413 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			413 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass eliminates machine instruction PHI nodes by inserting copy
 | |
| // instructions.  This destroys SSA information, but is the desired input for
 | |
| // some register allocators.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "phielim"
 | |
| #include "PHIElimination.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumAtomic, "Number of atomic phis lowered");
 | |
| STATISTIC(NumReused, "Number of reused lowered phis");
 | |
| 
 | |
| char PHIElimination::ID = 0;
 | |
| INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
 | |
|                 "Eliminate PHI nodes for register allocation", false, false)
 | |
| 
 | |
| char &llvm::PHIEliminationID = PHIElimination::ID;
 | |
| 
 | |
| void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addPreserved<LiveVariables>();
 | |
|   AU.addPreserved<MachineDominatorTree>();
 | |
|   AU.addPreserved<MachineLoopInfo>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &MF) {
 | |
|   MRI = &MF.getRegInfo();
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Split critical edges to help the coalescer
 | |
|   if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
 | |
|     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
 | |
|     for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | |
|       Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
 | |
|   }
 | |
| 
 | |
|   // Populate VRegPHIUseCount
 | |
|   analyzePHINodes(MF);
 | |
| 
 | |
|   // Eliminate PHI instructions by inserting copies into predecessor blocks.
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | |
|     Changed |= EliminatePHINodes(MF, *I);
 | |
| 
 | |
|   // Remove dead IMPLICIT_DEF instructions.
 | |
|   for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
 | |
|          E = ImpDefs.end(); I != E; ++I) {
 | |
|     MachineInstr *DefMI = *I;
 | |
|     unsigned DefReg = DefMI->getOperand(0).getReg();
 | |
|     if (MRI->use_nodbg_empty(DefReg))
 | |
|       DefMI->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Clean up the lowered PHI instructions.
 | |
|   for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
 | |
|        I != E; ++I)
 | |
|     MF.DeleteMachineInstr(I->first);
 | |
| 
 | |
|   LoweredPHIs.clear();
 | |
|   ImpDefs.clear();
 | |
|   VRegPHIUseCount.clear();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
 | |
| /// predecessor basic blocks.
 | |
| ///
 | |
| bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
 | |
|                                              MachineBasicBlock &MBB) {
 | |
|   if (MBB.empty() || !MBB.front().isPHI())
 | |
|     return false;   // Quick exit for basic blocks without PHIs.
 | |
| 
 | |
|   // Get an iterator to the first instruction after the last PHI node (this may
 | |
|   // also be the end of the basic block).
 | |
|   MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
 | |
| 
 | |
|   while (MBB.front().isPHI())
 | |
|     LowerAtomicPHINode(MBB, AfterPHIsIt);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
 | |
| /// are implicit_def's.
 | |
| static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
 | |
|                                          const MachineRegisterInfo *MRI) {
 | |
|   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
 | |
|     unsigned SrcReg = MPhi->getOperand(i).getReg();
 | |
|     const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
 | |
|     if (!DefMI || !DefMI->isImplicitDef())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
 | |
| // when following the CFG edge to SuccMBB. This needs to be after any def of
 | |
| // SrcReg, but before any subsequent point where control flow might jump out of
 | |
| // the basic block.
 | |
| MachineBasicBlock::iterator
 | |
| llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
 | |
|                                           MachineBasicBlock &SuccMBB,
 | |
|                                           unsigned SrcReg) {
 | |
|   // Handle the trivial case trivially.
 | |
|   if (MBB.empty())
 | |
|     return MBB.begin();
 | |
| 
 | |
|   // Usually, we just want to insert the copy before the first terminator
 | |
|   // instruction. However, for the edge going to a landing pad, we must insert
 | |
|   // the copy before the call/invoke instruction.
 | |
|   if (!SuccMBB.isLandingPad())
 | |
|     return MBB.getFirstTerminator();
 | |
| 
 | |
|   // Discover any defs/uses in this basic block.
 | |
|   SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
 | |
|   for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
 | |
|          RE = MRI->reg_end(); RI != RE; ++RI) {
 | |
|     MachineInstr *DefUseMI = &*RI;
 | |
|     if (DefUseMI->getParent() == &MBB)
 | |
|       DefUsesInMBB.insert(DefUseMI);
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock::iterator InsertPoint;
 | |
|   if (DefUsesInMBB.empty()) {
 | |
|     // No defs.  Insert the copy at the start of the basic block.
 | |
|     InsertPoint = MBB.begin();
 | |
|   } else if (DefUsesInMBB.size() == 1) {
 | |
|     // Insert the copy immediately after the def/use.
 | |
|     InsertPoint = *DefUsesInMBB.begin();
 | |
|     ++InsertPoint;
 | |
|   } else {
 | |
|     // Insert the copy immediately after the last def/use.
 | |
|     InsertPoint = MBB.end();
 | |
|     while (!DefUsesInMBB.count(&*--InsertPoint)) {}
 | |
|     ++InsertPoint;
 | |
|   }
 | |
| 
 | |
|   // Make sure the copy goes after any phi nodes however.
 | |
|   return SkipPHIsAndLabels(MBB, InsertPoint);
 | |
| }
 | |
| 
 | |
| /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
 | |
| /// under the assuption that it needs to be lowered in a way that supports
 | |
| /// atomic execution of PHIs.  This lowering method is always correct all of the
 | |
| /// time.
 | |
| ///
 | |
| void llvm::PHIElimination::LowerAtomicPHINode(
 | |
|                                       MachineBasicBlock &MBB,
 | |
|                                       MachineBasicBlock::iterator AfterPHIsIt) {
 | |
|   ++NumAtomic;
 | |
|   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
 | |
|   MachineInstr *MPhi = MBB.remove(MBB.begin());
 | |
| 
 | |
|   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
 | |
|   unsigned DestReg = MPhi->getOperand(0).getReg();
 | |
|   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
 | |
|   bool isDead = MPhi->getOperand(0).isDead();
 | |
| 
 | |
|   // Create a new register for the incoming PHI arguments.
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   unsigned IncomingReg = 0;
 | |
|   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
 | |
| 
 | |
|   // Insert a register to register copy at the top of the current block (but
 | |
|   // after any remaining phi nodes) which copies the new incoming register
 | |
|   // into the phi node destination.
 | |
|   const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
 | |
|   if (isSourceDefinedByImplicitDef(MPhi, MRI))
 | |
|     // If all sources of a PHI node are implicit_def, just emit an
 | |
|     // implicit_def instead of a copy.
 | |
|     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
 | |
|             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
 | |
|   else {
 | |
|     // Can we reuse an earlier PHI node? This only happens for critical edges,
 | |
|     // typically those created by tail duplication.
 | |
|     unsigned &entry = LoweredPHIs[MPhi];
 | |
|     if (entry) {
 | |
|       // An identical PHI node was already lowered. Reuse the incoming register.
 | |
|       IncomingReg = entry;
 | |
|       reusedIncoming = true;
 | |
|       ++NumReused;
 | |
|       DEBUG(dbgs() << "Reusing %reg" << IncomingReg << " for " << *MPhi);
 | |
|     } else {
 | |
|       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
 | |
|       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
 | |
|     }
 | |
|     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
 | |
|             TII->get(TargetOpcode::COPY), DestReg)
 | |
|       .addReg(IncomingReg);
 | |
|   }
 | |
| 
 | |
|   // Update live variable information if there is any.
 | |
|   LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
 | |
|   if (LV) {
 | |
|     MachineInstr *PHICopy = prior(AfterPHIsIt);
 | |
| 
 | |
|     if (IncomingReg) {
 | |
|       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
 | |
| 
 | |
|       // Increment use count of the newly created virtual register.
 | |
|       VI.NumUses++;
 | |
|       LV->setPHIJoin(IncomingReg);
 | |
| 
 | |
|       // When we are reusing the incoming register, it may already have been
 | |
|       // killed in this block. The old kill will also have been inserted at
 | |
|       // AfterPHIsIt, so it appears before the current PHICopy.
 | |
|       if (reusedIncoming)
 | |
|         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
 | |
|           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
 | |
|           LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
 | |
|           DEBUG(MBB.dump());
 | |
|         }
 | |
| 
 | |
|       // Add information to LiveVariables to know that the incoming value is
 | |
|       // killed.  Note that because the value is defined in several places (once
 | |
|       // each for each incoming block), the "def" block and instruction fields
 | |
|       // for the VarInfo is not filled in.
 | |
|       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
 | |
|     }
 | |
| 
 | |
|     // Since we are going to be deleting the PHI node, if it is the last use of
 | |
|     // any registers, or if the value itself is dead, we need to move this
 | |
|     // information over to the new copy we just inserted.
 | |
|     LV->removeVirtualRegistersKilled(MPhi);
 | |
| 
 | |
|     // If the result is dead, update LV.
 | |
|     if (isDead) {
 | |
|       LV->addVirtualRegisterDead(DestReg, PHICopy);
 | |
|       LV->removeVirtualRegisterDead(DestReg, MPhi);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
 | |
|   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
 | |
|     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
 | |
|                                  MPhi->getOperand(i).getReg())];
 | |
| 
 | |
|   // Now loop over all of the incoming arguments, changing them to copy into the
 | |
|   // IncomingReg register in the corresponding predecessor basic block.
 | |
|   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
 | |
|   for (int i = NumSrcs - 1; i >= 0; --i) {
 | |
|     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
 | |
|     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
 | |
| 
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | |
|            "Machine PHI Operands must all be virtual registers!");
 | |
| 
 | |
|     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
 | |
|     // path the PHI.
 | |
|     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
 | |
| 
 | |
|     // If source is defined by an implicit def, there is no need to insert a
 | |
|     // copy.
 | |
|     MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
 | |
|     if (DefMI->isImplicitDef()) {
 | |
|       ImpDefs.insert(DefMI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check to make sure we haven't already emitted the copy for this block.
 | |
|     // This can happen because PHI nodes may have multiple entries for the same
 | |
|     // basic block.
 | |
|     if (!MBBsInsertedInto.insert(&opBlock))
 | |
|       continue;  // If the copy has already been emitted, we're done.
 | |
| 
 | |
|     // Find a safe location to insert the copy, this may be the first terminator
 | |
|     // in the block (or end()).
 | |
|     MachineBasicBlock::iterator InsertPos =
 | |
|       FindCopyInsertPoint(opBlock, MBB, SrcReg);
 | |
| 
 | |
|     // Insert the copy.
 | |
|     if (!reusedIncoming && IncomingReg)
 | |
|       BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
 | |
|               TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
 | |
| 
 | |
|     // Now update live variable information if we have it.  Otherwise we're done
 | |
|     if (!LV) continue;
 | |
| 
 | |
|     // We want to be able to insert a kill of the register if this PHI (aka, the
 | |
|     // copy we just inserted) is the last use of the source value.  Live
 | |
|     // variable analysis conservatively handles this by saying that the value is
 | |
|     // live until the end of the block the PHI entry lives in.  If the value
 | |
|     // really is dead at the PHI copy, there will be no successor blocks which
 | |
|     // have the value live-in.
 | |
| 
 | |
|     // Also check to see if this register is in use by another PHI node which
 | |
|     // has not yet been eliminated.  If so, it will be killed at an appropriate
 | |
|     // point later.
 | |
| 
 | |
|     // Is it used by any PHI instructions in this block?
 | |
|     bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
 | |
| 
 | |
|     // Okay, if we now know that the value is not live out of the block, we can
 | |
|     // add a kill marker in this block saying that it kills the incoming value!
 | |
|     if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
 | |
|       // In our final twist, we have to decide which instruction kills the
 | |
|       // register.  In most cases this is the copy, however, the first
 | |
|       // terminator instruction at the end of the block may also use the value.
 | |
|       // In this case, we should mark *it* as being the killing block, not the
 | |
|       // copy.
 | |
|       MachineBasicBlock::iterator KillInst;
 | |
|       MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
 | |
|       if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
 | |
|         KillInst = Term;
 | |
| 
 | |
|         // Check that no other terminators use values.
 | |
| #ifndef NDEBUG
 | |
|         for (MachineBasicBlock::iterator TI = llvm::next(Term);
 | |
|              TI != opBlock.end(); ++TI) {
 | |
|           assert(!TI->readsRegister(SrcReg) &&
 | |
|                  "Terminator instructions cannot use virtual registers unless"
 | |
|                  "they are the first terminator in a block!");
 | |
|         }
 | |
| #endif
 | |
|       } else if (reusedIncoming || !IncomingReg) {
 | |
|         // We may have to rewind a bit if we didn't insert a copy this time.
 | |
|         KillInst = Term;
 | |
|         while (KillInst != opBlock.begin())
 | |
|           if ((--KillInst)->readsRegister(SrcReg))
 | |
|             break;
 | |
|       } else {
 | |
|         // We just inserted this copy.
 | |
|         KillInst = prior(InsertPos);
 | |
|       }
 | |
|       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
 | |
| 
 | |
|       // Finally, mark it killed.
 | |
|       LV->addVirtualRegisterKilled(SrcReg, KillInst);
 | |
| 
 | |
|       // This vreg no longer lives all of the way through opBlock.
 | |
|       unsigned opBlockNum = opBlock.getNumber();
 | |
|       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
 | |
|   if (reusedIncoming || !IncomingReg)
 | |
|     MF.DeleteMachineInstr(MPhi);
 | |
| }
 | |
| 
 | |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In
 | |
| /// particular, we want to map the number of uses of a virtual register which is
 | |
| /// used in a PHI node. We map that to the BB the vreg is coming from. This is
 | |
| /// used later to determine when the vreg is killed in the BB.
 | |
| ///
 | |
| void llvm::PHIElimination::analyzePHINodes(const MachineFunction& MF) {
 | |
|   for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
 | |
|        I != E; ++I)
 | |
|     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
 | |
|          BBI != BBE && BBI->isPHI(); ++BBI)
 | |
|       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
 | |
|         ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
 | |
|                                      BBI->getOperand(i).getReg())];
 | |
| }
 | |
| 
 | |
| bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
 | |
|                                          MachineBasicBlock &MBB,
 | |
|                                          LiveVariables &LV,
 | |
|                                          MachineLoopInfo *MLI) {
 | |
|   if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
 | |
|     return false;   // Quick exit for basic blocks without PHIs.
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
 | |
|        BBI != BBE && BBI->isPHI(); ++BBI) {
 | |
|     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
 | |
|       unsigned Reg = BBI->getOperand(i).getReg();
 | |
|       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
 | |
|       // We break edges when registers are live out from the predecessor block
 | |
|       // (not considering PHI nodes). If the register is live in to this block
 | |
|       // anyway, we would gain nothing from splitting.
 | |
|       // Avoid splitting backedges of loops. It would introduce small
 | |
|       // out-of-line blocks into the loop which is very bad for code placement.
 | |
|       if (PreMBB != &MBB &&
 | |
|           !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
 | |
|         if (!MLI ||
 | |
|             !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
 | |
|               MLI->isLoopHeader(&MBB)))
 | |
|           Changed |= PreMBB->SplitCriticalEdge(&MBB, this) != 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 |