2073 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2073 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements bottom-up and top-down register pressure reduction list
 | 
						|
// schedulers, using standard algorithms.  The basic approach uses a priority
 | 
						|
// queue of available nodes to schedule.  One at a time, nodes are taken from
 | 
						|
// the priority queue (thus in priority order), checked for legality to
 | 
						|
// schedule, and emitted if legal.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "pre-RA-sched"
 | 
						|
#include "ScheduleDAGSDNodes.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/CodeGen/SchedulerRegistry.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <climits>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
 | 
						|
STATISTIC(NumUnfolds,    "Number of nodes unfolded");
 | 
						|
STATISTIC(NumDups,       "Number of duplicated nodes");
 | 
						|
STATISTIC(NumPRCopies,   "Number of physical register copies");
 | 
						|
 | 
						|
static RegisterScheduler
 | 
						|
  burrListDAGScheduler("list-burr",
 | 
						|
                       "Bottom-up register reduction list scheduling",
 | 
						|
                       createBURRListDAGScheduler);
 | 
						|
static RegisterScheduler
 | 
						|
  tdrListrDAGScheduler("list-tdrr",
 | 
						|
                       "Top-down register reduction list scheduling",
 | 
						|
                       createTDRRListDAGScheduler);
 | 
						|
static RegisterScheduler
 | 
						|
  sourceListDAGScheduler("source",
 | 
						|
                         "Similar to list-burr but schedules in source "
 | 
						|
                         "order when possible",
 | 
						|
                         createSourceListDAGScheduler);
 | 
						|
 | 
						|
static RegisterScheduler
 | 
						|
  hybridListDAGScheduler("list-hybrid",
 | 
						|
                         "Bottom-up register pressure aware list scheduling "
 | 
						|
                         "which tries to balance latency and register pressure",
 | 
						|
                         createHybridListDAGScheduler);
 | 
						|
 | 
						|
static RegisterScheduler
 | 
						|
  ILPListDAGScheduler("list-ilp",
 | 
						|
                      "Bottom-up register pressure aware list scheduling "
 | 
						|
                      "which tries to balance ILP and register pressure",
 | 
						|
                      createILPListDAGScheduler);
 | 
						|
 | 
						|
namespace {
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ScheduleDAGRRList - The actual register reduction list scheduler
 | 
						|
/// implementation.  This supports both top-down and bottom-up scheduling.
 | 
						|
///
 | 
						|
class ScheduleDAGRRList : public ScheduleDAGSDNodes {
 | 
						|
private:
 | 
						|
  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
 | 
						|
  /// it is top-down.
 | 
						|
  bool isBottomUp;
 | 
						|
 | 
						|
  /// NeedLatency - True if the scheduler will make use of latency information.
 | 
						|
  ///
 | 
						|
  bool NeedLatency;
 | 
						|
 | 
						|
  /// AvailableQueue - The priority queue to use for the available SUnits.
 | 
						|
  SchedulingPriorityQueue *AvailableQueue;
 | 
						|
 | 
						|
  /// LiveRegDefs - A set of physical registers and their definition
 | 
						|
  /// that are "live". These nodes must be scheduled before any other nodes that
 | 
						|
  /// modifies the registers can be scheduled.
 | 
						|
  unsigned NumLiveRegs;
 | 
						|
  std::vector<SUnit*> LiveRegDefs;
 | 
						|
  std::vector<unsigned> LiveRegCycles;
 | 
						|
 | 
						|
  /// Topo - A topological ordering for SUnits which permits fast IsReachable
 | 
						|
  /// and similar queries.
 | 
						|
  ScheduleDAGTopologicalSort Topo;
 | 
						|
 | 
						|
public:
 | 
						|
  ScheduleDAGRRList(MachineFunction &mf,
 | 
						|
                    bool isbottomup, bool needlatency,
 | 
						|
                    SchedulingPriorityQueue *availqueue)
 | 
						|
    : ScheduleDAGSDNodes(mf), isBottomUp(isbottomup), NeedLatency(needlatency),
 | 
						|
      AvailableQueue(availqueue), Topo(SUnits) {
 | 
						|
    }
 | 
						|
 | 
						|
  ~ScheduleDAGRRList() {
 | 
						|
    delete AvailableQueue;
 | 
						|
  }
 | 
						|
 | 
						|
  void Schedule();
 | 
						|
 | 
						|
  /// IsReachable - Checks if SU is reachable from TargetSU.
 | 
						|
  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
 | 
						|
    return Topo.IsReachable(SU, TargetSU);
 | 
						|
  }
 | 
						|
 | 
						|
  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
 | 
						|
  /// create a cycle.
 | 
						|
  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
 | 
						|
    return Topo.WillCreateCycle(SU, TargetSU);
 | 
						|
  }
 | 
						|
 | 
						|
  /// AddPred - adds a predecessor edge to SUnit SU.
 | 
						|
  /// This returns true if this is a new predecessor.
 | 
						|
  /// Updates the topological ordering if required.
 | 
						|
  void AddPred(SUnit *SU, const SDep &D) {
 | 
						|
    Topo.AddPred(SU, D.getSUnit());
 | 
						|
    SU->addPred(D);
 | 
						|
  }
 | 
						|
 | 
						|
  /// RemovePred - removes a predecessor edge from SUnit SU.
 | 
						|
  /// This returns true if an edge was removed.
 | 
						|
  /// Updates the topological ordering if required.
 | 
						|
  void RemovePred(SUnit *SU, const SDep &D) {
 | 
						|
    Topo.RemovePred(SU, D.getSUnit());
 | 
						|
    SU->removePred(D);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void ReleasePred(SUnit *SU, const SDep *PredEdge);
 | 
						|
  void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
 | 
						|
  void ReleaseSucc(SUnit *SU, const SDep *SuccEdge);
 | 
						|
  void ReleaseSuccessors(SUnit *SU);
 | 
						|
  void CapturePred(SDep *PredEdge);
 | 
						|
  void ScheduleNodeBottomUp(SUnit*, unsigned);
 | 
						|
  void ScheduleNodeTopDown(SUnit*, unsigned);
 | 
						|
  void UnscheduleNodeBottomUp(SUnit*);
 | 
						|
  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
 | 
						|
  SUnit *CopyAndMoveSuccessors(SUnit*);
 | 
						|
  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
 | 
						|
                                const TargetRegisterClass*,
 | 
						|
                                const TargetRegisterClass*,
 | 
						|
                                SmallVector<SUnit*, 2>&);
 | 
						|
  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
 | 
						|
  void ListScheduleTopDown();
 | 
						|
  void ListScheduleBottomUp();
 | 
						|
 | 
						|
 | 
						|
  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
 | 
						|
  /// Updates the topological ordering if required.
 | 
						|
  SUnit *CreateNewSUnit(SDNode *N) {
 | 
						|
    unsigned NumSUnits = SUnits.size();
 | 
						|
    SUnit *NewNode = NewSUnit(N);
 | 
						|
    // Update the topological ordering.
 | 
						|
    if (NewNode->NodeNum >= NumSUnits)
 | 
						|
      Topo.InitDAGTopologicalSorting();
 | 
						|
    return NewNode;
 | 
						|
  }
 | 
						|
 | 
						|
  /// CreateClone - Creates a new SUnit from an existing one.
 | 
						|
  /// Updates the topological ordering if required.
 | 
						|
  SUnit *CreateClone(SUnit *N) {
 | 
						|
    unsigned NumSUnits = SUnits.size();
 | 
						|
    SUnit *NewNode = Clone(N);
 | 
						|
    // Update the topological ordering.
 | 
						|
    if (NewNode->NodeNum >= NumSUnits)
 | 
						|
      Topo.InitDAGTopologicalSorting();
 | 
						|
    return NewNode;
 | 
						|
  }
 | 
						|
 | 
						|
  /// ForceUnitLatencies - Register-pressure-reducing scheduling doesn't
 | 
						|
  /// need actual latency information but the hybrid scheduler does.
 | 
						|
  bool ForceUnitLatencies() const {
 | 
						|
    return !NeedLatency;
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
/// Schedule - Schedule the DAG using list scheduling.
 | 
						|
void ScheduleDAGRRList::Schedule() {
 | 
						|
  DEBUG(dbgs()
 | 
						|
        << "********** List Scheduling BB#" << BB->getNumber()
 | 
						|
        << " '" << BB->getName() << "' **********\n");
 | 
						|
 | 
						|
  NumLiveRegs = 0;
 | 
						|
  LiveRegDefs.resize(TRI->getNumRegs(), NULL);  
 | 
						|
  LiveRegCycles.resize(TRI->getNumRegs(), 0);
 | 
						|
 | 
						|
  // Build the scheduling graph.
 | 
						|
  BuildSchedGraph(NULL);
 | 
						|
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(this));
 | 
						|
  Topo.InitDAGTopologicalSorting();
 | 
						|
 | 
						|
  AvailableQueue->initNodes(SUnits);
 | 
						|
  
 | 
						|
  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
 | 
						|
  if (isBottomUp)
 | 
						|
    ListScheduleBottomUp();
 | 
						|
  else
 | 
						|
    ListScheduleTopDown();
 | 
						|
  
 | 
						|
  AvailableQueue->releaseState();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Bottom-Up Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | 
						|
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
 | 
						|
void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
 | 
						|
  SUnit *PredSU = PredEdge->getSUnit();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (PredSU->NumSuccsLeft == 0) {
 | 
						|
    dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
    PredSU->dump(this);
 | 
						|
    dbgs() << " has been released too many times!\n";
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  --PredSU->NumSuccsLeft;
 | 
						|
 | 
						|
  if (!ForceUnitLatencies()) {
 | 
						|
    // Updating predecessor's height. This is now the cycle when the
 | 
						|
    // predecessor can be scheduled without causing a pipeline stall.
 | 
						|
    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
 | 
						|
  }
 | 
						|
 | 
						|
  // If all the node's successors are scheduled, this node is ready
 | 
						|
  // to be scheduled. Ignore the special EntrySU node.
 | 
						|
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
 | 
						|
    PredSU->isAvailable = true;
 | 
						|
    AvailableQueue->push(PredSU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
 | 
						|
  // Bottom up: release predecessors
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    ReleasePred(SU, &*I);
 | 
						|
    if (I->isAssignedRegDep()) {
 | 
						|
      // This is a physical register dependency and it's impossible or
 | 
						|
      // expensive to copy the register. Make sure nothing that can 
 | 
						|
      // clobber the register is scheduled between the predecessor and
 | 
						|
      // this node.
 | 
						|
      if (!LiveRegDefs[I->getReg()]) {
 | 
						|
        ++NumLiveRegs;
 | 
						|
        LiveRegDefs[I->getReg()] = I->getSUnit();
 | 
						|
        LiveRegCycles[I->getReg()] = CurCycle;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its predecessors. If a predecessor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
 | 
						|
  DEBUG(SU->dump(this));
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (CurCycle < SU->getHeight())
 | 
						|
    DEBUG(dbgs() << "   Height [" << SU->getHeight() << "] pipeline stall!\n");
 | 
						|
#endif
 | 
						|
 | 
						|
  // FIXME: Handle noop hazard.
 | 
						|
  SU->setHeightToAtLeast(CurCycle);
 | 
						|
  Sequence.push_back(SU);
 | 
						|
 | 
						|
  AvailableQueue->ScheduledNode(SU);
 | 
						|
 | 
						|
  ReleasePredecessors(SU, CurCycle);
 | 
						|
 | 
						|
  // Release all the implicit physical register defs that are live.
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isAssignedRegDep()) {
 | 
						|
      if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
 | 
						|
        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
 | 
						|
        assert(LiveRegDefs[I->getReg()] == SU &&
 | 
						|
               "Physical register dependency violated?");
 | 
						|
        --NumLiveRegs;
 | 
						|
        LiveRegDefs[I->getReg()] = NULL;
 | 
						|
        LiveRegCycles[I->getReg()] = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SU->isScheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
/// CapturePred - This does the opposite of ReleasePred. Since SU is being
 | 
						|
/// unscheduled, incrcease the succ left count of its predecessors. Remove
 | 
						|
/// them from AvailableQueue if necessary.
 | 
						|
void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {  
 | 
						|
  SUnit *PredSU = PredEdge->getSUnit();
 | 
						|
  if (PredSU->isAvailable) {
 | 
						|
    PredSU->isAvailable = false;
 | 
						|
    if (!PredSU->isPending)
 | 
						|
      AvailableQueue->remove(PredSU);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
 | 
						|
  ++PredSU->NumSuccsLeft;
 | 
						|
}
 | 
						|
 | 
						|
/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
 | 
						|
/// its predecessor states to reflect the change.
 | 
						|
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
 | 
						|
  DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
 | 
						|
  DEBUG(SU->dump(this));
 | 
						|
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    CapturePred(&*I);
 | 
						|
    if (I->isAssignedRegDep() && SU->getHeight() == LiveRegCycles[I->getReg()]){
 | 
						|
      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
 | 
						|
      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
 | 
						|
             "Physical register dependency violated?");
 | 
						|
      --NumLiveRegs;
 | 
						|
      LiveRegDefs[I->getReg()] = NULL;
 | 
						|
      LiveRegCycles[I->getReg()] = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isAssignedRegDep()) {
 | 
						|
      if (!LiveRegDefs[I->getReg()]) {
 | 
						|
        LiveRegDefs[I->getReg()] = SU;
 | 
						|
        ++NumLiveRegs;
 | 
						|
      }
 | 
						|
      if (I->getSUnit()->getHeight() < LiveRegCycles[I->getReg()])
 | 
						|
        LiveRegCycles[I->getReg()] = I->getSUnit()->getHeight();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SU->setHeightDirty();
 | 
						|
  SU->isScheduled = false;
 | 
						|
  SU->isAvailable = true;
 | 
						|
  AvailableQueue->push(SU);
 | 
						|
  AvailableQueue->UnscheduledNode(SU);
 | 
						|
}
 | 
						|
 | 
						|
/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
 | 
						|
/// BTCycle in order to schedule a specific node.
 | 
						|
void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
 | 
						|
                                          unsigned &CurCycle) {
 | 
						|
  SUnit *OldSU = NULL;
 | 
						|
  while (CurCycle > BtCycle) {
 | 
						|
    OldSU = Sequence.back();
 | 
						|
    Sequence.pop_back();
 | 
						|
    if (SU->isSucc(OldSU))
 | 
						|
      // Don't try to remove SU from AvailableQueue.
 | 
						|
      SU->isAvailable = false;
 | 
						|
    UnscheduleNodeBottomUp(OldSU);
 | 
						|
    --CurCycle;
 | 
						|
    AvailableQueue->setCurCycle(CurCycle);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!SU->isSucc(OldSU) && "Something is wrong!");
 | 
						|
 | 
						|
  ++NumBacktracks;
 | 
						|
}
 | 
						|
 | 
						|
static bool isOperandOf(const SUnit *SU, SDNode *N) {
 | 
						|
  for (const SDNode *SUNode = SU->getNode(); SUNode;
 | 
						|
       SUNode = SUNode->getFlaggedNode()) {
 | 
						|
    if (SUNode->isOperandOf(N))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
 | 
						|
/// successors to the newly created node.
 | 
						|
SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
 | 
						|
  if (SU->getNode()->getFlaggedNode())
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  SDNode *N = SU->getNode();
 | 
						|
  if (!N)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  SUnit *NewSU;
 | 
						|
  bool TryUnfold = false;
 | 
						|
  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | 
						|
    EVT VT = N->getValueType(i);
 | 
						|
    if (VT == MVT::Flag)
 | 
						|
      return NULL;
 | 
						|
    else if (VT == MVT::Other)
 | 
						|
      TryUnfold = true;
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
    const SDValue &Op = N->getOperand(i);
 | 
						|
    EVT VT = Op.getNode()->getValueType(Op.getResNo());
 | 
						|
    if (VT == MVT::Flag)
 | 
						|
      return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TryUnfold) {
 | 
						|
    SmallVector<SDNode*, 2> NewNodes;
 | 
						|
    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
 | 
						|
      return NULL;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
 | 
						|
    assert(NewNodes.size() == 2 && "Expected a load folding node!");
 | 
						|
 | 
						|
    N = NewNodes[1];
 | 
						|
    SDNode *LoadNode = NewNodes[0];
 | 
						|
    unsigned NumVals = N->getNumValues();
 | 
						|
    unsigned OldNumVals = SU->getNode()->getNumValues();
 | 
						|
    for (unsigned i = 0; i != NumVals; ++i)
 | 
						|
      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
 | 
						|
    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
 | 
						|
                                   SDValue(LoadNode, 1));
 | 
						|
 | 
						|
    // LoadNode may already exist. This can happen when there is another
 | 
						|
    // load from the same location and producing the same type of value
 | 
						|
    // but it has different alignment or volatileness.
 | 
						|
    bool isNewLoad = true;
 | 
						|
    SUnit *LoadSU;
 | 
						|
    if (LoadNode->getNodeId() != -1) {
 | 
						|
      LoadSU = &SUnits[LoadNode->getNodeId()];
 | 
						|
      isNewLoad = false;
 | 
						|
    } else {
 | 
						|
      LoadSU = CreateNewSUnit(LoadNode);
 | 
						|
      LoadNode->setNodeId(LoadSU->NodeNum);
 | 
						|
      ComputeLatency(LoadSU);
 | 
						|
    }
 | 
						|
 | 
						|
    SUnit *NewSU = CreateNewSUnit(N);
 | 
						|
    assert(N->getNodeId() == -1 && "Node already inserted!");
 | 
						|
    N->setNodeId(NewSU->NodeNum);
 | 
						|
      
 | 
						|
    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
 | 
						|
    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
 | 
						|
      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
 | 
						|
        NewSU->isTwoAddress = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (TID.isCommutable())
 | 
						|
      NewSU->isCommutable = true;
 | 
						|
    ComputeLatency(NewSU);
 | 
						|
 | 
						|
    // Record all the edges to and from the old SU, by category.
 | 
						|
    SmallVector<SDep, 4> ChainPreds;
 | 
						|
    SmallVector<SDep, 4> ChainSuccs;
 | 
						|
    SmallVector<SDep, 4> LoadPreds;
 | 
						|
    SmallVector<SDep, 4> NodePreds;
 | 
						|
    SmallVector<SDep, 4> NodeSuccs;
 | 
						|
    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->isCtrl())
 | 
						|
        ChainPreds.push_back(*I);
 | 
						|
      else if (isOperandOf(I->getSUnit(), LoadNode))
 | 
						|
        LoadPreds.push_back(*I);
 | 
						|
      else
 | 
						|
        NodePreds.push_back(*I);
 | 
						|
    }
 | 
						|
    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->isCtrl())
 | 
						|
        ChainSuccs.push_back(*I);
 | 
						|
      else
 | 
						|
        NodeSuccs.push_back(*I);
 | 
						|
    }
 | 
						|
 | 
						|
    // Now assign edges to the newly-created nodes.
 | 
						|
    for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
 | 
						|
      const SDep &Pred = ChainPreds[i];
 | 
						|
      RemovePred(SU, Pred);
 | 
						|
      if (isNewLoad)
 | 
						|
        AddPred(LoadSU, Pred);
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
 | 
						|
      const SDep &Pred = LoadPreds[i];
 | 
						|
      RemovePred(SU, Pred);
 | 
						|
      if (isNewLoad)
 | 
						|
        AddPred(LoadSU, Pred);
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
 | 
						|
      const SDep &Pred = NodePreds[i];
 | 
						|
      RemovePred(SU, Pred);
 | 
						|
      AddPred(NewSU, Pred);
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
 | 
						|
      SDep D = NodeSuccs[i];
 | 
						|
      SUnit *SuccDep = D.getSUnit();
 | 
						|
      D.setSUnit(SU);
 | 
						|
      RemovePred(SuccDep, D);
 | 
						|
      D.setSUnit(NewSU);
 | 
						|
      AddPred(SuccDep, D);
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
 | 
						|
      SDep D = ChainSuccs[i];
 | 
						|
      SUnit *SuccDep = D.getSUnit();
 | 
						|
      D.setSUnit(SU);
 | 
						|
      RemovePred(SuccDep, D);
 | 
						|
      if (isNewLoad) {
 | 
						|
        D.setSUnit(LoadSU);
 | 
						|
        AddPred(SuccDep, D);
 | 
						|
      }
 | 
						|
    } 
 | 
						|
 | 
						|
    // Add a data dependency to reflect that NewSU reads the value defined
 | 
						|
    // by LoadSU.
 | 
						|
    AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
 | 
						|
 | 
						|
    if (isNewLoad)
 | 
						|
      AvailableQueue->addNode(LoadSU);
 | 
						|
    AvailableQueue->addNode(NewSU);
 | 
						|
 | 
						|
    ++NumUnfolds;
 | 
						|
 | 
						|
    if (NewSU->NumSuccsLeft == 0) {
 | 
						|
      NewSU->isAvailable = true;
 | 
						|
      return NewSU;
 | 
						|
    }
 | 
						|
    SU = NewSU;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
 | 
						|
  NewSU = CreateClone(SU);
 | 
						|
 | 
						|
  // New SUnit has the exact same predecessors.
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (!I->isArtificial())
 | 
						|
      AddPred(NewSU, *I);
 | 
						|
 | 
						|
  // Only copy scheduled successors. Cut them from old node's successor
 | 
						|
  // list and move them over.
 | 
						|
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isArtificial())
 | 
						|
      continue;
 | 
						|
    SUnit *SuccSU = I->getSUnit();
 | 
						|
    if (SuccSU->isScheduled) {
 | 
						|
      SDep D = *I;
 | 
						|
      D.setSUnit(NewSU);
 | 
						|
      AddPred(SuccSU, D);
 | 
						|
      D.setSUnit(SU);
 | 
						|
      DelDeps.push_back(std::make_pair(SuccSU, D));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
 | 
						|
    RemovePred(DelDeps[i].first, DelDeps[i].second);
 | 
						|
 | 
						|
  AvailableQueue->updateNode(SU);
 | 
						|
  AvailableQueue->addNode(NewSU);
 | 
						|
 | 
						|
  ++NumDups;
 | 
						|
  return NewSU;
 | 
						|
}
 | 
						|
 | 
						|
/// InsertCopiesAndMoveSuccs - Insert register copies and move all
 | 
						|
/// scheduled successors of the given SUnit to the last copy.
 | 
						|
void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
 | 
						|
                                               const TargetRegisterClass *DestRC,
 | 
						|
                                               const TargetRegisterClass *SrcRC,
 | 
						|
                                               SmallVector<SUnit*, 2> &Copies) {
 | 
						|
  SUnit *CopyFromSU = CreateNewSUnit(NULL);
 | 
						|
  CopyFromSU->CopySrcRC = SrcRC;
 | 
						|
  CopyFromSU->CopyDstRC = DestRC;
 | 
						|
 | 
						|
  SUnit *CopyToSU = CreateNewSUnit(NULL);
 | 
						|
  CopyToSU->CopySrcRC = DestRC;
 | 
						|
  CopyToSU->CopyDstRC = SrcRC;
 | 
						|
 | 
						|
  // Only copy scheduled successors. Cut them from old node's successor
 | 
						|
  // list and move them over.
 | 
						|
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isArtificial())
 | 
						|
      continue;
 | 
						|
    SUnit *SuccSU = I->getSUnit();
 | 
						|
    if (SuccSU->isScheduled) {
 | 
						|
      SDep D = *I;
 | 
						|
      D.setSUnit(CopyToSU);
 | 
						|
      AddPred(SuccSU, D);
 | 
						|
      DelDeps.push_back(std::make_pair(SuccSU, *I));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
 | 
						|
    RemovePred(DelDeps[i].first, DelDeps[i].second);
 | 
						|
 | 
						|
  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
 | 
						|
  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
 | 
						|
 | 
						|
  AvailableQueue->updateNode(SU);
 | 
						|
  AvailableQueue->addNode(CopyFromSU);
 | 
						|
  AvailableQueue->addNode(CopyToSU);
 | 
						|
  Copies.push_back(CopyFromSU);
 | 
						|
  Copies.push_back(CopyToSU);
 | 
						|
 | 
						|
  ++NumPRCopies;
 | 
						|
}
 | 
						|
 | 
						|
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
 | 
						|
/// definition of the specified node.
 | 
						|
/// FIXME: Move to SelectionDAG?
 | 
						|
static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
 | 
						|
                                 const TargetInstrInfo *TII) {
 | 
						|
  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
 | 
						|
  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
 | 
						|
  unsigned NumRes = TID.getNumDefs();
 | 
						|
  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
 | 
						|
    if (Reg == *ImpDef)
 | 
						|
      break;
 | 
						|
    ++NumRes;
 | 
						|
  }
 | 
						|
  return N->getValueType(NumRes);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckForLiveRegDef - Return true and update live register vector if the
 | 
						|
/// specified register def of the specified SUnit clobbers any "live" registers.
 | 
						|
static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
 | 
						|
                               std::vector<SUnit*> &LiveRegDefs,
 | 
						|
                               SmallSet<unsigned, 4> &RegAdded,
 | 
						|
                               SmallVector<unsigned, 4> &LRegs,
 | 
						|
                               const TargetRegisterInfo *TRI) {
 | 
						|
  bool Added = false;
 | 
						|
  if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != SU) {
 | 
						|
    if (RegAdded.insert(Reg)) {
 | 
						|
      LRegs.push_back(Reg);
 | 
						|
      Added = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
 | 
						|
    if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
 | 
						|
      if (RegAdded.insert(*Alias)) {
 | 
						|
        LRegs.push_back(*Alias);
 | 
						|
        Added = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  return Added;
 | 
						|
}
 | 
						|
 | 
						|
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
 | 
						|
/// scheduling of the given node to satisfy live physical register dependencies.
 | 
						|
/// If the specific node is the last one that's available to schedule, do
 | 
						|
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
 | 
						|
bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
 | 
						|
                                                 SmallVector<unsigned, 4> &LRegs){
 | 
						|
  if (NumLiveRegs == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallSet<unsigned, 4> RegAdded;
 | 
						|
  // If this node would clobber any "live" register, then it's not ready.
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isAssignedRegDep())
 | 
						|
      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
 | 
						|
                         RegAdded, LRegs, TRI);
 | 
						|
  }
 | 
						|
 | 
						|
  for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
 | 
						|
    if (Node->getOpcode() == ISD::INLINEASM) {
 | 
						|
      // Inline asm can clobber physical defs.
 | 
						|
      unsigned NumOps = Node->getNumOperands();
 | 
						|
      if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
 | 
						|
        --NumOps;  // Ignore the flag operand.
 | 
						|
 | 
						|
      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
 | 
						|
        unsigned Flags =
 | 
						|
          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
 | 
						|
        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
 | 
						|
 | 
						|
        ++i; // Skip the ID value.
 | 
						|
        if (InlineAsm::isRegDefKind(Flags) ||
 | 
						|
            InlineAsm::isRegDefEarlyClobberKind(Flags)) {
 | 
						|
          // Check for def of register or earlyclobber register.
 | 
						|
          for (; NumVals; --NumVals, ++i) {
 | 
						|
            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | 
						|
            if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | 
						|
              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
 | 
						|
          }
 | 
						|
        } else
 | 
						|
          i += NumVals;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Node->isMachineOpcode())
 | 
						|
      continue;
 | 
						|
    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
 | 
						|
    if (!TID.ImplicitDefs)
 | 
						|
      continue;
 | 
						|
    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg)
 | 
						|
      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
 | 
						|
  }
 | 
						|
  return !LRegs.empty();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | 
						|
/// schedulers.
 | 
						|
void ScheduleDAGRRList::ListScheduleBottomUp() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
 | 
						|
  // Release any predecessors of the special Exit node.
 | 
						|
  ReleasePredecessors(&ExitSU, CurCycle);
 | 
						|
 | 
						|
  // Add root to Available queue.
 | 
						|
  if (!SUnits.empty()) {
 | 
						|
    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
 | 
						|
    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
 | 
						|
    RootSU->isAvailable = true;
 | 
						|
    AvailableQueue->push(RootSU);
 | 
						|
  }
 | 
						|
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back.  Schedule the node.
 | 
						|
  SmallVector<SUnit*, 4> NotReady;
 | 
						|
  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
 | 
						|
  Sequence.reserve(SUnits.size());
 | 
						|
  while (!AvailableQueue->empty()) {
 | 
						|
    bool Delayed = false;
 | 
						|
    LRegsMap.clear();
 | 
						|
    SUnit *CurSU = AvailableQueue->pop();
 | 
						|
    while (CurSU) {
 | 
						|
      SmallVector<unsigned, 4> LRegs;
 | 
						|
      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
 | 
						|
        break;
 | 
						|
      Delayed = true;
 | 
						|
      LRegsMap.insert(std::make_pair(CurSU, LRegs));
 | 
						|
 | 
						|
      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
 | 
						|
      NotReady.push_back(CurSU);
 | 
						|
      CurSU = AvailableQueue->pop();
 | 
						|
    }
 | 
						|
 | 
						|
    // All candidates are delayed due to live physical reg dependencies.
 | 
						|
    // Try backtracking, code duplication, or inserting cross class copies
 | 
						|
    // to resolve it.
 | 
						|
    if (Delayed && !CurSU) {
 | 
						|
      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
 | 
						|
        SUnit *TrySU = NotReady[i];
 | 
						|
        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
 | 
						|
 | 
						|
        // Try unscheduling up to the point where it's safe to schedule
 | 
						|
        // this node.
 | 
						|
        unsigned LiveCycle = CurCycle;
 | 
						|
        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
 | 
						|
          unsigned Reg = LRegs[j];
 | 
						|
          unsigned LCycle = LiveRegCycles[Reg];
 | 
						|
          LiveCycle = std::min(LiveCycle, LCycle);
 | 
						|
        }
 | 
						|
        SUnit *OldSU = Sequence[LiveCycle];
 | 
						|
        if (!WillCreateCycle(TrySU, OldSU))  {
 | 
						|
          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
 | 
						|
          // Force the current node to be scheduled before the node that
 | 
						|
          // requires the physical reg dep.
 | 
						|
          if (OldSU->isAvailable) {
 | 
						|
            OldSU->isAvailable = false;
 | 
						|
            AvailableQueue->remove(OldSU);
 | 
						|
          }
 | 
						|
          AddPred(TrySU, SDep(OldSU, SDep::Order, /*Latency=*/1,
 | 
						|
                              /*Reg=*/0, /*isNormalMemory=*/false,
 | 
						|
                              /*isMustAlias=*/false, /*isArtificial=*/true));
 | 
						|
          // If one or more successors has been unscheduled, then the current
 | 
						|
          // node is no longer avaialable. Schedule a successor that's now
 | 
						|
          // available instead.
 | 
						|
          if (!TrySU->isAvailable)
 | 
						|
            CurSU = AvailableQueue->pop();
 | 
						|
          else {
 | 
						|
            CurSU = TrySU;
 | 
						|
            TrySU->isPending = false;
 | 
						|
            NotReady.erase(NotReady.begin()+i);
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!CurSU) {
 | 
						|
        // Can't backtrack. If it's too expensive to copy the value, then try
 | 
						|
        // duplicate the nodes that produces these "too expensive to copy"
 | 
						|
        // values to break the dependency. In case even that doesn't work,
 | 
						|
        // insert cross class copies.
 | 
						|
        // If it's not too expensive, i.e. cost != -1, issue copies.
 | 
						|
        SUnit *TrySU = NotReady[0];
 | 
						|
        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
 | 
						|
        assert(LRegs.size() == 1 && "Can't handle this yet!");
 | 
						|
        unsigned Reg = LRegs[0];
 | 
						|
        SUnit *LRDef = LiveRegDefs[Reg];
 | 
						|
        EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
 | 
						|
        const TargetRegisterClass *RC =
 | 
						|
          TRI->getMinimalPhysRegClass(Reg, VT);
 | 
						|
        const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
 | 
						|
 | 
						|
        // If cross copy register class is null, then it must be possible copy
 | 
						|
        // the value directly. Do not try duplicate the def.
 | 
						|
        SUnit *NewDef = 0;
 | 
						|
        if (DestRC)
 | 
						|
          NewDef = CopyAndMoveSuccessors(LRDef);
 | 
						|
        else
 | 
						|
          DestRC = RC;
 | 
						|
        if (!NewDef) {
 | 
						|
          // Issue copies, these can be expensive cross register class copies.
 | 
						|
          SmallVector<SUnit*, 2> Copies;
 | 
						|
          InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
 | 
						|
          DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
 | 
						|
                       << " to SU #" << Copies.front()->NodeNum << "\n");
 | 
						|
          AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
 | 
						|
                              /*Reg=*/0, /*isNormalMemory=*/false,
 | 
						|
                              /*isMustAlias=*/false,
 | 
						|
                              /*isArtificial=*/true));
 | 
						|
          NewDef = Copies.back();
 | 
						|
        }
 | 
						|
 | 
						|
        DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
 | 
						|
                     << " to SU #" << TrySU->NodeNum << "\n");
 | 
						|
        LiveRegDefs[Reg] = NewDef;
 | 
						|
        AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
 | 
						|
                             /*Reg=*/0, /*isNormalMemory=*/false,
 | 
						|
                             /*isMustAlias=*/false,
 | 
						|
                             /*isArtificial=*/true));
 | 
						|
        TrySU->isAvailable = false;
 | 
						|
        CurSU = NewDef;
 | 
						|
      }
 | 
						|
 | 
						|
      assert(CurSU && "Unable to resolve live physical register dependencies!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
 | 
						|
      NotReady[i]->isPending = false;
 | 
						|
      // May no longer be available due to backtracking.
 | 
						|
      if (NotReady[i]->isAvailable)
 | 
						|
        AvailableQueue->push(NotReady[i]);
 | 
						|
    }
 | 
						|
    NotReady.clear();
 | 
						|
 | 
						|
    if (CurSU)
 | 
						|
      ScheduleNodeBottomUp(CurSU, CurCycle);
 | 
						|
    ++CurCycle;
 | 
						|
    AvailableQueue->setCurCycle(CurCycle);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reverse the order if it is bottom up.
 | 
						|
  std::reverse(Sequence.begin(), Sequence.end());
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  VerifySchedule(isBottomUp);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Top-Down Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | 
						|
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
 | 
						|
void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) {
 | 
						|
  SUnit *SuccSU = SuccEdge->getSUnit();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (SuccSU->NumPredsLeft == 0) {
 | 
						|
    dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
    SuccSU->dump(this);
 | 
						|
    dbgs() << " has been released too many times!\n";
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  --SuccSU->NumPredsLeft;
 | 
						|
 | 
						|
  // If all the node's predecessors are scheduled, this node is ready
 | 
						|
  // to be scheduled. Ignore the special ExitSU node.
 | 
						|
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
 | 
						|
    SuccSU->isAvailable = true;
 | 
						|
    AvailableQueue->push(SuccSU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) {
 | 
						|
  // Top down: release successors
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    assert(!I->isAssignedRegDep() &&
 | 
						|
           "The list-tdrr scheduler doesn't yet support physreg dependencies!");
 | 
						|
 | 
						|
    ReleaseSucc(SU, &*I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its successors. If a successor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
 | 
						|
  DEBUG(SU->dump(this));
 | 
						|
 | 
						|
  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
 | 
						|
  SU->setDepthToAtLeast(CurCycle);
 | 
						|
  Sequence.push_back(SU);
 | 
						|
 | 
						|
  ReleaseSuccessors(SU);
 | 
						|
  SU->isScheduled = true;
 | 
						|
  AvailableQueue->ScheduledNode(SU);
 | 
						|
}
 | 
						|
 | 
						|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
 | 
						|
/// schedulers.
 | 
						|
void ScheduleDAGRRList::ListScheduleTopDown() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
  AvailableQueue->setCurCycle(CurCycle);
 | 
						|
 | 
						|
  // Release any successors of the special Entry node.
 | 
						|
  ReleaseSuccessors(&EntrySU);
 | 
						|
 | 
						|
  // All leaves to Available queue.
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    // It is available if it has no predecessors.
 | 
						|
    if (SUnits[i].Preds.empty()) {
 | 
						|
      AvailableQueue->push(&SUnits[i]);
 | 
						|
      SUnits[i].isAvailable = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back.  Schedule the node.
 | 
						|
  Sequence.reserve(SUnits.size());
 | 
						|
  while (!AvailableQueue->empty()) {
 | 
						|
    SUnit *CurSU = AvailableQueue->pop();
 | 
						|
    
 | 
						|
    if (CurSU)
 | 
						|
      ScheduleNodeTopDown(CurSU, CurCycle);
 | 
						|
    ++CurCycle;
 | 
						|
    AvailableQueue->setCurCycle(CurCycle);
 | 
						|
  }
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  VerifySchedule(isBottomUp);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                RegReductionPriorityQueue Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
 | 
						|
// to reduce register pressure.
 | 
						|
// 
 | 
						|
namespace {
 | 
						|
  template<class SF>
 | 
						|
  class RegReductionPriorityQueue;
 | 
						|
  
 | 
						|
  /// bu_ls_rr_sort - Priority function for bottom up register pressure
 | 
						|
  // reduction scheduler.
 | 
						|
  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
 | 
						|
    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
 | 
						|
    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
 | 
						|
  // td_ls_rr_sort - Priority function for top down register pressure reduction
 | 
						|
  // scheduler.
 | 
						|
  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
 | 
						|
    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
 | 
						|
    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
 | 
						|
  // src_ls_rr_sort - Priority function for source order scheduler.
 | 
						|
  struct src_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue<src_ls_rr_sort> *SPQ;
 | 
						|
    src_ls_rr_sort(RegReductionPriorityQueue<src_ls_rr_sort> *spq)
 | 
						|
      : SPQ(spq) {}
 | 
						|
    src_ls_rr_sort(const src_ls_rr_sort &RHS)
 | 
						|
      : SPQ(RHS.SPQ) {}
 | 
						|
    
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
 | 
						|
  // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
 | 
						|
  struct hybrid_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue<hybrid_ls_rr_sort> *SPQ;
 | 
						|
    hybrid_ls_rr_sort(RegReductionPriorityQueue<hybrid_ls_rr_sort> *spq)
 | 
						|
      : SPQ(spq) {}
 | 
						|
    hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
 | 
						|
      : SPQ(RHS.SPQ) {}
 | 
						|
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
 | 
						|
  // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
 | 
						|
  // scheduler.
 | 
						|
  struct ilp_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | 
						|
    RegReductionPriorityQueue<ilp_ls_rr_sort> *SPQ;
 | 
						|
    ilp_ls_rr_sort(RegReductionPriorityQueue<ilp_ls_rr_sort> *spq)
 | 
						|
      : SPQ(spq) {}
 | 
						|
    ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
 | 
						|
      : SPQ(RHS.SPQ) {}
 | 
						|
 | 
						|
    bool operator()(const SUnit* left, const SUnit* right) const;
 | 
						|
  };
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
 | 
						|
/// Smaller number is the higher priority.
 | 
						|
static unsigned
 | 
						|
CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
 | 
						|
  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
 | 
						|
  if (SethiUllmanNumber != 0)
 | 
						|
    return SethiUllmanNumber;
 | 
						|
 | 
						|
  unsigned Extra = 0;
 | 
						|
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isCtrl()) continue;  // ignore chain preds
 | 
						|
    SUnit *PredSU = I->getSUnit();
 | 
						|
    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
 | 
						|
    if (PredSethiUllman > SethiUllmanNumber) {
 | 
						|
      SethiUllmanNumber = PredSethiUllman;
 | 
						|
      Extra = 0;
 | 
						|
    } else if (PredSethiUllman == SethiUllmanNumber)
 | 
						|
      ++Extra;
 | 
						|
  }
 | 
						|
 | 
						|
  SethiUllmanNumber += Extra;
 | 
						|
 | 
						|
  if (SethiUllmanNumber == 0)
 | 
						|
    SethiUllmanNumber = 1;
 | 
						|
  
 | 
						|
  return SethiUllmanNumber;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  template<class SF>
 | 
						|
  class RegReductionPriorityQueue : public SchedulingPriorityQueue {
 | 
						|
    std::vector<SUnit*> Queue;
 | 
						|
    SF Picker;
 | 
						|
    unsigned CurQueueId;
 | 
						|
    bool TracksRegPressure;
 | 
						|
 | 
						|
  protected:
 | 
						|
    // SUnits - The SUnits for the current graph.
 | 
						|
    std::vector<SUnit> *SUnits;
 | 
						|
 | 
						|
    MachineFunction &MF;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    const TargetLowering *TLI;
 | 
						|
    ScheduleDAGRRList *scheduleDAG;
 | 
						|
 | 
						|
    // SethiUllmanNumbers - The SethiUllman number for each node.
 | 
						|
    std::vector<unsigned> SethiUllmanNumbers;
 | 
						|
 | 
						|
    /// RegPressure - Tracking current reg pressure per register class.
 | 
						|
    ///
 | 
						|
    std::vector<unsigned> RegPressure;
 | 
						|
 | 
						|
    /// RegLimit - Tracking the number of allocatable registers per register
 | 
						|
    /// class.
 | 
						|
    std::vector<unsigned> RegLimit;
 | 
						|
 | 
						|
  public:
 | 
						|
    RegReductionPriorityQueue(MachineFunction &mf,
 | 
						|
                              bool tracksrp,
 | 
						|
                              const TargetInstrInfo *tii,
 | 
						|
                              const TargetRegisterInfo *tri,
 | 
						|
                              const TargetLowering *tli)
 | 
						|
      : Picker(this), CurQueueId(0), TracksRegPressure(tracksrp),
 | 
						|
        MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
 | 
						|
      if (TracksRegPressure) {
 | 
						|
        unsigned NumRC = TRI->getNumRegClasses();
 | 
						|
        RegLimit.resize(NumRC);
 | 
						|
        RegPressure.resize(NumRC);
 | 
						|
        std::fill(RegLimit.begin(), RegLimit.end(), 0);
 | 
						|
        std::fill(RegPressure.begin(), RegPressure.end(), 0);
 | 
						|
        for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
 | 
						|
               E = TRI->regclass_end(); I != E; ++I)
 | 
						|
          RegLimit[(*I)->getID()] = tli->getRegPressureLimit(*I, MF);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    void initNodes(std::vector<SUnit> &sunits) {
 | 
						|
      SUnits = &sunits;
 | 
						|
      // Add pseudo dependency edges for two-address nodes.
 | 
						|
      AddPseudoTwoAddrDeps();
 | 
						|
      // Reroute edges to nodes with multiple uses.
 | 
						|
      PrescheduleNodesWithMultipleUses();
 | 
						|
      // Calculate node priorities.
 | 
						|
      CalculateSethiUllmanNumbers();
 | 
						|
    }
 | 
						|
 | 
						|
    void addNode(const SUnit *SU) {
 | 
						|
      unsigned SUSize = SethiUllmanNumbers.size();
 | 
						|
      if (SUnits->size() > SUSize)
 | 
						|
        SethiUllmanNumbers.resize(SUSize*2, 0);
 | 
						|
      CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
 | 
						|
    }
 | 
						|
 | 
						|
    void updateNode(const SUnit *SU) {
 | 
						|
      SethiUllmanNumbers[SU->NodeNum] = 0;
 | 
						|
      CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseState() {
 | 
						|
      SUnits = 0;
 | 
						|
      SethiUllmanNumbers.clear();
 | 
						|
      std::fill(RegPressure.begin(), RegPressure.end(), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getNodePriority(const SUnit *SU) const {
 | 
						|
      assert(SU->NodeNum < SethiUllmanNumbers.size());
 | 
						|
      unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
 | 
						|
      if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | 
						|
        // CopyToReg should be close to its uses to facilitate coalescing and
 | 
						|
        // avoid spilling.
 | 
						|
        return 0;
 | 
						|
      if (Opc == TargetOpcode::EXTRACT_SUBREG ||
 | 
						|
          Opc == TargetOpcode::SUBREG_TO_REG ||
 | 
						|
          Opc == TargetOpcode::INSERT_SUBREG)
 | 
						|
        // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
 | 
						|
        // close to their uses to facilitate coalescing.
 | 
						|
        return 0;
 | 
						|
      if (SU->NumSuccs == 0 && SU->NumPreds != 0)
 | 
						|
        // If SU does not have a register use, i.e. it doesn't produce a value
 | 
						|
        // that would be consumed (e.g. store), then it terminates a chain of
 | 
						|
        // computation.  Give it a large SethiUllman number so it will be
 | 
						|
        // scheduled right before its predecessors that it doesn't lengthen
 | 
						|
        // their live ranges.
 | 
						|
        return 0xffff;
 | 
						|
      if (SU->NumPreds == 0 && SU->NumSuccs != 0)
 | 
						|
        // If SU does not have a register def, schedule it close to its uses
 | 
						|
        // because it does not lengthen any live ranges.
 | 
						|
        return 0;
 | 
						|
      return SethiUllmanNumbers[SU->NodeNum];
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getNodeOrdering(const SUnit *SU) const {
 | 
						|
      return scheduleDAG->DAG->GetOrdering(SU->getNode());
 | 
						|
    }
 | 
						|
 | 
						|
    bool empty() const { return Queue.empty(); }
 | 
						|
    
 | 
						|
    void push(SUnit *U) {
 | 
						|
      assert(!U->NodeQueueId && "Node in the queue already");
 | 
						|
      U->NodeQueueId = ++CurQueueId;
 | 
						|
      Queue.push_back(U);
 | 
						|
    }
 | 
						|
 | 
						|
    SUnit *pop() {
 | 
						|
      if (empty()) return NULL;
 | 
						|
      std::vector<SUnit *>::iterator Best = Queue.begin();
 | 
						|
      for (std::vector<SUnit *>::iterator I = llvm::next(Queue.begin()),
 | 
						|
           E = Queue.end(); I != E; ++I)
 | 
						|
        if (Picker(*Best, *I))
 | 
						|
          Best = I;
 | 
						|
      SUnit *V = *Best;
 | 
						|
      if (Best != prior(Queue.end()))
 | 
						|
        std::swap(*Best, Queue.back());
 | 
						|
      Queue.pop_back();
 | 
						|
      V->NodeQueueId = 0;
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    void remove(SUnit *SU) {
 | 
						|
      assert(!Queue.empty() && "Queue is empty!");
 | 
						|
      assert(SU->NodeQueueId != 0 && "Not in queue!");
 | 
						|
      std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
 | 
						|
                                                   SU);
 | 
						|
      if (I != prior(Queue.end()))
 | 
						|
        std::swap(*I, Queue.back());
 | 
						|
      Queue.pop_back();
 | 
						|
      SU->NodeQueueId = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    bool HighRegPressure(const SUnit *SU) const {
 | 
						|
      if (!TLI)
 | 
						|
        return false;
 | 
						|
 | 
						|
      for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        if (I->isCtrl())
 | 
						|
          continue;
 | 
						|
        SUnit *PredSU = I->getSUnit();
 | 
						|
        const SDNode *PN = PredSU->getNode();
 | 
						|
        if (!PN->isMachineOpcode()) {
 | 
						|
          if (PN->getOpcode() == ISD::CopyFromReg) {
 | 
						|
            EVT VT = PN->getValueType(0);
 | 
						|
            unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
            unsigned Cost = TLI->getRepRegClassCostFor(VT);
 | 
						|
            if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
 | 
						|
              return true;
 | 
						|
          }
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        unsigned POpc = PN->getMachineOpcode();
 | 
						|
        if (POpc == TargetOpcode::IMPLICIT_DEF)
 | 
						|
          continue;
 | 
						|
        if (POpc == TargetOpcode::EXTRACT_SUBREG) {
 | 
						|
          EVT VT = PN->getOperand(0).getValueType();
 | 
						|
          unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
          unsigned Cost = TLI->getRepRegClassCostFor(VT);
 | 
						|
          // Check if this increases register pressure of the specific register
 | 
						|
          // class to the point where it would cause spills.
 | 
						|
          if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
 | 
						|
            return true;
 | 
						|
          continue;            
 | 
						|
        } else if (POpc == TargetOpcode::INSERT_SUBREG ||
 | 
						|
                   POpc == TargetOpcode::SUBREG_TO_REG) {
 | 
						|
          EVT VT = PN->getValueType(0);
 | 
						|
          unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
          unsigned Cost = TLI->getRepRegClassCostFor(VT);
 | 
						|
          // Check if this increases register pressure of the specific register
 | 
						|
          // class to the point where it would cause spills.
 | 
						|
          if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
 | 
						|
            return true;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
 | 
						|
        for (unsigned i = 0; i != NumDefs; ++i) {
 | 
						|
          EVT VT = PN->getValueType(i);
 | 
						|
          unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
          if (RegPressure[RCId] >= RegLimit[RCId])
 | 
						|
            return true; // Reg pressure already high.
 | 
						|
          unsigned Cost = TLI->getRepRegClassCostFor(VT);
 | 
						|
          if (!PN->hasAnyUseOfValue(i))
 | 
						|
            continue;
 | 
						|
          // Check if this increases register pressure of the specific register
 | 
						|
          // class to the point where it would cause spills.
 | 
						|
          if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    void ScheduledNode(SUnit *SU) {
 | 
						|
      if (!TracksRegPressure)
 | 
						|
        return;
 | 
						|
 | 
						|
      const SDNode *N = SU->getNode();
 | 
						|
      if (!N->isMachineOpcode()) {
 | 
						|
        if (N->getOpcode() != ISD::CopyToReg)
 | 
						|
          return;
 | 
						|
      } else {
 | 
						|
        unsigned Opc = N->getMachineOpcode();
 | 
						|
        if (Opc == TargetOpcode::EXTRACT_SUBREG ||
 | 
						|
            Opc == TargetOpcode::INSERT_SUBREG ||
 | 
						|
            Opc == TargetOpcode::SUBREG_TO_REG ||
 | 
						|
            Opc == TargetOpcode::REG_SEQUENCE ||
 | 
						|
            Opc == TargetOpcode::IMPLICIT_DEF)
 | 
						|
          return;
 | 
						|
      }
 | 
						|
 | 
						|
      for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        if (I->isCtrl())
 | 
						|
          continue;
 | 
						|
        SUnit *PredSU = I->getSUnit();
 | 
						|
        if (PredSU->NumSuccsLeft != PredSU->NumSuccs)
 | 
						|
          continue;
 | 
						|
        const SDNode *PN = PredSU->getNode();
 | 
						|
        if (!PN->isMachineOpcode()) {
 | 
						|
          if (PN->getOpcode() == ISD::CopyFromReg) {
 | 
						|
            EVT VT = PN->getValueType(0);
 | 
						|
            unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
            RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | 
						|
          }
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        unsigned POpc = PN->getMachineOpcode();
 | 
						|
        if (POpc == TargetOpcode::IMPLICIT_DEF)
 | 
						|
          continue;
 | 
						|
        if (POpc == TargetOpcode::EXTRACT_SUBREG) {
 | 
						|
          EVT VT = PN->getOperand(0).getValueType();
 | 
						|
          unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
          RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | 
						|
          continue;            
 | 
						|
        } else if (POpc == TargetOpcode::INSERT_SUBREG ||
 | 
						|
                   POpc == TargetOpcode::SUBREG_TO_REG) {
 | 
						|
          EVT VT = PN->getValueType(0);
 | 
						|
          unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
          RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
 | 
						|
        for (unsigned i = 0; i != NumDefs; ++i) {
 | 
						|
          EVT VT = PN->getValueType(i);
 | 
						|
          if (!PN->hasAnyUseOfValue(i))
 | 
						|
            continue;
 | 
						|
          unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
          RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
 | 
						|
      // may transfer data dependencies to CopyToReg.
 | 
						|
      if (SU->NumSuccs && N->isMachineOpcode()) {
 | 
						|
        unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
 | 
						|
        for (unsigned i = 0; i != NumDefs; ++i) {
 | 
						|
          EVT VT = N->getValueType(i);
 | 
						|
          if (!N->hasAnyUseOfValue(i))
 | 
						|
            continue;
 | 
						|
          unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
          if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
 | 
						|
            // Register pressure tracking is imprecise. This can happen.
 | 
						|
            RegPressure[RCId] = 0;
 | 
						|
          else
 | 
						|
            RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      dumpRegPressure();
 | 
						|
    }
 | 
						|
 | 
						|
    void UnscheduledNode(SUnit *SU) {
 | 
						|
      if (!TracksRegPressure)
 | 
						|
        return;
 | 
						|
 | 
						|
      const SDNode *N = SU->getNode();
 | 
						|
      if (!N->isMachineOpcode()) {
 | 
						|
        if (N->getOpcode() != ISD::CopyToReg)
 | 
						|
          return;
 | 
						|
      } else {
 | 
						|
        unsigned Opc = N->getMachineOpcode();
 | 
						|
        if (Opc == TargetOpcode::EXTRACT_SUBREG ||
 | 
						|
            Opc == TargetOpcode::INSERT_SUBREG ||
 | 
						|
            Opc == TargetOpcode::SUBREG_TO_REG ||
 | 
						|
            Opc == TargetOpcode::REG_SEQUENCE ||
 | 
						|
            Opc == TargetOpcode::IMPLICIT_DEF)
 | 
						|
          return;
 | 
						|
      }
 | 
						|
 | 
						|
      for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        if (I->isCtrl())
 | 
						|
          continue;
 | 
						|
        SUnit *PredSU = I->getSUnit();
 | 
						|
        if (PredSU->NumSuccsLeft != PredSU->NumSuccs)
 | 
						|
          continue;
 | 
						|
        const SDNode *PN = PredSU->getNode();
 | 
						|
        if (!PN->isMachineOpcode()) {
 | 
						|
          if (PN->getOpcode() == ISD::CopyFromReg) {
 | 
						|
            EVT VT = PN->getValueType(0);
 | 
						|
            unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
            RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | 
						|
          }
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        unsigned POpc = PN->getMachineOpcode();
 | 
						|
        if (POpc == TargetOpcode::IMPLICIT_DEF)
 | 
						|
          continue;
 | 
						|
        if (POpc == TargetOpcode::EXTRACT_SUBREG) {
 | 
						|
          EVT VT = PN->getOperand(0).getValueType();
 | 
						|
          unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
          RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | 
						|
          continue;            
 | 
						|
        } else if (POpc == TargetOpcode::INSERT_SUBREG ||
 | 
						|
                   POpc == TargetOpcode::SUBREG_TO_REG) {
 | 
						|
          EVT VT = PN->getValueType(0);
 | 
						|
          unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
          RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
 | 
						|
        for (unsigned i = 0; i != NumDefs; ++i) {
 | 
						|
          EVT VT = PN->getValueType(i);
 | 
						|
          if (!PN->hasAnyUseOfValue(i))
 | 
						|
            continue;
 | 
						|
          unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
          if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
 | 
						|
            // Register pressure tracking is imprecise. This can happen.
 | 
						|
            RegPressure[RCId] = 0;
 | 
						|
          else
 | 
						|
            RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
 | 
						|
      // may transfer data dependencies to CopyToReg.
 | 
						|
      if (SU->NumSuccs && N->isMachineOpcode()) {
 | 
						|
        unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
 | 
						|
        for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
 | 
						|
          EVT VT = N->getValueType(i);
 | 
						|
          if (VT == MVT::Flag || VT == MVT::Other)
 | 
						|
            continue;
 | 
						|
          if (!N->hasAnyUseOfValue(i))
 | 
						|
            continue;
 | 
						|
          unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
 | 
						|
          RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      dumpRegPressure();
 | 
						|
    }
 | 
						|
 | 
						|
    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) { 
 | 
						|
      scheduleDAG = scheduleDag; 
 | 
						|
    }
 | 
						|
 | 
						|
    void dumpRegPressure() const {
 | 
						|
      for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
 | 
						|
             E = TRI->regclass_end(); I != E; ++I) {
 | 
						|
        const TargetRegisterClass *RC = *I;
 | 
						|
        unsigned Id = RC->getID();
 | 
						|
        unsigned RP = RegPressure[Id];
 | 
						|
        if (!RP) continue;
 | 
						|
        DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
 | 
						|
              << '\n');
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  protected:
 | 
						|
    bool canClobber(const SUnit *SU, const SUnit *Op);
 | 
						|
    void AddPseudoTwoAddrDeps();
 | 
						|
    void PrescheduleNodesWithMultipleUses();
 | 
						|
    void CalculateSethiUllmanNumbers();
 | 
						|
  };
 | 
						|
 | 
						|
  typedef RegReductionPriorityQueue<bu_ls_rr_sort>
 | 
						|
    BURegReductionPriorityQueue;
 | 
						|
 | 
						|
  typedef RegReductionPriorityQueue<td_ls_rr_sort>
 | 
						|
    TDRegReductionPriorityQueue;
 | 
						|
 | 
						|
  typedef RegReductionPriorityQueue<src_ls_rr_sort>
 | 
						|
    SrcRegReductionPriorityQueue;
 | 
						|
 | 
						|
  typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
 | 
						|
    HybridBURRPriorityQueue;
 | 
						|
 | 
						|
  typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
 | 
						|
    ILPBURRPriorityQueue;
 | 
						|
}
 | 
						|
 | 
						|
/// closestSucc - Returns the scheduled cycle of the successor which is
 | 
						|
/// closest to the current cycle.
 | 
						|
static unsigned closestSucc(const SUnit *SU) {
 | 
						|
  unsigned MaxHeight = 0;
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isCtrl()) continue;  // ignore chain succs
 | 
						|
    unsigned Height = I->getSUnit()->getHeight();
 | 
						|
    // If there are bunch of CopyToRegs stacked up, they should be considered
 | 
						|
    // to be at the same position.
 | 
						|
    if (I->getSUnit()->getNode() &&
 | 
						|
        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
 | 
						|
      Height = closestSucc(I->getSUnit())+1;
 | 
						|
    if (Height > MaxHeight)
 | 
						|
      MaxHeight = Height;
 | 
						|
  }
 | 
						|
  return MaxHeight;
 | 
						|
}
 | 
						|
 | 
						|
/// calcMaxScratches - Returns an cost estimate of the worse case requirement
 | 
						|
/// for scratch registers, i.e. number of data dependencies.
 | 
						|
static unsigned calcMaxScratches(const SUnit *SU) {
 | 
						|
  unsigned Scratches = 0;
 | 
						|
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isCtrl()) continue;  // ignore chain preds
 | 
						|
    Scratches++;
 | 
						|
  }
 | 
						|
  return Scratches;
 | 
						|
}
 | 
						|
 | 
						|
/// hasOnlyLiveOutUse - Return true if SU has a single value successor that is a
 | 
						|
/// CopyToReg to a virtual register. This SU def is probably a liveout and
 | 
						|
/// it has no other use. It should be scheduled closer to the terminator.
 | 
						|
static bool hasOnlyLiveOutUses(const SUnit *SU) {
 | 
						|
  bool RetVal = false;
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isCtrl()) continue;
 | 
						|
    const SUnit *SuccSU = I->getSUnit();
 | 
						|
    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
 | 
						|
      unsigned Reg =
 | 
						|
        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
        RetVal = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return RetVal;
 | 
						|
}
 | 
						|
 | 
						|
/// UnitsSharePred - Return true if the two scheduling units share a common
 | 
						|
/// data predecessor.
 | 
						|
static bool UnitsSharePred(const SUnit *left, const SUnit *right) {
 | 
						|
  SmallSet<const SUnit*, 4> Preds;
 | 
						|
  for (SUnit::const_pred_iterator I = left->Preds.begin(),E = left->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isCtrl()) continue;  // ignore chain preds
 | 
						|
    Preds.insert(I->getSUnit());
 | 
						|
  }
 | 
						|
  for (SUnit::const_pred_iterator I = right->Preds.begin(),E = right->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isCtrl()) continue;  // ignore chain preds
 | 
						|
    if (Preds.count(I->getSUnit()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
template <typename RRSort>
 | 
						|
static bool BURRSort(const SUnit *left, const SUnit *right,
 | 
						|
                     const RegReductionPriorityQueue<RRSort> *SPQ) {
 | 
						|
  unsigned LPriority = SPQ->getNodePriority(left);
 | 
						|
  unsigned RPriority = SPQ->getNodePriority(right);
 | 
						|
  if (LPriority != RPriority)
 | 
						|
    return LPriority > RPriority;
 | 
						|
 | 
						|
  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
 | 
						|
  // e.g.
 | 
						|
  // t1 = op t2, c1
 | 
						|
  // t3 = op t4, c2
 | 
						|
  //
 | 
						|
  // and the following instructions are both ready.
 | 
						|
  // t2 = op c3
 | 
						|
  // t4 = op c4
 | 
						|
  //
 | 
						|
  // Then schedule t2 = op first.
 | 
						|
  // i.e.
 | 
						|
  // t4 = op c4
 | 
						|
  // t2 = op c3
 | 
						|
  // t1 = op t2, c1
 | 
						|
  // t3 = op t4, c2
 | 
						|
  //
 | 
						|
  // This creates more short live intervals.
 | 
						|
  unsigned LDist = closestSucc(left);
 | 
						|
  unsigned RDist = closestSucc(right);
 | 
						|
  if (LDist != RDist)
 | 
						|
    return LDist < RDist;
 | 
						|
 | 
						|
  // How many registers becomes live when the node is scheduled.
 | 
						|
  unsigned LScratch = calcMaxScratches(left);
 | 
						|
  unsigned RScratch = calcMaxScratches(right);
 | 
						|
  if (LScratch != RScratch)
 | 
						|
    return LScratch > RScratch;
 | 
						|
 | 
						|
  if (left->getHeight() != right->getHeight())
 | 
						|
    return left->getHeight() > right->getHeight();
 | 
						|
  
 | 
						|
  if (left->getDepth() != right->getDepth())
 | 
						|
    return left->getDepth() < right->getDepth();
 | 
						|
 | 
						|
  assert(left->NodeQueueId && right->NodeQueueId && 
 | 
						|
         "NodeQueueId cannot be zero");
 | 
						|
  return (left->NodeQueueId > right->NodeQueueId);
 | 
						|
}
 | 
						|
 | 
						|
// Bottom up
 | 
						|
bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | 
						|
  return BURRSort(left, right, SPQ);
 | 
						|
}
 | 
						|
 | 
						|
// Source order, otherwise bottom up.
 | 
						|
bool src_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | 
						|
  unsigned LOrder = SPQ->getNodeOrdering(left);
 | 
						|
  unsigned ROrder = SPQ->getNodeOrdering(right);
 | 
						|
 | 
						|
  // Prefer an ordering where the lower the non-zero order number, the higher
 | 
						|
  // the preference.
 | 
						|
  if ((LOrder || ROrder) && LOrder != ROrder)
 | 
						|
    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
 | 
						|
 | 
						|
  return BURRSort(left, right, SPQ);
 | 
						|
}
 | 
						|
 | 
						|
bool hybrid_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const{
 | 
						|
  if (left->isCall || right->isCall)
 | 
						|
    // No way to compute latency of calls.
 | 
						|
    return BURRSort(left, right, SPQ);
 | 
						|
 | 
						|
  bool LHigh = SPQ->HighRegPressure(left);
 | 
						|
  bool RHigh = SPQ->HighRegPressure(right);
 | 
						|
  // Avoid causing spills. If register pressure is high, schedule for
 | 
						|
  // register pressure reduction.
 | 
						|
  if (LHigh && !RHigh)
 | 
						|
    return true;
 | 
						|
  else if (!LHigh && RHigh)
 | 
						|
    return false;
 | 
						|
  else if (!LHigh && !RHigh) {
 | 
						|
    // If the two nodes share an operand and one of them has a single
 | 
						|
    // use that is a live out copy, favor the one that is live out. Otherwise
 | 
						|
    // it will be difficult to eliminate the copy if the instruction is a
 | 
						|
    // loop induction variable update. e.g.
 | 
						|
    // BB:
 | 
						|
    // sub r1, r3, #1
 | 
						|
    // str r0, [r2, r3]
 | 
						|
    // mov r3, r1
 | 
						|
    // cmp
 | 
						|
    // bne BB
 | 
						|
    bool SharePred = UnitsSharePred(left, right);
 | 
						|
    // FIXME: Only adjust if BB is a loop back edge.
 | 
						|
    // FIXME: What's the cost of a copy?
 | 
						|
    int LBonus = (SharePred && hasOnlyLiveOutUses(left)) ? 1 : 0;
 | 
						|
    int RBonus = (SharePred && hasOnlyLiveOutUses(right)) ? 1 : 0;
 | 
						|
    int LHeight = (int)left->getHeight() - LBonus;
 | 
						|
    int RHeight = (int)right->getHeight() - RBonus;
 | 
						|
 | 
						|
    // Low register pressure situation, schedule for latency if possible.
 | 
						|
    bool LStall = left->SchedulingPref == Sched::Latency &&
 | 
						|
      (int)SPQ->getCurCycle() < LHeight;
 | 
						|
    bool RStall = right->SchedulingPref == Sched::Latency &&
 | 
						|
      (int)SPQ->getCurCycle() < RHeight;
 | 
						|
    // If scheduling one of the node will cause a pipeline stall, delay it.
 | 
						|
    // If scheduling either one of the node will cause a pipeline stall, sort
 | 
						|
    // them according to their height.
 | 
						|
    if (LStall) {
 | 
						|
      if (!RStall)
 | 
						|
        return true;
 | 
						|
      if (LHeight != RHeight)
 | 
						|
        return LHeight > RHeight;
 | 
						|
    } else if (RStall)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If either node is scheduling for latency, sort them by height
 | 
						|
    // and latency.
 | 
						|
    if (left->SchedulingPref == Sched::Latency ||
 | 
						|
        right->SchedulingPref == Sched::Latency) {
 | 
						|
      if (LHeight != RHeight)
 | 
						|
        return LHeight > RHeight;
 | 
						|
      if (left->Latency != right->Latency)
 | 
						|
        return left->Latency > right->Latency;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return BURRSort(left, right, SPQ);
 | 
						|
}
 | 
						|
 | 
						|
bool ilp_ls_rr_sort::operator()(const SUnit *left,
 | 
						|
                                const SUnit *right) const {
 | 
						|
  if (left->isCall || right->isCall)
 | 
						|
    // No way to compute latency of calls.
 | 
						|
    return BURRSort(left, right, SPQ);
 | 
						|
 | 
						|
  bool LHigh = SPQ->HighRegPressure(left);
 | 
						|
  bool RHigh = SPQ->HighRegPressure(right);
 | 
						|
  // Avoid causing spills. If register pressure is high, schedule for
 | 
						|
  // register pressure reduction.
 | 
						|
  if (LHigh && !RHigh)
 | 
						|
    return true;
 | 
						|
  else if (!LHigh && RHigh)
 | 
						|
    return false;
 | 
						|
  else if (!LHigh && !RHigh) {
 | 
						|
    // Low register pressure situation, schedule to maximize instruction level
 | 
						|
    // parallelism.
 | 
						|
    if (left->NumPreds > right->NumPreds)
 | 
						|
      return false;
 | 
						|
    else if (left->NumPreds < right->NumPreds)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return BURRSort(left, right, SPQ);
 | 
						|
}
 | 
						|
 | 
						|
template<class SF>
 | 
						|
bool
 | 
						|
RegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
 | 
						|
  if (SU->isTwoAddress) {
 | 
						|
    unsigned Opc = SU->getNode()->getMachineOpcode();
 | 
						|
    const TargetInstrDesc &TID = TII->get(Opc);
 | 
						|
    unsigned NumRes = TID.getNumDefs();
 | 
						|
    unsigned NumOps = TID.getNumOperands() - NumRes;
 | 
						|
    for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
 | 
						|
        SDNode *DU = SU->getNode()->getOperand(i).getNode();
 | 
						|
        if (DU->getNodeId() != -1 &&
 | 
						|
            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
 | 
						|
/// physical register defs.
 | 
						|
static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
 | 
						|
                                  const TargetInstrInfo *TII,
 | 
						|
                                  const TargetRegisterInfo *TRI) {
 | 
						|
  SDNode *N = SuccSU->getNode();
 | 
						|
  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
 | 
						|
  const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
 | 
						|
  assert(ImpDefs && "Caller should check hasPhysRegDefs");
 | 
						|
  for (const SDNode *SUNode = SU->getNode(); SUNode;
 | 
						|
       SUNode = SUNode->getFlaggedNode()) {
 | 
						|
    if (!SUNode->isMachineOpcode())
 | 
						|
      continue;
 | 
						|
    const unsigned *SUImpDefs =
 | 
						|
      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
 | 
						|
    if (!SUImpDefs)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
 | 
						|
      EVT VT = N->getValueType(i);
 | 
						|
      if (VT == MVT::Flag || VT == MVT::Other)
 | 
						|
        continue;
 | 
						|
      if (!N->hasAnyUseOfValue(i))
 | 
						|
        continue;
 | 
						|
      unsigned Reg = ImpDefs[i - NumDefs];
 | 
						|
      for (;*SUImpDefs; ++SUImpDefs) {
 | 
						|
        unsigned SUReg = *SUImpDefs;
 | 
						|
        if (TRI->regsOverlap(Reg, SUReg))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
 | 
						|
/// are not handled well by the general register pressure reduction
 | 
						|
/// heuristics. When presented with code like this:
 | 
						|
///
 | 
						|
///      N
 | 
						|
///    / |
 | 
						|
///   /  |
 | 
						|
///  U  store
 | 
						|
///  |
 | 
						|
/// ...
 | 
						|
///
 | 
						|
/// the heuristics tend to push the store up, but since the
 | 
						|
/// operand of the store has another use (U), this would increase
 | 
						|
/// the length of that other use (the U->N edge).
 | 
						|
///
 | 
						|
/// This function transforms code like the above to route U's
 | 
						|
/// dependence through the store when possible, like this:
 | 
						|
///
 | 
						|
///      N
 | 
						|
///      ||
 | 
						|
///      ||
 | 
						|
///     store
 | 
						|
///       |
 | 
						|
///       U
 | 
						|
///       |
 | 
						|
///      ...
 | 
						|
///
 | 
						|
/// This results in the store being scheduled immediately
 | 
						|
/// after N, which shortens the U->N live range, reducing
 | 
						|
/// register pressure.
 | 
						|
///
 | 
						|
template<class SF>
 | 
						|
void RegReductionPriorityQueue<SF>::PrescheduleNodesWithMultipleUses() {
 | 
						|
  // Visit all the nodes in topological order, working top-down.
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | 
						|
    SUnit *SU = &(*SUnits)[i];
 | 
						|
    // For now, only look at nodes with no data successors, such as stores.
 | 
						|
    // These are especially important, due to the heuristics in
 | 
						|
    // getNodePriority for nodes with no data successors.
 | 
						|
    if (SU->NumSuccs != 0)
 | 
						|
      continue;
 | 
						|
    // For now, only look at nodes with exactly one data predecessor.
 | 
						|
    if (SU->NumPreds != 1)
 | 
						|
      continue;
 | 
						|
    // Avoid prescheduling copies to virtual registers, which don't behave
 | 
						|
    // like other nodes from the perspective of scheduling heuristics.
 | 
						|
    if (SDNode *N = SU->getNode())
 | 
						|
      if (N->getOpcode() == ISD::CopyToReg &&
 | 
						|
          TargetRegisterInfo::isVirtualRegister
 | 
						|
            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
 | 
						|
        continue;
 | 
						|
 | 
						|
    // Locate the single data predecessor.
 | 
						|
    SUnit *PredSU = 0;
 | 
						|
    for (SUnit::const_pred_iterator II = SU->Preds.begin(),
 | 
						|
         EE = SU->Preds.end(); II != EE; ++II)
 | 
						|
      if (!II->isCtrl()) {
 | 
						|
        PredSU = II->getSUnit();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    assert(PredSU);
 | 
						|
 | 
						|
    // Don't rewrite edges that carry physregs, because that requires additional
 | 
						|
    // support infrastructure.
 | 
						|
    if (PredSU->hasPhysRegDefs)
 | 
						|
      continue;
 | 
						|
    // Short-circuit the case where SU is PredSU's only data successor.
 | 
						|
    if (PredSU->NumSuccs == 1)
 | 
						|
      continue;
 | 
						|
    // Avoid prescheduling to copies from virtual registers, which don't behave
 | 
						|
    // like other nodes from the perspective of scheduling // heuristics.
 | 
						|
    if (SDNode *N = SU->getNode())
 | 
						|
      if (N->getOpcode() == ISD::CopyFromReg &&
 | 
						|
          TargetRegisterInfo::isVirtualRegister
 | 
						|
            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
 | 
						|
        continue;
 | 
						|
 | 
						|
    // Perform checks on the successors of PredSU.
 | 
						|
    for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
 | 
						|
         EE = PredSU->Succs.end(); II != EE; ++II) {
 | 
						|
      SUnit *PredSuccSU = II->getSUnit();
 | 
						|
      if (PredSuccSU == SU) continue;
 | 
						|
      // If PredSU has another successor with no data successors, for
 | 
						|
      // now don't attempt to choose either over the other.
 | 
						|
      if (PredSuccSU->NumSuccs == 0)
 | 
						|
        goto outer_loop_continue;
 | 
						|
      // Don't break physical register dependencies.
 | 
						|
      if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
 | 
						|
        if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
 | 
						|
          goto outer_loop_continue;
 | 
						|
      // Don't introduce graph cycles.
 | 
						|
      if (scheduleDAG->IsReachable(SU, PredSuccSU))
 | 
						|
        goto outer_loop_continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Ok, the transformation is safe and the heuristics suggest it is
 | 
						|
    // profitable. Update the graph.
 | 
						|
    DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
 | 
						|
                 << " next to PredSU #" << PredSU->NodeNum
 | 
						|
                 << " to guide scheduling in the presence of multiple uses\n");
 | 
						|
    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
 | 
						|
      SDep Edge = PredSU->Succs[i];
 | 
						|
      assert(!Edge.isAssignedRegDep());
 | 
						|
      SUnit *SuccSU = Edge.getSUnit();
 | 
						|
      if (SuccSU != SU) {
 | 
						|
        Edge.setSUnit(PredSU);
 | 
						|
        scheduleDAG->RemovePred(SuccSU, Edge);
 | 
						|
        scheduleDAG->AddPred(SU, Edge);
 | 
						|
        Edge.setSUnit(SU);
 | 
						|
        scheduleDAG->AddPred(SuccSU, Edge);
 | 
						|
        --i;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  outer_loop_continue:;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
 | 
						|
/// it as a def&use operand. Add a pseudo control edge from it to the other
 | 
						|
/// node (if it won't create a cycle) so the two-address one will be scheduled
 | 
						|
/// first (lower in the schedule). If both nodes are two-address, favor the
 | 
						|
/// one that has a CopyToReg use (more likely to be a loop induction update).
 | 
						|
/// If both are two-address, but one is commutable while the other is not
 | 
						|
/// commutable, favor the one that's not commutable.
 | 
						|
template<class SF>
 | 
						|
void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | 
						|
    SUnit *SU = &(*SUnits)[i];
 | 
						|
    if (!SU->isTwoAddress)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDNode *Node = SU->getNode();
 | 
						|
    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getFlaggedNode())
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool isLiveOut = hasOnlyLiveOutUses(SU);
 | 
						|
    unsigned Opc = Node->getMachineOpcode();
 | 
						|
    const TargetInstrDesc &TID = TII->get(Opc);
 | 
						|
    unsigned NumRes = TID.getNumDefs();
 | 
						|
    unsigned NumOps = TID.getNumOperands() - NumRes;
 | 
						|
    for (unsigned j = 0; j != NumOps; ++j) {
 | 
						|
      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
 | 
						|
        continue;
 | 
						|
      SDNode *DU = SU->getNode()->getOperand(j).getNode();
 | 
						|
      if (DU->getNodeId() == -1)
 | 
						|
        continue;
 | 
						|
      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
 | 
						|
      if (!DUSU) continue;
 | 
						|
      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
 | 
						|
           E = DUSU->Succs.end(); I != E; ++I) {
 | 
						|
        if (I->isCtrl()) continue;
 | 
						|
        SUnit *SuccSU = I->getSUnit();
 | 
						|
        if (SuccSU == SU)
 | 
						|
          continue;
 | 
						|
        // Be conservative. Ignore if nodes aren't at roughly the same
 | 
						|
        // depth and height.
 | 
						|
        if (SuccSU->getHeight() < SU->getHeight() &&
 | 
						|
            (SU->getHeight() - SuccSU->getHeight()) > 1)
 | 
						|
          continue;
 | 
						|
        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
 | 
						|
        // constrains whatever is using the copy, instead of the copy
 | 
						|
        // itself. In the case that the copy is coalesced, this
 | 
						|
        // preserves the intent of the pseudo two-address heurietics.
 | 
						|
        while (SuccSU->Succs.size() == 1 &&
 | 
						|
               SuccSU->getNode()->isMachineOpcode() &&
 | 
						|
               SuccSU->getNode()->getMachineOpcode() ==
 | 
						|
                 TargetOpcode::COPY_TO_REGCLASS)
 | 
						|
          SuccSU = SuccSU->Succs.front().getSUnit();
 | 
						|
        // Don't constrain non-instruction nodes.
 | 
						|
        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
 | 
						|
          continue;
 | 
						|
        // Don't constrain nodes with physical register defs if the
 | 
						|
        // predecessor can clobber them.
 | 
						|
        if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
 | 
						|
          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
 | 
						|
        // these may be coalesced away. We want them close to their uses.
 | 
						|
        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
 | 
						|
        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
 | 
						|
            SuccOpc == TargetOpcode::INSERT_SUBREG ||
 | 
						|
            SuccOpc == TargetOpcode::SUBREG_TO_REG)
 | 
						|
          continue;
 | 
						|
        if ((!canClobber(SuccSU, DUSU) ||
 | 
						|
             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
 | 
						|
             (!SU->isCommutable && SuccSU->isCommutable)) &&
 | 
						|
            !scheduleDAG->IsReachable(SuccSU, SU)) {
 | 
						|
          DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
 | 
						|
                       << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
 | 
						|
          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
 | 
						|
                                        /*Reg=*/0, /*isNormalMemory=*/false,
 | 
						|
                                        /*isMustAlias=*/false,
 | 
						|
                                        /*isArtificial=*/true));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
 | 
						|
/// scheduling units.
 | 
						|
template<class SF>
 | 
						|
void RegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
 | 
						|
  SethiUllmanNumbers.assign(SUnits->size(), 0);
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | 
						|
    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
 | 
						|
}
 | 
						|
 | 
						|
/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
 | 
						|
/// predecessors of the successors of the SUnit SU. Stop when the provided
 | 
						|
/// limit is exceeded.
 | 
						|
static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU, 
 | 
						|
                                                    unsigned Limit) {
 | 
						|
  unsigned Sum = 0;
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const SUnit *SuccSU = I->getSUnit();
 | 
						|
    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
 | 
						|
         EE = SuccSU->Preds.end(); II != EE; ++II) {
 | 
						|
      SUnit *PredSU = II->getSUnit();
 | 
						|
      if (!PredSU->isScheduled)
 | 
						|
        if (++Sum > Limit)
 | 
						|
          return Sum;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Sum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Top down
 | 
						|
bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | 
						|
  unsigned LPriority = SPQ->getNodePriority(left);
 | 
						|
  unsigned RPriority = SPQ->getNodePriority(right);
 | 
						|
  bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
 | 
						|
  bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
 | 
						|
  bool LIsFloater = LIsTarget && left->NumPreds == 0;
 | 
						|
  bool RIsFloater = RIsTarget && right->NumPreds == 0;
 | 
						|
  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
 | 
						|
  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
 | 
						|
 | 
						|
  if (left->NumSuccs == 0 && right->NumSuccs != 0)
 | 
						|
    return false;
 | 
						|
  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (LIsFloater)
 | 
						|
    LBonus -= 2;
 | 
						|
  if (RIsFloater)
 | 
						|
    RBonus -= 2;
 | 
						|
  if (left->NumSuccs == 1)
 | 
						|
    LBonus += 2;
 | 
						|
  if (right->NumSuccs == 1)
 | 
						|
    RBonus += 2;
 | 
						|
 | 
						|
  if (LPriority+LBonus != RPriority+RBonus)
 | 
						|
    return LPriority+LBonus < RPriority+RBonus;
 | 
						|
 | 
						|
  if (left->getDepth() != right->getDepth())
 | 
						|
    return left->getDepth() < right->getDepth();
 | 
						|
 | 
						|
  if (left->NumSuccsLeft != right->NumSuccsLeft)
 | 
						|
    return left->NumSuccsLeft > right->NumSuccsLeft;
 | 
						|
 | 
						|
  assert(left->NodeQueueId && right->NodeQueueId && 
 | 
						|
         "NodeQueueId cannot be zero");
 | 
						|
  return (left->NodeQueueId > right->NodeQueueId);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Public Constructor Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
llvm::ScheduleDAGSDNodes *
 | 
						|
llvm::createBURRListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | 
						|
  const TargetMachine &TM = IS->TM;
 | 
						|
  const TargetInstrInfo *TII = TM.getInstrInfo();
 | 
						|
  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | 
						|
  
 | 
						|
  BURegReductionPriorityQueue *PQ =
 | 
						|
    new BURegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
 | 
						|
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, false, PQ);
 | 
						|
  PQ->setScheduleDAG(SD);
 | 
						|
  return SD;  
 | 
						|
}
 | 
						|
 | 
						|
llvm::ScheduleDAGSDNodes *
 | 
						|
llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | 
						|
  const TargetMachine &TM = IS->TM;
 | 
						|
  const TargetInstrInfo *TII = TM.getInstrInfo();
 | 
						|
  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | 
						|
  
 | 
						|
  TDRegReductionPriorityQueue *PQ =
 | 
						|
    new TDRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
 | 
						|
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, false, PQ);
 | 
						|
  PQ->setScheduleDAG(SD);
 | 
						|
  return SD;
 | 
						|
}
 | 
						|
 | 
						|
llvm::ScheduleDAGSDNodes *
 | 
						|
llvm::createSourceListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | 
						|
  const TargetMachine &TM = IS->TM;
 | 
						|
  const TargetInstrInfo *TII = TM.getInstrInfo();
 | 
						|
  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | 
						|
  
 | 
						|
  SrcRegReductionPriorityQueue *PQ =
 | 
						|
    new SrcRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
 | 
						|
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, false, PQ);
 | 
						|
  PQ->setScheduleDAG(SD);
 | 
						|
  return SD;  
 | 
						|
}
 | 
						|
 | 
						|
llvm::ScheduleDAGSDNodes *
 | 
						|
llvm::createHybridListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | 
						|
  const TargetMachine &TM = IS->TM;
 | 
						|
  const TargetInstrInfo *TII = TM.getInstrInfo();
 | 
						|
  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | 
						|
  const TargetLowering *TLI = &IS->getTargetLowering();
 | 
						|
  
 | 
						|
  HybridBURRPriorityQueue *PQ =
 | 
						|
    new HybridBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
 | 
						|
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, true, PQ);
 | 
						|
  PQ->setScheduleDAG(SD);
 | 
						|
  return SD;  
 | 
						|
}
 | 
						|
 | 
						|
llvm::ScheduleDAGSDNodes *
 | 
						|
llvm::createILPListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | 
						|
  const TargetMachine &TM = IS->TM;
 | 
						|
  const TargetInstrInfo *TII = TM.getInstrInfo();
 | 
						|
  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
 | 
						|
  const TargetLowering *TLI = &IS->getTargetLowering();
 | 
						|
  
 | 
						|
  ILPBURRPriorityQueue *PQ =
 | 
						|
    new ILPBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
 | 
						|
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, true, PQ);
 | 
						|
  PQ->setScheduleDAG(SD);
 | 
						|
  return SD;  
 | 
						|
}
 |