#include "llvm/Support/GraphWriter.h"
 | 
						|
#include <sstream>
 | 
						|
#endif
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using llvm::dyn_cast;
 | 
						|
using llvm::cast;
 | 
						|
using llvm::APSInt;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Engine construction and deletion.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
GRExprEngine::GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx)
 | 
						|
  : CoreEngine(cfg, CD, Ctx, *this), 
 | 
						|
    G(CoreEngine.getGraph()),
 | 
						|
    Liveness(G.getCFG()),
 | 
						|
    Builder(NULL),
 | 
						|
    StateMgr(G.getContext(), G.getAllocator()),
 | 
						|
    BasicVals(StateMgr.getBasicValueFactory()),
 | 
						|
    TF(NULL), // FIXME
 | 
						|
    SymMgr(StateMgr.getSymbolManager()),
 | 
						|
    CurrentStmt(NULL) {
 | 
						|
  
 | 
						|
  // Compute liveness information.
 | 
						|
  Liveness.runOnCFG(G.getCFG());
 | 
						|
  Liveness.runOnAllBlocks(G.getCFG(), NULL, true);
 | 
						|
}
 | 
						|
 | 
						|
GRExprEngine::~GRExprEngine() {
 | 
						|
  for (BugTypeSet::iterator I = BugTypes.begin(), E = BugTypes.end(); I!=E; ++I)
 | 
						|
    delete *I;
 | 
						|
    
 | 
						|
  for (SimpleChecksTy::iterator I = CallChecks.begin(), E = CallChecks.end();
 | 
						|
       I != E; ++I)
 | 
						|
    delete *I;
 | 
						|
  
 | 
						|
  for (SimpleChecksTy::iterator I=MsgExprChecks.begin(), E=MsgExprChecks.end();
 | 
						|
       I != E; ++I)
 | 
						|
    delete *I;  
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Utility methods.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// SaveAndRestore - A utility class that uses RIIA to save and restore
 | 
						|
//  the value of a variable.
 | 
						|
template<typename T>
 | 
						|
struct VISIBILITY_HIDDEN SaveAndRestore {
 | 
						|
  SaveAndRestore(T& x) : X(x), old_value(x) {}
 | 
						|
  ~SaveAndRestore() { X = old_value; }
 | 
						|
  T get() { return old_value; }
 | 
						|
  
 | 
						|
  T& X;
 | 
						|
  T old_value;
 | 
						|
};
 | 
						|
 | 
						|
// SaveOr - Similar to SaveAndRestore.  Operates only on bools; the old
 | 
						|
//  value of a variable is saved, and during the dstor the old value is
 | 
						|
//  or'ed with the new value.
 | 
						|
struct VISIBILITY_HIDDEN SaveOr {
 | 
						|
  SaveOr(bool& x) : X(x), old_value(x) { x = false; }
 | 
						|
  ~SaveOr() { X |= old_value; }
 | 
						|
  
 | 
						|
  bool& X;
 | 
						|
  bool old_value;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
void GRExprEngine::EmitWarnings(Diagnostic& Diag, PathDiagnosticClient* PD) {
 | 
						|
  for (bug_type_iterator I = bug_types_begin(), E = bug_types_end(); I!=E; ++I){
 | 
						|
    BugReporter BR(Diag, PD, getContext(), *this);
 | 
						|
    (*I)->EmitWarnings(BR);
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (SimpleChecksTy::iterator I = CallChecks.begin(), E = CallChecks.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    BugReporter BR(Diag, PD, getContext(), *this);
 | 
						|
    (*I)->EmitWarnings(BR);
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (SimpleChecksTy::iterator I=MsgExprChecks.begin(), E=MsgExprChecks.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    BugReporter BR(Diag, PD, getContext(), *this);
 | 
						|
    (*I)->EmitWarnings(BR);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::setTransferFunctions(GRTransferFuncs* tf) {
 | 
						|
  TF = tf;
 | 
						|
  TF->RegisterChecks(*this);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::AddCallCheck(GRSimpleAPICheck* A) {
 | 
						|
  CallChecks.push_back(A);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::AddObjCMessageExprCheck(GRSimpleAPICheck* A) {
 | 
						|
  MsgExprChecks.push_back(A);
 | 
						|
}
 | 
						|
 | 
						|
ValueState* GRExprEngine::getInitialState() {
 | 
						|
 | 
						|
  // The LiveVariables information already has a compilation of all VarDecls
 | 
						|
  // used in the function.  Iterate through this set, and "symbolicate"
 | 
						|
  // any VarDecl whose value originally comes from outside the function.
 | 
						|
  
 | 
						|
  typedef LiveVariables::AnalysisDataTy LVDataTy;
 | 
						|
  LVDataTy& D = Liveness.getAnalysisData();
 | 
						|
  
 | 
						|
  ValueState StateImpl = *StateMgr.getInitialState();
 | 
						|
  
 | 
						|
  for (LVDataTy::decl_iterator I=D.begin_decl(), E=D.end_decl(); I != E; ++I) {
 | 
						|
    
 | 
						|
    VarDecl* VD = cast<VarDecl>(const_cast<ScopedDecl*>(I->first));
 | 
						|
    
 | 
						|
    if (VD->hasGlobalStorage() || isa<ParmVarDecl>(VD)) {
 | 
						|
      RVal X = RVal::GetSymbolValue(SymMgr, VD);
 | 
						|
      StateMgr.BindVar(StateImpl, VD, X);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return StateMgr.getPersistentState(StateImpl);
 | 
						|
}      
 | 
						|
      
 | 
						|
ValueState* GRExprEngine::SetRVal(ValueState* St, Expr* Ex, RVal V) {
 | 
						|
 | 
						|
  bool isBlkExpr = false;
 | 
						|
    
 | 
						|
  if (Ex == CurrentStmt) {
 | 
						|
    isBlkExpr = getCFG().isBlkExpr(Ex);
 | 
						|
    
 | 
						|
    if (!isBlkExpr)
 | 
						|
      return St;
 | 
						|
  }
 | 
						|
 | 
						|
  return StateMgr.SetRVal(St, Ex, V, isBlkExpr, true);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Top-level transfer function logic (Dispatcher).
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) {
 | 
						|
  
 | 
						|
  Builder = &builder;
 | 
						|
  EntryNode = builder.getLastNode();
 | 
						|
  CurrentStmt = S;
 | 
						|
  
 | 
						|
  // Set up our simple checks.
 | 
						|
  
 | 
						|
  // FIXME: This can probably be installed directly in GRCoreEngine, obviating
 | 
						|
  //  the need to do a copy every time we hit a block-level statement.
 | 
						|
  
 | 
						|
  if (!MsgExprChecks.empty())
 | 
						|
    Builder->setObjCMsgExprAuditors((GRAuditor<ValueState>**) &MsgExprChecks[0],
 | 
						|
         (GRAuditor<ValueState>**) (&MsgExprChecks[0] + MsgExprChecks.size()));
 | 
						|
  
 | 
						|
  
 | 
						|
  if (!CallChecks.empty())
 | 
						|
    Builder->setCallExprAuditors((GRAuditor<ValueState>**) &CallChecks[0],
 | 
						|
         (GRAuditor<ValueState>**) (&CallChecks[0] + CallChecks.size()));
 | 
						|
  
 | 
						|
  // Create the cleaned state.
 | 
						|
  
 | 
						|
  CleanedState = StateMgr.RemoveDeadBindings(EntryNode->getState(), CurrentStmt,
 | 
						|
                                             Liveness, DeadSymbols);
 | 
						|
  
 | 
						|
  // Process any special transfer function for dead symbols.
 | 
						|
  
 | 
						|
  NodeSet Tmp;
 | 
						|
  
 | 
						|
  if (DeadSymbols.empty())
 | 
						|
    Tmp.Add(EntryNode);
 | 
						|
  else {
 | 
						|
    SaveAndRestore<bool> OldSink(Builder->BuildSinks);
 | 
						|
    SaveOr OldHasGen(Builder->HasGeneratedNode);
 | 
						|
 | 
						|
    TF->EvalDeadSymbols(Tmp, *this, *Builder, EntryNode, S, 
 | 
						|
                        CleanedState, DeadSymbols);
 | 
						|
 | 
						|
    if (!Builder->BuildSinks && !Builder->HasGeneratedNode)
 | 
						|
      Tmp.Add(EntryNode);
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool HasAutoGenerated = false;
 | 
						|
 | 
						|
  for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
 | 
						|
    NodeSet Dst;
 | 
						|
    
 | 
						|
    // Set the cleaned state.  
 | 
						|
    Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I));
 | 
						|
    
 | 
						|
    // Visit the statement.  
 | 
						|
    Visit(S, *I, Dst);
 | 
						|
 | 
						|
    // Do we need to auto-generate a node?  We only need to do this to generate
 | 
						|
    // a node with a "cleaned" state; GRCoreEngine will actually handle
 | 
						|
    // auto-transitions for other cases.    
 | 
						|
    if (Dst.size() == 1 && *Dst.begin() == EntryNode
 | 
						|
        && !Builder->HasGeneratedNode && !HasAutoGenerated) {
 | 
						|
      HasAutoGenerated = true;
 | 
						|
      builder.generateNode(S, GetState(EntryNode), *I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // NULL out these variables to cleanup.
 | 
						|
  CleanedState = NULL;
 | 
						|
  EntryNode = NULL;
 | 
						|
  CurrentStmt = NULL;
 | 
						|
  Builder = NULL;
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  
 | 
						|
  // FIXME: add metadata to the CFG so that we can disable
 | 
						|
  //  this check when we KNOW that there is no block-level subexpression.
 | 
						|
  //  The motivation is that this check requires a hashtable lookup.
 | 
						|
  
 | 
						|
  if (S != CurrentStmt && getCFG().isBlkExpr(S)) {
 | 
						|
    Dst.Add(Pred);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  switch (S->getStmtClass()) {
 | 
						|
      
 | 
						|
    default:
 | 
						|
      // Cases we intentionally have "default" handle:
 | 
						|
      //   AddrLabelExpr, IntegerLiteral, CharacterLiteral
 | 
						|
      
 | 
						|
      Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
 | 
						|
      break;
 | 
						|
    
 | 
						|
    case Stmt::ArraySubscriptExprClass:
 | 
						|
      VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst, false);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::AsmStmtClass:
 | 
						|
      VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::BinaryOperatorClass: {
 | 
						|
      BinaryOperator* B = cast<BinaryOperator>(S);
 | 
						|
      
 | 
						|
      if (B->isLogicalOp()) {
 | 
						|
        VisitLogicalExpr(B, Pred, Dst);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      else if (B->getOpcode() == BinaryOperator::Comma) {
 | 
						|
        ValueState* St = GetState(Pred);
 | 
						|
        MakeNode(Dst, B, Pred, SetRVal(St, B, GetRVal(St, B->getRHS())));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::CallExprClass: {
 | 
						|
      CallExpr* C = cast<CallExpr>(S);
 | 
						|
      VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst);
 | 
						|
      break;      
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::CastExprClass: {
 | 
						|
      CastExpr* C = cast<CastExpr>(S);
 | 
						|
      VisitCast(C, C->getSubExpr(), Pred, Dst);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
      // FIXME: ChooseExpr is really a constant.  We need to fix
 | 
						|
      //        the CFG do not model them as explicit control-flow.
 | 
						|
      
 | 
						|
    case Stmt::ChooseExprClass: { // __builtin_choose_expr
 | 
						|
      ChooseExpr* C = cast<ChooseExpr>(S);
 | 
						|
      VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::CompoundAssignOperatorClass:
 | 
						|
      VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::ConditionalOperatorClass: { // '?' operator
 | 
						|
      ConditionalOperator* C = cast<ConditionalOperator>(S);
 | 
						|
      VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::DeclRefExprClass:
 | 
						|
      VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst, false);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::DeclStmtClass:
 | 
						|
      VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::ImplicitCastExprClass: {
 | 
						|
      ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
 | 
						|
      VisitCast(C, C->getSubExpr(), Pred, Dst);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::MemberExprClass: {
 | 
						|
      VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst, false);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::ObjCMessageExprClass: {
 | 
						|
      VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::ParenExprClass:
 | 
						|
      Visit(cast<ParenExpr>(S)->getSubExpr()->IgnoreParens(), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::ReturnStmtClass:
 | 
						|
      VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::SizeOfAlignOfTypeExprClass:
 | 
						|
      VisitSizeOfAlignOfTypeExpr(cast<SizeOfAlignOfTypeExpr>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::StmtExprClass: {
 | 
						|
      StmtExpr* SE = cast<StmtExpr>(S);
 | 
						|
      
 | 
						|
      ValueState* St = GetState(Pred);
 | 
						|
      
 | 
						|
      // FIXME: Not certain if we can have empty StmtExprs.  If so, we should
 | 
						|
      // probably just remove these from the CFG.
 | 
						|
      assert (!SE->getSubStmt()->body_empty());
 | 
						|
      
 | 
						|
      if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin()))
 | 
						|
        MakeNode(Dst, SE, Pred, SetRVal(St, SE, GetRVal(St, LastExpr)));
 | 
						|
      else
 | 
						|
        Dst.Add(Pred);
 | 
						|
      
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::UnaryOperatorClass:
 | 
						|
      VisitUnaryOperator(cast<UnaryOperator>(S), Pred, Dst, false);
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitLVal(Expr* Ex, NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  
 | 
						|
  Ex = Ex->IgnoreParens();
 | 
						|
  
 | 
						|
  if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) {
 | 
						|
    Dst.Add(Pred);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  switch (Ex->getStmtClass()) {
 | 
						|
    default:
 | 
						|
      Visit(Ex, Pred, Dst);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case Stmt::ArraySubscriptExprClass:
 | 
						|
      VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(Ex), Pred, Dst, true);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case Stmt::DeclRefExprClass:
 | 
						|
      VisitDeclRefExpr(cast<DeclRefExpr>(Ex), Pred, Dst, true);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case Stmt::UnaryOperatorClass:
 | 
						|
      VisitUnaryOperator(cast<UnaryOperator>(Ex), Pred, Dst, true);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case Stmt::MemberExprClass:
 | 
						|
      VisitMemberExpr(cast<MemberExpr>(Ex), Pred, Dst, true);
 | 
						|
      return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Block entrance.  (Update counters).
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, ValueState*,
 | 
						|
                                        GRBlockCounter BC) {
 | 
						|
  
 | 
						|
  return BC.getNumVisited(B->getBlockID()) < 3;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Branch processing.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ValueState* GRExprEngine::MarkBranch(ValueState* St, Stmt* Terminator,
 | 
						|
                                     bool branchTaken) {
 | 
						|
  
 | 
						|
  switch (Terminator->getStmtClass()) {
 | 
						|
    default:
 | 
						|
      return St;
 | 
						|
      
 | 
						|
    case Stmt::BinaryOperatorClass: { // '&&' and '||'
 | 
						|
      
 | 
						|
      BinaryOperator* B = cast<BinaryOperator>(Terminator);
 | 
						|
      BinaryOperator::Opcode Op = B->getOpcode();
 | 
						|
      
 | 
						|
      assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr);
 | 
						|
      
 | 
						|
      // For &&, if we take the true branch, then the value of the whole
 | 
						|
      // expression is that of the RHS expression.
 | 
						|
      //
 | 
						|
      // For ||, if we take the false branch, then the value of the whole
 | 
						|
      // expression is that of the RHS expression.
 | 
						|
      
 | 
						|
      Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) ||
 | 
						|
                 (Op == BinaryOperator::LOr && !branchTaken)  
 | 
						|
               ? B->getRHS() : B->getLHS();
 | 
						|
        
 | 
						|
      return SetBlkExprRVal(St, B, UndefinedVal(Ex));
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::ConditionalOperatorClass: { // ?:
 | 
						|
      
 | 
						|
      ConditionalOperator* C = cast<ConditionalOperator>(Terminator);
 | 
						|
      
 | 
						|
      // For ?, if branchTaken == true then the value is either the LHS or
 | 
						|
      // the condition itself. (GNU extension).
 | 
						|
      
 | 
						|
      Expr* Ex;      
 | 
						|
      
 | 
						|
      if (branchTaken)
 | 
						|
        Ex = C->getLHS() ? C->getLHS() : C->getCond();        
 | 
						|
      else
 | 
						|
        Ex = C->getRHS();
 | 
						|
      
 | 
						|
      return SetBlkExprRVal(St, C, UndefinedVal(Ex));
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::ChooseExprClass: { // ?:
 | 
						|
      
 | 
						|
      ChooseExpr* C = cast<ChooseExpr>(Terminator);
 | 
						|
      
 | 
						|
      Expr* Ex = branchTaken ? C->getLHS() : C->getRHS();      
 | 
						|
      return SetBlkExprRVal(St, C, UndefinedVal(Ex));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::ProcessBranch(Expr* Condition, Stmt* Term,
 | 
						|
                                 BranchNodeBuilder& builder) {
 | 
						|
 | 
						|
  // Remove old bindings for subexpressions.
 | 
						|
  ValueState* PrevState = StateMgr.RemoveSubExprBindings(builder.getState());
 | 
						|
  
 | 
						|
  // Check for NULL conditions; e.g. "for(;;)"
 | 
						|
  if (!Condition) { 
 | 
						|
    builder.markInfeasible(false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  RVal V = GetRVal(PrevState, Condition);
 | 
						|
  
 | 
						|
  switch (V.getBaseKind()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
 | 
						|
    case RVal::UnknownKind:
 | 
						|
      builder.generateNode(MarkBranch(PrevState, Term, true), true);
 | 
						|
      builder.generateNode(MarkBranch(PrevState, Term, false), false);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case RVal::UndefinedKind: {      
 | 
						|
      NodeTy* N = builder.generateNode(PrevState, true);
 | 
						|
 | 
						|
      if (N) {
 | 
						|
        N->markAsSink();
 | 
						|
        UndefBranches.insert(N);
 | 
						|
      }
 | 
						|
      
 | 
						|
      builder.markInfeasible(false);
 | 
						|
      return;
 | 
						|
    }      
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Process the true branch.
 | 
						|
 | 
						|
  bool isFeasible = false;  
 | 
						|
  ValueState* St = Assume(PrevState, V, true, isFeasible);
 | 
						|
 | 
						|
  if (isFeasible)
 | 
						|
    builder.generateNode(MarkBranch(St, Term, true), true);
 | 
						|
  else
 | 
						|
    builder.markInfeasible(true);
 | 
						|
      
 | 
						|
  // Process the false branch.  
 | 
						|
  
 | 
						|
  isFeasible = false;
 | 
						|
  St = Assume(PrevState, V, false, isFeasible);
 | 
						|
  
 | 
						|
  if (isFeasible)
 | 
						|
    builder.generateNode(MarkBranch(St, Term, false), false);
 | 
						|
  else
 | 
						|
    builder.markInfeasible(false);
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessIndirectGoto - Called by GRCoreEngine.  Used to generate successor
 | 
						|
///  nodes by processing the 'effects' of a computed goto jump.
 | 
						|
void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) {
 | 
						|
 | 
						|
  ValueState* St = builder.getState();  
 | 
						|
  RVal V = GetRVal(St, builder.getTarget());
 | 
						|
  
 | 
						|
  // Three possibilities:
 | 
						|
  //
 | 
						|
  //   (1) We know the computed label.
 | 
						|
  //   (2) The label is NULL (or some other constant), or Undefined.
 | 
						|
  //   (3) We have no clue about the label.  Dispatch to all targets.
 | 
						|
  //
 | 
						|
  
 | 
						|
  typedef IndirectGotoNodeBuilder::iterator iterator;
 | 
						|
 | 
						|
  if (isa<lval::GotoLabel>(V)) {
 | 
						|
    LabelStmt* L = cast<lval::GotoLabel>(V).getLabel();
 | 
						|
    
 | 
						|
    for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) {
 | 
						|
      if (I.getLabel() == L) {
 | 
						|
        builder.generateNode(I, St);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    assert (false && "No block with label.");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<lval::ConcreteInt>(V) || isa<UndefinedVal>(V)) {
 | 
						|
    // Dispatch to the first target and mark it as a sink.
 | 
						|
    NodeTy* N = builder.generateNode(builder.begin(), St, true);
 | 
						|
    UndefBranches.insert(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // This is really a catch-all.  We don't support symbolics yet.
 | 
						|
  
 | 
						|
  assert (V.isUnknown());
 | 
						|
  
 | 
						|
  for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
 | 
						|
    builder.generateNode(I, St);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R,
 | 
						|
                                    NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  
 | 
						|
  assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex));
 | 
						|
  
 | 
						|
  ValueState* St = GetState(Pred);
 | 
						|
  RVal X = GetBlkExprRVal(St, Ex);
 | 
						|
  
 | 
						|
  assert (X.isUndef());
 | 
						|
  
 | 
						|
  Expr* SE = (Expr*) cast<UndefinedVal>(X).getData();
 | 
						|
  
 | 
						|
  assert (SE);
 | 
						|
  
 | 
						|
  X = GetBlkExprRVal(St, SE);
 | 
						|
  
 | 
						|
  // Make sure that we invalidate the previous binding.
 | 
						|
  MakeNode(Dst, Ex, Pred, StateMgr.SetRVal(St, Ex, X, true, true));
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessSwitch - Called by GRCoreEngine.  Used to generate successor
 | 
						|
///  nodes by processing the 'effects' of a switch statement.
 | 
						|
void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) {
 | 
						|
  
 | 
						|
  typedef SwitchNodeBuilder::iterator iterator;
 | 
						|
  
 | 
						|
  ValueState* St = builder.getState();  
 | 
						|
  Expr* CondE = builder.getCondition();
 | 
						|
  RVal  CondV = GetRVal(St, CondE);
 | 
						|
 | 
						|
  if (CondV.isUndef()) {
 | 
						|
    NodeTy* N = builder.generateDefaultCaseNode(St, true);
 | 
						|
    UndefBranches.insert(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  ValueState*  DefaultSt = St;
 | 
						|
  
 | 
						|
  // While most of this can be assumed (such as the signedness), having it
 | 
						|
  // just computed makes sure everything makes the same assumptions end-to-end.
 | 
						|
  
 | 
						|
  unsigned bits = getContext().getTypeSize(CondE->getType());
 | 
						|
 | 
						|
  APSInt V1(bits, false);
 | 
						|
  APSInt V2 = V1;
 | 
						|
  bool DefaultFeasible = false;
 | 
						|
  
 | 
						|
  for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) {
 | 
						|
 | 
						|
    CaseStmt* Case = cast<CaseStmt>(I.getCase());
 | 
						|
    
 | 
						|
    // Evaluate the case.
 | 
						|
    if (!Case->getLHS()->isIntegerConstantExpr(V1, getContext(), 0, true)) {
 | 
						|
      assert (false && "Case condition must evaluate to an integer constant.");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Get the RHS of the case, if it exists.
 | 
						|
    
 | 
						|
    if (Expr* E = Case->getRHS()) {
 | 
						|
      if (!E->isIntegerConstantExpr(V2, getContext(), 0, true)) {
 | 
						|
        assert (false &&
 | 
						|
                "Case condition (RHS) must evaluate to an integer constant.");
 | 
						|
        return ;
 | 
						|
      }
 | 
						|
      
 | 
						|
      assert (V1 <= V2);
 | 
						|
    }
 | 
						|
    else
 | 
						|
      V2 = V1;
 | 
						|
    
 | 
						|
    // FIXME: Eventually we should replace the logic below with a range
 | 
						|
    //  comparison, rather than concretize the values within the range.
 | 
						|
    //  This should be easy once we have "ranges" for NonLVals.
 | 
						|
        
 | 
						|
    do {
 | 
						|
      nonlval::ConcreteInt CaseVal(BasicVals.getValue(V1));
 | 
						|
      
 | 
						|
      RVal Res = EvalBinOp(BinaryOperator::EQ, CondV, CaseVal);
 | 
						|
      
 | 
						|
      // Now "assume" that the case matches.
 | 
						|
      
 | 
						|
      bool isFeasible = false;      
 | 
						|
      ValueState* StNew = Assume(St, Res, true, isFeasible);
 | 
						|
      
 | 
						|
      if (isFeasible) {
 | 
						|
        builder.generateCaseStmtNode(I, StNew);
 | 
						|
       
 | 
						|
        // If CondV evaluates to a constant, then we know that this
 | 
						|
        // is the *only* case that we can take, so stop evaluating the
 | 
						|
        // others.
 | 
						|
        if (isa<nonlval::ConcreteInt>(CondV))
 | 
						|
          return;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Now "assume" that the case doesn't match.  Add this state
 | 
						|
      // to the default state (if it is feasible).
 | 
						|
      
 | 
						|
      isFeasible = false;
 | 
						|
      StNew = Assume(DefaultSt, Res, false, isFeasible);
 | 
						|
      
 | 
						|
      if (isFeasible) {
 | 
						|
        DefaultFeasible = true;
 | 
						|
        DefaultSt = StNew;
 | 
						|
      }
 | 
						|
 | 
						|
      // Concretize the next value in the range.
 | 
						|
      if (V1 == V2)
 | 
						|
        break;
 | 
						|
      
 | 
						|
      ++V1;
 | 
						|
      assert (V1 <= V2);
 | 
						|
      
 | 
						|
    } while (true);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we reach here, than we know that the default branch is
 | 
						|
  // possible.  
 | 
						|
  if (DefaultFeasible) builder.generateDefaultCaseNode(DefaultSt);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer functions: logical operations ('&&', '||').
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred,
 | 
						|
                                    NodeSet& Dst) {
 | 
						|
  
 | 
						|
  assert (B->getOpcode() == BinaryOperator::LAnd ||
 | 
						|
          B->getOpcode() == BinaryOperator::LOr);
 | 
						|
  
 | 
						|
  assert (B == CurrentStmt && getCFG().isBlkExpr(B));
 | 
						|
  
 | 
						|
  ValueState* St = GetState(Pred);
 | 
						|
  RVal X = GetBlkExprRVal(St, B);
 | 
						|
  
 | 
						|
  assert (X.isUndef());
 | 
						|
  
 | 
						|
  Expr* Ex = (Expr*) cast<UndefinedVal>(X).getData();
 | 
						|
  
 | 
						|
  assert (Ex);
 | 
						|
  
 | 
						|
  if (Ex == B->getRHS()) {
 | 
						|
    
 | 
						|
    X = GetBlkExprRVal(St, Ex);
 | 
						|
    
 | 
						|
    // Handle undefined values.
 | 
						|
    
 | 
						|
    if (X.isUndef()) {
 | 
						|
      MakeNode(Dst, B, Pred, SetBlkExprRVal(St, B, X));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // We took the RHS.  Because the value of the '&&' or '||' expression must
 | 
						|
    // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
 | 
						|
    // or 1.  Alternatively, we could take a lazy approach, and calculate this
 | 
						|
    // value later when necessary.  We don't have the machinery in place for
 | 
						|
    // this right now, and since most logical expressions are used for branches,
 | 
						|
    // the payoff is not likely to be large.  Instead, we do eager evaluation.
 | 
						|
        
 | 
						|
    bool isFeasible = false;
 | 
						|
    ValueState* NewState = Assume(St, X, true, isFeasible);
 | 
						|
    
 | 
						|
    if (isFeasible)
 | 
						|
      MakeNode(Dst, B, Pred,
 | 
						|
               SetBlkExprRVal(NewState, B, MakeConstantVal(1U, B)));
 | 
						|
      
 | 
						|
    isFeasible = false;
 | 
						|
    NewState = Assume(St, X, false, isFeasible);
 | 
						|
    
 | 
						|
    if (isFeasible)
 | 
						|
      MakeNode(Dst, B, Pred,
 | 
						|
               SetBlkExprRVal(NewState, B, MakeConstantVal(0U, B)));
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // We took the LHS expression.  Depending on whether we are '&&' or
 | 
						|
    // '||' we know what the value of the expression is via properties of
 | 
						|
    // the short-circuiting.
 | 
						|
    
 | 
						|
    X = MakeConstantVal( B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B);
 | 
						|
    MakeNode(Dst, B, Pred, SetBlkExprRVal(St, B, X));
 | 
						|
  }
 | 
						|
}
 | 
						|
 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer functions: Loads and stores.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* D, NodeTy* Pred, NodeSet& Dst,
 | 
						|
                                    bool asLVal) {
 | 
						|
  
 | 
						|
  ValueState* St = GetState(Pred);
 | 
						|
  RVal X = RVal::MakeVal(BasicVals, D);
 | 
						|
  
 | 
						|
  if (asLVal)
 | 
						|
    MakeNode(Dst, D, Pred, SetRVal(St, D, cast<LVal>(X)));
 | 
						|
  else {
 | 
						|
    RVal V = isa<lval::DeclVal>(X) ? GetRVal(St, cast<LVal>(X)) : X;
 | 
						|
    MakeNode(Dst, D, Pred, SetRVal(St, D, V));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// VisitArraySubscriptExpr - Transfer function for array accesses
 | 
						|
void GRExprEngine::VisitArraySubscriptExpr(ArraySubscriptExpr* A, NodeTy* Pred,
 | 
						|
                                           NodeSet& Dst, bool asLVal) {
 | 
						|
  
 | 
						|
  Expr* Base = A->getBase()->IgnoreParens();
 | 
						|
  Expr* Idx  = A->getIdx()->IgnoreParens();
 | 
						|
  
 | 
						|
  // Always visit the base as an LVal expression.  This computes the
 | 
						|
  // abstract address of the base object.
 | 
						|
  NodeSet Tmp;
 | 
						|
  
 | 
						|
  if (IsPointerType(Base->getType())) // Base always is an LVal.
 | 
						|
    Visit(Base, Pred, Tmp);
 | 
						|
  else  
 | 
						|
    VisitLVal(Base, Pred, Tmp);
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) {
 | 
						|
    
 | 
						|
    // Evaluate the index.
 | 
						|
 | 
						|
    NodeSet Tmp2;
 | 
						|
    Visit(Idx, *I1, Tmp2);
 | 
						|
      
 | 
						|
    for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2!=E2; ++I2) {
 | 
						|
 | 
						|
      ValueState* St = GetState(*I2);
 | 
						|
      RVal BaseV = GetRVal(St, Base);
 | 
						|
      RVal IdxV  = GetRVal(St, Idx);      
 | 
						|
      
 | 
						|
      // If IdxV is 0, return just BaseV.
 | 
						|
      
 | 
						|
      bool useBase = false;
 | 
						|
      
 | 
						|
      if (nonlval::ConcreteInt* IdxInt = dyn_cast<nonlval::ConcreteInt>(&IdxV))        
 | 
						|
        useBase = IdxInt->getValue() == 0;
 | 
						|
      
 | 
						|
      RVal V = useBase ? BaseV : lval::ArrayOffset::Make(BasicVals, BaseV,IdxV);
 | 
						|
 | 
						|
      if (asLVal)
 | 
						|
        MakeNode(Dst, A, *I2, SetRVal(St, A, V));
 | 
						|
      else
 | 
						|
        EvalLoad(Dst, A, *I2, St, V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// VisitMemberExpr - Transfer function for member expressions.
 | 
						|
void GRExprEngine::VisitMemberExpr(MemberExpr* M, NodeTy* Pred,
 | 
						|
                                   NodeSet& Dst, bool asLVal) {
 | 
						|
  
 | 
						|
  Expr* Base = M->getBase()->IgnoreParens();
 | 
						|
 | 
						|
  // Always visit the base as an LVal expression.  This computes the
 | 
						|
  // abstract address of the base object.
 | 
						|
  NodeSet Tmp;
 | 
						|
  
 | 
						|
  if (asLVal) {
 | 
						|
      
 | 
						|
    if (IsPointerType(Base->getType())) // Base always is an LVal.
 | 
						|
      Visit(Base, Pred, Tmp);
 | 
						|
    else  
 | 
						|
      VisitLVal(Base, Pred, Tmp);
 | 
						|
  
 | 
						|
    for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
      ValueState* St = GetState(*I);
 | 
						|
      RVal BaseV = GetRVal(St, Base);      
 | 
						|
      
 | 
						|
      RVal V = lval::FieldOffset::Make(BasicVals, GetRVal(St, Base),
 | 
						|
                                       M->getMemberDecl());
 | 
						|
      
 | 
						|
      MakeNode(Dst, M, *I, SetRVal(St, M, V));
 | 
						|
    }
 | 
						|
    
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Evaluate the base.  Can be an LVal or NonLVal (depends on whether
 | 
						|
  //  or not isArrow() is true).
 | 
						|
  Visit(Base, Pred, Tmp);
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
 | 
						|
    ValueState* St = GetState(*I);
 | 
						|
    RVal BaseV = GetRVal(St, Base);
 | 
						|
    
 | 
						|
    if (IsPointerType(Base->getType())) {
 | 
						|
    
 | 
						|
      assert (M->isArrow());
 | 
						|
      
 | 
						|
      RVal V = lval::FieldOffset::Make(BasicVals, GetRVal(St, Base),
 | 
						|
                                       M->getMemberDecl());
 | 
						|
    
 | 
						|
      EvalLoad(Dst, M, *I, St, V);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      
 | 
						|
      assert (!M->isArrow());
 | 
						|
      
 | 
						|
      if (BaseV.isUnknownOrUndef()) {
 | 
						|
        MakeNode(Dst, M, *I, SetRVal(St, M, BaseV));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // FIXME: Implement nonlval objects representing struct temporaries.
 | 
						|
      assert (isa<NonLVal>(BaseV));
 | 
						|
      MakeNode(Dst, M, *I, SetRVal(St, M, UnknownVal()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, NodeTy* Pred,
 | 
						|
                             ValueState* St, RVal location, RVal Val) {
 | 
						|
  
 | 
						|
  assert (Builder && "GRStmtNodeBuilder must be defined.");
 | 
						|
  
 | 
						|
  // Evaluate the location (checks for bad dereferences).
 | 
						|
  St = EvalLocation(Ex, Pred, St, location);
 | 
						|
  
 | 
						|
  if (!St)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // Proceed with the store.
 | 
						|
  
 | 
						|
  unsigned size = Dst.size();  
 | 
						|
 | 
						|
  SaveAndRestore<bool> OldSink(Builder->BuildSinks);
 | 
						|
  SaveOr OldHasGen(Builder->HasGeneratedNode);
 | 
						|
 | 
						|
  assert (!location.isUndef());
 | 
						|
  
 | 
						|
  TF->EvalStore(Dst, *this, *Builder, Ex, Pred, St, location, Val);
 | 
						|
  
 | 
						|
  // Handle the case where no nodes where generated.  Auto-generate that
 | 
						|
  // contains the updated state if we aren't generating sinks.
 | 
						|
  
 | 
						|
  if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
 | 
						|
    TF->GRTransferFuncs::EvalStore(Dst, *this, *Builder, Ex, Pred, St,
 | 
						|
                                   location, Val);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::EvalLoad(NodeSet& Dst, Expr* Ex, NodeTy* Pred,
 | 
						|
                            ValueState* St, RVal location, bool CheckOnly) {
 | 
						|
 | 
						|
  // Evaluate the location (checks for bad dereferences).
 | 
						|
  
 | 
						|
  St = EvalLocation(Ex, Pred, St, location, true);
 | 
						|
  
 | 
						|
  if (!St)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // Proceed with the load.
 | 
						|
 | 
						|
  // FIXME: Currently symbolic analysis "generates" new symbols
 | 
						|
  //  for the contents of values.  We need a better approach.
 | 
						|
 | 
						|
  // FIXME: The "CheckOnly" option exists only because Array and Field
 | 
						|
  //  loads aren't fully implemented.  Eventually this option will go away.
 | 
						|
  
 | 
						|
  if (CheckOnly)
 | 
						|
    MakeNode(Dst, Ex, Pred, St);
 | 
						|
  else if (location.isUnknown()) {
 | 
						|
    // This is important.  We must nuke the old binding.
 | 
						|
    MakeNode(Dst, Ex, Pred, SetRVal(St, Ex, UnknownVal()));
 | 
						|
  }
 | 
						|
  else    
 | 
						|
    MakeNode(Dst, Ex, Pred, SetRVal(St, Ex, GetRVal(St, cast<LVal>(location),
 | 
						|
                                                    Ex->getType())));  
 | 
						|
}
 | 
						|
 | 
						|
ValueState* GRExprEngine::EvalLocation(Expr* Ex, NodeTy* Pred,
 | 
						|
                                       ValueState* St, RVal location,
 | 
						|
                                       bool isLoad) {
 | 
						|
  
 | 
						|
  // Check for loads/stores from/to undefined values.  
 | 
						|
  if (location.isUndef()) {
 | 
						|
    if (NodeTy* Succ = Builder->generateNode(Ex, St, Pred, isLoad)) {
 | 
						|
      Succ->markAsSink();
 | 
						|
      UndefDeref.insert(Succ);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check for loads/stores from/to unknown locations.  Treat as No-Ops.
 | 
						|
  if (location.isUnknown())
 | 
						|
    return St;
 | 
						|
  
 | 
						|
  // During a load, one of two possible situations arise:
 | 
						|
  //  (1) A crash, because the location (pointer) was NULL.
 | 
						|
  //  (2) The location (pointer) is not NULL, and the dereference works.
 | 
						|
  // 
 | 
						|
  // We add these assumptions.
 | 
						|
  
 | 
						|
  LVal LV = cast<LVal>(location);    
 | 
						|
  
 | 
						|
  // "Assume" that the pointer is not NULL.
 | 
						|
  
 | 
						|
  bool isFeasibleNotNull = false;
 | 
						|
  ValueState* StNotNull = Assume(St, LV, true, isFeasibleNotNull);
 | 
						|
  
 | 
						|
  // "Assume" that the pointer is NULL.
 | 
						|
  
 | 
						|
  bool isFeasibleNull = false;
 | 
						|
  ValueState* StNull = Assume(St, LV, false, isFeasibleNull);
 | 
						|
  
 | 
						|
  if (isFeasibleNull) {
 | 
						|
    
 | 
						|
    // We don't use "MakeNode" here because the node will be a sink
 | 
						|
    // and we have no intention of processing it later.
 | 
						|
    
 | 
						|
    NodeTy* NullNode = Builder->generateNode(Ex, StNull, Pred, isLoad);
 | 
						|
    
 | 
						|
    if (NullNode) {
 | 
						|
      
 | 
						|
      NullNode->markAsSink();
 | 
						|
      
 | 
						|
      if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode);
 | 
						|
      else ExplicitNullDeref.insert(NullNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return isFeasibleNotNull ? StNotNull : NULL;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function: Function calls.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred,
 | 
						|
                             CallExpr::arg_iterator AI,
 | 
						|
                             CallExpr::arg_iterator AE,
 | 
						|
                             NodeSet& Dst) {
 | 
						|
  
 | 
						|
  // Process the arguments.
 | 
						|
  
 | 
						|
  if (AI != AE) {
 | 
						|
    
 | 
						|
    NodeSet DstTmp;      
 | 
						|
    Visit(*AI, Pred, DstTmp);    
 | 
						|
    ++AI;
 | 
						|
    
 | 
						|
    for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI)
 | 
						|
      VisitCall(CE, *DI, AI, AE, Dst);
 | 
						|
    
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reach here we have processed all of the arguments.  Evaluate
 | 
						|
  // the callee expression.
 | 
						|
  
 | 
						|
  NodeSet DstTmp;    
 | 
						|
  Expr* Callee = CE->getCallee()->IgnoreParens();
 | 
						|
 | 
						|
  VisitLVal(Callee, Pred, DstTmp);
 | 
						|
  
 | 
						|
  // Finally, evaluate the function call.
 | 
						|
  for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) {
 | 
						|
 | 
						|
    ValueState* St = GetState(*DI);
 | 
						|
    RVal L = GetRVal(St, Callee);
 | 
						|
 | 
						|
    // FIXME: Add support for symbolic function calls (calls involving
 | 
						|
    //  function pointer values that are symbolic).
 | 
						|
    
 | 
						|
    // Check for undefined control-flow or calls to NULL.
 | 
						|
    
 | 
						|
    if (L.isUndef() || isa<lval::ConcreteInt>(L)) {      
 | 
						|
      NodeTy* N = Builder->generateNode(CE, St, *DI);
 | 
						|
      
 | 
						|
      if (N) {
 | 
						|
        N->markAsSink();
 | 
						|
        BadCalls.insert(N);
 | 
						|
      }
 | 
						|
      
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Check for the "noreturn" attribute.
 | 
						|
    
 | 
						|
    SaveAndRestore<bool> OldSink(Builder->BuildSinks);
 | 
						|
    
 | 
						|
    if (isa<lval::FuncVal>(L)) {      
 | 
						|
      
 | 
						|
      FunctionDecl* FD = cast<lval::FuncVal>(L).getDecl();
 | 
						|
      
 | 
						|
      if (FD->getAttr<NoReturnAttr>())
 | 
						|
        Builder->BuildSinks = true;
 | 
						|
      else {
 | 
						|
        // HACK: Some functions are not marked noreturn, and don't return.
 | 
						|
        //  Here are a few hardwired ones.  If this takes too long, we can
 | 
						|
        //  potentially cache these results.
 | 
						|
        const char* s = FD->getIdentifier()->getName();
 | 
						|
        unsigned n = strlen(s);
 | 
						|
        
 | 
						|
        switch (n) {
 | 
						|
          default:
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case 4:
 | 
						|
            if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
 | 
						|
          case 5:
 | 
						|
            if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
          
 | 
						|
          case 6:
 | 
						|
            if (!memcmp(s, "Assert", 6)) Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
          
 | 
						|
          case 7:
 | 
						|
            if (!memcmp(s, "assfail", 7)) Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case 8:
 | 
						|
            if (!memcmp(s ,"db_error", 8)) Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case 14:
 | 
						|
            if (!memcmp(s, "dtrace_assfail", 14)) Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Evaluate the call.
 | 
						|
 | 
						|
    if (isa<lval::FuncVal>(L)) {
 | 
						|
      
 | 
						|
      IdentifierInfo* Info = cast<lval::FuncVal>(L).getDecl()->getIdentifier();
 | 
						|
      
 | 
						|
      if (unsigned id = Info->getBuiltinID())
 | 
						|
        switch (id) {
 | 
						|
          case Builtin::BI__builtin_expect: {
 | 
						|
            // For __builtin_expect, just return the value of the subexpression.
 | 
						|
            assert (CE->arg_begin() != CE->arg_end());            
 | 
						|
            RVal X = GetRVal(St, *(CE->arg_begin()));
 | 
						|
            MakeNode(Dst, CE, *DI, SetRVal(St, CE, X));
 | 
						|
            continue;            
 | 
						|
          }
 | 
						|
            
 | 
						|
          default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Check any arguments passed-by-value against being undefined.
 | 
						|
 | 
						|
    bool badArg = false;
 | 
						|
    
 | 
						|
    for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
 | 
						|
         I != E; ++I) {
 | 
						|
 | 
						|
      if (GetRVal(GetState(*DI), *I).isUndef()) {        
 | 
						|
        NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI);
 | 
						|
      
 | 
						|
        if (N) {
 | 
						|
          N->markAsSink();
 | 
						|
          UndefArgs[N] = *I;
 | 
						|
        }
 | 
						|
        
 | 
						|
        badArg = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (badArg)
 | 
						|
      continue;        
 | 
						|
 | 
						|
    // Dispatch to the plug-in transfer function.      
 | 
						|
    
 | 
						|
    unsigned size = Dst.size();
 | 
						|
    SaveOr OldHasGen(Builder->HasGeneratedNode);
 | 
						|
    EvalCall(Dst, CE, L, *DI);
 | 
						|
    
 | 
						|
    // Handle the case where no nodes where generated.  Auto-generate that
 | 
						|
    // contains the updated state if we aren't generating sinks.
 | 
						|
    
 | 
						|
    if (!Builder->BuildSinks && Dst.size() == size &&
 | 
						|
        !Builder->HasGeneratedNode)
 | 
						|
      MakeNode(Dst, CE, *DI, St);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function: Objective-C message expressions.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred,
 | 
						|
                                        NodeSet& Dst){
 | 
						|
  
 | 
						|
  VisitObjCMessageExprArgHelper(ME, ME->arg_begin(), ME->arg_end(),
 | 
						|
                                Pred, Dst);
 | 
						|
}  
 | 
						|
 | 
						|
void GRExprEngine::VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME,
 | 
						|
                                                 ObjCMessageExpr::arg_iterator AI,
 | 
						|
                                                 ObjCMessageExpr::arg_iterator AE,
 | 
						|
                                                 NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  if (AI == AE) {
 | 
						|
    
 | 
						|
    // Process the receiver.
 | 
						|
    
 | 
						|
    if (Expr* Receiver = ME->getReceiver()) {
 | 
						|
      NodeSet Tmp;
 | 
						|
      Visit(Receiver, Pred, Tmp);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
 | 
						|
        VisitObjCMessageExprDispatchHelper(ME, *NI, Dst);
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    VisitObjCMessageExprDispatchHelper(ME, Pred, Dst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  NodeSet Tmp;
 | 
						|
  Visit(*AI, Pred, Tmp);
 | 
						|
  
 | 
						|
  ++AI;
 | 
						|
  
 | 
						|
  for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
 | 
						|
    VisitObjCMessageExprArgHelper(ME, AI, AE, *NI, Dst);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME,
 | 
						|
                                                      NodeTy* Pred,
 | 
						|
                                                      NodeSet& Dst) {
 | 
						|
  
 | 
						|
  // FIXME: More logic for the processing the method call. 
 | 
						|
  
 | 
						|
  ValueState* St = GetState(Pred);
 | 
						|
  
 | 
						|
  if (Expr* Receiver = ME->getReceiver()) {
 | 
						|
    
 | 
						|
    RVal L = GetRVal(St, Receiver);
 | 
						|
    
 | 
						|
    // Check for undefined control-flow or calls to NULL.
 | 
						|
    
 | 
						|
    if (L.isUndef()) {
 | 
						|
      NodeTy* N = Builder->generateNode(ME, St, Pred);
 | 
						|
      
 | 
						|
      if (N) {
 | 
						|
        N->markAsSink();
 | 
						|
        UndefReceivers.insert(N);
 | 
						|
      }
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check for any arguments that are uninitialized/undefined.
 | 
						|
  
 | 
						|
  for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    
 | 
						|
    if (GetRVal(St, *I).isUndef()) {
 | 
						|
      
 | 
						|
      // Generate an error node for passing an uninitialized/undefined value
 | 
						|
      // as an argument to a message expression.  This node is a sink.
 | 
						|
      NodeTy* N = Builder->generateNode(ME, St, Pred);
 | 
						|
      
 | 
						|
      if (N) {
 | 
						|
        N->markAsSink();
 | 
						|
        MsgExprUndefArgs[N] = *I;
 | 
						|
      }
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }    
 | 
						|
  }    
 | 
						|
  // Dispatch to plug-in transfer function.
 | 
						|
  
 | 
						|
  unsigned size = Dst.size();
 | 
						|
 | 
						|
  SaveAndRestore<bool> OldSink(Builder->BuildSinks);
 | 
						|
  SaveOr OldHasGen(Builder->HasGeneratedNode);
 | 
						|
 
 | 
						|
  EvalObjCMessageExpr(Dst, ME, Pred);
 | 
						|
  
 | 
						|
  // Handle the case where no nodes where generated.  Auto-generate that
 | 
						|
  // contains the updated state if we aren't generating sinks.
 | 
						|
  
 | 
						|
  if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
 | 
						|
    MakeNode(Dst, ME, Pred, St);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer functions: Miscellaneous statements.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){
 | 
						|
  
 | 
						|
  NodeSet S1;
 | 
						|
  QualType T = CastE->getType();
 | 
						|
  
 | 
						|
  if (T->isReferenceType())
 | 
						|
    VisitLVal(Ex, Pred, S1);
 | 
						|
  else
 | 
						|
    Visit(Ex, Pred, S1);
 | 
						|
  
 | 
						|
  // Check for casting to "void".
 | 
						|
  if (T->isVoidType()) {
 | 
						|
    
 | 
						|
    for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1)
 | 
						|
      Dst.Add(*I1);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: The rest of this should probably just go into EvalCall, and
 | 
						|
  //   let the transfer function object be responsible for constructing
 | 
						|
  //   nodes.
 | 
						|
  
 | 
						|
  QualType ExTy = Ex->getType();
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) {
 | 
						|
    NodeTy* N = *I1;
 | 
						|
    ValueState* St = GetState(N);
 | 
						|
    RVal V = GetRVal(St, Ex);
 | 
						|
 | 
						|
    // Unknown?
 | 
						|
    
 | 
						|
    if (V.isUnknown()) {
 | 
						|
      Dst.Add(N);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Undefined?
 | 
						|
    
 | 
						|
    if (V.isUndef()) {
 | 
						|
      MakeNode(Dst, CastE, N, SetRVal(St, CastE, V));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  
 | 
						|
    // Check for casts from pointers to integers.
 | 
						|
    if (T->isIntegerType() && IsPointerType(ExTy)) {
 | 
						|
      unsigned bits = getContext().getTypeSize(ExTy);
 | 
						|
    
 | 
						|
      // FIXME: Determine if the number of bits of the target type is 
 | 
						|
      // equal or exceeds the number of bits to store the pointer value.
 | 
						|
      // If not, flag an error.
 | 
						|
      
 | 
						|
      V = nonlval::LValAsInteger::Make(BasicVals, cast<LVal>(V), bits);
 | 
						|
      MakeNode(Dst, CastE, N, SetRVal(St, CastE, V));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Check for casts from integers to pointers.
 | 
						|
    if (IsPointerType(T) && ExTy->isIntegerType())
 | 
						|
      if (nonlval::LValAsInteger *LV = dyn_cast<nonlval::LValAsInteger>(&V)) {
 | 
						|
        // Just unpackage the lval and return it.
 | 
						|
        V = LV->getLVal();
 | 
						|
        MakeNode(Dst, CastE, N, SetRVal(St, CastE, V));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    
 | 
						|
    // All other cases.
 | 
						|
    
 | 
						|
    MakeNode(Dst, CastE, N, SetRVal(St, CastE, EvalCast(V, CastE->getType())));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst) {  
 | 
						|
  VisitDeclStmtAux(DS, DS->getDecl(), Pred, Dst);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitDeclStmtAux(DeclStmt* DS, ScopedDecl* D,
 | 
						|
                                    NodeTy* Pred, NodeSet& Dst) {
 | 
						|
 | 
						|
  if (!D)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  if (!isa<VarDecl>(D)) {
 | 
						|
    VisitDeclStmtAux(DS, D->getNextDeclarator(), Pred, Dst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  const VarDecl* VD = dyn_cast<VarDecl>(D);
 | 
						|
  
 | 
						|
  // FIXME: Add support for local arrays.
 | 
						|
  if (VD->getType()->isArrayType()) {
 | 
						|
    VisitDeclStmtAux(DS, D->getNextDeclarator(), Pred, Dst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Expr* Ex = const_cast<Expr*>(VD->getInit());
 | 
						|
 | 
						|
  // FIXME: static variables may have an initializer, but the second
 | 
						|
  //  time a function is called those values may not be current.
 | 
						|
  NodeSet Tmp;
 | 
						|
 | 
						|
  if (Ex) Visit(Ex, Pred, Tmp);
 | 
						|
  if (Tmp.empty()) Tmp.Add(Pred);
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
      
 | 
						|
    ValueState* St = GetState(*I);
 | 
						|
 | 
						|
    if (!Ex && VD->hasGlobalStorage()) {
 | 
						|
      
 | 
						|
      // Handle variables with global storage and no initializers.
 | 
						|
      
 | 
						|
      // FIXME: static variables may have an initializer, but the second
 | 
						|
      //  time a function is called those values may not be current.
 | 
						|
      
 | 
						|
      
 | 
						|
      // In this context, Static => Local variable.
 | 
						|
      
 | 
						|
      assert (!VD->getStorageClass() == VarDecl::Static ||
 | 
						|
              !VD->isFileVarDecl());
 | 
						|
      
 | 
						|
      // If there is no initializer, set the value of the
 | 
						|
      // variable to "Undefined".
 | 
						|
      
 | 
						|
      if (VD->getStorageClass() == VarDecl::Static) {
 | 
						|
          
 | 
						|
        // C99: 6.7.8 Initialization
 | 
						|
        //  If an object that has static storage duration is not initialized
 | 
						|
        //  explicitly, then: 
 | 
						|
        //   —if it has pointer type, it is initialized to a null pointer; 
 | 
						|
        //   —if it has arithmetic type, it is initialized to (positive or 
 | 
						|
        //     unsigned) zero; 
 | 
						|
        
 | 
						|
        // FIXME: Handle structs.  Now we treat their values as unknown.
 | 
						|
 | 
						|
        QualType T = VD->getType();
 | 
						|
        
 | 
						|
        if (IsPointerType(T))
 | 
						|
          St = SetRVal(St, lval::DeclVal(VD),
 | 
						|
                       lval::ConcreteInt(BasicVals.getValue(0, T)));
 | 
						|
        else if (T->isIntegerType())
 | 
						|
          St = SetRVal(St, lval::DeclVal(VD),
 | 
						|
                       nonlval::ConcreteInt(BasicVals.getValue(0, T)));          
 | 
						|
          
 | 
						|
        // FIXME: Handle structs.  Now we treat them as unknown.  What
 | 
						|
        //  we need to do is treat their members as unknown.
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      
 | 
						|
      // FIXME: Handle structs.  Now we treat them as unknown.  What
 | 
						|
      //  we need to do is treat their members as unknown.
 | 
						|
 | 
						|
      QualType T = VD->getType();
 | 
						|
 | 
						|
      if (IsPointerType(T) || T->isIntegerType()) {
 | 
						|
        
 | 
						|
        RVal V = Ex ? GetRVal(St, Ex) : UndefinedVal();
 | 
						|
        
 | 
						|
        if (Ex && V.isUnknown()) {
 | 
						|
          
 | 
						|
          // EXPERIMENTAL: "Conjured" symbols.
 | 
						|
 | 
						|
          unsigned Count = Builder->getCurrentBlockCount();
 | 
						|
          SymbolID Sym = SymMgr.getConjuredSymbol(Ex, Count);
 | 
						|
          
 | 
						|
          V = IsPointerType(Ex->getType())
 | 
						|
            ? cast<RVal>(lval::SymbolVal(Sym)) 
 | 
						|
            : cast<RVal>(nonlval::SymbolVal(Sym));            
 | 
						|
        }
 | 
						|
        
 | 
						|
        St = SetRVal(St, lval::DeclVal(VD), V);        
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Create a new node.  We don't really need to create a new NodeSet
 | 
						|
    // here, but it simplifies things and doesn't cost much.
 | 
						|
    NodeSet Tmp2;    
 | 
						|
    MakeNode(Tmp2, DS, *I, St);
 | 
						|
    if (Tmp2.empty()) Tmp2.Add(*I);
 | 
						|
    
 | 
						|
    for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2!=E2; ++I2)
 | 
						|
      VisitDeclStmtAux(DS, D->getNextDeclarator(), *I2, Dst);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// VisitSizeOfAlignOfTypeExpr - Transfer function for sizeof(type).
 | 
						|
void GRExprEngine::VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr* Ex,
 | 
						|
                                              NodeTy* Pred,
 | 
						|
                                              NodeSet& Dst) {
 | 
						|
  QualType T = Ex->getArgumentType();
 | 
						|
  uint64_t amt;  
 | 
						|
  
 | 
						|
  if (Ex->isSizeOf()) {
 | 
						|
 | 
						|
    // FIXME: Add support for VLAs.
 | 
						|
    if (!T.getTypePtr()->isConstantSizeType())
 | 
						|
      return;
 | 
						|
    
 | 
						|
    // Some code tries to take the sizeof an ObjCInterfaceType, relying that
 | 
						|
    // the compiler has laid out its representation.  Just report Unknown
 | 
						|
    // for these.
 | 
						|
    if (T->isObjCInterfaceType())
 | 
						|
      return;
 | 
						|
    
 | 
						|
    amt = 1;  // Handle sizeof(void)
 | 
						|
    
 | 
						|
    if (T != getContext().VoidTy)
 | 
						|
      amt = getContext().getTypeSize(T) / 8;
 | 
						|
    
 | 
						|
  }
 | 
						|
  else  // Get alignment of the type.
 | 
						|
    amt = getContext().getTypeAlign(T) / 8;
 | 
						|
  
 | 
						|
  MakeNode(Dst, Ex, Pred,
 | 
						|
           SetRVal(GetState(Pred), Ex,
 | 
						|
                   NonLVal::MakeVal(BasicVals, amt, Ex->getType())));  
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred,
 | 
						|
                                      NodeSet& Dst, bool asLVal) {
 | 
						|
 | 
						|
  switch (U->getOpcode()) {
 | 
						|
      
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case UnaryOperator::Deref: {
 | 
						|
      
 | 
						|
      Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      NodeSet Tmp;
 | 
						|
      Visit(Ex, Pred, Tmp);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
        
 | 
						|
        ValueState* St = GetState(*I);
 | 
						|
        RVal location = GetRVal(St, Ex);
 | 
						|
        
 | 
						|
        if (asLVal)
 | 
						|
          MakeNode(Dst, U, *I, SetRVal(St, U, location));
 | 
						|
        else
 | 
						|
          EvalLoad(Dst, Ex, *I, St, location);
 | 
						|
      } 
 | 
						|
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
      
 | 
						|
    case UnaryOperator::OffsetOf:
 | 
						|
      // FIXME: Just report "Unknown" known for OffsetOf.
 | 
						|
      Dst.Add(Pred);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case UnaryOperator::Plus: assert (!asLVal);  // FALL-THROUGH.
 | 
						|
    case UnaryOperator::Extension: {
 | 
						|
      
 | 
						|
      // Unary "+" is a no-op, similar to a parentheses.  We still have places
 | 
						|
      // where it may be a block-level expression, so we need to
 | 
						|
      // generate an extra node that just propagates the value of the
 | 
						|
      // subexpression.
 | 
						|
 | 
						|
      Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      NodeSet Tmp;
 | 
						|
      Visit(Ex, Pred, Tmp);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {        
 | 
						|
        ValueState* St = GetState(*I);
 | 
						|
        MakeNode(Dst, U, *I, SetRVal(St, U, GetRVal(St, Ex)));
 | 
						|
      }
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    case UnaryOperator::AddrOf: {
 | 
						|
      
 | 
						|
      assert (!asLVal);
 | 
						|
      Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      NodeSet Tmp;
 | 
						|
      VisitLVal(Ex, Pred, Tmp);
 | 
						|
     
 | 
						|
      for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {        
 | 
						|
        ValueState* St = GetState(*I);
 | 
						|
        RVal V = GetRVal(St, Ex);
 | 
						|
        St = SetRVal(St, U, V);
 | 
						|
        MakeNode(Dst, U, *I, St);
 | 
						|
      }
 | 
						|
 | 
						|
      return; 
 | 
						|
    }
 | 
						|
      
 | 
						|
    case UnaryOperator::LNot:
 | 
						|
    case UnaryOperator::Minus:
 | 
						|
    case UnaryOperator::Not: {
 | 
						|
      
 | 
						|
      assert (!asLVal);
 | 
						|
      Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      NodeSet Tmp;
 | 
						|
      Visit(Ex, Pred, Tmp);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {        
 | 
						|
        ValueState* St = GetState(*I);
 | 
						|
        RVal V = GetRVal(St, Ex);
 | 
						|
        
 | 
						|
        if (V.isUnknownOrUndef()) {
 | 
						|
          MakeNode(Dst, U, *I, SetRVal(St, U, V));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        switch (U->getOpcode()) {
 | 
						|
          default:
 | 
						|
            assert(false && "Invalid Opcode.");
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case UnaryOperator::Not:
 | 
						|
            St = SetRVal(St, U, EvalComplement(cast<NonLVal>(V)));
 | 
						|
            break;            
 | 
						|
            
 | 
						|
          case UnaryOperator::Minus:
 | 
						|
            St = SetRVal(St, U, EvalMinus(U, cast<NonLVal>(V)));
 | 
						|
            break;   
 | 
						|
            
 | 
						|
          case UnaryOperator::LNot:   
 | 
						|
            
 | 
						|
            // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
 | 
						|
            //
 | 
						|
            //  Note: technically we do "E == 0", but this is the same in the
 | 
						|
            //    transfer functions as "0 == E".
 | 
						|
            
 | 
						|
            if (isa<LVal>(V)) {
 | 
						|
              lval::ConcreteInt X(BasicVals.getZeroWithPtrWidth());
 | 
						|
              RVal Result = EvalBinOp(BinaryOperator::EQ, cast<LVal>(V), X);
 | 
						|
              St = SetRVal(St, U, Result);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
              nonlval::ConcreteInt X(BasicVals.getValue(0, Ex->getType()));
 | 
						|
              RVal Result = EvalBinOp(BinaryOperator::EQ, cast<NonLVal>(V), X);
 | 
						|
              St = SetRVal(St, U, Result);
 | 
						|
            }
 | 
						|
            
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        
 | 
						|
        MakeNode(Dst, U, *I, St);
 | 
						|
      }
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case UnaryOperator::SizeOf: {
 | 
						|
            
 | 
						|
      QualType T = U->getSubExpr()->getType();
 | 
						|
        
 | 
						|
      // FIXME: Add support for VLAs.
 | 
						|
      
 | 
						|
      if (!T.getTypePtr()->isConstantSizeType())
 | 
						|
        return;
 | 
						|
        
 | 
						|
      uint64_t size = getContext().getTypeSize(T) / 8;                
 | 
						|
      ValueState* St = GetState(Pred);
 | 
						|
      St = SetRVal(St, U, NonLVal::MakeVal(BasicVals, size, U->getType()));
 | 
						|
        
 | 
						|
      MakeNode(Dst, U, Pred, St);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle ++ and -- (both pre- and post-increment).
 | 
						|
 | 
						|
  assert (U->isIncrementDecrementOp());
 | 
						|
  NodeSet Tmp;
 | 
						|
  Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
  VisitLVal(Ex, Pred, Tmp);
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
 | 
						|
    
 | 
						|
    ValueState* St = GetState(*I);
 | 
						|
    RVal V1 = GetRVal(St, Ex);
 | 
						|
    
 | 
						|
    // Perform a load.      
 | 
						|
    NodeSet Tmp2;
 | 
						|
    EvalLoad(Tmp2, Ex, *I, St, V1);
 | 
						|
 | 
						|
    for (NodeSet::iterator I2 = Tmp2.begin(), E2 = Tmp2.end(); I2!=E2; ++I2) {
 | 
						|
        
 | 
						|
      St = GetState(*I2);
 | 
						|
      RVal V2 = GetRVal(St, Ex);
 | 
						|
        
 | 
						|
      // Propagate unknown and undefined values.      
 | 
						|
      if (V2.isUnknownOrUndef()) {
 | 
						|
        MakeNode(Dst, U, *I2, SetRVal(St, U, V2));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Handle all other values.
 | 
						|
      
 | 
						|
      BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add
 | 
						|
                                                     : BinaryOperator::Sub;
 | 
						|
      
 | 
						|
      RVal Result = EvalBinOp(Op, V2, MakeConstantVal(1U, U));      
 | 
						|
      St = SetRVal(St, U, U->isPostfix() ? V2 : Result);
 | 
						|
 | 
						|
      // Perform the store.      
 | 
						|
      EvalStore(Dst, U, *I2, St, V1, Result);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst);
 | 
						|
}  
 | 
						|
 | 
						|
void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A,
 | 
						|
                                             AsmStmt::outputs_iterator I,
 | 
						|
                                             AsmStmt::outputs_iterator E,
 | 
						|
                                             NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  if (I == E) {
 | 
						|
    VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  NodeSet Tmp;
 | 
						|
  VisitLVal(*I, Pred, Tmp);
 | 
						|
  
 | 
						|
  ++I;
 | 
						|
  
 | 
						|
  for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
 | 
						|
    VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A,
 | 
						|
                                            AsmStmt::inputs_iterator I,
 | 
						|
                                            AsmStmt::inputs_iterator E,
 | 
						|
                                            NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  if (I == E) {
 | 
						|
    
 | 
						|
    // We have processed both the inputs and the outputs.  All of the outputs
 | 
						|
    // should evaluate to LVals.  Nuke all of their values.
 | 
						|
    
 | 
						|
    // FIXME: Some day in the future it would be nice to allow a "plug-in"
 | 
						|
    // which interprets the inline asm and stores proper results in the
 | 
						|
    // outputs.
 | 
						|
    
 | 
						|
    ValueState* St = GetState(Pred);
 | 
						|
    
 | 
						|
    for (AsmStmt::outputs_iterator OI = A->begin_outputs(),
 | 
						|
                                   OE = A->end_outputs(); OI != OE; ++OI) {
 | 
						|
      
 | 
						|
      RVal X = GetRVal(St, *OI);      
 | 
						|
      assert (!isa<NonLVal>(X));  // Should be an Lval, or unknown, undef.
 | 
						|
      
 | 
						|
      if (isa<LVal>(X))
 | 
						|
        St = SetRVal(St, cast<LVal>(X), UnknownVal());
 | 
						|
    }
 | 
						|
    
 | 
						|
    MakeNode(Dst, A, Pred, St);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  NodeSet Tmp;
 | 
						|
  Visit(*I, Pred, Tmp);
 | 
						|
  
 | 
						|
  ++I;
 | 
						|
  
 | 
						|
  for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
 | 
						|
    VisitAsmStmtHelperInputs(A, I, E, *NI, Dst);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::EvalReturn(NodeSet& Dst, ReturnStmt* S, NodeTy* Pred) {
 | 
						|
  assert (Builder && "GRStmtNodeBuilder must be defined.");
 | 
						|
  
 | 
						|
  unsigned size = Dst.size();  
 | 
						|
 | 
						|
  SaveAndRestore<bool> OldSink(Builder->BuildSinks);
 | 
						|
  SaveOr OldHasGen(Builder->HasGeneratedNode);
 | 
						|
 | 
						|
  TF->EvalReturn(Dst, *this, *Builder, S, Pred);
 | 
						|
  
 | 
						|
  // Handle the case where no nodes where generated.
 | 
						|
  
 | 
						|
  if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
 | 
						|
    MakeNode(Dst, S, Pred, GetState(Pred));
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitReturnStmt(ReturnStmt* S, NodeTy* Pred, NodeSet& Dst) {
 | 
						|
 | 
						|
  Expr* R = S->getRetValue();
 | 
						|
  
 | 
						|
  if (!R) {
 | 
						|
    EvalReturn(Dst, S, Pred);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  NodeSet DstRet;
 | 
						|
  QualType T = R->getType();
 | 
						|
  
 | 
						|
  if (T->isPointerLikeType()) {
 | 
						|
    
 | 
						|
    // Check if any of the return values return the address of a stack variable.
 | 
						|
    
 | 
						|
    NodeSet Tmp;
 | 
						|
    Visit(R, Pred, Tmp);
 | 
						|
    
 | 
						|
    for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
      RVal X = GetRVal((*I)->getState(), R);
 | 
						|
 | 
						|
      if (isa<lval::DeclVal>(X)) {
 | 
						|
        
 | 
						|
        if (cast<lval::DeclVal>(X).getDecl()->hasLocalStorage()) {
 | 
						|
        
 | 
						|
          // Create a special node representing the v
 | 
						|
          
 | 
						|
          NodeTy* RetStackNode = Builder->generateNode(S, GetState(*I), *I);
 | 
						|
          
 | 
						|
          if (RetStackNode) {
 | 
						|
            RetStackNode->markAsSink();
 | 
						|
            RetsStackAddr.insert(RetStackNode);
 | 
						|
          }
 | 
						|
          
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      DstRet.Add(*I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
    Visit(R, Pred, DstRet);
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I=DstRet.begin(), E=DstRet.end(); I!=E; ++I)
 | 
						|
    EvalReturn(Dst, S, *I);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer functions: Binary operators.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool GRExprEngine::CheckDivideZero(Expr* Ex, ValueState* St,
 | 
						|
                                   NodeTy* Pred, RVal Denom) {
 | 
						|
  
 | 
						|
  // Divide by undefined? (potentially zero)
 | 
						|
  
 | 
						|
  if (Denom.isUndef()) {
 | 
						|
    NodeTy* DivUndef = Builder->generateNode(Ex, St, Pred);
 | 
						|
    
 | 
						|
    if (DivUndef) {
 | 
						|
      DivUndef->markAsSink();
 | 
						|
      ExplicitBadDivides.insert(DivUndef);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check for divide/remainder-by-zero.
 | 
						|
  // First, "assume" that the denominator is 0 or undefined.            
 | 
						|
  
 | 
						|
  bool isFeasibleZero = false;
 | 
						|
  ValueState* ZeroSt =  Assume(St, Denom, false, isFeasibleZero);
 | 
						|
  
 | 
						|
  // Second, "assume" that the denominator cannot be 0.            
 | 
						|
  
 | 
						|
  bool isFeasibleNotZero = false;
 | 
						|
  St = Assume(St, Denom, true, isFeasibleNotZero);
 | 
						|
  
 | 
						|
  // Create the node for the divide-by-zero (if it occurred).
 | 
						|
  
 | 
						|
  if (isFeasibleZero)
 | 
						|
    if (NodeTy* DivZeroNode = Builder->generateNode(Ex, ZeroSt, Pred)) {
 | 
						|
      DivZeroNode->markAsSink();
 | 
						|
      
 | 
						|
      if (isFeasibleNotZero)
 | 
						|
        ImplicitBadDivides.insert(DivZeroNode);
 | 
						|
      else
 | 
						|
        ExplicitBadDivides.insert(DivZeroNode);
 | 
						|
      
 | 
						|
    }
 | 
						|
  
 | 
						|
  return !isFeasibleNotZero;
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitBinaryOperator(BinaryOperator* B,
 | 
						|
                                       GRExprEngine::NodeTy* Pred,
 | 
						|
                                       GRExprEngine::NodeSet& Dst) {
 | 
						|
 | 
						|
  NodeSet Tmp1;
 | 
						|
  Expr* LHS = B->getLHS()->IgnoreParens();
 | 
						|
  Expr* RHS = B->getRHS()->IgnoreParens();
 | 
						|
  
 | 
						|
  if (B->isAssignmentOp())
 | 
						|
    VisitLVal(LHS, Pred, Tmp1);
 | 
						|
  else
 | 
						|
    Visit(LHS, Pred, Tmp1);
 | 
						|
 | 
						|
  for (NodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1 != E1; ++I1) {
 | 
						|
 | 
						|
    RVal LeftV = GetRVal((*I1)->getState(), LHS);
 | 
						|
    
 | 
						|
    // Process the RHS.
 | 
						|
    
 | 
						|
    NodeSet Tmp2;
 | 
						|
    Visit(RHS, *I1, Tmp2);
 | 
						|
    
 | 
						|
    // With both the LHS and RHS evaluated, process the operation itself.
 | 
						|
    
 | 
						|
    for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2 != E2; ++I2) {
 | 
						|
 | 
						|
      ValueState* St = GetState(*I2);
 | 
						|
      RVal RightV = GetRVal(St, RHS);
 | 
						|
      BinaryOperator::Opcode Op = B->getOpcode();
 | 
						|
      
 | 
						|
      switch (Op) {
 | 
						|
          
 | 
						|
        case BinaryOperator::Assign: {
 | 
						|
          
 | 
						|
          // EXPERIMENTAL: "Conjured" symbols.
 | 
						|
          
 | 
						|
          if (RightV.isUnknown()) {            
 | 
						|
            unsigned Count = Builder->getCurrentBlockCount();
 | 
						|
            SymbolID Sym = SymMgr.getConjuredSymbol(B->getRHS(), Count);
 | 
						|
            
 | 
						|
            RightV = IsPointerType(B->getRHS()->getType()) 
 | 
						|
                   ? cast<RVal>(lval::SymbolVal(Sym)) 
 | 
						|
                   : cast<RVal>(nonlval::SymbolVal(Sym));            
 | 
						|
          }
 | 
						|
          
 | 
						|
          // Simulate the effects of a "store":  bind the value of the RHS
 | 
						|
          // to the L-Value represented by the LHS.
 | 
						|
          
 | 
						|
          EvalStore(Dst, B, *I2, SetRVal(St, B, RightV), LeftV, RightV);          
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
          
 | 
						|
        case BinaryOperator::Div:
 | 
						|
        case BinaryOperator::Rem:
 | 
						|
          
 | 
						|
          // Special checking for integer denominators.
 | 
						|
          
 | 
						|
          if (RHS->getType()->isIntegerType()
 | 
						|
              && CheckDivideZero(B, St, *I2, RightV))
 | 
						|
            continue;
 | 
						|
          
 | 
						|
          // FALL-THROUGH.
 | 
						|
 | 
						|
        default: {
 | 
						|
      
 | 
						|
          if (B->isAssignmentOp())
 | 
						|
            break;
 | 
						|
          
 | 
						|
          // Process non-assignements except commas or short-circuited
 | 
						|
          // logical expressions (LAnd and LOr).
 | 
						|
          
 | 
						|
          RVal Result = EvalBinOp(Op, LeftV, RightV);
 | 
						|
          
 | 
						|
          if (Result.isUnknown()) {
 | 
						|
            Dst.Add(*I2);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          
 | 
						|
          if (Result.isUndef() && !LeftV.isUndef() && !RightV.isUndef()) {
 | 
						|
            
 | 
						|
            // The operands were *not* undefined, but the result is undefined.
 | 
						|
            // This is a special node that should be flagged as an error.
 | 
						|
            
 | 
						|
            if (NodeTy* UndefNode = Builder->generateNode(B, St, *I2)) {
 | 
						|
              UndefNode->markAsSink();            
 | 
						|
              UndefResults.insert(UndefNode);
 | 
						|
            }
 | 
						|
            
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          
 | 
						|
          // Otherwise, create a new node.
 | 
						|
          
 | 
						|
          MakeNode(Dst, B, *I2, SetRVal(St, B, Result));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    
 | 
						|
      assert (B->isCompoundAssignmentOp());
 | 
						|
 | 
						|
      if (Op >= BinaryOperator::AndAssign)
 | 
						|
        ((int&) Op) -= (BinaryOperator::AndAssign - BinaryOperator::And);
 | 
						|
      else
 | 
						|
        ((int&) Op) -= BinaryOperator::MulAssign;  
 | 
						|
          
 | 
						|
      // Perform a load (the LHS).  This performs the checks for
 | 
						|
      // null dereferences, and so on.
 | 
						|
      NodeSet Tmp3;
 | 
						|
      RVal location = GetRVal(St, LHS);
 | 
						|
      EvalLoad(Tmp3, LHS, *I2, St, location);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator I3=Tmp3.begin(), E3=Tmp3.end(); I3!=E3; ++I3) {
 | 
						|
        
 | 
						|
        St = GetState(*I3);
 | 
						|
        RVal V = GetRVal(St, LHS);
 | 
						|
 | 
						|
        // Propagate undefined values (left-side).          
 | 
						|
        if (V.isUndef()) {
 | 
						|
          EvalStore(Dst, B, *I3, SetRVal(St, B, V), location, V);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Propagate unknown values (left and right-side).
 | 
						|
        if (RightV.isUnknown() || V.isUnknown()) {
 | 
						|
          EvalStore(Dst, B, *I3, SetRVal(St, B, UnknownVal()), location,
 | 
						|
                    UnknownVal());
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // At this point:
 | 
						|
        //
 | 
						|
        //  The LHS is not Undef/Unknown.
 | 
						|
        //  The RHS is not Unknown.
 | 
						|
        
 | 
						|
        // Get the computation type.
 | 
						|
        QualType CTy = cast<CompoundAssignOperator>(B)->getComputationType();
 | 
						|
          
 | 
						|
        // Perform promotions.
 | 
						|
        V = EvalCast(V, CTy);
 | 
						|
        RightV = EvalCast(RightV, CTy);
 | 
						|
          
 | 
						|
        // Evaluate operands and promote to result type.                    
 | 
						|
 | 
						|
        if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem)
 | 
						|
             && RHS->getType()->isIntegerType()) {
 | 
						|
          
 | 
						|
          if (CheckDivideZero(B, St, *I3, RightV))
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        else if (RightV.isUndef()) {
 | 
						|
            
 | 
						|
          // Propagate undefined values (right-side).
 | 
						|
          
 | 
						|
          EvalStore(Dst, B, *I3, SetRVal(St, B, RightV), location, RightV);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      
 | 
						|
        // Compute the result of the operation.
 | 
						|
      
 | 
						|
        RVal Result = EvalCast(EvalBinOp(Op, V, RightV), B->getType());
 | 
						|
          
 | 
						|
        if (Result.isUndef()) {
 | 
						|
            
 | 
						|
          // The operands were not undefined, but the result is undefined.
 | 
						|
          
 | 
						|
          if (NodeTy* UndefNode = Builder->generateNode(B, St, *I3)) {
 | 
						|
            UndefNode->markAsSink();            
 | 
						|
            UndefResults.insert(UndefNode);
 | 
						|
          }
 | 
						|
          
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 
 | 
						|
        EvalStore(Dst, B, *I3, SetRVal(St, B, Result), location, Result);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// "Assume" logic.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ValueState* GRExprEngine::Assume(ValueState* St, LVal Cond,
 | 
						|
                                 bool Assumption, bool& isFeasible) {
 | 
						|
                                             
 | 
						|
  St = AssumeAux(St, Cond, Assumption, isFeasible);
 | 
						|
  
 | 
						|
  return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
 | 
						|
                    : St;
 | 
						|
}
 | 
						|
 | 
						|
ValueState* GRExprEngine::AssumeAux(ValueState* St, LVal Cond,
 | 
						|
                                    bool Assumption, bool& isFeasible) {
 | 
						|
                                       
 | 
						|
  switch (Cond.getSubKind()) {
 | 
						|
    default:
 | 
						|
      assert (false && "'Assume' not implemented for this LVal.");
 | 
						|
      return St;
 | 
						|
 | 
						|
    case lval::SymbolValKind:
 | 
						|
      if (Assumption)
 | 
						|
        return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(),
 | 
						|
                           BasicVals.getZeroWithPtrWidth(), isFeasible);
 | 
						|
      else
 | 
						|
        return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(),
 | 
						|
                           BasicVals.getZeroWithPtrWidth(), isFeasible);
 | 
						|
 | 
						|
 | 
						|
    case lval::DeclValKind:
 | 
						|
    case lval::FuncValKind:
 | 
						|
    case lval::GotoLabelKind:
 | 
						|
    case lval::StringLiteralValKind:
 | 
						|
      isFeasible = Assumption;
 | 
						|
      return St;
 | 
						|
      
 | 
						|
    case lval::FieldOffsetKind:
 | 
						|
      return AssumeAux(St, cast<lval::FieldOffset>(Cond).getBase(),
 | 
						|
                       Assumption, isFeasible);
 | 
						|
      
 | 
						|
    case lval::ArrayOffsetKind:
 | 
						|
      return AssumeAux(St, cast<lval::ArrayOffset>(Cond).getBase(),
 | 
						|
                       Assumption, isFeasible);
 | 
						|
      
 | 
						|
    case lval::ConcreteIntKind: {
 | 
						|
      bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0;
 | 
						|
      isFeasible = b ? Assumption : !Assumption;      
 | 
						|
      return St;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ValueState* GRExprEngine::Assume(ValueState* St, NonLVal Cond,
 | 
						|
                                 bool Assumption, bool& isFeasible) {
 | 
						|
 | 
						|
  St = AssumeAux(St, Cond, Assumption, isFeasible);
 | 
						|
 | 
						|
  return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
 | 
						|
                    : St;
 | 
						|
}
 | 
						|
 | 
						|
ValueState* GRExprEngine::AssumeAux(ValueState* St, NonLVal Cond,
 | 
						|
                                    bool Assumption, bool& isFeasible) {  
 | 
						|
  switch (Cond.getSubKind()) {
 | 
						|
    default:
 | 
						|
      assert (false && "'Assume' not implemented for this NonLVal.");
 | 
						|
      return St;
 | 
						|
      
 | 
						|
      
 | 
						|
    case nonlval::SymbolValKind: {
 | 
						|
      nonlval::SymbolVal& SV = cast<nonlval::SymbolVal>(Cond);
 | 
						|
      SymbolID sym = SV.getSymbol();
 | 
						|
      
 | 
						|
      if (Assumption)
 | 
						|
        return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
 | 
						|
                           isFeasible);
 | 
						|
      else
 | 
						|
        return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
 | 
						|
                           isFeasible);
 | 
						|
    }
 | 
						|
      
 | 
						|
    case nonlval::SymIntConstraintValKind:
 | 
						|
      return
 | 
						|
        AssumeSymInt(St, Assumption,
 | 
						|
                     cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(),
 | 
						|
                     isFeasible);
 | 
						|
      
 | 
						|
    case nonlval::ConcreteIntKind: {
 | 
						|
      bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0;
 | 
						|
      isFeasible = b ? Assumption : !Assumption;      
 | 
						|
      return St;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case nonlval::LValAsIntegerKind: {
 | 
						|
      return AssumeAux(St, cast<nonlval::LValAsInteger>(Cond).getLVal(),
 | 
						|
                       Assumption, isFeasible);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ValueState*
 | 
						|
GRExprEngine::AssumeSymNE(ValueState* St, SymbolID sym,
 | 
						|
                         const llvm::APSInt& V, bool& isFeasible) {
 | 
						|
  
 | 
						|
  // First, determine if sym == X, where X != V.
 | 
						|
  if (const llvm::APSInt* X = St->getSymVal(sym)) {
 | 
						|
    isFeasible = *X != V;
 | 
						|
    return St;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Second, determine if sym != V.
 | 
						|
  if (St->isNotEqual(sym, V)) {
 | 
						|
    isFeasible = true;
 | 
						|
    return St;
 | 
						|
  }
 | 
						|
      
 | 
						|
  // If we reach here, sym is not a constant and we don't know if it is != V.
 | 
						|
  // Make that assumption.
 | 
						|
  
 | 
						|
  isFeasible = true;
 | 
						|
  return StateMgr.AddNE(St, sym, V);
 | 
						|
}
 | 
						|
 | 
						|
ValueState*
 | 
						|
GRExprEngine::AssumeSymEQ(ValueState* St, SymbolID sym,
 | 
						|
                         const llvm::APSInt& V, bool& isFeasible) {
 | 
						|
  
 | 
						|
  // First, determine if sym == X, where X != V.
 | 
						|
  if (const llvm::APSInt* X = St->getSymVal(sym)) {
 | 
						|
    isFeasible = *X == V;
 | 
						|
    return St;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Second, determine if sym != V.
 | 
						|
  if (St->isNotEqual(sym, V)) {
 | 
						|
    isFeasible = false;
 | 
						|
    return St;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we reach here, sym is not a constant and we don't know if it is == V.
 | 
						|
  // Make that assumption.
 | 
						|
  
 | 
						|
  isFeasible = true;
 | 
						|
  return StateMgr.AddEQ(St, sym, V);
 | 
						|
}
 | 
						|
 | 
						|
ValueState*
 | 
						|
GRExprEngine::AssumeSymInt(ValueState* St, bool Assumption,
 | 
						|
                          const SymIntConstraint& C, bool& isFeasible) {
 | 
						|
  
 | 
						|
  switch (C.getOpcode()) {
 | 
						|
    default:
 | 
						|
      // No logic yet for other operators.
 | 
						|
      isFeasible = true;
 | 
						|
      return St;
 | 
						|
      
 | 
						|
    case BinaryOperator::EQ:
 | 
						|
      if (Assumption)
 | 
						|
        return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
 | 
						|
      else
 | 
						|
        return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
 | 
						|
      
 | 
						|
    case BinaryOperator::NE:
 | 
						|
      if (Assumption)
 | 
						|
        return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
 | 
						|
      else
 | 
						|
        return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Visualization.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static GRExprEngine* GraphPrintCheckerState;
 | 
						|
static SourceManager* GraphPrintSourceManager;
 | 
						|
static ValueState::CheckerStatePrinter* GraphCheckerStatePrinter;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template<>
 | 
						|
struct VISIBILITY_HIDDEN DOTGraphTraits<GRExprEngine::NodeTy*> :
 | 
						|
  public DefaultDOTGraphTraits {
 | 
						|
    
 | 
						|
  static void PrintVarBindings(std::ostream& Out, ValueState* St) {
 | 
						|
 | 
						|
    Out << "Variables:\\l";
 | 
						|
    
 | 
						|
    bool isFirst = true;
 | 
						|
    
 | 
						|
    for (ValueState::vb_iterator I=St->vb_begin(), E=St->vb_end(); I!=E;++I) {        
 | 
						|
 | 
						|
      if (isFirst)
 | 
						|
        isFirst = false;
 | 
						|
      else
 | 
						|
        Out << "\\l";
 | 
						|
      
 | 
						|
      Out << ' ' << I.getKey()->getName() << " : ";
 | 
						|
      I.getData().print(Out);
 | 
						|
    }
 | 
						|
    
 | 
						|
  }
 | 
						|
    
 | 
						|
    
 | 
						|
  static void PrintSubExprBindings(std::ostream& Out, ValueState* St){
 | 
						|
    
 | 
						|
    bool isFirst = true;
 | 
						|
    
 | 
						|
    for (ValueState::seb_iterator I=St->seb_begin(), E=St->seb_end();I!=E;++I) {        
 | 
						|
      
 | 
						|
      if (isFirst) {
 | 
						|
        Out << "\\l\\lSub-Expressions:\\l";
 | 
						|
        isFirst = false;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        Out << "\\l";
 | 
						|
      
 | 
						|
      Out << " (" << (void*) I.getKey() << ") ";
 | 
						|
      I.getKey()->printPretty(Out);
 | 
						|
      Out << " : ";
 | 
						|
      I.getData().print(Out);
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  static void PrintBlkExprBindings(std::ostream& Out, ValueState* St){
 | 
						|
        
 | 
						|
    bool isFirst = true;
 | 
						|
 | 
						|
    for (ValueState::beb_iterator I=St->beb_begin(), E=St->beb_end(); I!=E;++I){      
 | 
						|
      if (isFirst) {
 | 
						|
        Out << "\\l\\lBlock-level Expressions:\\l";
 | 
						|
        isFirst = false;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        Out << "\\l";
 | 
						|
 | 
						|
      Out << " (" << (void*) I.getKey() << ") ";
 | 
						|
      I.getKey()->printPretty(Out);
 | 
						|
      Out << " : ";
 | 
						|
      I.getData().print(Out);
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  static void PrintEQ(std::ostream& Out, ValueState* St) {
 | 
						|
    ValueState::ConstEqTy CE = St->ConstEq;
 | 
						|
    
 | 
						|
    if (CE.isEmpty())
 | 
						|
      return;
 | 
						|
    
 | 
						|
    Out << "\\l\\|'==' constraints:";
 | 
						|
 | 
						|
    for (ValueState::ConstEqTy::iterator I=CE.begin(), E=CE.end(); I!=E;++I)
 | 
						|
      Out << "\\l $" << I.getKey() << " : " << I.getData()->toString();
 | 
						|
  }
 | 
						|
    
 | 
						|
  static void PrintNE(std::ostream& Out, ValueState* St) {
 | 
						|
    ValueState::ConstNotEqTy NE = St->ConstNotEq;
 | 
						|
    
 | 
						|
    if (NE.isEmpty())
 | 
						|
      return;
 | 
						|
    
 | 
						|
    Out << "\\l\\|'!=' constraints:";
 | 
						|
    
 | 
						|
    for (ValueState::ConstNotEqTy::iterator I=NE.begin(), EI=NE.end();
 | 
						|
         I != EI; ++I){
 | 
						|
      
 | 
						|
      Out << "\\l $" << I.getKey() << " : ";
 | 
						|
      bool isFirst = true;
 | 
						|
      
 | 
						|
      ValueState::IntSetTy::iterator J=I.getData().begin(),
 | 
						|
                                    EJ=I.getData().end();      
 | 
						|
      for ( ; J != EJ; ++J) {        
 | 
						|
        if (isFirst) isFirst = false;
 | 
						|
        else Out << ", ";
 | 
						|
        
 | 
						|
        Out << (*J)->toString();
 | 
						|
      }    
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) {
 | 
						|
    
 | 
						|
    if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
 | 
						|
        GraphPrintCheckerState->isExplicitNullDeref(N) ||
 | 
						|
        GraphPrintCheckerState->isUndefDeref(N) ||
 | 
						|
        GraphPrintCheckerState->isUndefStore(N) ||
 | 
						|
        GraphPrintCheckerState->isUndefControlFlow(N) ||
 | 
						|
        GraphPrintCheckerState->isExplicitBadDivide(N) ||
 | 
						|
        GraphPrintCheckerState->isImplicitBadDivide(N) ||
 | 
						|
        GraphPrintCheckerState->isUndefResult(N) ||
 | 
						|
        GraphPrintCheckerState->isBadCall(N) ||
 | 
						|
        GraphPrintCheckerState->isUndefArg(N))
 | 
						|
      return "color=\"red\",style=\"filled\"";
 | 
						|
    
 | 
						|
    if (GraphPrintCheckerState->isNoReturnCall(N))
 | 
						|
      return "color=\"blue\",style=\"filled\"";
 | 
						|
    
 | 
						|
    return "";
 | 
						|
  }
 | 
						|
    
 | 
						|
  static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) {
 | 
						|
    std::ostringstream Out;
 | 
						|
 | 
						|
    // Program Location.
 | 
						|
    ProgramPoint Loc = N->getLocation();
 | 
						|
    
 | 
						|
    switch (Loc.getKind()) {
 | 
						|
      case ProgramPoint::BlockEntranceKind:
 | 
						|
        Out << "Block Entrance: B" 
 | 
						|
            << cast<BlockEntrance>(Loc).getBlock()->getBlockID();
 | 
						|
        break;
 | 
						|
      
 | 
						|
      case ProgramPoint::BlockExitKind:
 | 
						|
        assert (false);
 | 
						|
        break;
 | 
						|
        
 | 
						|
      case ProgramPoint::PostLoadKind:
 | 
						|
      case ProgramPoint::PostStmtKind: {
 | 
						|
        const PostStmt& L = cast<PostStmt>(Loc);        
 | 
						|
        Stmt* S = L.getStmt();
 | 
						|
        SourceLocation SLoc = S->getLocStart();
 | 
						|
 | 
						|
        Out << S->getStmtClassName() << ' ' << (void*) S << ' ';        
 | 
						|
        S->printPretty(Out);
 | 
						|
        
 | 
						|
        if (SLoc.isFileID()) {        
 | 
						|
          Out << "\\lline="
 | 
						|
            << GraphPrintSourceManager->getLineNumber(SLoc) << " col="
 | 
						|
            << GraphPrintSourceManager->getColumnNumber(SLoc) << "\\l";          
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (GraphPrintCheckerState->isImplicitNullDeref(N))
 | 
						|
          Out << "\\|Implicit-Null Dereference.\\l";
 | 
						|
        else if (GraphPrintCheckerState->isExplicitNullDeref(N))
 | 
						|
          Out << "\\|Explicit-Null Dereference.\\l";
 | 
						|
        else if (GraphPrintCheckerState->isUndefDeref(N))
 | 
						|
          Out << "\\|Dereference of undefialied value.\\l";
 | 
						|
        else if (GraphPrintCheckerState->isUndefStore(N))
 | 
						|
          Out << "\\|Store to Undefined LVal.";
 | 
						|
        else if (GraphPrintCheckerState->isExplicitBadDivide(N))
 | 
						|
          Out << "\\|Explicit divide-by zero or undefined value.";
 | 
						|
        else if (GraphPrintCheckerState->isImplicitBadDivide(N))
 | 
						|
          Out << "\\|Implicit divide-by zero or undefined value.";
 | 
						|
        else if (GraphPrintCheckerState->isUndefResult(N))
 | 
						|
          Out << "\\|Result of operation is undefined.";
 | 
						|
        else if (GraphPrintCheckerState->isNoReturnCall(N))
 | 
						|
          Out << "\\|Call to function marked \"noreturn\".";
 | 
						|
        else if (GraphPrintCheckerState->isBadCall(N))
 | 
						|
          Out << "\\|Call to NULL/Undefined.";
 | 
						|
        else if (GraphPrintCheckerState->isUndefArg(N))
 | 
						|
          Out << "\\|Argument in call is undefined";
 | 
						|
        
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    
 | 
						|
      default: {
 | 
						|
        const BlockEdge& E = cast<BlockEdge>(Loc);
 | 
						|
        Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
 | 
						|
            << E.getDst()->getBlockID()  << ')';
 | 
						|
        
 | 
						|
        if (Stmt* T = E.getSrc()->getTerminator()) {
 | 
						|
          
 | 
						|
          SourceLocation SLoc = T->getLocStart();
 | 
						|
         
 | 
						|
          Out << "\\|Terminator: ";
 | 
						|
          
 | 
						|
          E.getSrc()->printTerminator(Out);
 | 
						|
          
 | 
						|
          if (SLoc.isFileID()) {
 | 
						|
            Out << "\\lline="
 | 
						|
              << GraphPrintSourceManager->getLineNumber(SLoc) << " col="
 | 
						|
              << GraphPrintSourceManager->getColumnNumber(SLoc);
 | 
						|
          }
 | 
						|
            
 | 
						|
          if (isa<SwitchStmt>(T)) {
 | 
						|
            Stmt* Label = E.getDst()->getLabel();
 | 
						|
            
 | 
						|
            if (Label) {                        
 | 
						|
              if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
 | 
						|
                Out << "\\lcase ";
 | 
						|
                C->getLHS()->printPretty(Out);
 | 
						|
                
 | 
						|
                if (Stmt* RHS = C->getRHS()) {
 | 
						|
                  Out << " .. ";
 | 
						|
                  RHS->printPretty(Out);
 | 
						|
                }
 | 
						|
                
 | 
						|
                Out << ":";
 | 
						|
              }
 | 
						|
              else {
 | 
						|
                assert (isa<DefaultStmt>(Label));
 | 
						|
                Out << "\\ldefault:";
 | 
						|
              }
 | 
						|
            }
 | 
						|
            else 
 | 
						|
              Out << "\\l(implicit) default:";
 | 
						|
          }
 | 
						|
          else if (isa<IndirectGotoStmt>(T)) {
 | 
						|
            // FIXME
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            Out << "\\lCondition: ";
 | 
						|
            if (*E.getSrc()->succ_begin() == E.getDst())
 | 
						|
              Out << "true";
 | 
						|
            else
 | 
						|
              Out << "false";                        
 | 
						|
          }
 | 
						|
          
 | 
						|
          Out << "\\l";
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (GraphPrintCheckerState->isUndefControlFlow(N)) {
 | 
						|
          Out << "\\|Control-flow based on\\lUndefined value.\\l";
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    Out << "\\|StateID: " << (void*) N->getState() << "\\|";
 | 
						|
 | 
						|
    N->getState()->printDOT(Out, GraphCheckerStatePrinter);
 | 
						|
      
 | 
						|
    Out << "\\l";
 | 
						|
    return Out.str();
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end llvm namespace    
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
 | 
						|
template <typename ITERATOR>
 | 
						|
GRExprEngine::NodeTy* GetGraphNode(ITERATOR I) { return *I; }
 | 
						|
 | 
						|
template <>
 | 
						|
GRExprEngine::NodeTy*
 | 
						|
GetGraphNode<llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator>
 | 
						|
  (llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator I) {
 | 
						|
  return I->first;
 | 
						|
}
 | 
						|
 | 
						|
template <typename ITERATOR>
 | 
						|
static void AddSources(std::vector<GRExprEngine::NodeTy*>& Sources,
 | 
						|
                       ITERATOR I, ITERATOR E) {
 | 
						|
  
 | 
						|
  llvm::SmallPtrSet<void*,10> CachedSources;
 | 
						|
  
 | 
						|
  for ( ; I != E; ++I ) {
 | 
						|
    GRExprEngine::NodeTy* N = GetGraphNode(I);
 | 
						|
    void* p = N->getLocation().getRawData();
 | 
						|
    
 | 
						|
    if (CachedSources.count(p))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    CachedSources.insert(p);
 | 
						|
    
 | 
						|
    Sources.push_back(N);
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void GRExprEngine::ViewGraph(bool trim) {
 | 
						|
#ifndef NDEBUG  
 | 
						|
  if (trim) {
 | 
						|
    std::vector<NodeTy*> Src;
 | 
						|
    
 | 
						|
    // Fixme: Migrate over to the new way of adding nodes.
 | 
						|
    AddSources(Src, null_derefs_begin(), null_derefs_end());
 | 
						|
    AddSources(Src, undef_derefs_begin(), undef_derefs_end());
 | 
						|
    AddSources(Src, explicit_bad_divides_begin(), explicit_bad_divides_end());
 | 
						|
    AddSources(Src, undef_results_begin(), undef_results_end());
 | 
						|
    AddSources(Src, bad_calls_begin(), bad_calls_end());
 | 
						|
    AddSources(Src, undef_arg_begin(), undef_arg_end());
 | 
						|
    AddSources(Src, undef_branches_begin(), undef_branches_end());
 | 
						|
    
 | 
						|
    // The new way.
 | 
						|
    for (BugTypeSet::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
 | 
						|
      (*I)->GetErrorNodes(Src);
 | 
						|
      
 | 
						|
    
 | 
						|
    ViewGraph(&Src[0], &Src[0]+Src.size());
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    GraphPrintCheckerState = this;
 | 
						|
    GraphPrintSourceManager = &getContext().getSourceManager();
 | 
						|
    GraphCheckerStatePrinter = TF->getCheckerStatePrinter();
 | 
						|
 | 
						|
    llvm::ViewGraph(*G.roots_begin(), "GRExprEngine");
 | 
						|
    
 | 
						|
    GraphPrintCheckerState = NULL;
 | 
						|
    GraphPrintSourceManager = NULL;
 | 
						|
    GraphCheckerStatePrinter = NULL;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::ViewGraph(NodeTy** Beg, NodeTy** End) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  GraphPrintCheckerState = this;
 | 
						|
  GraphPrintSourceManager = &getContext().getSourceManager();
 | 
						|
  GraphCheckerStatePrinter = TF->getCheckerStatePrinter();
 | 
						|
  
 | 
						|
  GRExprEngine::GraphTy* TrimmedG = G.Trim(Beg, End);
 | 
						|
 | 
						|
  if (!TrimmedG)
 | 
						|
    llvm::cerr << "warning: Trimmed ExplodedGraph is empty.\n";
 | 
						|
  else {
 | 
						|
    llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine");    
 | 
						|
    delete TrimmedG;
 | 
						|
  }  
 | 
						|
  
 | 
						|
  GraphPrintCheckerState = NULL;
 | 
						|
  GraphPrintSourceManager = NULL;
 | 
						|
  GraphCheckerStatePrinter = NULL;
 | 
						|
#endif
 | 
						|
}
 |