2206 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2206 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- Constants.cpp - Implement Constant nodes --------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Constant* classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Constants.h"
 | |
| #include "LLVMContextImpl.h"
 | |
| #include "ConstantFold.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Constant Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Constructor to create a '0' constant of arbitrary type...
 | |
| static const uint64_t zero[2] = {0, 0};
 | |
| Constant *Constant::getNullValue(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::IntegerTyID:
 | |
|     return ConstantInt::get(Ty, 0);
 | |
|   case Type::FloatTyID:
 | |
|     return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0)));
 | |
|   case Type::DoubleTyID:
 | |
|     return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0)));
 | |
|   case Type::X86_FP80TyID:
 | |
|     return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero)));
 | |
|   case Type::FP128TyID:
 | |
|     return ConstantFP::get(Ty->getContext(),
 | |
|                            APFloat(APInt(128, 2, zero), true));
 | |
|   case Type::PPC_FP128TyID:
 | |
|     return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero)));
 | |
|   case Type::PointerTyID:
 | |
|     return ConstantPointerNull::get(cast<PointerType>(Ty));
 | |
|   case Type::StructTyID:
 | |
|   case Type::ArrayTyID:
 | |
|   case Type::VectorTyID:
 | |
|     return ConstantAggregateZero::get(Ty);
 | |
|   default:
 | |
|     // Function, Label, or Opaque type?
 | |
|     assert(!"Cannot create a null constant of that type!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant* Constant::getIntegerValue(const Type *Ty, const APInt &V) {
 | |
|   const Type *ScalarTy = Ty->getScalarType();
 | |
| 
 | |
|   // Create the base integer constant.
 | |
|   Constant *C = ConstantInt::get(Ty->getContext(), V);
 | |
| 
 | |
|   // Convert an integer to a pointer, if necessary.
 | |
|   if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
 | |
|     C = ConstantExpr::getIntToPtr(C, PTy);
 | |
| 
 | |
|   // Broadcast a scalar to a vector, if necessary.
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| Constant* Constant::getAllOnesValue(const Type *Ty) {
 | |
|   if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
 | |
|     return ConstantInt::get(Ty->getContext(),
 | |
|                             APInt::getAllOnesValue(ITy->getBitWidth()));
 | |
|   
 | |
|   std::vector<Constant*> Elts;
 | |
|   const VectorType *VTy = cast<VectorType>(Ty);
 | |
|   Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
 | |
|   assert(Elts[0] && "Not a vector integer type!");
 | |
|   return cast<ConstantVector>(ConstantVector::get(Elts));
 | |
| }
 | |
| 
 | |
| void Constant::destroyConstantImpl() {
 | |
|   // When a Constant is destroyed, there may be lingering
 | |
|   // references to the constant by other constants in the constant pool.  These
 | |
|   // constants are implicitly dependent on the module that is being deleted,
 | |
|   // but they don't know that.  Because we only find out when the CPV is
 | |
|   // deleted, we must now notify all of our users (that should only be
 | |
|   // Constants) that they are, in fact, invalid now and should be deleted.
 | |
|   //
 | |
|   while (!use_empty()) {
 | |
|     Value *V = use_back();
 | |
| #ifndef NDEBUG      // Only in -g mode...
 | |
|     if (!isa<Constant>(V)) {
 | |
|       dbgs() << "While deleting: " << *this
 | |
|              << "\n\nUse still stuck around after Def is destroyed: "
 | |
|              << *V << "\n\n";
 | |
|     }
 | |
| #endif
 | |
|     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
 | |
|     Constant *CV = cast<Constant>(V);
 | |
|     CV->destroyConstant();
 | |
| 
 | |
|     // The constant should remove itself from our use list...
 | |
|     assert((use_empty() || use_back() != V) && "Constant not removed!");
 | |
|   }
 | |
| 
 | |
|   // Value has no outstanding references it is safe to delete it now...
 | |
|   delete this;
 | |
| }
 | |
| 
 | |
| /// canTrap - Return true if evaluation of this constant could trap.  This is
 | |
| /// true for things like constant expressions that could divide by zero.
 | |
| bool Constant::canTrap() const {
 | |
|   assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
 | |
|   // The only thing that could possibly trap are constant exprs.
 | |
|   const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
 | |
|   if (!CE) return false;
 | |
|   
 | |
|   // ConstantExpr traps if any operands can trap. 
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     if (CE->getOperand(i)->canTrap()) 
 | |
|       return true;
 | |
| 
 | |
|   // Otherwise, only specific operations can trap.
 | |
|   switch (CE->getOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::FRem:
 | |
|     // Div and rem can trap if the RHS is not known to be non-zero.
 | |
|     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isConstantUsed - Return true if the constant has users other than constant
 | |
| /// exprs and other dangling things.
 | |
| bool Constant::isConstantUsed() const {
 | |
|   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
 | |
|     const Constant *UC = dyn_cast<Constant>(*UI);
 | |
|     if (UC == 0 || isa<GlobalValue>(UC))
 | |
|       return true;
 | |
|     
 | |
|     if (UC->isConstantUsed())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// getRelocationInfo - This method classifies the entry according to
 | |
| /// whether or not it may generate a relocation entry.  This must be
 | |
| /// conservative, so if it might codegen to a relocatable entry, it should say
 | |
| /// so.  The return values are:
 | |
| /// 
 | |
| ///  NoRelocation: This constant pool entry is guaranteed to never have a
 | |
| ///     relocation applied to it (because it holds a simple constant like
 | |
| ///     '4').
 | |
| ///  LocalRelocation: This entry has relocations, but the entries are
 | |
| ///     guaranteed to be resolvable by the static linker, so the dynamic
 | |
| ///     linker will never see them.
 | |
| ///  GlobalRelocations: This entry may have arbitrary relocations.
 | |
| ///
 | |
| /// FIXME: This really should not be in VMCore.
 | |
| Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
 | |
|     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
 | |
|       return LocalRelocation;  // Local to this file/library.
 | |
|     return GlobalRelocations;    // Global reference.
 | |
|   }
 | |
|   
 | |
|   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
 | |
|     return BA->getFunction()->getRelocationInfo();
 | |
|   
 | |
|   // While raw uses of blockaddress need to be relocated, differences between
 | |
|   // two of them don't when they are for labels in the same function.  This is a
 | |
|   // common idiom when creating a table for the indirect goto extension, so we
 | |
|   // handle it efficiently here.
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
 | |
|     if (CE->getOpcode() == Instruction::Sub) {
 | |
|       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
 | |
|       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
 | |
|       if (LHS && RHS &&
 | |
|           LHS->getOpcode() == Instruction::PtrToInt &&
 | |
|           RHS->getOpcode() == Instruction::PtrToInt &&
 | |
|           isa<BlockAddress>(LHS->getOperand(0)) &&
 | |
|           isa<BlockAddress>(RHS->getOperand(0)) &&
 | |
|           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
 | |
|             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
 | |
|         return NoRelocation;
 | |
|     }
 | |
|   
 | |
|   PossibleRelocationsTy Result = NoRelocation;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     Result = std::max(Result,
 | |
|                       cast<Constant>(getOperand(i))->getRelocationInfo());
 | |
|   
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getVectorElements - This method, which is only valid on constant of vector
 | |
| /// type, returns the elements of the vector in the specified smallvector.
 | |
| /// This handles breaking down a vector undef into undef elements, etc.  For
 | |
| /// constant exprs and other cases we can't handle, we return an empty vector.
 | |
| void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
 | |
|   assert(getType()->isVectorTy() && "Not a vector constant!");
 | |
|   
 | |
|   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
 | |
|     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
 | |
|       Elts.push_back(CV->getOperand(i));
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   const VectorType *VT = cast<VectorType>(getType());
 | |
|   if (isa<ConstantAggregateZero>(this)) {
 | |
|     Elts.assign(VT->getNumElements(), 
 | |
|                 Constant::getNullValue(VT->getElementType()));
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (isa<UndefValue>(this)) {
 | |
|     Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Unknown type, must be constant expr etc.
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                ConstantInt
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
 | |
|   : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
 | |
|   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
 | |
| }
 | |
| 
 | |
| ConstantInt* ConstantInt::getTrue(LLVMContext &Context) {
 | |
|   LLVMContextImpl *pImpl = Context.pImpl;
 | |
|   if (!pImpl->TheTrueVal)
 | |
|     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
 | |
|   return pImpl->TheTrueVal;
 | |
| }
 | |
| 
 | |
| ConstantInt* ConstantInt::getFalse(LLVMContext &Context) {
 | |
|   LLVMContextImpl *pImpl = Context.pImpl;
 | |
|   if (!pImpl->TheFalseVal)
 | |
|     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
 | |
|   return pImpl->TheFalseVal;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
 | |
| // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
 | |
| // operator== and operator!= to ensure that the DenseMap doesn't attempt to
 | |
| // compare APInt's of different widths, which would violate an APInt class
 | |
| // invariant which generates an assertion.
 | |
| ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
 | |
|   // Get the corresponding integer type for the bit width of the value.
 | |
|   const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
 | |
|   // get an existing value or the insertion position
 | |
|   DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
 | |
|   ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; 
 | |
|   if (!Slot) Slot = new ConstantInt(ITy, V);
 | |
|   return Slot;
 | |
| }
 | |
| 
 | |
| Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
 | |
|   Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
 | |
|                                V, isSigned);
 | |
| 
 | |
|   // For vectors, broadcast the value.
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     return ConstantVector::get(
 | |
|       std::vector<Constant *>(VTy->getNumElements(), C));
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V, 
 | |
|                               bool isSigned) {
 | |
|   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
 | |
| }
 | |
| 
 | |
| ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
 | |
|   return get(Ty, V, true);
 | |
| }
 | |
| 
 | |
| Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
 | |
|   return get(Ty, V, true);
 | |
| }
 | |
| 
 | |
| Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
 | |
|   ConstantInt *C = get(Ty->getContext(), V);
 | |
|   assert(C->getType() == Ty->getScalarType() &&
 | |
|          "ConstantInt type doesn't match the type implied by its value!");
 | |
| 
 | |
|   // For vectors, broadcast the value.
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     return ConstantVector::get(
 | |
|       std::vector<Constant *>(VTy->getNumElements(), C));
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| ConstantInt* ConstantInt::get(const IntegerType* Ty, StringRef Str,
 | |
|                               uint8_t radix) {
 | |
|   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                ConstantFP
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
 | |
|   if (Ty->isFloatTy())
 | |
|     return &APFloat::IEEEsingle;
 | |
|   if (Ty->isDoubleTy())
 | |
|     return &APFloat::IEEEdouble;
 | |
|   if (Ty->isX86_FP80Ty())
 | |
|     return &APFloat::x87DoubleExtended;
 | |
|   else if (Ty->isFP128Ty())
 | |
|     return &APFloat::IEEEquad;
 | |
|   
 | |
|   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
 | |
|   return &APFloat::PPCDoubleDouble;
 | |
| }
 | |
| 
 | |
| /// get() - This returns a constant fp for the specified value in the
 | |
| /// specified type.  This should only be used for simple constant values like
 | |
| /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
 | |
| Constant* ConstantFP::get(const Type* Ty, double V) {
 | |
|   LLVMContext &Context = Ty->getContext();
 | |
|   
 | |
|   APFloat FV(V);
 | |
|   bool ignored;
 | |
|   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
 | |
|              APFloat::rmNearestTiesToEven, &ignored);
 | |
|   Constant *C = get(Context, FV);
 | |
| 
 | |
|   // For vectors, broadcast the value.
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     return ConstantVector::get(
 | |
|       std::vector<Constant *>(VTy->getNumElements(), C));
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| 
 | |
| Constant* ConstantFP::get(const Type* Ty, StringRef Str) {
 | |
|   LLVMContext &Context = Ty->getContext();
 | |
| 
 | |
|   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
 | |
|   Constant *C = get(Context, FV);
 | |
| 
 | |
|   // For vectors, broadcast the value.
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     return ConstantVector::get(
 | |
|       std::vector<Constant *>(VTy->getNumElements(), C));
 | |
| 
 | |
|   return C; 
 | |
| }
 | |
| 
 | |
| 
 | |
| ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) {
 | |
|   LLVMContext &Context = Ty->getContext();
 | |
|   APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
 | |
|   apf.changeSign();
 | |
|   return get(Context, apf);
 | |
| }
 | |
| 
 | |
| 
 | |
| Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) {
 | |
|   if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
 | |
|     if (PTy->getElementType()->isFloatingPointTy()) {
 | |
|       std::vector<Constant*> zeros(PTy->getNumElements(),
 | |
|                            getNegativeZero(PTy->getElementType()));
 | |
|       return ConstantVector::get(PTy, zeros);
 | |
|     }
 | |
| 
 | |
|   if (Ty->isFloatingPointTy()) 
 | |
|     return getNegativeZero(Ty);
 | |
| 
 | |
|   return Constant::getNullValue(Ty);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ConstantFP accessors.
 | |
| ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
 | |
|   DenseMapAPFloatKeyInfo::KeyTy Key(V);
 | |
|   
 | |
|   LLVMContextImpl* pImpl = Context.pImpl;
 | |
|   
 | |
|   ConstantFP *&Slot = pImpl->FPConstants[Key];
 | |
|     
 | |
|   if (!Slot) {
 | |
|     const Type *Ty;
 | |
|     if (&V.getSemantics() == &APFloat::IEEEsingle)
 | |
|       Ty = Type::getFloatTy(Context);
 | |
|     else if (&V.getSemantics() == &APFloat::IEEEdouble)
 | |
|       Ty = Type::getDoubleTy(Context);
 | |
|     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
 | |
|       Ty = Type::getX86_FP80Ty(Context);
 | |
|     else if (&V.getSemantics() == &APFloat::IEEEquad)
 | |
|       Ty = Type::getFP128Ty(Context);
 | |
|     else {
 | |
|       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
 | |
|              "Unknown FP format");
 | |
|       Ty = Type::getPPC_FP128Ty(Context);
 | |
|     }
 | |
|     Slot = new ConstantFP(Ty, V);
 | |
|   }
 | |
|   
 | |
|   return Slot;
 | |
| }
 | |
| 
 | |
| ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) {
 | |
|   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
 | |
|   return ConstantFP::get(Ty->getContext(),
 | |
|                          APFloat::getInf(Semantics, Negative));
 | |
| }
 | |
| 
 | |
| ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
 | |
|   : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
 | |
|   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
 | |
|          "FP type Mismatch");
 | |
| }
 | |
| 
 | |
| bool ConstantFP::isNullValue() const {
 | |
|   return Val.isZero() && !Val.isNegative();
 | |
| }
 | |
| 
 | |
| bool ConstantFP::isExactlyValue(const APFloat& V) const {
 | |
|   return Val.bitwiseIsEqual(V);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            ConstantXXX Classes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| ConstantArray::ConstantArray(const ArrayType *T,
 | |
|                              const std::vector<Constant*> &V)
 | |
|   : Constant(T, ConstantArrayVal,
 | |
|              OperandTraits<ConstantArray>::op_end(this) - V.size(),
 | |
|              V.size()) {
 | |
|   assert(V.size() == T->getNumElements() &&
 | |
|          "Invalid initializer vector for constant array");
 | |
|   Use *OL = OperandList;
 | |
|   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | |
|        I != E; ++I, ++OL) {
 | |
|     Constant *C = *I;
 | |
|     assert(C->getType() == T->getElementType() &&
 | |
|            "Initializer for array element doesn't match array element type!");
 | |
|     *OL = C;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *ConstantArray::get(const ArrayType *Ty, 
 | |
|                              const std::vector<Constant*> &V) {
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i) {
 | |
|     assert(V[i]->getType() == Ty->getElementType() &&
 | |
|            "Wrong type in array element initializer");
 | |
|   }
 | |
|   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
 | |
|   // If this is an all-zero array, return a ConstantAggregateZero object
 | |
|   if (!V.empty()) {
 | |
|     Constant *C = V[0];
 | |
|     if (!C->isNullValue())
 | |
|       return pImpl->ArrayConstants.getOrCreate(Ty, V);
 | |
|     
 | |
|     for (unsigned i = 1, e = V.size(); i != e; ++i)
 | |
|       if (V[i] != C)
 | |
|         return pImpl->ArrayConstants.getOrCreate(Ty, V);
 | |
|   }
 | |
|   
 | |
|   return ConstantAggregateZero::get(Ty);
 | |
| }
 | |
| 
 | |
| 
 | |
| Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals,
 | |
|                              unsigned NumVals) {
 | |
|   // FIXME: make this the primary ctor method.
 | |
|   return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
 | |
| }
 | |
| 
 | |
| /// ConstantArray::get(const string&) - Return an array that is initialized to
 | |
| /// contain the specified string.  If length is zero then a null terminator is 
 | |
| /// added to the specified string so that it may be used in a natural way. 
 | |
| /// Otherwise, the length parameter specifies how much of the string to use 
 | |
| /// and it won't be null terminated.
 | |
| ///
 | |
| Constant* ConstantArray::get(LLVMContext &Context, StringRef Str,
 | |
|                              bool AddNull) {
 | |
|   std::vector<Constant*> ElementVals;
 | |
|   ElementVals.reserve(Str.size() + size_t(AddNull));
 | |
|   for (unsigned i = 0; i < Str.size(); ++i)
 | |
|     ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
 | |
| 
 | |
|   // Add a null terminator to the string...
 | |
|   if (AddNull) {
 | |
|     ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
 | |
|   }
 | |
| 
 | |
|   ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
 | |
|   return get(ATy, ElementVals);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| ConstantStruct::ConstantStruct(const StructType *T,
 | |
|                                const std::vector<Constant*> &V)
 | |
|   : Constant(T, ConstantStructVal,
 | |
|              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
 | |
|              V.size()) {
 | |
|   assert(V.size() == T->getNumElements() &&
 | |
|          "Invalid initializer vector for constant structure");
 | |
|   Use *OL = OperandList;
 | |
|   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | |
|        I != E; ++I, ++OL) {
 | |
|     Constant *C = *I;
 | |
|     assert(C->getType() == T->getElementType(I-V.begin()) &&
 | |
|            "Initializer for struct element doesn't match struct element type!");
 | |
|     *OL = C;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // ConstantStruct accessors.
 | |
| Constant* ConstantStruct::get(const StructType* T,
 | |
|                               const std::vector<Constant*>& V) {
 | |
|   LLVMContextImpl* pImpl = T->getContext().pImpl;
 | |
|   
 | |
|   // Create a ConstantAggregateZero value if all elements are zeros...
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|     if (!V[i]->isNullValue())
 | |
|       return pImpl->StructConstants.getOrCreate(T, V);
 | |
| 
 | |
|   return ConstantAggregateZero::get(T);
 | |
| }
 | |
| 
 | |
| Constant* ConstantStruct::get(LLVMContext &Context,
 | |
|                               const std::vector<Constant*>& V, bool packed) {
 | |
|   std::vector<const Type*> StructEls;
 | |
|   StructEls.reserve(V.size());
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|     StructEls.push_back(V[i]->getType());
 | |
|   return get(StructType::get(Context, StructEls, packed), V);
 | |
| }
 | |
| 
 | |
| Constant* ConstantStruct::get(LLVMContext &Context,
 | |
|                               Constant* const *Vals, unsigned NumVals,
 | |
|                               bool Packed) {
 | |
|   // FIXME: make this the primary ctor method.
 | |
|   return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed);
 | |
| }
 | |
| 
 | |
| ConstantVector::ConstantVector(const VectorType *T,
 | |
|                                const std::vector<Constant*> &V)
 | |
|   : Constant(T, ConstantVectorVal,
 | |
|              OperandTraits<ConstantVector>::op_end(this) - V.size(),
 | |
|              V.size()) {
 | |
|   Use *OL = OperandList;
 | |
|     for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | |
|          I != E; ++I, ++OL) {
 | |
|       Constant *C = *I;
 | |
|       assert(C->getType() == T->getElementType() &&
 | |
|            "Initializer for vector element doesn't match vector element type!");
 | |
|     *OL = C;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // ConstantVector accessors.
 | |
| Constant* ConstantVector::get(const VectorType* T,
 | |
|                               const std::vector<Constant*>& V) {
 | |
|    assert(!V.empty() && "Vectors can't be empty");
 | |
|    LLVMContext &Context = T->getContext();
 | |
|    LLVMContextImpl *pImpl = Context.pImpl;
 | |
|    
 | |
|   // If this is an all-undef or alll-zero vector, return a
 | |
|   // ConstantAggregateZero or UndefValue.
 | |
|   Constant *C = V[0];
 | |
|   bool isZero = C->isNullValue();
 | |
|   bool isUndef = isa<UndefValue>(C);
 | |
| 
 | |
|   if (isZero || isUndef) {
 | |
|     for (unsigned i = 1, e = V.size(); i != e; ++i)
 | |
|       if (V[i] != C) {
 | |
|         isZero = isUndef = false;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   if (isZero)
 | |
|     return ConstantAggregateZero::get(T);
 | |
|   if (isUndef)
 | |
|     return UndefValue::get(T);
 | |
|     
 | |
|   return pImpl->VectorConstants.getOrCreate(T, V);
 | |
| }
 | |
| 
 | |
| Constant* ConstantVector::get(const std::vector<Constant*>& V) {
 | |
|   assert(!V.empty() && "Cannot infer type if V is empty");
 | |
|   return get(VectorType::get(V.front()->getType(),V.size()), V);
 | |
| }
 | |
| 
 | |
| Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) {
 | |
|   // FIXME: make this the primary ctor method.
 | |
|   return get(std::vector<Constant*>(Vals, Vals+NumVals));
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getNSWNeg(Constant* C) {
 | |
|   assert(C->getType()->isIntOrIntVectorTy() &&
 | |
|          "Cannot NEG a nonintegral value!");
 | |
|   return getNSWSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getNUWNeg(Constant* C) {
 | |
|   assert(C->getType()->isIntOrIntVectorTy() &&
 | |
|          "Cannot NEG a nonintegral value!");
 | |
|   return getNUWSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) {
 | |
|   return getTy(C1->getType(), Instruction::Add, C1, C2,
 | |
|                OverflowingBinaryOperator::NoSignedWrap);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getNUWAdd(Constant* C1, Constant* C2) {
 | |
|   return getTy(C1->getType(), Instruction::Add, C1, C2,
 | |
|                OverflowingBinaryOperator::NoUnsignedWrap);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getNSWSub(Constant* C1, Constant* C2) {
 | |
|   return getTy(C1->getType(), Instruction::Sub, C1, C2,
 | |
|                OverflowingBinaryOperator::NoSignedWrap);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getNUWSub(Constant* C1, Constant* C2) {
 | |
|   return getTy(C1->getType(), Instruction::Sub, C1, C2,
 | |
|                OverflowingBinaryOperator::NoUnsignedWrap);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getNSWMul(Constant* C1, Constant* C2) {
 | |
|   return getTy(C1->getType(), Instruction::Mul, C1, C2,
 | |
|                OverflowingBinaryOperator::NoSignedWrap);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getNUWMul(Constant* C1, Constant* C2) {
 | |
|   return getTy(C1->getType(), Instruction::Mul, C1, C2,
 | |
|                OverflowingBinaryOperator::NoUnsignedWrap);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) {
 | |
|   return getTy(C1->getType(), Instruction::SDiv, C1, C2,
 | |
|                SDivOperator::IsExact);
 | |
| }
 | |
| 
 | |
| // Utility function for determining if a ConstantExpr is a CastOp or not. This
 | |
| // can't be inline because we don't want to #include Instruction.h into
 | |
| // Constant.h
 | |
| bool ConstantExpr::isCast() const {
 | |
|   return Instruction::isCast(getOpcode());
 | |
| }
 | |
| 
 | |
| bool ConstantExpr::isCompare() const {
 | |
|   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
 | |
| }
 | |
| 
 | |
| bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
 | |
|   if (getOpcode() != Instruction::GetElementPtr) return false;
 | |
| 
 | |
|   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
 | |
|   User::const_op_iterator OI = llvm::next(this->op_begin());
 | |
| 
 | |
|   // Skip the first index, as it has no static limit.
 | |
|   ++GEPI;
 | |
|   ++OI;
 | |
| 
 | |
|   // The remaining indices must be compile-time known integers within the
 | |
|   // bounds of the corresponding notional static array types.
 | |
|   for (; GEPI != E; ++GEPI, ++OI) {
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
 | |
|     if (!CI) return false;
 | |
|     if (const ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
 | |
|       if (CI->getValue().getActiveBits() > 64 ||
 | |
|           CI->getZExtValue() >= ATy->getNumElements())
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   // All the indices checked out.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ConstantExpr::hasIndices() const {
 | |
|   return getOpcode() == Instruction::ExtractValue ||
 | |
|          getOpcode() == Instruction::InsertValue;
 | |
| }
 | |
| 
 | |
| const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
 | |
|   if (const ExtractValueConstantExpr *EVCE =
 | |
|         dyn_cast<ExtractValueConstantExpr>(this))
 | |
|     return EVCE->Indices;
 | |
| 
 | |
|   return cast<InsertValueConstantExpr>(this)->Indices;
 | |
| }
 | |
| 
 | |
| unsigned ConstantExpr::getPredicate() const {
 | |
|   assert(getOpcode() == Instruction::FCmp || 
 | |
|          getOpcode() == Instruction::ICmp);
 | |
|   return ((const CompareConstantExpr*)this)->predicate;
 | |
| }
 | |
| 
 | |
| /// getWithOperandReplaced - Return a constant expression identical to this
 | |
| /// one, but with the specified operand set to the specified value.
 | |
| Constant *
 | |
| ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
 | |
|   assert(OpNo < getNumOperands() && "Operand num is out of range!");
 | |
|   assert(Op->getType() == getOperand(OpNo)->getType() &&
 | |
|          "Replacing operand with value of different type!");
 | |
|   if (getOperand(OpNo) == Op)
 | |
|     return const_cast<ConstantExpr*>(this);
 | |
|   
 | |
|   Constant *Op0, *Op1, *Op2;
 | |
|   switch (getOpcode()) {
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::BitCast:
 | |
|     return ConstantExpr::getCast(getOpcode(), Op, getType());
 | |
|   case Instruction::Select:
 | |
|     Op0 = (OpNo == 0) ? Op : getOperand(0);
 | |
|     Op1 = (OpNo == 1) ? Op : getOperand(1);
 | |
|     Op2 = (OpNo == 2) ? Op : getOperand(2);
 | |
|     return ConstantExpr::getSelect(Op0, Op1, Op2);
 | |
|   case Instruction::InsertElement:
 | |
|     Op0 = (OpNo == 0) ? Op : getOperand(0);
 | |
|     Op1 = (OpNo == 1) ? Op : getOperand(1);
 | |
|     Op2 = (OpNo == 2) ? Op : getOperand(2);
 | |
|     return ConstantExpr::getInsertElement(Op0, Op1, Op2);
 | |
|   case Instruction::ExtractElement:
 | |
|     Op0 = (OpNo == 0) ? Op : getOperand(0);
 | |
|     Op1 = (OpNo == 1) ? Op : getOperand(1);
 | |
|     return ConstantExpr::getExtractElement(Op0, Op1);
 | |
|   case Instruction::ShuffleVector:
 | |
|     Op0 = (OpNo == 0) ? Op : getOperand(0);
 | |
|     Op1 = (OpNo == 1) ? Op : getOperand(1);
 | |
|     Op2 = (OpNo == 2) ? Op : getOperand(2);
 | |
|     return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
 | |
|   case Instruction::GetElementPtr: {
 | |
|     SmallVector<Constant*, 8> Ops;
 | |
|     Ops.resize(getNumOperands()-1);
 | |
|     for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
 | |
|       Ops[i-1] = getOperand(i);
 | |
|     if (OpNo == 0)
 | |
|       return cast<GEPOperator>(this)->isInBounds() ?
 | |
|         ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
 | |
|         ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
 | |
|     Ops[OpNo-1] = Op;
 | |
|     return cast<GEPOperator>(this)->isInBounds() ?
 | |
|       ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0],Ops.size()):
 | |
|       ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
 | |
|   }
 | |
|   default:
 | |
|     assert(getNumOperands() == 2 && "Must be binary operator?");
 | |
|     Op0 = (OpNo == 0) ? Op : getOperand(0);
 | |
|     Op1 = (OpNo == 1) ? Op : getOperand(1);
 | |
|     return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getWithOperands - This returns the current constant expression with the
 | |
| /// operands replaced with the specified values.  The specified operands must
 | |
| /// match count and type with the existing ones.
 | |
| Constant *ConstantExpr::
 | |
| getWithOperands(Constant* const *Ops, unsigned NumOps) const {
 | |
|   assert(NumOps == getNumOperands() && "Operand count mismatch!");
 | |
|   bool AnyChange = false;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     assert(Ops[i]->getType() == getOperand(i)->getType() &&
 | |
|            "Operand type mismatch!");
 | |
|     AnyChange |= Ops[i] != getOperand(i);
 | |
|   }
 | |
|   if (!AnyChange)  // No operands changed, return self.
 | |
|     return const_cast<ConstantExpr*>(this);
 | |
| 
 | |
|   switch (getOpcode()) {
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::BitCast:
 | |
|     return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
 | |
|   case Instruction::Select:
 | |
|     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::InsertElement:
 | |
|     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::ExtractElement:
 | |
|     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
 | |
|   case Instruction::ShuffleVector:
 | |
|     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::GetElementPtr:
 | |
|     return cast<GEPOperator>(this)->isInBounds() ?
 | |
|       ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) :
 | |
|       ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp:
 | |
|     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
 | |
|   default:
 | |
|     assert(getNumOperands() == 2 && "Must be binary operator?");
 | |
|     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      isValueValidForType implementations
 | |
| 
 | |
| bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
 | |
|   unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
 | |
|   if (Ty == Type::getInt1Ty(Ty->getContext()))
 | |
|     return Val == 0 || Val == 1;
 | |
|   if (NumBits >= 64)
 | |
|     return true; // always true, has to fit in largest type
 | |
|   uint64_t Max = (1ll << NumBits) - 1;
 | |
|   return Val <= Max;
 | |
| }
 | |
| 
 | |
| bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
 | |
|   unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
 | |
|   if (Ty == Type::getInt1Ty(Ty->getContext()))
 | |
|     return Val == 0 || Val == 1 || Val == -1;
 | |
|   if (NumBits >= 64)
 | |
|     return true; // always true, has to fit in largest type
 | |
|   int64_t Min = -(1ll << (NumBits-1));
 | |
|   int64_t Max = (1ll << (NumBits-1)) - 1;
 | |
|   return (Val >= Min && Val <= Max);
 | |
| }
 | |
| 
 | |
| bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
 | |
|   // convert modifies in place, so make a copy.
 | |
|   APFloat Val2 = APFloat(Val);
 | |
|   bool losesInfo;
 | |
|   switch (Ty->getTypeID()) {
 | |
|   default:
 | |
|     return false;         // These can't be represented as floating point!
 | |
| 
 | |
|   // FIXME rounding mode needs to be more flexible
 | |
|   case Type::FloatTyID: {
 | |
|     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
 | |
|       return true;
 | |
|     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
 | |
|     return !losesInfo;
 | |
|   }
 | |
|   case Type::DoubleTyID: {
 | |
|     if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
 | |
|         &Val2.getSemantics() == &APFloat::IEEEdouble)
 | |
|       return true;
 | |
|     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
 | |
|     return !losesInfo;
 | |
|   }
 | |
|   case Type::X86_FP80TyID:
 | |
|     return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | |
|            &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | |
|            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
 | |
|   case Type::FP128TyID:
 | |
|     return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | |
|            &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | |
|            &Val2.getSemantics() == &APFloat::IEEEquad;
 | |
|   case Type::PPC_FP128TyID:
 | |
|     return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | |
|            &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | |
|            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Factory Function Implementation
 | |
| 
 | |
| ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) {
 | |
|   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
 | |
|          "Cannot create an aggregate zero of non-aggregate type!");
 | |
|   
 | |
|   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
 | |
|   return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
 | |
| }
 | |
| 
 | |
| /// destroyConstant - Remove the constant from the constant table...
 | |
| ///
 | |
| void ConstantAggregateZero::destroyConstant() {
 | |
|   getRawType()->getContext().pImpl->AggZeroConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| /// destroyConstant - Remove the constant from the constant table...
 | |
| ///
 | |
| void ConstantArray::destroyConstant() {
 | |
|   getRawType()->getContext().pImpl->ArrayConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| /// isString - This method returns true if the array is an array of i8, and 
 | |
| /// if the elements of the array are all ConstantInt's.
 | |
| bool ConstantArray::isString() const {
 | |
|   // Check the element type for i8...
 | |
|   if (!getType()->getElementType()->isIntegerTy(8))
 | |
|     return false;
 | |
|   // Check the elements to make sure they are all integers, not constant
 | |
|   // expressions.
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     if (!isa<ConstantInt>(getOperand(i)))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isCString - This method returns true if the array is a string (see
 | |
| /// isString) and it ends in a null byte \\0 and does not contains any other
 | |
| /// null bytes except its terminator.
 | |
| bool ConstantArray::isCString() const {
 | |
|   // Check the element type for i8...
 | |
|   if (!getType()->getElementType()->isIntegerTy(8))
 | |
|     return false;
 | |
| 
 | |
|   // Last element must be a null.
 | |
|   if (!getOperand(getNumOperands()-1)->isNullValue())
 | |
|     return false;
 | |
|   // Other elements must be non-null integers.
 | |
|   for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
 | |
|     if (!isa<ConstantInt>(getOperand(i)))
 | |
|       return false;
 | |
|     if (getOperand(i)->isNullValue())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getAsString - If the sub-element type of this array is i8
 | |
| /// then this method converts the array to an std::string and returns it.
 | |
| /// Otherwise, it asserts out.
 | |
| ///
 | |
| std::string ConstantArray::getAsString() const {
 | |
|   assert(isString() && "Not a string!");
 | |
|   std::string Result;
 | |
|   Result.reserve(getNumOperands());
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- ConstantStruct::get() implementation...
 | |
| //
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantStruct::destroyConstant() {
 | |
|   getRawType()->getContext().pImpl->StructConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantVector::destroyConstant() {
 | |
|   getRawType()->getContext().pImpl->VectorConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| /// This function will return true iff every element in this vector constant
 | |
| /// is set to all ones.
 | |
| /// @returns true iff this constant's emements are all set to all ones.
 | |
| /// @brief Determine if the value is all ones.
 | |
| bool ConstantVector::isAllOnesValue() const {
 | |
|   // Check out first element.
 | |
|   const Constant *Elt = getOperand(0);
 | |
|   const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
 | |
|   if (!CI || !CI->isAllOnesValue()) return false;
 | |
|   // Then make sure all remaining elements point to the same value.
 | |
|   for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
 | |
|     if (getOperand(I) != Elt) return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getSplatValue - If this is a splat constant, where all of the
 | |
| /// elements have the same value, return that value. Otherwise return null.
 | |
| Constant *ConstantVector::getSplatValue() {
 | |
|   // Check out first element.
 | |
|   Constant *Elt = getOperand(0);
 | |
|   // Then make sure all remaining elements point to the same value.
 | |
|   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
 | |
|     if (getOperand(I) != Elt) return 0;
 | |
|   return Elt;
 | |
| }
 | |
| 
 | |
| //---- ConstantPointerNull::get() implementation.
 | |
| //
 | |
| 
 | |
| ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
 | |
|   return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantPointerNull::destroyConstant() {
 | |
|   getRawType()->getContext().pImpl->NullPtrConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- UndefValue::get() implementation.
 | |
| //
 | |
| 
 | |
| UndefValue *UndefValue::get(const Type *Ty) {
 | |
|   return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table.
 | |
| //
 | |
| void UndefValue::destroyConstant() {
 | |
|   getRawType()->getContext().pImpl->UndefValueConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| //---- BlockAddress::get() implementation.
 | |
| //
 | |
| 
 | |
| BlockAddress *BlockAddress::get(BasicBlock *BB) {
 | |
|   assert(BB->getParent() != 0 && "Block must have a parent");
 | |
|   return get(BB->getParent(), BB);
 | |
| }
 | |
| 
 | |
| BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
 | |
|   BlockAddress *&BA =
 | |
|     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
 | |
|   if (BA == 0)
 | |
|     BA = new BlockAddress(F, BB);
 | |
|   
 | |
|   assert(BA->getFunction() == F && "Basic block moved between functions");
 | |
|   return BA;
 | |
| }
 | |
| 
 | |
| BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
 | |
| : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
 | |
|            &Op<0>(), 2) {
 | |
|   setOperand(0, F);
 | |
|   setOperand(1, BB);
 | |
|   BB->AdjustBlockAddressRefCount(1);
 | |
| }
 | |
| 
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table.
 | |
| //
 | |
| void BlockAddress::destroyConstant() {
 | |
|   getFunction()->getRawType()->getContext().pImpl
 | |
|     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
 | |
|   getBasicBlock()->AdjustBlockAddressRefCount(-1);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
 | |
|   // This could be replacing either the Basic Block or the Function.  In either
 | |
|   // case, we have to remove the map entry.
 | |
|   Function *NewF = getFunction();
 | |
|   BasicBlock *NewBB = getBasicBlock();
 | |
|   
 | |
|   if (U == &Op<0>())
 | |
|     NewF = cast<Function>(To);
 | |
|   else
 | |
|     NewBB = cast<BasicBlock>(To);
 | |
|   
 | |
|   // See if the 'new' entry already exists, if not, just update this in place
 | |
|   // and return early.
 | |
|   BlockAddress *&NewBA =
 | |
|     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
 | |
|   if (NewBA == 0) {
 | |
|     getBasicBlock()->AdjustBlockAddressRefCount(-1);
 | |
|     
 | |
|     // Remove the old entry, this can't cause the map to rehash (just a
 | |
|     // tombstone will get added).
 | |
|     getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
 | |
|                                                             getBasicBlock()));
 | |
|     NewBA = this;
 | |
|     setOperand(0, NewF);
 | |
|     setOperand(1, NewBB);
 | |
|     getBasicBlock()->AdjustBlockAddressRefCount(1);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, I do need to replace this with an existing value.
 | |
|   assert(NewBA != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(NewBA);
 | |
|   
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| //---- ConstantExpr::get() implementations.
 | |
| //
 | |
| 
 | |
| /// This is a utility function to handle folding of casts and lookup of the
 | |
| /// cast in the ExprConstants map. It is used by the various get* methods below.
 | |
| static inline Constant *getFoldedCast(
 | |
|   Instruction::CastOps opc, Constant *C, const Type *Ty) {
 | |
|   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
 | |
|   // Fold a few common cases
 | |
|   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
 | |
|     return FC;
 | |
| 
 | |
|   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> argVec(1, C);
 | |
|   ExprMapKeyType Key(opc, argVec);
 | |
|   
 | |
|   return pImpl->ExprConstants.getOrCreate(Ty, Key);
 | |
| }
 | |
|  
 | |
| Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
 | |
|   Instruction::CastOps opc = Instruction::CastOps(oc);
 | |
|   assert(Instruction::isCast(opc) && "opcode out of range");
 | |
|   assert(C && Ty && "Null arguments to getCast");
 | |
|   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
 | |
| 
 | |
|   switch (opc) {
 | |
|   default:
 | |
|     llvm_unreachable("Invalid cast opcode");
 | |
|     break;
 | |
|   case Instruction::Trunc:    return getTrunc(C, Ty);
 | |
|   case Instruction::ZExt:     return getZExt(C, Ty);
 | |
|   case Instruction::SExt:     return getSExt(C, Ty);
 | |
|   case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
 | |
|   case Instruction::FPExt:    return getFPExtend(C, Ty);
 | |
|   case Instruction::UIToFP:   return getUIToFP(C, Ty);
 | |
|   case Instruction::SIToFP:   return getSIToFP(C, Ty);
 | |
|   case Instruction::FPToUI:   return getFPToUI(C, Ty);
 | |
|   case Instruction::FPToSI:   return getFPToSI(C, Ty);
 | |
|   case Instruction::PtrToInt: return getPtrToInt(C, Ty);
 | |
|   case Instruction::IntToPtr: return getIntToPtr(C, Ty);
 | |
|   case Instruction::BitCast:  return getBitCast(C, Ty);
 | |
|   }
 | |
|   return 0;
 | |
| } 
 | |
| 
 | |
| Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
 | |
|   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return getBitCast(C, Ty);
 | |
|   return getZExt(C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
 | |
|   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return getBitCast(C, Ty);
 | |
|   return getSExt(C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
 | |
|   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return getBitCast(C, Ty);
 | |
|   return getTrunc(C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
 | |
|   assert(S->getType()->isPointerTy() && "Invalid cast");
 | |
|   assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
 | |
| 
 | |
|   if (Ty->isIntegerTy())
 | |
|     return getPtrToInt(S, Ty);
 | |
|   return getBitCast(S, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, 
 | |
|                                        bool isSigned) {
 | |
|   assert(C->getType()->isIntOrIntVectorTy() &&
 | |
|          Ty->isIntOrIntVectorTy() && "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | |
|   unsigned DstBits = Ty->getScalarSizeInBits();
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits == DstBits ? Instruction::BitCast :
 | |
|      (SrcBits > DstBits ? Instruction::Trunc :
 | |
|       (isSigned ? Instruction::SExt : Instruction::ZExt)));
 | |
|   return getCast(opcode, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | |
|   unsigned DstBits = Ty->getScalarSizeInBits();
 | |
|   if (SrcBits == DstBits)
 | |
|     return C; // Avoid a useless cast
 | |
|   Instruction::CastOps opcode =
 | |
|      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
 | |
|   return getCast(opcode, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
 | |
|   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
 | |
|   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
 | |
|          "SrcTy must be larger than DestTy for Trunc!");
 | |
| 
 | |
|   return getFoldedCast(Instruction::Trunc, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
 | |
|   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
 | |
|   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | |
|          "SrcTy must be smaller than DestTy for SExt!");
 | |
| 
 | |
|   return getFoldedCast(Instruction::SExt, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
 | |
|   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
 | |
|   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | |
|          "SrcTy must be smaller than DestTy for ZExt!");
 | |
| 
 | |
|   return getFoldedCast(Instruction::ZExt, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
 | |
|          "This is an illegal floating point truncation!");
 | |
|   return getFoldedCast(Instruction::FPTrunc, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | |
|          "This is an illegal floating point extension!");
 | |
|   return getFoldedCast(Instruction::FPExt, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          "This is an illegal uint to floating point cast!");
 | |
|   return getFoldedCast(Instruction::UIToFP, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          "This is an illegal sint to floating point cast!");
 | |
|   return getFoldedCast(Instruction::SIToFP, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
 | |
|          "This is an illegal floating point to uint cast!");
 | |
|   return getFoldedCast(Instruction::FPToUI, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
 | |
|          "This is an illegal floating point to sint cast!");
 | |
|   return getFoldedCast(Instruction::FPToSI, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
 | |
|   assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer");
 | |
|   assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral");
 | |
|   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
 | |
|   assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral");
 | |
|   assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer");
 | |
|   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
 | |
|   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
 | |
|          "Invalid constantexpr bitcast!");
 | |
|   
 | |
|   // It is common to ask for a bitcast of a value to its own type, handle this
 | |
|   // speedily.
 | |
|   if (C->getType() == DstTy) return C;
 | |
|   
 | |
|   return getFoldedCast(Instruction::BitCast, C, DstTy);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
 | |
|                               Constant *C1, Constant *C2,
 | |
|                               unsigned Flags) {
 | |
|   // Check the operands for consistency first
 | |
|   assert(Opcode >= Instruction::BinaryOpsBegin &&
 | |
|          Opcode <  Instruction::BinaryOpsEnd   &&
 | |
|          "Invalid opcode in binary constant expression");
 | |
|   assert(C1->getType() == C2->getType() &&
 | |
|          "Operand types in binary constant expression should match");
 | |
| 
 | |
|   if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext()))
 | |
|     if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
 | |
|       return FC;          // Fold a few common cases...
 | |
| 
 | |
|   std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
 | |
|   ExprMapKeyType Key(Opcode, argVec, 0, Flags);
 | |
|   
 | |
|   LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getCompareTy(unsigned short predicate,
 | |
|                                      Constant *C1, Constant *C2) {
 | |
|   switch (predicate) {
 | |
|     default: llvm_unreachable("Invalid CmpInst predicate");
 | |
|     case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
 | |
|     case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
 | |
|     case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
 | |
|     case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
 | |
|     case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
 | |
|     case CmpInst::FCMP_TRUE:
 | |
|       return getFCmp(predicate, C1, C2);
 | |
| 
 | |
|     case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
 | |
|     case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
 | |
|     case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
 | |
|     case CmpInst::ICMP_SLE:
 | |
|       return getICmp(predicate, C1, C2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
 | |
|                             unsigned Flags) {
 | |
| #ifndef NDEBUG
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create an integer operation on a non-integer type!");
 | |
|     break;
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::FMul:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isFPOrFPVectorTy() &&
 | |
|            "Tried to create a floating-point operation on a "
 | |
|            "non-floating-point type!");
 | |
|     break;
 | |
|   case Instruction::UDiv: 
 | |
|   case Instruction::SDiv: 
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::FDiv:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isFPOrFPVectorTy() &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::URem: 
 | |
|   case Instruction::SRem: 
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::FRem:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isFPOrFPVectorTy() &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create a logical operation on a non-integral type!");
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create a shift operation on a non-integer type!");
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return getTy(C1->getType(), Opcode, C1, C2, Flags);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getSizeOf(const Type* Ty) {
 | |
|   // sizeof is implemented as: (i64) gep (Ty*)null, 1
 | |
|   // Note that a non-inbounds gep is used, as null isn't within any object.
 | |
|   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
 | |
|   Constant *GEP = getGetElementPtr(
 | |
|                  Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
 | |
|   return getPtrToInt(GEP, 
 | |
|                      Type::getInt64Ty(Ty->getContext()));
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getAlignOf(const Type* Ty) {
 | |
|   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
 | |
|   // Note that a non-inbounds gep is used, as null isn't within any object.
 | |
|   const Type *AligningTy = StructType::get(Ty->getContext(),
 | |
|                                    Type::getInt1Ty(Ty->getContext()), Ty, NULL);
 | |
|   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
 | |
|   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
 | |
|   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
 | |
|   Constant *Indices[2] = { Zero, One };
 | |
|   Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
 | |
|   return getPtrToInt(GEP,
 | |
|                      Type::getInt64Ty(Ty->getContext()));
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) {
 | |
|   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
 | |
|                                            FieldNo));
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getOffsetOf(const Type* Ty, Constant *FieldNo) {
 | |
|   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
 | |
|   // Note that a non-inbounds gep is used, as null isn't within any object.
 | |
|   Constant *GEPIdx[] = {
 | |
|     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
 | |
|     FieldNo
 | |
|   };
 | |
|   Constant *GEP = getGetElementPtr(
 | |
|                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx, 2);
 | |
|   return getPtrToInt(GEP,
 | |
|                      Type::getInt64Ty(Ty->getContext()));
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getCompare(unsigned short pred, 
 | |
|                             Constant *C1, Constant *C2) {
 | |
|   assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|   return getCompareTy(pred, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
 | |
|                                     Constant *V1, Constant *V2) {
 | |
|   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
 | |
| 
 | |
|   if (ReqTy == V1->getType())
 | |
|     if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
 | |
|       return SC;        // Fold common cases
 | |
| 
 | |
|   std::vector<Constant*> argVec(3, C);
 | |
|   argVec[1] = V1;
 | |
|   argVec[2] = V2;
 | |
|   ExprMapKeyType Key(Instruction::Select, argVec);
 | |
|   
 | |
|   LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
 | |
|                                            Value* const *Idxs,
 | |
|                                            unsigned NumIdx) {
 | |
|   assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
 | |
|                                            Idxs+NumIdx) ==
 | |
|          cast<PointerType>(ReqTy)->getElementType() &&
 | |
|          "GEP indices invalid!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldGetElementPtr(C, /*inBounds=*/false,
 | |
|                                                (Constant**)Idxs, NumIdx))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   assert(C->getType()->isPointerTy() &&
 | |
|          "Non-pointer type for constant GetElementPtr expression");
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec;
 | |
|   ArgVec.reserve(NumIdx+1);
 | |
|   ArgVec.push_back(C);
 | |
|   for (unsigned i = 0; i != NumIdx; ++i)
 | |
|     ArgVec.push_back(cast<Constant>(Idxs[i]));
 | |
|   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
 | |
| 
 | |
|   LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy,
 | |
|                                                    Constant *C,
 | |
|                                                    Value *const *Idxs,
 | |
|                                                    unsigned NumIdx) {
 | |
|   assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
 | |
|                                            Idxs+NumIdx) ==
 | |
|          cast<PointerType>(ReqTy)->getElementType() &&
 | |
|          "GEP indices invalid!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldGetElementPtr(C, /*inBounds=*/true,
 | |
|                                                (Constant**)Idxs, NumIdx))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   assert(C->getType()->isPointerTy() &&
 | |
|          "Non-pointer type for constant GetElementPtr expression");
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec;
 | |
|   ArgVec.reserve(NumIdx+1);
 | |
|   ArgVec.push_back(C);
 | |
|   for (unsigned i = 0; i != NumIdx; ++i)
 | |
|     ArgVec.push_back(cast<Constant>(Idxs[i]));
 | |
|   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
 | |
|                            GEPOperator::IsInBounds);
 | |
| 
 | |
|   LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
 | |
|                                          unsigned NumIdx) {
 | |
|   // Get the result type of the getelementptr!
 | |
|   const Type *Ty = 
 | |
|     GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
 | |
|   assert(Ty && "GEP indices invalid!");
 | |
|   unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
 | |
|   return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
 | |
|                                                  Value* const *Idxs,
 | |
|                                                  unsigned NumIdx) {
 | |
|   // Get the result type of the getelementptr!
 | |
|   const Type *Ty = 
 | |
|     GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
 | |
|   assert(Ty && "GEP indices invalid!");
 | |
|   unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
 | |
|   return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
 | |
|                                          unsigned NumIdx) {
 | |
|   return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
 | |
|                                                  Constant* const *Idxs,
 | |
|                                                  unsigned NumIdx) {
 | |
|   return getInBoundsGetElementPtr(C, (Value* const *)Idxs, NumIdx);
 | |
| }
 | |
| 
 | |
| Constant *
 | |
| ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
 | |
|   assert(LHS->getType() == RHS->getType());
 | |
|   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
 | |
|          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec;
 | |
|   ArgVec.push_back(LHS);
 | |
|   ArgVec.push_back(RHS);
 | |
|   // Get the key type with both the opcode and predicate
 | |
|   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
 | |
| 
 | |
|   const Type *ResultTy = Type::getInt1Ty(LHS->getContext());
 | |
|   if (const VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
 | |
|     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
 | |
| 
 | |
|   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *
 | |
| ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
 | |
|   assert(LHS->getType() == RHS->getType());
 | |
|   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec;
 | |
|   ArgVec.push_back(LHS);
 | |
|   ArgVec.push_back(RHS);
 | |
|   // Get the key type with both the opcode and predicate
 | |
|   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
 | |
| 
 | |
|   const Type *ResultTy = Type::getInt1Ty(LHS->getContext());
 | |
|   if (const VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
 | |
|     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
 | |
| 
 | |
|   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
 | |
|                                             Constant *Idx) {
 | |
|   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
 | |
|     return FC;          // Fold a few common cases.
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec(1, Val);
 | |
|   ArgVec.push_back(Idx);
 | |
|   const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
 | |
|   
 | |
|   LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
 | |
|   assert(Val->getType()->isVectorTy() &&
 | |
|          "Tried to create extractelement operation on non-vector type!");
 | |
|   assert(Idx->getType()->isIntegerTy(32) &&
 | |
|          "Extractelement index must be i32 type!");
 | |
|   return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
 | |
|                              Val, Idx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
 | |
|                                            Constant *Elt, Constant *Idx) {
 | |
|   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
 | |
|     return FC;          // Fold a few common cases.
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec(1, Val);
 | |
|   ArgVec.push_back(Elt);
 | |
|   ArgVec.push_back(Idx);
 | |
|   const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
 | |
|   
 | |
|   LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
 | |
|                                          Constant *Idx) {
 | |
|   assert(Val->getType()->isVectorTy() &&
 | |
|          "Tried to create insertelement operation on non-vector type!");
 | |
|   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
 | |
|          && "Insertelement types must match!");
 | |
|   assert(Idx->getType()->isIntegerTy(32) &&
 | |
|          "Insertelement index must be i32 type!");
 | |
|   return getInsertElementTy(Val->getType(), Val, Elt, Idx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
 | |
|                                            Constant *V2, Constant *Mask) {
 | |
|   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
 | |
|     return FC;          // Fold a few common cases...
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec(1, V1);
 | |
|   ArgVec.push_back(V2);
 | |
|   ArgVec.push_back(Mask);
 | |
|   const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
 | |
|   
 | |
|   LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
 | |
|                                          Constant *Mask) {
 | |
|   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
 | |
|          "Invalid shuffle vector constant expr operands!");
 | |
| 
 | |
|   unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
 | |
|   const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
 | |
|   const Type *ShufTy = VectorType::get(EltTy, NElts);
 | |
|   return getShuffleVectorTy(ShufTy, V1, V2, Mask);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
 | |
|                                          Constant *Val,
 | |
|                                         const unsigned *Idxs, unsigned NumIdx) {
 | |
|   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
 | |
|                                           Idxs+NumIdx) == Val->getType() &&
 | |
|          "insertvalue indices invalid!");
 | |
|   assert(Agg->getType() == ReqTy &&
 | |
|          "insertvalue type invalid!");
 | |
|   assert(Agg->getType()->isFirstClassType() &&
 | |
|          "Non-first-class type for constant InsertValue expression");
 | |
|   Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx);
 | |
|   assert(FC && "InsertValue constant expr couldn't be folded!");
 | |
|   return FC;
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
 | |
|                                      const unsigned *IdxList, unsigned NumIdx) {
 | |
|   assert(Agg->getType()->isFirstClassType() &&
 | |
|          "Tried to create insertelement operation on non-first-class type!");
 | |
| 
 | |
|   const Type *ReqTy = Agg->getType();
 | |
| #ifndef NDEBUG
 | |
|   const Type *ValTy =
 | |
|     ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
 | |
| #endif
 | |
|   assert(ValTy == Val->getType() && "insertvalue indices invalid!");
 | |
|   return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
 | |
|                                         const unsigned *Idxs, unsigned NumIdx) {
 | |
|   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
 | |
|                                           Idxs+NumIdx) == ReqTy &&
 | |
|          "extractvalue indices invalid!");
 | |
|   assert(Agg->getType()->isFirstClassType() &&
 | |
|          "Non-first-class type for constant extractvalue expression");
 | |
|   Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx);
 | |
|   assert(FC && "ExtractValue constant expr couldn't be folded!");
 | |
|   return FC;
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractValue(Constant *Agg,
 | |
|                                      const unsigned *IdxList, unsigned NumIdx) {
 | |
|   assert(Agg->getType()->isFirstClassType() &&
 | |
|          "Tried to create extractelement operation on non-first-class type!");
 | |
| 
 | |
|   const Type *ReqTy =
 | |
|     ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
 | |
|   assert(ReqTy && "extractvalue indices invalid!");
 | |
|   return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getNeg(Constant* C) {
 | |
|   assert(C->getType()->isIntOrIntVectorTy() &&
 | |
|          "Cannot NEG a nonintegral value!");
 | |
|   return get(Instruction::Sub,
 | |
|              ConstantFP::getZeroValueForNegation(C->getType()),
 | |
|              C);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getFNeg(Constant* C) {
 | |
|   assert(C->getType()->isFPOrFPVectorTy() &&
 | |
|          "Cannot FNEG a non-floating-point value!");
 | |
|   return get(Instruction::FSub,
 | |
|              ConstantFP::getZeroValueForNegation(C->getType()),
 | |
|              C);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getNot(Constant* C) {
 | |
|   assert(C->getType()->isIntOrIntVectorTy() &&
 | |
|          "Cannot NOT a nonintegral value!");
 | |
|   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::Add, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::FAdd, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::Sub, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::FSub, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::Mul, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::FMul, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::UDiv, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::SDiv, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::FDiv, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::URem, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::SRem, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::FRem, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::And, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::Or, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::Xor, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::Shl, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::LShr, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) {
 | |
|   return get(Instruction::AShr, C1, C2);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantExpr::destroyConstant() {
 | |
|   getRawType()->getContext().pImpl->ExprConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| const char *ConstantExpr::getOpcodeName() const {
 | |
|   return Instruction::getOpcodeName(getOpcode());
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| GetElementPtrConstantExpr::
 | |
| GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
 | |
|                           const Type *DestTy)
 | |
|   : ConstantExpr(DestTy, Instruction::GetElementPtr,
 | |
|                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
 | |
|                  - (IdxList.size()+1), IdxList.size()+1) {
 | |
|   OperandList[0] = C;
 | |
|   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
 | |
|     OperandList[i+1] = IdxList[i];
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                replaceUsesOfWithOnConstant implementations
 | |
| 
 | |
| /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
 | |
| /// 'From' to be uses of 'To'.  This must update the uniquing data structures
 | |
| /// etc.
 | |
| ///
 | |
| /// Note that we intentionally replace all uses of From with To here.  Consider
 | |
| /// a large array that uses 'From' 1000 times.  By handling this case all here,
 | |
| /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
 | |
| /// single invocation handles all 1000 uses.  Handling them one at a time would
 | |
| /// work, but would be really slow because it would have to unique each updated
 | |
| /// array instance.
 | |
| ///
 | |
| void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                 Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *ToC = cast<Constant>(To);
 | |
| 
 | |
|   LLVMContextImpl *pImpl = getRawType()->getContext().pImpl;
 | |
| 
 | |
|   std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
 | |
|   Lookup.first.first = cast<ArrayType>(getRawType());
 | |
|   Lookup.second = this;
 | |
| 
 | |
|   std::vector<Constant*> &Values = Lookup.first.second;
 | |
|   Values.reserve(getNumOperands());  // Build replacement array.
 | |
| 
 | |
|   // Fill values with the modified operands of the constant array.  Also, 
 | |
|   // compute whether this turns into an all-zeros array.
 | |
|   bool isAllZeros = false;
 | |
|   unsigned NumUpdated = 0;
 | |
|   if (!ToC->isNullValue()) {
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | |
|       Constant *Val = cast<Constant>(O->get());
 | |
|       if (Val == From) {
 | |
|         Val = ToC;
 | |
|         ++NumUpdated;
 | |
|       }
 | |
|       Values.push_back(Val);
 | |
|     }
 | |
|   } else {
 | |
|     isAllZeros = true;
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
 | |
|       Constant *Val = cast<Constant>(O->get());
 | |
|       if (Val == From) {
 | |
|         Val = ToC;
 | |
|         ++NumUpdated;
 | |
|       }
 | |
|       Values.push_back(Val);
 | |
|       if (isAllZeros) isAllZeros = Val->isNullValue();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   Constant *Replacement = 0;
 | |
|   if (isAllZeros) {
 | |
|     Replacement = ConstantAggregateZero::get(getRawType());
 | |
|   } else {
 | |
|     // Check to see if we have this array type already.
 | |
|     bool Exists;
 | |
|     LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
 | |
|       pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
 | |
|     
 | |
|     if (Exists) {
 | |
|       Replacement = I->second;
 | |
|     } else {
 | |
|       // Okay, the new shape doesn't exist in the system yet.  Instead of
 | |
|       // creating a new constant array, inserting it, replaceallusesof'ing the
 | |
|       // old with the new, then deleting the old... just update the current one
 | |
|       // in place!
 | |
|       pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
 | |
|       
 | |
|       // Update to the new value.  Optimize for the case when we have a single
 | |
|       // operand that we're changing, but handle bulk updates efficiently.
 | |
|       if (NumUpdated == 1) {
 | |
|         unsigned OperandToUpdate = U - OperandList;
 | |
|         assert(getOperand(OperandToUpdate) == From &&
 | |
|                "ReplaceAllUsesWith broken!");
 | |
|         setOperand(OperandToUpdate, ToC);
 | |
|       } else {
 | |
|         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|           if (getOperand(i) == From)
 | |
|             setOperand(i, ToC);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|  
 | |
|   // Otherwise, I do need to replace this with an existing value.
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                  Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *ToC = cast<Constant>(To);
 | |
| 
 | |
|   unsigned OperandToUpdate = U-OperandList;
 | |
|   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
 | |
| 
 | |
|   std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
 | |
|   Lookup.first.first = cast<StructType>(getRawType());
 | |
|   Lookup.second = this;
 | |
|   std::vector<Constant*> &Values = Lookup.first.second;
 | |
|   Values.reserve(getNumOperands());  // Build replacement struct.
 | |
|   
 | |
|   
 | |
|   // Fill values with the modified operands of the constant struct.  Also, 
 | |
|   // compute whether this turns into an all-zeros struct.
 | |
|   bool isAllZeros = false;
 | |
|   if (!ToC->isNullValue()) {
 | |
|     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
 | |
|       Values.push_back(cast<Constant>(O->get()));
 | |
|   } else {
 | |
|     isAllZeros = true;
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | |
|       Constant *Val = cast<Constant>(O->get());
 | |
|       Values.push_back(Val);
 | |
|       if (isAllZeros) isAllZeros = Val->isNullValue();
 | |
|     }
 | |
|   }
 | |
|   Values[OperandToUpdate] = ToC;
 | |
|   
 | |
|   LLVMContextImpl *pImpl = getRawType()->getContext().pImpl;
 | |
|   
 | |
|   Constant *Replacement = 0;
 | |
|   if (isAllZeros) {
 | |
|     Replacement = ConstantAggregateZero::get(getRawType());
 | |
|   } else {
 | |
|     // Check to see if we have this struct type already.
 | |
|     bool Exists;
 | |
|     LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
 | |
|       pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
 | |
|     
 | |
|     if (Exists) {
 | |
|       Replacement = I->second;
 | |
|     } else {
 | |
|       // Okay, the new shape doesn't exist in the system yet.  Instead of
 | |
|       // creating a new constant struct, inserting it, replaceallusesof'ing the
 | |
|       // old with the new, then deleting the old... just update the current one
 | |
|       // in place!
 | |
|       pImpl->StructConstants.MoveConstantToNewSlot(this, I);
 | |
|       
 | |
|       // Update to the new value.
 | |
|       setOperand(OperandToUpdate, ToC);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                  Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   
 | |
|   std::vector<Constant*> Values;
 | |
|   Values.reserve(getNumOperands());  // Build replacement array...
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     Constant *Val = getOperand(i);
 | |
|     if (Val == From) Val = cast<Constant>(To);
 | |
|     Values.push_back(Val);
 | |
|   }
 | |
|   
 | |
|   Constant *Replacement = get(cast<VectorType>(getRawType()), Values);
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
 | |
|                                                Use *U) {
 | |
|   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *To = cast<Constant>(ToV);
 | |
|   
 | |
|   Constant *Replacement = 0;
 | |
|   if (getOpcode() == Instruction::GetElementPtr) {
 | |
|     SmallVector<Constant*, 8> Indices;
 | |
|     Constant *Pointer = getOperand(0);
 | |
|     Indices.reserve(getNumOperands()-1);
 | |
|     if (Pointer == From) Pointer = To;
 | |
|     
 | |
|     for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|       Constant *Val = getOperand(i);
 | |
|       if (Val == From) Val = To;
 | |
|       Indices.push_back(Val);
 | |
|     }
 | |
|     Replacement = ConstantExpr::getGetElementPtr(Pointer,
 | |
|                                                  &Indices[0], Indices.size());
 | |
|   } else if (getOpcode() == Instruction::ExtractValue) {
 | |
|     Constant *Agg = getOperand(0);
 | |
|     if (Agg == From) Agg = To;
 | |
|     
 | |
|     const SmallVector<unsigned, 4> &Indices = getIndices();
 | |
|     Replacement = ConstantExpr::getExtractValue(Agg,
 | |
|                                                 &Indices[0], Indices.size());
 | |
|   } else if (getOpcode() == Instruction::InsertValue) {
 | |
|     Constant *Agg = getOperand(0);
 | |
|     Constant *Val = getOperand(1);
 | |
|     if (Agg == From) Agg = To;
 | |
|     if (Val == From) Val = To;
 | |
|     
 | |
|     const SmallVector<unsigned, 4> &Indices = getIndices();
 | |
|     Replacement = ConstantExpr::getInsertValue(Agg, Val,
 | |
|                                                &Indices[0], Indices.size());
 | |
|   } else if (isCast()) {
 | |
|     assert(getOperand(0) == From && "Cast only has one use!");
 | |
|     Replacement = ConstantExpr::getCast(getOpcode(), To, getRawType());
 | |
|   } else if (getOpcode() == Instruction::Select) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     Constant *C3 = getOperand(2);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     if (C3 == From) C3 = To;
 | |
|     Replacement = ConstantExpr::getSelect(C1, C2, C3);
 | |
|   } else if (getOpcode() == Instruction::ExtractElement) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     Replacement = ConstantExpr::getExtractElement(C1, C2);
 | |
|   } else if (getOpcode() == Instruction::InsertElement) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     Constant *C3 = getOperand(1);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     if (C3 == From) C3 = To;
 | |
|     Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
 | |
|   } else if (getOpcode() == Instruction::ShuffleVector) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     Constant *C3 = getOperand(2);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     if (C3 == From) C3 = To;
 | |
|     Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
 | |
|   } else if (isCompare()) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     if (getOpcode() == Instruction::ICmp)
 | |
|       Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
 | |
|     else {
 | |
|       assert(getOpcode() == Instruction::FCmp);
 | |
|       Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
 | |
|     }
 | |
|   } else if (getNumOperands() == 2) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData);
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown ConstantExpr type!");
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 |