1119 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1119 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the primary stateless implementation of the
 | 
						|
// Alias Analysis interface that implements identities (two different
 | 
						|
// globals cannot alias, etc), but does no stateful analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/Passes.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalAlias.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Useful predicates
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isKnownNonNull - Return true if we know that the specified value is never
 | 
						|
/// null.
 | 
						|
static bool isKnownNonNull(const Value *V) {
 | 
						|
  // Alloca never returns null, malloc might.
 | 
						|
  if (isa<AllocaInst>(V)) return true;
 | 
						|
  
 | 
						|
  // A byval argument is never null.
 | 
						|
  if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    return A->hasByValAttr();
 | 
						|
 | 
						|
  // Global values are not null unless extern weak.
 | 
						|
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | 
						|
    return !GV->hasExternalWeakLinkage();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
 | 
						|
/// object that never escapes from the function.
 | 
						|
static bool isNonEscapingLocalObject(const Value *V) {
 | 
						|
  // If this is a local allocation, check to see if it escapes.
 | 
						|
  if (isa<AllocaInst>(V) || isNoAliasCall(V))
 | 
						|
    // Set StoreCaptures to True so that we can assume in our callers that the
 | 
						|
    // pointer is not the result of a load instruction. Currently
 | 
						|
    // PointerMayBeCaptured doesn't have any special analysis for the
 | 
						|
    // StoreCaptures=false case; if it did, our callers could be refined to be
 | 
						|
    // more precise.
 | 
						|
    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
 | 
						|
 | 
						|
  // If this is an argument that corresponds to a byval or noalias argument,
 | 
						|
  // then it has not escaped before entering the function.  Check if it escapes
 | 
						|
  // inside the function.
 | 
						|
  if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
 | 
						|
      // Don't bother analyzing arguments already known not to escape.
 | 
						|
      if (A->hasNoCaptureAttr())
 | 
						|
        return true;
 | 
						|
      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isEscapeSource - Return true if the pointer is one which would have
 | 
						|
/// been considered an escape by isNonEscapingLocalObject.
 | 
						|
static bool isEscapeSource(const Value *V) {
 | 
						|
  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The load case works because isNonEscapingLocalObject considers all
 | 
						|
  // stores to be escapes (it passes true for the StoreCaptures argument
 | 
						|
  // to PointerMayBeCaptured).
 | 
						|
  if (isa<LoadInst>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isObjectSmallerThan - Return true if we can prove that the object specified
 | 
						|
/// by V is smaller than Size.
 | 
						|
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
 | 
						|
                                const TargetData &TD) {
 | 
						|
  const Type *AccessTy;
 | 
						|
  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | 
						|
    AccessTy = GV->getType()->getElementType();
 | 
						|
  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | 
						|
    if (!AI->isArrayAllocation())
 | 
						|
      AccessTy = AI->getType()->getElementType();
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  } else if (const CallInst* CI = extractMallocCall(V)) {
 | 
						|
    if (!isArrayMalloc(V, &TD))
 | 
						|
      // The size is the argument to the malloc call.
 | 
						|
      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
 | 
						|
        return (C->getZExtValue() < Size);
 | 
						|
    return false;
 | 
						|
  } else if (const Argument *A = dyn_cast<Argument>(V)) {
 | 
						|
    if (A->hasByValAttr())
 | 
						|
      AccessTy = cast<PointerType>(A->getType())->getElementType();
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (AccessTy->isSized())
 | 
						|
    return TD.getTypeAllocSize(AccessTy) < Size;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// GetElementPtr Instruction Decomposition and Analysis
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  enum ExtensionKind {
 | 
						|
    EK_NotExtended,
 | 
						|
    EK_SignExt,
 | 
						|
    EK_ZeroExt
 | 
						|
  };
 | 
						|
  
 | 
						|
  struct VariableGEPIndex {
 | 
						|
    const Value *V;
 | 
						|
    ExtensionKind Extension;
 | 
						|
    int64_t Scale;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetLinearExpression - Analyze the specified value as a linear expression:
 | 
						|
/// "A*V + B", where A and B are constant integers.  Return the scale and offset
 | 
						|
/// values as APInts and return V as a Value*, and return whether we looked
 | 
						|
/// through any sign or zero extends.  The incoming Value is known to have
 | 
						|
/// IntegerType and it may already be sign or zero extended.
 | 
						|
///
 | 
						|
/// Note that this looks through extends, so the high bits may not be
 | 
						|
/// represented in the result.
 | 
						|
static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
 | 
						|
                                  ExtensionKind &Extension,
 | 
						|
                                  const TargetData &TD, unsigned Depth) {
 | 
						|
  assert(V->getType()->isIntegerTy() && "Not an integer value");
 | 
						|
 | 
						|
  // Limit our recursion depth.
 | 
						|
  if (Depth == 6) {
 | 
						|
    Scale = 1;
 | 
						|
    Offset = 0;
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
 | 
						|
    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
 | 
						|
      switch (BOp->getOpcode()) {
 | 
						|
      default: break;
 | 
						|
      case Instruction::Or:
 | 
						|
        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
 | 
						|
        // analyze it.
 | 
						|
        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
 | 
						|
          break;
 | 
						|
        // FALL THROUGH.
 | 
						|
      case Instruction::Add:
 | 
						|
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
 | 
						|
                                TD, Depth+1);
 | 
						|
        Offset += RHSC->getValue();
 | 
						|
        return V;
 | 
						|
      case Instruction::Mul:
 | 
						|
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
 | 
						|
                                TD, Depth+1);
 | 
						|
        Offset *= RHSC->getValue();
 | 
						|
        Scale *= RHSC->getValue();
 | 
						|
        return V;
 | 
						|
      case Instruction::Shl:
 | 
						|
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
 | 
						|
                                TD, Depth+1);
 | 
						|
        Offset <<= RHSC->getValue().getLimitedValue();
 | 
						|
        Scale <<= RHSC->getValue().getLimitedValue();
 | 
						|
        return V;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Since GEP indices are sign extended anyway, we don't care about the high
 | 
						|
  // bits of a sign or zero extended value - just scales and offsets.  The
 | 
						|
  // extensions have to be consistent though.
 | 
						|
  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
 | 
						|
      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
 | 
						|
    Value *CastOp = cast<CastInst>(V)->getOperand(0);
 | 
						|
    unsigned OldWidth = Scale.getBitWidth();
 | 
						|
    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
 | 
						|
    Scale.trunc(SmallWidth);
 | 
						|
    Offset.trunc(SmallWidth);
 | 
						|
    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
 | 
						|
 | 
						|
    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
 | 
						|
                                        TD, Depth+1);
 | 
						|
    Scale.zext(OldWidth);
 | 
						|
    Offset.zext(OldWidth);
 | 
						|
    
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Scale = 1;
 | 
						|
  Offset = 0;
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
 | 
						|
/// into a base pointer with a constant offset and a number of scaled symbolic
 | 
						|
/// offsets.
 | 
						|
///
 | 
						|
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
 | 
						|
/// the VarIndices vector) are Value*'s that are known to be scaled by the
 | 
						|
/// specified amount, but which may have other unrepresented high bits. As such,
 | 
						|
/// the gep cannot necessarily be reconstructed from its decomposed form.
 | 
						|
///
 | 
						|
/// When TargetData is around, this function is capable of analyzing everything
 | 
						|
/// that Value::getUnderlyingObject() can look through.  When not, it just looks
 | 
						|
/// through pointer casts.
 | 
						|
///
 | 
						|
static const Value *
 | 
						|
DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
 | 
						|
                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
 | 
						|
                       const TargetData *TD) {
 | 
						|
  // Limit recursion depth to limit compile time in crazy cases.
 | 
						|
  unsigned MaxLookup = 6;
 | 
						|
  
 | 
						|
  BaseOffs = 0;
 | 
						|
  do {
 | 
						|
    // See if this is a bitcast or GEP.
 | 
						|
    const Operator *Op = dyn_cast<Operator>(V);
 | 
						|
    if (Op == 0) {
 | 
						|
      // The only non-operator case we can handle are GlobalAliases.
 | 
						|
      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | 
						|
        if (!GA->mayBeOverridden()) {
 | 
						|
          V = GA->getAliasee();
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (Op->getOpcode() == Instruction::BitCast) {
 | 
						|
      V = Op->getOperand(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
 | 
						|
    if (GEPOp == 0)
 | 
						|
      return V;
 | 
						|
    
 | 
						|
    // Don't attempt to analyze GEPs over unsized objects.
 | 
						|
    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
 | 
						|
        ->getElementType()->isSized())
 | 
						|
      return V;
 | 
						|
    
 | 
						|
    // If we are lacking TargetData information, we can't compute the offets of
 | 
						|
    // elements computed by GEPs.  However, we can handle bitcast equivalent
 | 
						|
    // GEPs.
 | 
						|
    if (TD == 0) {
 | 
						|
      if (!GEPOp->hasAllZeroIndices())
 | 
						|
        return V;
 | 
						|
      V = GEPOp->getOperand(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
 | 
						|
    gep_type_iterator GTI = gep_type_begin(GEPOp);
 | 
						|
    for (User::const_op_iterator I = GEPOp->op_begin()+1,
 | 
						|
         E = GEPOp->op_end(); I != E; ++I) {
 | 
						|
      Value *Index = *I;
 | 
						|
      // Compute the (potentially symbolic) offset in bytes for this index.
 | 
						|
      if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
 | 
						|
        // For a struct, add the member offset.
 | 
						|
        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
 | 
						|
        if (FieldNo == 0) continue;
 | 
						|
        
 | 
						|
        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // For an array/pointer, add the element offset, explicitly scaled.
 | 
						|
      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
 | 
						|
        if (CIdx->isZero()) continue;
 | 
						|
        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      uint64_t Scale = TD->getTypeAllocSize(*GTI);
 | 
						|
      ExtensionKind Extension = EK_NotExtended;
 | 
						|
      
 | 
						|
      // If the integer type is smaller than the pointer size, it is implicitly
 | 
						|
      // sign extended to pointer size.
 | 
						|
      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
 | 
						|
      if (TD->getPointerSizeInBits() > Width)
 | 
						|
        Extension = EK_SignExt;
 | 
						|
      
 | 
						|
      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
 | 
						|
      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
 | 
						|
      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
 | 
						|
                                  *TD, 0);
 | 
						|
      
 | 
						|
      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
 | 
						|
      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
 | 
						|
      BaseOffs += IndexOffset.getSExtValue()*Scale;
 | 
						|
      Scale *= IndexScale.getSExtValue();
 | 
						|
      
 | 
						|
      
 | 
						|
      // If we already had an occurrance of this index variable, merge this
 | 
						|
      // scale into it.  For example, we want to handle:
 | 
						|
      //   A[x][x] -> x*16 + x*4 -> x*20
 | 
						|
      // This also ensures that 'x' only appears in the index list once.
 | 
						|
      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
 | 
						|
        if (VarIndices[i].V == Index &&
 | 
						|
            VarIndices[i].Extension == Extension) {
 | 
						|
          Scale += VarIndices[i].Scale;
 | 
						|
          VarIndices.erase(VarIndices.begin()+i);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Make sure that we have a scale that makes sense for this target's
 | 
						|
      // pointer size.
 | 
						|
      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
 | 
						|
        Scale <<= ShiftBits;
 | 
						|
        Scale = (int64_t)Scale >> ShiftBits;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (Scale) {
 | 
						|
        VariableGEPIndex Entry = {Index, Extension, Scale};
 | 
						|
        VarIndices.push_back(Entry);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Analyze the base pointer next.
 | 
						|
    V = GEPOp->getOperand(0);
 | 
						|
  } while (--MaxLookup);
 | 
						|
  
 | 
						|
  // If the chain of expressions is too deep, just return early.
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// GetIndexDifference - Dest and Src are the variable indices from two
 | 
						|
/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
 | 
						|
/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
 | 
						|
/// difference between the two pointers. 
 | 
						|
static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
 | 
						|
                               const SmallVectorImpl<VariableGEPIndex> &Src) {
 | 
						|
  if (Src.empty()) return;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
 | 
						|
    const Value *V = Src[i].V;
 | 
						|
    ExtensionKind Extension = Src[i].Extension;
 | 
						|
    int64_t Scale = Src[i].Scale;
 | 
						|
    
 | 
						|
    // Find V in Dest.  This is N^2, but pointer indices almost never have more
 | 
						|
    // than a few variable indexes.
 | 
						|
    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
 | 
						|
      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
 | 
						|
      
 | 
						|
      // If we found it, subtract off Scale V's from the entry in Dest.  If it
 | 
						|
      // goes to zero, remove the entry.
 | 
						|
      if (Dest[j].Scale != Scale)
 | 
						|
        Dest[j].Scale -= Scale;
 | 
						|
      else
 | 
						|
        Dest.erase(Dest.begin()+j);
 | 
						|
      Scale = 0;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we didn't consume this entry, add it to the end of the Dest list.
 | 
						|
    if (Scale) {
 | 
						|
      VariableGEPIndex Entry = { V, Extension, -Scale };
 | 
						|
      Dest.push_back(Entry);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// BasicAliasAnalysis Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static const Function *getParent(const Value *V) {
 | 
						|
  if (const Instruction *inst = dyn_cast<Instruction>(V))
 | 
						|
    return inst->getParent()->getParent();
 | 
						|
 | 
						|
  if (const Argument *arg = dyn_cast<Argument>(V))
 | 
						|
    return arg->getParent();
 | 
						|
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static bool notDifferentParent(const Value *O1, const Value *O2) {
 | 
						|
 | 
						|
  const Function *F1 = getParent(O1);
 | 
						|
  const Function *F2 = getParent(O2);
 | 
						|
 | 
						|
  return !F1 || !F2 || F1 == F2;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
 | 
						|
  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
 | 
						|
    static char ID; // Class identification, replacement for typeinfo
 | 
						|
    BasicAliasAnalysis() : ImmutablePass(ID) {
 | 
						|
      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void initializePass() {
 | 
						|
      InitializeAliasAnalysis(this);
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
    }
 | 
						|
 | 
						|
    virtual AliasResult alias(const Location &LocA,
 | 
						|
                              const Location &LocB) {
 | 
						|
      assert(Visited.empty() && "Visited must be cleared after use!");
 | 
						|
      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
 | 
						|
             "BasicAliasAnalysis doesn't support interprocedural queries.");
 | 
						|
      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
 | 
						|
                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
 | 
						|
      Visited.clear();
 | 
						|
      return Alias;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
 | 
						|
                                       const Location &Loc);
 | 
						|
 | 
						|
    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
 | 
						|
                                       ImmutableCallSite CS2) {
 | 
						|
      // The AliasAnalysis base class has some smarts, lets use them.
 | 
						|
      return AliasAnalysis::getModRefInfo(CS1, CS2);
 | 
						|
    }
 | 
						|
 | 
						|
    /// pointsToConstantMemory - Chase pointers until we find a (constant
 | 
						|
    /// global) or not.
 | 
						|
    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
 | 
						|
 | 
						|
    /// getModRefBehavior - Return the behavior when calling the given
 | 
						|
    /// call site.
 | 
						|
    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
 | 
						|
 | 
						|
    /// getModRefBehavior - Return the behavior when calling the given function.
 | 
						|
    /// For use when the call site is not known.
 | 
						|
    virtual ModRefBehavior getModRefBehavior(const Function *F);
 | 
						|
 | 
						|
    /// getAdjustedAnalysisPointer - This method is used when a pass implements
 | 
						|
    /// an analysis interface through multiple inheritance.  If needed, it
 | 
						|
    /// should override this to adjust the this pointer as needed for the
 | 
						|
    /// specified pass info.
 | 
						|
    virtual void *getAdjustedAnalysisPointer(const void *ID) {
 | 
						|
      if (ID == &AliasAnalysis::ID)
 | 
						|
        return (AliasAnalysis*)this;
 | 
						|
      return this;
 | 
						|
    }
 | 
						|
    
 | 
						|
  private:
 | 
						|
    // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP().
 | 
						|
    SmallPtrSet<const Value*, 16> Visited;
 | 
						|
 | 
						|
    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
 | 
						|
    // instruction against another.
 | 
						|
    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
 | 
						|
                         const Value *V2, uint64_t V2Size,
 | 
						|
                         const MDNode *V2TBAAInfo,
 | 
						|
                         const Value *UnderlyingV1, const Value *UnderlyingV2);
 | 
						|
 | 
						|
    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
 | 
						|
    // instruction against another.
 | 
						|
    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
 | 
						|
                         const MDNode *PNTBAAInfo,
 | 
						|
                         const Value *V2, uint64_t V2Size,
 | 
						|
                         const MDNode *V2TBAAInfo);
 | 
						|
 | 
						|
    /// aliasSelect - Disambiguate a Select instruction against another value.
 | 
						|
    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
 | 
						|
                            const MDNode *SITBAAInfo,
 | 
						|
                            const Value *V2, uint64_t V2Size,
 | 
						|
                            const MDNode *V2TBAAInfo);
 | 
						|
 | 
						|
    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
 | 
						|
                           const MDNode *V1TBAATag,
 | 
						|
                           const Value *V2, uint64_t V2Size,
 | 
						|
                           const MDNode *V2TBAATag);
 | 
						|
  };
 | 
						|
}  // End of anonymous namespace
 | 
						|
 | 
						|
// Register this pass...
 | 
						|
char BasicAliasAnalysis::ID = 0;
 | 
						|
INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa",
 | 
						|
                   "Basic Alias Analysis (stateless AA impl)",
 | 
						|
                   false, true, false)
 | 
						|
 | 
						|
ImmutablePass *llvm::createBasicAliasAnalysisPass() {
 | 
						|
  return new BasicAliasAnalysis();
 | 
						|
}
 | 
						|
 | 
						|
/// pointsToConstantMemory - Returns whether the given pointer value
 | 
						|
/// points to memory that is local to the function, with global constants being
 | 
						|
/// considered local to all functions.
 | 
						|
bool
 | 
						|
BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
 | 
						|
  assert(Visited.empty() && "Visited must be cleared after use!");
 | 
						|
 | 
						|
  unsigned MaxLookup = 8;
 | 
						|
  SmallVector<const Value *, 16> Worklist;
 | 
						|
  Worklist.push_back(Loc.Ptr);
 | 
						|
  do {
 | 
						|
    const Value *V = Worklist.pop_back_val()->getUnderlyingObject();
 | 
						|
    if (!Visited.insert(V)) {
 | 
						|
      Visited.clear();
 | 
						|
      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | 
						|
    }
 | 
						|
 | 
						|
    // An alloca instruction defines local memory.
 | 
						|
    if (OrLocal && isa<AllocaInst>(V))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // A global constant counts as local memory for our purposes.
 | 
						|
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | 
						|
      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
 | 
						|
      // global to be marked constant in some modules and non-constant in
 | 
						|
      // others.  GV may even be a declaration, not a definition.
 | 
						|
      if (!GV->isConstant()) {
 | 
						|
        Visited.clear();
 | 
						|
        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If both select values point to local memory, then so does the select.
 | 
						|
    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
 | 
						|
      Worklist.push_back(SI->getTrueValue());
 | 
						|
      Worklist.push_back(SI->getFalseValue());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If all values incoming to a phi node point to local memory, then so does
 | 
						|
    // the phi.
 | 
						|
    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
 | 
						|
      // Don't bother inspecting phi nodes with many operands.
 | 
						|
      if (PN->getNumIncomingValues() > MaxLookup) {
 | 
						|
        Visited.clear();
 | 
						|
        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | 
						|
      }
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        Worklist.push_back(PN->getIncomingValue(i));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise be conservative.
 | 
						|
    Visited.clear();
 | 
						|
    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | 
						|
 | 
						|
  } while (!Worklist.empty() && --MaxLookup);
 | 
						|
 | 
						|
  Visited.clear();
 | 
						|
  return Worklist.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// getModRefBehavior - Return the behavior when calling the given call site.
 | 
						|
AliasAnalysis::ModRefBehavior
 | 
						|
BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
 | 
						|
  if (CS.doesNotAccessMemory())
 | 
						|
    // Can't do better than this.
 | 
						|
    return DoesNotAccessMemory;
 | 
						|
 | 
						|
  ModRefBehavior Min = UnknownModRefBehavior;
 | 
						|
 | 
						|
  // If the callsite knows it only reads memory, don't return worse
 | 
						|
  // than that.
 | 
						|
  if (CS.onlyReadsMemory())
 | 
						|
    Min = OnlyReadsMemory;
 | 
						|
 | 
						|
  // The AliasAnalysis base class has some smarts, lets use them.
 | 
						|
  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
 | 
						|
}
 | 
						|
 | 
						|
/// getModRefBehavior - Return the behavior when calling the given function.
 | 
						|
/// For use when the call site is not known.
 | 
						|
AliasAnalysis::ModRefBehavior
 | 
						|
BasicAliasAnalysis::getModRefBehavior(const Function *F) {
 | 
						|
  // If the function declares it doesn't access memory, we can't do better.
 | 
						|
  if (F->doesNotAccessMemory())
 | 
						|
    return DoesNotAccessMemory;
 | 
						|
 | 
						|
  // For intrinsics, we can check the table.
 | 
						|
  if (unsigned iid = F->getIntrinsicID()) {
 | 
						|
#define GET_INTRINSIC_MODREF_BEHAVIOR
 | 
						|
#include "llvm/Intrinsics.gen"
 | 
						|
#undef GET_INTRINSIC_MODREF_BEHAVIOR
 | 
						|
  }
 | 
						|
 | 
						|
  ModRefBehavior Min = UnknownModRefBehavior;
 | 
						|
 | 
						|
  // If the function declares it only reads memory, go with that.
 | 
						|
  if (F->onlyReadsMemory())
 | 
						|
    Min = OnlyReadsMemory;
 | 
						|
 | 
						|
  // Otherwise be conservative.
 | 
						|
  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
 | 
						|
}
 | 
						|
 | 
						|
/// getModRefInfo - Check to see if the specified callsite can clobber the
 | 
						|
/// specified memory object.  Since we only look at local properties of this
 | 
						|
/// function, we really can't say much about this query.  We do, however, use
 | 
						|
/// simple "address taken" analysis on local objects.
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
 | 
						|
                                  const Location &Loc) {
 | 
						|
  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
 | 
						|
         "AliasAnalysis query involving multiple functions!");
 | 
						|
 | 
						|
  const Value *Object = Loc.Ptr->getUnderlyingObject();
 | 
						|
  
 | 
						|
  // If this is a tail call and Loc.Ptr points to a stack location, we know that
 | 
						|
  // the tail call cannot access or modify the local stack.
 | 
						|
  // We cannot exclude byval arguments here; these belong to the caller of
 | 
						|
  // the current function not to the current function, and a tail callee
 | 
						|
  // may reference them.
 | 
						|
  if (isa<AllocaInst>(Object))
 | 
						|
    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
 | 
						|
      if (CI->isTailCall())
 | 
						|
        return NoModRef;
 | 
						|
  
 | 
						|
  // If the pointer is to a locally allocated object that does not escape,
 | 
						|
  // then the call can not mod/ref the pointer unless the call takes the pointer
 | 
						|
  // as an argument, and itself doesn't capture it.
 | 
						|
  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
 | 
						|
      isNonEscapingLocalObject(Object)) {
 | 
						|
    bool PassedAsArg = false;
 | 
						|
    unsigned ArgNo = 0;
 | 
						|
    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
 | 
						|
         CI != CE; ++CI, ++ArgNo) {
 | 
						|
      // Only look at the no-capture pointer arguments.
 | 
						|
      if (!(*CI)->getType()->isPointerTy() ||
 | 
						|
          !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // If this is a no-capture pointer argument, see if we can tell that it
 | 
						|
      // is impossible to alias the pointer we're checking.  If not, we have to
 | 
						|
      // assume that the call could touch the pointer, even though it doesn't
 | 
						|
      // escape.
 | 
						|
      if (!isNoAlias(Location(cast<Value>(CI)), Loc)) {
 | 
						|
        PassedAsArg = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!PassedAsArg)
 | 
						|
      return NoModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  ModRefResult Min = ModRef;
 | 
						|
 | 
						|
  // Finally, handle specific knowledge of intrinsics.
 | 
						|
  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
 | 
						|
  if (II != 0)
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::memcpy:
 | 
						|
    case Intrinsic::memmove: {
 | 
						|
      uint64_t Len = UnknownSize;
 | 
						|
      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
 | 
						|
        Len = LenCI->getZExtValue();
 | 
						|
      Value *Dest = II->getArgOperand(0);
 | 
						|
      Value *Src = II->getArgOperand(1);
 | 
						|
      if (isNoAlias(Location(Dest, Len), Loc)) {
 | 
						|
        if (isNoAlias(Location(Src, Len), Loc))
 | 
						|
          return NoModRef;
 | 
						|
        Min = Ref;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Intrinsic::memset:
 | 
						|
      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
 | 
						|
      // will handle it for the variable length case.
 | 
						|
      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
 | 
						|
        uint64_t Len = LenCI->getZExtValue();
 | 
						|
        Value *Dest = II->getArgOperand(0);
 | 
						|
        if (isNoAlias(Location(Dest, Len), Loc))
 | 
						|
          return NoModRef;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case Intrinsic::atomic_cmp_swap:
 | 
						|
    case Intrinsic::atomic_swap:
 | 
						|
    case Intrinsic::atomic_load_add:
 | 
						|
    case Intrinsic::atomic_load_sub:
 | 
						|
    case Intrinsic::atomic_load_and:
 | 
						|
    case Intrinsic::atomic_load_nand:
 | 
						|
    case Intrinsic::atomic_load_or:
 | 
						|
    case Intrinsic::atomic_load_xor:
 | 
						|
    case Intrinsic::atomic_load_max:
 | 
						|
    case Intrinsic::atomic_load_min:
 | 
						|
    case Intrinsic::atomic_load_umax:
 | 
						|
    case Intrinsic::atomic_load_umin:
 | 
						|
      if (TD) {
 | 
						|
        Value *Op1 = II->getArgOperand(0);
 | 
						|
        uint64_t Op1Size = TD->getTypeStoreSize(Op1->getType());
 | 
						|
        MDNode *Tag = II->getMetadata(LLVMContext::MD_tbaa);
 | 
						|
        if (isNoAlias(Location(Op1, Op1Size, Tag), Loc))
 | 
						|
          return NoModRef;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case Intrinsic::lifetime_start:
 | 
						|
    case Intrinsic::lifetime_end:
 | 
						|
    case Intrinsic::invariant_start: {
 | 
						|
      uint64_t PtrSize =
 | 
						|
        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
 | 
						|
      if (isNoAlias(Location(II->getArgOperand(1),
 | 
						|
                             PtrSize,
 | 
						|
                             II->getMetadata(LLVMContext::MD_tbaa)),
 | 
						|
                    Loc))
 | 
						|
        return NoModRef;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Intrinsic::invariant_end: {
 | 
						|
      uint64_t PtrSize =
 | 
						|
        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
 | 
						|
      if (isNoAlias(Location(II->getArgOperand(2),
 | 
						|
                             PtrSize,
 | 
						|
                             II->getMetadata(LLVMContext::MD_tbaa)),
 | 
						|
                    Loc))
 | 
						|
        return NoModRef;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
  // The AliasAnalysis base class has some smarts, lets use them.
 | 
						|
  return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
 | 
						|
}
 | 
						|
 | 
						|
/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
 | 
						|
/// against another pointer.  We know that V1 is a GEP, but we don't know
 | 
						|
/// anything about V2.  UnderlyingV1 is GEP1->getUnderlyingObject(),
 | 
						|
/// UnderlyingV2 is the same for V2.
 | 
						|
///
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
 | 
						|
                             const Value *V2, uint64_t V2Size,
 | 
						|
                             const MDNode *V2TBAAInfo,
 | 
						|
                             const Value *UnderlyingV1,
 | 
						|
                             const Value *UnderlyingV2) {
 | 
						|
  // If this GEP has been visited before, we're on a use-def cycle.
 | 
						|
  // Such cycles are only valid when PHI nodes are involved or in unreachable
 | 
						|
  // code. The visitPHI function catches cycles containing PHIs, but there
 | 
						|
  // could still be a cycle without PHIs in unreachable code.
 | 
						|
  if (!Visited.insert(GEP1))
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  int64_t GEP1BaseOffset;
 | 
						|
  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
 | 
						|
 | 
						|
  // If we have two gep instructions with must-alias'ing base pointers, figure
 | 
						|
  // out if the indexes to the GEP tell us anything about the derived pointer.
 | 
						|
  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
 | 
						|
    // Do the base pointers alias?
 | 
						|
    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
 | 
						|
                                       UnderlyingV2, UnknownSize, 0);
 | 
						|
    
 | 
						|
    // If we get a No or May, then return it immediately, no amount of analysis
 | 
						|
    // will improve this situation.
 | 
						|
    if (BaseAlias != MustAlias) return BaseAlias;
 | 
						|
    
 | 
						|
    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
 | 
						|
    // exactly, see if the computed offset from the common pointer tells us
 | 
						|
    // about the relation of the resulting pointer.
 | 
						|
    const Value *GEP1BasePtr =
 | 
						|
      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
 | 
						|
    
 | 
						|
    int64_t GEP2BaseOffset;
 | 
						|
    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
 | 
						|
    const Value *GEP2BasePtr =
 | 
						|
      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
 | 
						|
    
 | 
						|
    // If DecomposeGEPExpression isn't able to look all the way through the
 | 
						|
    // addressing operation, we must not have TD and this is too complex for us
 | 
						|
    // to handle without it.
 | 
						|
    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
 | 
						|
      assert(TD == 0 &&
 | 
						|
             "DecomposeGEPExpression and getUnderlyingObject disagree!");
 | 
						|
      return MayAlias;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
 | 
						|
    // symbolic difference.
 | 
						|
    GEP1BaseOffset -= GEP2BaseOffset;
 | 
						|
    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
 | 
						|
    
 | 
						|
  } else {
 | 
						|
    // Check to see if these two pointers are related by the getelementptr
 | 
						|
    // instruction.  If one pointer is a GEP with a non-zero index of the other
 | 
						|
    // pointer, we know they cannot alias.
 | 
						|
 | 
						|
    // If both accesses are unknown size, we can't do anything useful here.
 | 
						|
    if (V1Size == UnknownSize && V2Size == UnknownSize)
 | 
						|
      return MayAlias;
 | 
						|
 | 
						|
    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
 | 
						|
                               V2, V2Size, V2TBAAInfo);
 | 
						|
    if (R != MustAlias)
 | 
						|
      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
 | 
						|
      // If V2 is known not to alias GEP base pointer, then the two values
 | 
						|
      // cannot alias per GEP semantics: "A pointer value formed from a
 | 
						|
      // getelementptr instruction is associated with the addresses associated
 | 
						|
      // with the first operand of the getelementptr".
 | 
						|
      return R;
 | 
						|
 | 
						|
    const Value *GEP1BasePtr =
 | 
						|
      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
 | 
						|
    
 | 
						|
    // If DecomposeGEPExpression isn't able to look all the way through the
 | 
						|
    // addressing operation, we must not have TD and this is too complex for us
 | 
						|
    // to handle without it.
 | 
						|
    if (GEP1BasePtr != UnderlyingV1) {
 | 
						|
      assert(TD == 0 &&
 | 
						|
             "DecomposeGEPExpression and getUnderlyingObject disagree!");
 | 
						|
      return MayAlias;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // In the two GEP Case, if there is no difference in the offsets of the
 | 
						|
  // computed pointers, the resultant pointers are a must alias.  This
 | 
						|
  // hapens when we have two lexically identical GEP's (for example).
 | 
						|
  //
 | 
						|
  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
 | 
						|
  // must aliases the GEP, the end result is a must alias also.
 | 
						|
  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
 | 
						|
    return MustAlias;
 | 
						|
 | 
						|
  // If we have a known constant offset, see if this offset is larger than the
 | 
						|
  // access size being queried.  If so, and if no variable indices can remove
 | 
						|
  // pieces of this constant, then we know we have a no-alias.  For example,
 | 
						|
  //   &A[100] != &A.
 | 
						|
  
 | 
						|
  // In order to handle cases like &A[100][i] where i is an out of range
 | 
						|
  // subscript, we have to ignore all constant offset pieces that are a multiple
 | 
						|
  // of a scaled index.  Do this by removing constant offsets that are a
 | 
						|
  // multiple of any of our variable indices.  This allows us to transform
 | 
						|
  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
 | 
						|
  // provides an offset of 4 bytes (assuming a <= 4 byte access).
 | 
						|
  for (unsigned i = 0, e = GEP1VariableIndices.size();
 | 
						|
       i != e && GEP1BaseOffset;++i)
 | 
						|
    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].Scale)
 | 
						|
      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].Scale;
 | 
						|
  
 | 
						|
  // If our known offset is bigger than the access size, we know we don't have
 | 
						|
  // an alias.
 | 
						|
  if (GEP1BaseOffset) {
 | 
						|
    if (GEP1BaseOffset >= 0 ?
 | 
						|
        (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset >= V2Size) :
 | 
						|
        (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset >= V1Size &&
 | 
						|
         GEP1BaseOffset != INT64_MIN))
 | 
						|
      return NoAlias;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return MayAlias;
 | 
						|
}
 | 
						|
 | 
						|
/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
 | 
						|
/// instruction against another.
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
 | 
						|
                                const MDNode *SITBAAInfo,
 | 
						|
                                const Value *V2, uint64_t V2Size,
 | 
						|
                                const MDNode *V2TBAAInfo) {
 | 
						|
  // If this select has been visited before, we're on a use-def cycle.
 | 
						|
  // Such cycles are only valid when PHI nodes are involved or in unreachable
 | 
						|
  // code. The visitPHI function catches cycles containing PHIs, but there
 | 
						|
  // could still be a cycle without PHIs in unreachable code.
 | 
						|
  if (!Visited.insert(SI))
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  // If the values are Selects with the same condition, we can do a more precise
 | 
						|
  // check: just check for aliases between the values on corresponding arms.
 | 
						|
  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
 | 
						|
    if (SI->getCondition() == SI2->getCondition()) {
 | 
						|
      AliasResult Alias =
 | 
						|
        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
 | 
						|
                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
 | 
						|
      if (Alias == MayAlias)
 | 
						|
        return MayAlias;
 | 
						|
      AliasResult ThisAlias =
 | 
						|
        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
 | 
						|
                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
 | 
						|
      if (ThisAlias != Alias)
 | 
						|
        return MayAlias;
 | 
						|
      return Alias;
 | 
						|
    }
 | 
						|
 | 
						|
  // If both arms of the Select node NoAlias or MustAlias V2, then returns
 | 
						|
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
 | 
						|
  AliasResult Alias =
 | 
						|
    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
 | 
						|
  if (Alias == MayAlias)
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  // If V2 is visited, the recursive case will have been caught in the
 | 
						|
  // above aliasCheck call, so these subsequent calls to aliasCheck
 | 
						|
  // don't need to assume that V2 is being visited recursively.
 | 
						|
  Visited.erase(V2);
 | 
						|
 | 
						|
  AliasResult ThisAlias =
 | 
						|
    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
 | 
						|
  if (ThisAlias != Alias)
 | 
						|
    return MayAlias;
 | 
						|
  return Alias;
 | 
						|
}
 | 
						|
 | 
						|
// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
 | 
						|
// against another.
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
 | 
						|
                             const MDNode *PNTBAAInfo,
 | 
						|
                             const Value *V2, uint64_t V2Size,
 | 
						|
                             const MDNode *V2TBAAInfo) {
 | 
						|
  // The PHI node has already been visited, avoid recursion any further.
 | 
						|
  if (!Visited.insert(PN))
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  // If the values are PHIs in the same block, we can do a more precise
 | 
						|
  // as well as efficient check: just check for aliases between the values
 | 
						|
  // on corresponding edges.
 | 
						|
  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
 | 
						|
    if (PN2->getParent() == PN->getParent()) {
 | 
						|
      AliasResult Alias =
 | 
						|
        aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
 | 
						|
                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
 | 
						|
                   V2Size, V2TBAAInfo);
 | 
						|
      if (Alias == MayAlias)
 | 
						|
        return MayAlias;
 | 
						|
      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        AliasResult ThisAlias =
 | 
						|
          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
 | 
						|
                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
 | 
						|
                     V2Size, V2TBAAInfo);
 | 
						|
        if (ThisAlias != Alias)
 | 
						|
          return MayAlias;
 | 
						|
      }
 | 
						|
      return Alias;
 | 
						|
    }
 | 
						|
 | 
						|
  SmallPtrSet<Value*, 4> UniqueSrc;
 | 
						|
  SmallVector<Value*, 4> V1Srcs;
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *PV1 = PN->getIncomingValue(i);
 | 
						|
    if (isa<PHINode>(PV1))
 | 
						|
      // If any of the source itself is a PHI, return MayAlias conservatively
 | 
						|
      // to avoid compile time explosion. The worst possible case is if both
 | 
						|
      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
 | 
						|
      // and 'n' are the number of PHI sources.
 | 
						|
      return MayAlias;
 | 
						|
    if (UniqueSrc.insert(PV1))
 | 
						|
      V1Srcs.push_back(PV1);
 | 
						|
  }
 | 
						|
 | 
						|
  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
 | 
						|
                                 V1Srcs[0], PNSize, PNTBAAInfo);
 | 
						|
  // Early exit if the check of the first PHI source against V2 is MayAlias.
 | 
						|
  // Other results are not possible.
 | 
						|
  if (Alias == MayAlias)
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
 | 
						|
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
 | 
						|
  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
 | 
						|
    Value *V = V1Srcs[i];
 | 
						|
 | 
						|
    // If V2 is visited, the recursive case will have been caught in the
 | 
						|
    // above aliasCheck call, so these subsequent calls to aliasCheck
 | 
						|
    // don't need to assume that V2 is being visited recursively.
 | 
						|
    Visited.erase(V2);
 | 
						|
 | 
						|
    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
 | 
						|
                                       V, PNSize, PNTBAAInfo);
 | 
						|
    if (ThisAlias != Alias || ThisAlias == MayAlias)
 | 
						|
      return MayAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  return Alias;
 | 
						|
}
 | 
						|
 | 
						|
// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
 | 
						|
// such as array references.
 | 
						|
//
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
 | 
						|
                               const MDNode *V1TBAAInfo,
 | 
						|
                               const Value *V2, uint64_t V2Size,
 | 
						|
                               const MDNode *V2TBAAInfo) {
 | 
						|
  // If either of the memory references is empty, it doesn't matter what the
 | 
						|
  // pointer values are.
 | 
						|
  if (V1Size == 0 || V2Size == 0)
 | 
						|
    return NoAlias;
 | 
						|
 | 
						|
  // Strip off any casts if they exist.
 | 
						|
  V1 = V1->stripPointerCasts();
 | 
						|
  V2 = V2->stripPointerCasts();
 | 
						|
 | 
						|
  // Are we checking for alias of the same value?
 | 
						|
  if (V1 == V2) return MustAlias;
 | 
						|
 | 
						|
  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
 | 
						|
    return NoAlias;  // Scalars cannot alias each other
 | 
						|
 | 
						|
  // Figure out what objects these things are pointing to if we can.
 | 
						|
  const Value *O1 = V1->getUnderlyingObject();
 | 
						|
  const Value *O2 = V2->getUnderlyingObject();
 | 
						|
 | 
						|
  // Null values in the default address space don't point to any object, so they
 | 
						|
  // don't alias any other pointer.
 | 
						|
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
 | 
						|
    if (CPN->getType()->getAddressSpace() == 0)
 | 
						|
      return NoAlias;
 | 
						|
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
 | 
						|
    if (CPN->getType()->getAddressSpace() == 0)
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
  if (O1 != O2) {
 | 
						|
    // If V1/V2 point to two different objects we know that we have no alias.
 | 
						|
    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Constant pointers can't alias with non-const isIdentifiedObject objects.
 | 
						|
    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
 | 
						|
        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Arguments can't alias with local allocations or noalias calls
 | 
						|
    // in the same function.
 | 
						|
    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
 | 
						|
         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Most objects can't alias null.
 | 
						|
    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
 | 
						|
        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
 | 
						|
      return NoAlias;
 | 
						|
  
 | 
						|
    // If one pointer is the result of a call/invoke or load and the other is a
 | 
						|
    // non-escaping local object within the same function, then we know the
 | 
						|
    // object couldn't escape to a point where the call could return it.
 | 
						|
    //
 | 
						|
    // Note that if the pointers are in different functions, there are a
 | 
						|
    // variety of complications. A call with a nocapture argument may still
 | 
						|
    // temporary store the nocapture argument's value in a temporary memory
 | 
						|
    // location if that memory location doesn't escape. Or it may pass a
 | 
						|
    // nocapture value to other functions as long as they don't capture it.
 | 
						|
    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
 | 
						|
      return NoAlias;
 | 
						|
    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
 | 
						|
      return NoAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the size of one access is larger than the entire object on the other
 | 
						|
  // side, then we know such behavior is undefined and can assume no alias.
 | 
						|
  if (TD)
 | 
						|
    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
 | 
						|
        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
 | 
						|
      return NoAlias;
 | 
						|
  
 | 
						|
  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
 | 
						|
  // GEP can't simplify, we don't even look at the PHI cases.
 | 
						|
  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
    std::swap(O1, O2);
 | 
						|
  }
 | 
						|
  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
 | 
						|
    AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2);
 | 
						|
    if (Result != MayAlias) return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
  }
 | 
						|
  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
 | 
						|
    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
 | 
						|
                                  V2, V2Size, V2TBAAInfo);
 | 
						|
    if (Result != MayAlias) return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
  }
 | 
						|
  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
 | 
						|
    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
 | 
						|
                                     V2, V2Size, V2TBAAInfo);
 | 
						|
    if (Result != MayAlias) return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  return AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
 | 
						|
                              Location(V2, V2Size, V2TBAAInfo));
 | 
						|
}
 |