2025 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2025 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This tablegen backend emits a target specifier matcher for converting parsed
 | |
| // assembly operands in the MCInst structures.
 | |
| //
 | |
| // The input to the target specific matcher is a list of literal tokens and
 | |
| // operands. The target specific parser should generally eliminate any syntax
 | |
| // which is not relevant for matching; for example, comma tokens should have
 | |
| // already been consumed and eliminated by the parser. Most instructions will
 | |
| // end up with a single literal token (the instruction name) and some number of
 | |
| // operands.
 | |
| //
 | |
| // Some example inputs, for X86:
 | |
| //   'addl' (immediate ...) (register ...)
 | |
| //   'add' (immediate ...) (memory ...)
 | |
| //   'call' '*' %epc
 | |
| //
 | |
| // The assembly matcher is responsible for converting this input into a precise
 | |
| // machine instruction (i.e., an instruction with a well defined encoding). This
 | |
| // mapping has several properties which complicate matching:
 | |
| //
 | |
| //  - It may be ambiguous; many architectures can legally encode particular
 | |
| //    variants of an instruction in different ways (for example, using a smaller
 | |
| //    encoding for small immediates). Such ambiguities should never be
 | |
| //    arbitrarily resolved by the assembler, the assembler is always responsible
 | |
| //    for choosing the "best" available instruction.
 | |
| //
 | |
| //  - It may depend on the subtarget or the assembler context. Instructions
 | |
| //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
 | |
| //    an SSE instruction in a file being assembled for i486) should be accepted
 | |
| //    and rejected by the assembler front end. However, if the proper encoding
 | |
| //    for an instruction is dependent on the assembler context then the matcher
 | |
| //    is responsible for selecting the correct machine instruction for the
 | |
| //    current mode.
 | |
| //
 | |
| // The core matching algorithm attempts to exploit the regularity in most
 | |
| // instruction sets to quickly determine the set of possibly matching
 | |
| // instructions, and the simplify the generated code. Additionally, this helps
 | |
| // to ensure that the ambiguities are intentionally resolved by the user.
 | |
| //
 | |
| // The matching is divided into two distinct phases:
 | |
| //
 | |
| //   1. Classification: Each operand is mapped to the unique set which (a)
 | |
| //      contains it, and (b) is the largest such subset for which a single
 | |
| //      instruction could match all members.
 | |
| //
 | |
| //      For register classes, we can generate these subgroups automatically. For
 | |
| //      arbitrary operands, we expect the user to define the classes and their
 | |
| //      relations to one another (for example, 8-bit signed immediates as a
 | |
| //      subset of 32-bit immediates).
 | |
| //
 | |
| //      By partitioning the operands in this way, we guarantee that for any
 | |
| //      tuple of classes, any single instruction must match either all or none
 | |
| //      of the sets of operands which could classify to that tuple.
 | |
| //
 | |
| //      In addition, the subset relation amongst classes induces a partial order
 | |
| //      on such tuples, which we use to resolve ambiguities.
 | |
| //
 | |
| //   2. The input can now be treated as a tuple of classes (static tokens are
 | |
| //      simple singleton sets). Each such tuple should generally map to a single
 | |
| //      instruction (we currently ignore cases where this isn't true, whee!!!),
 | |
| //      which we can emit a simple matcher for.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AsmMatcherEmitter.h"
 | |
| #include "CodeGenTarget.h"
 | |
| #include "Record.h"
 | |
| #include "StringMatcher.h"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/ADT/PointerUnion.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include <map>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<std::string>
 | |
| MatchPrefix("match-prefix", cl::init(""),
 | |
|             cl::desc("Only match instructions with the given prefix"));
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   class AsmMatcherInfo;
 | |
| struct SubtargetFeatureInfo;
 | |
| 
 | |
| /// ClassInfo - Helper class for storing the information about a particular
 | |
| /// class of operands which can be matched.
 | |
| struct ClassInfo {
 | |
|   enum ClassInfoKind {
 | |
|     /// Invalid kind, for use as a sentinel value.
 | |
|     Invalid = 0,
 | |
| 
 | |
|     /// The class for a particular token.
 | |
|     Token,
 | |
| 
 | |
|     /// The (first) register class, subsequent register classes are
 | |
|     /// RegisterClass0+1, and so on.
 | |
|     RegisterClass0,
 | |
| 
 | |
|     /// The (first) user defined class, subsequent user defined classes are
 | |
|     /// UserClass0+1, and so on.
 | |
|     UserClass0 = 1<<16
 | |
|   };
 | |
| 
 | |
|   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
 | |
|   /// N) for the Nth user defined class.
 | |
|   unsigned Kind;
 | |
| 
 | |
|   /// SuperClasses - The super classes of this class. Note that for simplicities
 | |
|   /// sake user operands only record their immediate super class, while register
 | |
|   /// operands include all superclasses.
 | |
|   std::vector<ClassInfo*> SuperClasses;
 | |
| 
 | |
|   /// Name - The full class name, suitable for use in an enum.
 | |
|   std::string Name;
 | |
| 
 | |
|   /// ClassName - The unadorned generic name for this class (e.g., Token).
 | |
|   std::string ClassName;
 | |
| 
 | |
|   /// ValueName - The name of the value this class represents; for a token this
 | |
|   /// is the literal token string, for an operand it is the TableGen class (or
 | |
|   /// empty if this is a derived class).
 | |
|   std::string ValueName;
 | |
| 
 | |
|   /// PredicateMethod - The name of the operand method to test whether the
 | |
|   /// operand matches this class; this is not valid for Token or register kinds.
 | |
|   std::string PredicateMethod;
 | |
| 
 | |
|   /// RenderMethod - The name of the operand method to add this operand to an
 | |
|   /// MCInst; this is not valid for Token or register kinds.
 | |
|   std::string RenderMethod;
 | |
| 
 | |
|   /// For register classes, the records for all the registers in this class.
 | |
|   std::set<Record*> Registers;
 | |
| 
 | |
| public:
 | |
|   /// isRegisterClass() - Check if this is a register class.
 | |
|   bool isRegisterClass() const {
 | |
|     return Kind >= RegisterClass0 && Kind < UserClass0;
 | |
|   }
 | |
| 
 | |
|   /// isUserClass() - Check if this is a user defined class.
 | |
|   bool isUserClass() const {
 | |
|     return Kind >= UserClass0;
 | |
|   }
 | |
| 
 | |
|   /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
 | |
|   /// are related if they are in the same class hierarchy.
 | |
|   bool isRelatedTo(const ClassInfo &RHS) const {
 | |
|     // Tokens are only related to tokens.
 | |
|     if (Kind == Token || RHS.Kind == Token)
 | |
|       return Kind == Token && RHS.Kind == Token;
 | |
| 
 | |
|     // Registers classes are only related to registers classes, and only if
 | |
|     // their intersection is non-empty.
 | |
|     if (isRegisterClass() || RHS.isRegisterClass()) {
 | |
|       if (!isRegisterClass() || !RHS.isRegisterClass())
 | |
|         return false;
 | |
| 
 | |
|       std::set<Record*> Tmp;
 | |
|       std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
 | |
|       std::set_intersection(Registers.begin(), Registers.end(),
 | |
|                             RHS.Registers.begin(), RHS.Registers.end(),
 | |
|                             II);
 | |
| 
 | |
|       return !Tmp.empty();
 | |
|     }
 | |
| 
 | |
|     // Otherwise we have two users operands; they are related if they are in the
 | |
|     // same class hierarchy.
 | |
|     //
 | |
|     // FIXME: This is an oversimplification, they should only be related if they
 | |
|     // intersect, however we don't have that information.
 | |
|     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
 | |
|     const ClassInfo *Root = this;
 | |
|     while (!Root->SuperClasses.empty())
 | |
|       Root = Root->SuperClasses.front();
 | |
| 
 | |
|     const ClassInfo *RHSRoot = &RHS;
 | |
|     while (!RHSRoot->SuperClasses.empty())
 | |
|       RHSRoot = RHSRoot->SuperClasses.front();
 | |
| 
 | |
|     return Root == RHSRoot;
 | |
|   }
 | |
| 
 | |
|   /// isSubsetOf - Test whether this class is a subset of \arg RHS;
 | |
|   bool isSubsetOf(const ClassInfo &RHS) const {
 | |
|     // This is a subset of RHS if it is the same class...
 | |
|     if (this == &RHS)
 | |
|       return true;
 | |
| 
 | |
|     // ... or if any of its super classes are a subset of RHS.
 | |
|     for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
 | |
|            ie = SuperClasses.end(); it != ie; ++it)
 | |
|       if ((*it)->isSubsetOf(RHS))
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// operator< - Compare two classes.
 | |
|   bool operator<(const ClassInfo &RHS) const {
 | |
|     if (this == &RHS)
 | |
|       return false;
 | |
| 
 | |
|     // Unrelated classes can be ordered by kind.
 | |
|     if (!isRelatedTo(RHS))
 | |
|       return Kind < RHS.Kind;
 | |
| 
 | |
|     switch (Kind) {
 | |
|     case Invalid:
 | |
|       assert(0 && "Invalid kind!");
 | |
|     case Token:
 | |
|       // Tokens are comparable by value.
 | |
|       //
 | |
|       // FIXME: Compare by enum value.
 | |
|       return ValueName < RHS.ValueName;
 | |
| 
 | |
|     default:
 | |
|       // This class preceeds the RHS if it is a proper subset of the RHS.
 | |
|       if (isSubsetOf(RHS))
 | |
|         return true;
 | |
|       if (RHS.isSubsetOf(*this))
 | |
|         return false;
 | |
| 
 | |
|       // Otherwise, order by name to ensure we have a total ordering.
 | |
|       return ValueName < RHS.ValueName;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// MatchableInfo - Helper class for storing the necessary information for an
 | |
| /// instruction or alias which is capable of being matched.
 | |
| struct MatchableInfo {
 | |
|   struct AsmOperand {
 | |
|     /// Token - This is the token that the operand came from.
 | |
|     StringRef Token;
 | |
|     
 | |
|     /// The unique class instance this operand should match.
 | |
|     ClassInfo *Class;
 | |
| 
 | |
|     /// The operand name this is, if anything.
 | |
|     StringRef SrcOpName;
 | |
|     
 | |
|     explicit AsmOperand(StringRef T) : Token(T), Class(0) {}
 | |
|   };
 | |
|   
 | |
|   /// ResOperand - This represents a single operand in the result instruction
 | |
|   /// generated by the match.  In cases (like addressing modes) where a single
 | |
|   /// assembler operand expands to multiple MCOperands, this represents the
 | |
|   /// single assembler operand, not the MCOperand.
 | |
|   struct ResOperand {
 | |
|     enum {
 | |
|       /// RenderAsmOperand - This represents an operand result that is
 | |
|       /// generated by calling the render method on the assembly operand.  The
 | |
|       /// corresponding AsmOperand is specified by AsmOperandNum.
 | |
|       RenderAsmOperand,
 | |
|       
 | |
|       /// TiedOperand - This represents a result operand that is a duplicate of
 | |
|       /// a previous result operand.
 | |
|       TiedOperand,
 | |
|       
 | |
|       /// ImmOperand - This represents an immediate value that is dumped into
 | |
|       /// the operand.
 | |
|       ImmOperand,
 | |
|       
 | |
|       /// RegOperand - This represents a fixed register that is dumped in.
 | |
|       RegOperand
 | |
|     } Kind;
 | |
|     
 | |
|     union {
 | |
|       /// This is the operand # in the AsmOperands list that this should be
 | |
|       /// copied from.
 | |
|       unsigned AsmOperandNum;
 | |
|       
 | |
|       /// TiedOperandNum - This is the (earlier) result operand that should be
 | |
|       /// copied from.
 | |
|       unsigned TiedOperandNum;
 | |
|       
 | |
|       /// ImmVal - This is the immediate value added to the instruction.
 | |
|       int64_t ImmVal;
 | |
|       
 | |
|       /// Register - This is the register record.
 | |
|       Record *Register;
 | |
|     };
 | |
|     
 | |
|     /// OpInfo - This is the information about the instruction operand that is
 | |
|     /// being populated.
 | |
|     const CGIOperandList::OperandInfo *OpInfo;
 | |
|     
 | |
|     static ResOperand getRenderedOp(unsigned AsmOpNum,
 | |
|                                     const CGIOperandList::OperandInfo *Op) {
 | |
|       ResOperand X;
 | |
|       X.Kind = RenderAsmOperand;
 | |
|       X.AsmOperandNum = AsmOpNum;
 | |
|       X.OpInfo = Op;
 | |
|       return X;
 | |
|     }
 | |
|     
 | |
|     static ResOperand getTiedOp(unsigned TiedOperandNum,
 | |
|                                 const CGIOperandList::OperandInfo *Op) {
 | |
|       ResOperand X;
 | |
|       X.Kind = TiedOperand;
 | |
|       X.TiedOperandNum = TiedOperandNum;
 | |
|       X.OpInfo = Op;
 | |
|       return X;
 | |
|     }
 | |
|     
 | |
|     static ResOperand getImmOp(int64_t Val,
 | |
|                                const CGIOperandList::OperandInfo *Op) {
 | |
|       ResOperand X;
 | |
|       X.Kind = ImmOperand;
 | |
|       X.ImmVal = Val;
 | |
|       X.OpInfo = Op;
 | |
|       return X;
 | |
|     }
 | |
|     
 | |
|     static ResOperand getRegOp(Record *Reg,
 | |
|                                const CGIOperandList::OperandInfo *Op) {
 | |
|       ResOperand X;
 | |
|       X.Kind = RegOperand;
 | |
|       X.Register = Reg;
 | |
|       X.OpInfo = Op;
 | |
|       return X;
 | |
|     }
 | |
|     
 | |
|   };
 | |
| 
 | |
|   /// TheDef - This is the definition of the instruction or InstAlias that this
 | |
|   /// matchable came from.
 | |
|   Record *const TheDef;
 | |
|   
 | |
|   /// DefRec - This is the definition that it came from.
 | |
|   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
 | |
|   
 | |
|   const CodeGenInstruction *getResultInst() const {
 | |
|     if (DefRec.is<const CodeGenInstruction*>())
 | |
|       return DefRec.get<const CodeGenInstruction*>();
 | |
|     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
 | |
|   }
 | |
|   
 | |
|   /// ResOperands - This is the operand list that should be built for the result
 | |
|   /// MCInst.
 | |
|   std::vector<ResOperand> ResOperands;
 | |
| 
 | |
|   /// AsmString - The assembly string for this instruction (with variants
 | |
|   /// removed), e.g. "movsx $src, $dst".
 | |
|   std::string AsmString;
 | |
| 
 | |
|   /// Mnemonic - This is the first token of the matched instruction, its
 | |
|   /// mnemonic.
 | |
|   StringRef Mnemonic;
 | |
|   
 | |
|   /// AsmOperands - The textual operands that this instruction matches,
 | |
|   /// annotated with a class and where in the OperandList they were defined.
 | |
|   /// This directly corresponds to the tokenized AsmString after the mnemonic is
 | |
|   /// removed.
 | |
|   SmallVector<AsmOperand, 4> AsmOperands;
 | |
| 
 | |
|   /// Predicates - The required subtarget features to match this instruction.
 | |
|   SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
 | |
| 
 | |
|   /// ConversionFnKind - The enum value which is passed to the generated
 | |
|   /// ConvertToMCInst to convert parsed operands into an MCInst for this
 | |
|   /// function.
 | |
|   std::string ConversionFnKind;
 | |
|   
 | |
|   MatchableInfo(const CodeGenInstruction &CGI)
 | |
|     : TheDef(CGI.TheDef), DefRec(&CGI), AsmString(CGI.AsmString) {
 | |
|   }
 | |
| 
 | |
|   MatchableInfo(const CodeGenInstAlias *Alias)
 | |
|     : TheDef(Alias->TheDef), DefRec(Alias), AsmString(Alias->AsmString) {
 | |
|   }
 | |
|   
 | |
|   void Initialize(const AsmMatcherInfo &Info,
 | |
|                   SmallPtrSet<Record*, 16> &SingletonRegisters);
 | |
|   
 | |
|   /// Validate - Return true if this matchable is a valid thing to match against
 | |
|   /// and perform a bunch of validity checking.
 | |
|   bool Validate(StringRef CommentDelimiter, bool Hack) const;
 | |
|   
 | |
|   /// getSingletonRegisterForAsmOperand - If the specified token is a singleton
 | |
|   /// register, return the Record for it, otherwise return null.
 | |
|   Record *getSingletonRegisterForAsmOperand(unsigned i,
 | |
|                                             const AsmMatcherInfo &Info) const;  
 | |
| 
 | |
|   int FindAsmOperandNamed(StringRef N) const {
 | |
|     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
 | |
|       if (N == AsmOperands[i].SrcOpName)
 | |
|         return i;
 | |
|     return -1;
 | |
|   }
 | |
|   
 | |
|   void BuildInstructionResultOperands();
 | |
|   void BuildAliasResultOperands();
 | |
| 
 | |
|   /// operator< - Compare two matchables.
 | |
|   bool operator<(const MatchableInfo &RHS) const {
 | |
|     // The primary comparator is the instruction mnemonic.
 | |
|     if (Mnemonic != RHS.Mnemonic)
 | |
|       return Mnemonic < RHS.Mnemonic;
 | |
| 
 | |
|     if (AsmOperands.size() != RHS.AsmOperands.size())
 | |
|       return AsmOperands.size() < RHS.AsmOperands.size();
 | |
| 
 | |
|     // Compare lexicographically by operand. The matcher validates that other
 | |
|     // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
 | |
|     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | |
|       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
 | |
|         return true;
 | |
|       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// CouldMatchAmiguouslyWith - Check whether this matchable could
 | |
|   /// ambiguously match the same set of operands as \arg RHS (without being a
 | |
|   /// strictly superior match).
 | |
|   bool CouldMatchAmiguouslyWith(const MatchableInfo &RHS) {
 | |
|     // The primary comparator is the instruction mnemonic.
 | |
|     if (Mnemonic != RHS.Mnemonic)
 | |
|       return false;
 | |
|     
 | |
|     // The number of operands is unambiguous.
 | |
|     if (AsmOperands.size() != RHS.AsmOperands.size())
 | |
|       return false;
 | |
| 
 | |
|     // Otherwise, make sure the ordering of the two instructions is unambiguous
 | |
|     // by checking that either (a) a token or operand kind discriminates them,
 | |
|     // or (b) the ordering among equivalent kinds is consistent.
 | |
| 
 | |
|     // Tokens and operand kinds are unambiguous (assuming a correct target
 | |
|     // specific parser).
 | |
|     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
 | |
|       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
 | |
|           AsmOperands[i].Class->Kind == ClassInfo::Token)
 | |
|         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
 | |
|             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
 | |
|           return false;
 | |
| 
 | |
|     // Otherwise, this operand could commute if all operands are equivalent, or
 | |
|     // there is a pair of operands that compare less than and a pair that
 | |
|     // compare greater than.
 | |
|     bool HasLT = false, HasGT = false;
 | |
|     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | |
|       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
 | |
|         HasLT = true;
 | |
|       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
 | |
|         HasGT = true;
 | |
|     }
 | |
| 
 | |
|     return !(HasLT ^ HasGT);
 | |
|   }
 | |
| 
 | |
|   void dump();
 | |
|   
 | |
| private:
 | |
|   void TokenizeAsmString(const AsmMatcherInfo &Info);
 | |
| };
 | |
| 
 | |
| /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
 | |
| /// feature which participates in instruction matching.
 | |
| struct SubtargetFeatureInfo {
 | |
|   /// \brief The predicate record for this feature.
 | |
|   Record *TheDef;
 | |
| 
 | |
|   /// \brief An unique index assigned to represent this feature.
 | |
|   unsigned Index;
 | |
| 
 | |
|   SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
 | |
|   
 | |
|   /// \brief The name of the enumerated constant identifying this feature.
 | |
|   std::string getEnumName() const {
 | |
|     return "Feature_" + TheDef->getName();
 | |
|   }
 | |
| };
 | |
| 
 | |
| class AsmMatcherInfo {
 | |
| public:
 | |
|   /// The tablegen AsmParser record.
 | |
|   Record *AsmParser;
 | |
| 
 | |
|   /// Target - The target information.
 | |
|   CodeGenTarget &Target;
 | |
| 
 | |
|   /// The AsmParser "RegisterPrefix" value.
 | |
|   std::string RegisterPrefix;
 | |
| 
 | |
|   /// The classes which are needed for matching.
 | |
|   std::vector<ClassInfo*> Classes;
 | |
| 
 | |
|   /// The information on the matchables to match.
 | |
|   std::vector<MatchableInfo*> Matchables;
 | |
| 
 | |
|   /// Map of Register records to their class information.
 | |
|   std::map<Record*, ClassInfo*> RegisterClasses;
 | |
| 
 | |
|   /// Map of Predicate records to their subtarget information.
 | |
|   std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
 | |
|   
 | |
| private:
 | |
|   /// Map of token to class information which has already been constructed.
 | |
|   std::map<std::string, ClassInfo*> TokenClasses;
 | |
| 
 | |
|   /// Map of RegisterClass records to their class information.
 | |
|   std::map<Record*, ClassInfo*> RegisterClassClasses;
 | |
| 
 | |
|   /// Map of AsmOperandClass records to their class information.
 | |
|   std::map<Record*, ClassInfo*> AsmOperandClasses;
 | |
| 
 | |
| private:
 | |
|   /// getTokenClass - Lookup or create the class for the given token.
 | |
|   ClassInfo *getTokenClass(StringRef Token);
 | |
| 
 | |
|   /// getOperandClass - Lookup or create the class for the given operand.
 | |
|   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI);
 | |
| 
 | |
|   /// BuildRegisterClasses - Build the ClassInfo* instances for register
 | |
|   /// classes.
 | |
|   void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
 | |
| 
 | |
|   /// BuildOperandClasses - Build the ClassInfo* instances for user defined
 | |
|   /// operand classes.
 | |
|   void BuildOperandClasses();
 | |
| 
 | |
|   void BuildInstructionOperandReference(MatchableInfo *II,
 | |
|                                         StringRef OpName,
 | |
|                                         MatchableInfo::AsmOperand &Op);
 | |
|   void BuildAliasOperandReference(MatchableInfo *II,
 | |
|                                   StringRef OpName,
 | |
|                                   MatchableInfo::AsmOperand &Op);
 | |
|                                   
 | |
| public:
 | |
|   AsmMatcherInfo(Record *AsmParser, CodeGenTarget &Target);
 | |
| 
 | |
|   /// BuildInfo - Construct the various tables used during matching.
 | |
|   void BuildInfo();
 | |
|   
 | |
|   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
 | |
|   /// given operand.
 | |
|   SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
 | |
|     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
 | |
|     std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
 | |
|       SubtargetFeatures.find(Def);
 | |
|     return I == SubtargetFeatures.end() ? 0 : I->second;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| void MatchableInfo::dump() {
 | |
|   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
 | |
| 
 | |
|   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | |
|     AsmOperand &Op = AsmOperands[i];
 | |
|     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
 | |
|     errs() << '\"' << Op.Token << "\"\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MatchableInfo::Initialize(const AsmMatcherInfo &Info,
 | |
|                                SmallPtrSet<Record*, 16> &SingletonRegisters) {
 | |
|   // TODO: Eventually support asmparser for Variant != 0.
 | |
|   AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, 0);
 | |
|   
 | |
|   TokenizeAsmString(Info);
 | |
|   
 | |
|   // Compute the require features.
 | |
|   std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
 | |
|   for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
 | |
|     if (SubtargetFeatureInfo *Feature =
 | |
|         Info.getSubtargetFeature(Predicates[i]))
 | |
|       RequiredFeatures.push_back(Feature);
 | |
|   
 | |
|   // Collect singleton registers, if used.
 | |
|   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | |
|     if (Record *Reg = getSingletonRegisterForAsmOperand(i, Info))
 | |
|       SingletonRegisters.insert(Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// TokenizeAsmString - Tokenize a simplified assembly string.
 | |
| void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) {
 | |
|   StringRef String = AsmString;
 | |
|   unsigned Prev = 0;
 | |
|   bool InTok = true;
 | |
|   for (unsigned i = 0, e = String.size(); i != e; ++i) {
 | |
|     switch (String[i]) {
 | |
|     case '[':
 | |
|     case ']':
 | |
|     case '*':
 | |
|     case '!':
 | |
|     case ' ':
 | |
|     case '\t':
 | |
|     case ',':
 | |
|       if (InTok) {
 | |
|         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
 | |
|         InTok = false;
 | |
|       }
 | |
|       if (!isspace(String[i]) && String[i] != ',')
 | |
|         AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
 | |
|       Prev = i + 1;
 | |
|       break;
 | |
| 
 | |
|     case '\\':
 | |
|       if (InTok) {
 | |
|         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
 | |
|         InTok = false;
 | |
|       }
 | |
|       ++i;
 | |
|       assert(i != String.size() && "Invalid quoted character");
 | |
|       AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
 | |
|       Prev = i + 1;
 | |
|       break;
 | |
| 
 | |
|     case '$': {
 | |
|       if (InTok) {
 | |
|         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
 | |
|         InTok = false;
 | |
|       }
 | |
|       
 | |
|       // If this isn't "${", treat like a normal token.
 | |
|       if (i + 1 == String.size() || String[i + 1] != '{') {
 | |
|         Prev = i;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
 | |
|       assert(End != String.end() && "Missing brace in operand reference!");
 | |
|       size_t EndPos = End - String.begin();
 | |
|       AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
 | |
|       Prev = EndPos + 1;
 | |
|       i = EndPos;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case '.':
 | |
|       if (InTok)
 | |
|         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
 | |
|       Prev = i;
 | |
|       InTok = true;
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       InTok = true;
 | |
|     }
 | |
|   }
 | |
|   if (InTok && Prev != String.size())
 | |
|     AsmOperands.push_back(AsmOperand(String.substr(Prev)));
 | |
|   
 | |
|   // The first token of the instruction is the mnemonic, which must be a
 | |
|   // simple string, not a $foo variable or a singleton register.
 | |
|   assert(!AsmOperands.empty() && "Instruction has no tokens?");
 | |
|   Mnemonic = AsmOperands[0].Token;
 | |
|   if (Mnemonic[0] == '$' || getSingletonRegisterForAsmOperand(0, Info))
 | |
|     throw TGError(TheDef->getLoc(),
 | |
|                   "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
 | |
|   
 | |
|   // Remove the first operand, it is tracked in the mnemonic field.
 | |
|   AsmOperands.erase(AsmOperands.begin());
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const {
 | |
|   // Reject matchables with no .s string.
 | |
|   if (AsmString.empty())
 | |
|     throw TGError(TheDef->getLoc(), "instruction with empty asm string");
 | |
|   
 | |
|   // Reject any matchables with a newline in them, they should be marked
 | |
|   // isCodeGenOnly if they are pseudo instructions.
 | |
|   if (AsmString.find('\n') != std::string::npos)
 | |
|     throw TGError(TheDef->getLoc(),
 | |
|                   "multiline instruction is not valid for the asmparser, "
 | |
|                   "mark it isCodeGenOnly");
 | |
|   
 | |
|   // Remove comments from the asm string.  We know that the asmstring only
 | |
|   // has one line.
 | |
|   if (!CommentDelimiter.empty() &&
 | |
|       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
 | |
|     throw TGError(TheDef->getLoc(),
 | |
|                   "asmstring for instruction has comment character in it, "
 | |
|                   "mark it isCodeGenOnly");
 | |
|   
 | |
|   // Reject matchables with operand modifiers, these aren't something we can
 | |
|   /// handle, the target should be refactored to use operands instead of
 | |
|   /// modifiers.
 | |
|   //
 | |
|   // Also, check for instructions which reference the operand multiple times;
 | |
|   // this implies a constraint we would not honor.
 | |
|   std::set<std::string> OperandNames;
 | |
|   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
 | |
|     StringRef Tok = AsmOperands[i].Token;
 | |
|     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
 | |
|       throw TGError(TheDef->getLoc(),
 | |
|                     "matchable with operand modifier '" + Tok.str() +
 | |
|                     "' not supported by asm matcher.  Mark isCodeGenOnly!");
 | |
|     
 | |
|     // Verify that any operand is only mentioned once.
 | |
|     // We reject aliases and ignore instructions for now.
 | |
|     if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
 | |
|       if (!Hack)
 | |
|         throw TGError(TheDef->getLoc(),
 | |
|                       "ERROR: matchable with tied operand '" + Tok.str() +
 | |
|                       "' can never be matched!");
 | |
|       // FIXME: Should reject these.  The ARM backend hits this with $lane in a
 | |
|       // bunch of instructions.  It is unclear what the right answer is.
 | |
|       DEBUG({
 | |
|         errs() << "warning: '" << TheDef->getName() << "': "
 | |
|                << "ignoring instruction with tied operand '"
 | |
|                << Tok.str() << "'\n";
 | |
|       });
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getSingletonRegisterForAsmOperand - If the specified token is a singleton
 | |
| /// register, return the register name, otherwise return a null StringRef.
 | |
| Record *MatchableInfo::
 | |
| getSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info) const{
 | |
|   StringRef Tok = AsmOperands[i].Token;
 | |
|   if (!Tok.startswith(Info.RegisterPrefix))
 | |
|     return 0;
 | |
|   
 | |
|   StringRef RegName = Tok.substr(Info.RegisterPrefix.size());
 | |
|   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
 | |
|     return Reg->TheDef;
 | |
|   
 | |
|   // If there is no register prefix (i.e. "%" in "%eax"), then this may
 | |
|   // be some random non-register token, just ignore it.
 | |
|   if (Info.RegisterPrefix.empty())
 | |
|     return 0;
 | |
|     
 | |
|   // Otherwise, we have something invalid prefixed with the register prefix,
 | |
|   // such as %foo.
 | |
|   std::string Err = "unable to find register for '" + RegName.str() +
 | |
|   "' (which matches register prefix)";
 | |
|   throw TGError(TheDef->getLoc(), Err);
 | |
| }
 | |
| 
 | |
| 
 | |
| static std::string getEnumNameForToken(StringRef Str) {
 | |
|   std::string Res;
 | |
| 
 | |
|   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
 | |
|     switch (*it) {
 | |
|     case '*': Res += "_STAR_"; break;
 | |
|     case '%': Res += "_PCT_"; break;
 | |
|     case ':': Res += "_COLON_"; break;
 | |
|     case '!': Res += "_EXCLAIM_"; break;
 | |
|     default:
 | |
|       if (isalnum(*it))
 | |
|         Res += *it;
 | |
|       else
 | |
|         Res += "_" + utostr((unsigned) *it) + "_";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
 | |
|   ClassInfo *&Entry = TokenClasses[Token];
 | |
| 
 | |
|   if (!Entry) {
 | |
|     Entry = new ClassInfo();
 | |
|     Entry->Kind = ClassInfo::Token;
 | |
|     Entry->ClassName = "Token";
 | |
|     Entry->Name = "MCK_" + getEnumNameForToken(Token);
 | |
|     Entry->ValueName = Token;
 | |
|     Entry->PredicateMethod = "<invalid>";
 | |
|     Entry->RenderMethod = "<invalid>";
 | |
|     Classes.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   return Entry;
 | |
| }
 | |
| 
 | |
| ClassInfo *
 | |
| AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI) {
 | |
|   if (OI.Rec->isSubClassOf("RegisterClass")) {
 | |
|     if (ClassInfo *CI = RegisterClassClasses[OI.Rec])
 | |
|       return CI;
 | |
|     throw TGError(OI.Rec->getLoc(), "register class has no class info!");
 | |
|   }
 | |
| 
 | |
|   assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
 | |
|   Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
 | |
|   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
 | |
|     return CI;
 | |
| 
 | |
|   throw TGError(OI.Rec->getLoc(), "operand has no match class!");
 | |
| }
 | |
| 
 | |
| void AsmMatcherInfo::
 | |
| BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
 | |
|   const std::vector<CodeGenRegister> &Registers = Target.getRegisters();
 | |
|   const std::vector<CodeGenRegisterClass> &RegClassList =
 | |
|     Target.getRegisterClasses();
 | |
| 
 | |
|   // The register sets used for matching.
 | |
|   std::set< std::set<Record*> > RegisterSets;
 | |
| 
 | |
|   // Gather the defined sets.
 | |
|   for (std::vector<CodeGenRegisterClass>::const_iterator it =
 | |
|        RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
 | |
|     RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
 | |
|                                           it->Elements.end()));
 | |
| 
 | |
|   // Add any required singleton sets.
 | |
|   for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
 | |
|        ie = SingletonRegisters.end(); it != ie; ++it) {
 | |
|     Record *Rec = *it;
 | |
|     RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
 | |
|   }
 | |
| 
 | |
|   // Introduce derived sets where necessary (when a register does not determine
 | |
|   // a unique register set class), and build the mapping of registers to the set
 | |
|   // they should classify to.
 | |
|   std::map<Record*, std::set<Record*> > RegisterMap;
 | |
|   for (std::vector<CodeGenRegister>::const_iterator it = Registers.begin(),
 | |
|          ie = Registers.end(); it != ie; ++it) {
 | |
|     const CodeGenRegister &CGR = *it;
 | |
|     // Compute the intersection of all sets containing this register.
 | |
|     std::set<Record*> ContainingSet;
 | |
| 
 | |
|     for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
 | |
|            ie = RegisterSets.end(); it != ie; ++it) {
 | |
|       if (!it->count(CGR.TheDef))
 | |
|         continue;
 | |
| 
 | |
|       if (ContainingSet.empty()) {
 | |
|         ContainingSet = *it;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       std::set<Record*> Tmp;
 | |
|       std::swap(Tmp, ContainingSet);
 | |
|       std::insert_iterator< std::set<Record*> > II(ContainingSet,
 | |
|                                                    ContainingSet.begin());
 | |
|       std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
 | |
|     }
 | |
| 
 | |
|     if (!ContainingSet.empty()) {
 | |
|       RegisterSets.insert(ContainingSet);
 | |
|       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Construct the register classes.
 | |
|   std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
 | |
|   unsigned Index = 0;
 | |
|   for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
 | |
|          ie = RegisterSets.end(); it != ie; ++it, ++Index) {
 | |
|     ClassInfo *CI = new ClassInfo();
 | |
|     CI->Kind = ClassInfo::RegisterClass0 + Index;
 | |
|     CI->ClassName = "Reg" + utostr(Index);
 | |
|     CI->Name = "MCK_Reg" + utostr(Index);
 | |
|     CI->ValueName = "";
 | |
|     CI->PredicateMethod = ""; // unused
 | |
|     CI->RenderMethod = "addRegOperands";
 | |
|     CI->Registers = *it;
 | |
|     Classes.push_back(CI);
 | |
|     RegisterSetClasses.insert(std::make_pair(*it, CI));
 | |
|   }
 | |
| 
 | |
|   // Find the superclasses; we could compute only the subgroup lattice edges,
 | |
|   // but there isn't really a point.
 | |
|   for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
 | |
|          ie = RegisterSets.end(); it != ie; ++it) {
 | |
|     ClassInfo *CI = RegisterSetClasses[*it];
 | |
|     for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
 | |
|            ie2 = RegisterSets.end(); it2 != ie2; ++it2)
 | |
|       if (*it != *it2 &&
 | |
|           std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
 | |
|         CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
 | |
|   }
 | |
| 
 | |
|   // Name the register classes which correspond to a user defined RegisterClass.
 | |
|   for (std::vector<CodeGenRegisterClass>::const_iterator
 | |
|        it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
 | |
|     ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
 | |
|                                                          it->Elements.end())];
 | |
|     if (CI->ValueName.empty()) {
 | |
|       CI->ClassName = it->getName();
 | |
|       CI->Name = "MCK_" + it->getName();
 | |
|       CI->ValueName = it->getName();
 | |
|     } else
 | |
|       CI->ValueName = CI->ValueName + "," + it->getName();
 | |
| 
 | |
|     RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
 | |
|   }
 | |
| 
 | |
|   // Populate the map for individual registers.
 | |
|   for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
 | |
|          ie = RegisterMap.end(); it != ie; ++it)
 | |
|     RegisterClasses[it->first] = RegisterSetClasses[it->second];
 | |
| 
 | |
|   // Name the register classes which correspond to singleton registers.
 | |
|   for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
 | |
|          ie = SingletonRegisters.end(); it != ie; ++it) {
 | |
|     Record *Rec = *it;
 | |
|     ClassInfo *CI = RegisterClasses[Rec];
 | |
|     assert(CI && "Missing singleton register class info!");
 | |
| 
 | |
|     if (CI->ValueName.empty()) {
 | |
|       CI->ClassName = Rec->getName();
 | |
|       CI->Name = "MCK_" + Rec->getName();
 | |
|       CI->ValueName = Rec->getName();
 | |
|     } else
 | |
|       CI->ValueName = CI->ValueName + "," + Rec->getName();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AsmMatcherInfo::BuildOperandClasses() {
 | |
|   std::vector<Record*> AsmOperands =
 | |
|     Records.getAllDerivedDefinitions("AsmOperandClass");
 | |
| 
 | |
|   // Pre-populate AsmOperandClasses map.
 | |
|   for (std::vector<Record*>::iterator it = AsmOperands.begin(),
 | |
|          ie = AsmOperands.end(); it != ie; ++it)
 | |
|     AsmOperandClasses[*it] = new ClassInfo();
 | |
| 
 | |
|   unsigned Index = 0;
 | |
|   for (std::vector<Record*>::iterator it = AsmOperands.begin(),
 | |
|          ie = AsmOperands.end(); it != ie; ++it, ++Index) {
 | |
|     ClassInfo *CI = AsmOperandClasses[*it];
 | |
|     CI->Kind = ClassInfo::UserClass0 + Index;
 | |
| 
 | |
|     ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
 | |
|     for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
 | |
|       DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
 | |
|       if (!DI) {
 | |
|         PrintError((*it)->getLoc(), "Invalid super class reference!");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
 | |
|       if (!SC)
 | |
|         PrintError((*it)->getLoc(), "Invalid super class reference!");
 | |
|       else
 | |
|         CI->SuperClasses.push_back(SC);
 | |
|     }
 | |
|     CI->ClassName = (*it)->getValueAsString("Name");
 | |
|     CI->Name = "MCK_" + CI->ClassName;
 | |
|     CI->ValueName = (*it)->getName();
 | |
| 
 | |
|     // Get or construct the predicate method name.
 | |
|     Init *PMName = (*it)->getValueInit("PredicateMethod");
 | |
|     if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
 | |
|       CI->PredicateMethod = SI->getValue();
 | |
|     } else {
 | |
|       assert(dynamic_cast<UnsetInit*>(PMName) &&
 | |
|              "Unexpected PredicateMethod field!");
 | |
|       CI->PredicateMethod = "is" + CI->ClassName;
 | |
|     }
 | |
| 
 | |
|     // Get or construct the render method name.
 | |
|     Init *RMName = (*it)->getValueInit("RenderMethod");
 | |
|     if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
 | |
|       CI->RenderMethod = SI->getValue();
 | |
|     } else {
 | |
|       assert(dynamic_cast<UnsetInit*>(RMName) &&
 | |
|              "Unexpected RenderMethod field!");
 | |
|       CI->RenderMethod = "add" + CI->ClassName + "Operands";
 | |
|     }
 | |
| 
 | |
|     AsmOperandClasses[*it] = CI;
 | |
|     Classes.push_back(CI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, CodeGenTarget &target)
 | |
|   : AsmParser(asmParser), Target(target),
 | |
|     RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix")) {
 | |
| }
 | |
| 
 | |
| 
 | |
| void AsmMatcherInfo::BuildInfo() {
 | |
|   // Build information about all of the AssemblerPredicates.
 | |
|   std::vector<Record*> AllPredicates =
 | |
|     Records.getAllDerivedDefinitions("Predicate");
 | |
|   for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
 | |
|     Record *Pred = AllPredicates[i];
 | |
|     // Ignore predicates that are not intended for the assembler.
 | |
|     if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
 | |
|       continue;
 | |
|     
 | |
|     if (Pred->getName().empty())
 | |
|       throw TGError(Pred->getLoc(), "Predicate has no name!");
 | |
|     
 | |
|     unsigned FeatureNo = SubtargetFeatures.size();
 | |
|     SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
 | |
|     assert(FeatureNo < 32 && "Too many subtarget features!");
 | |
|   }
 | |
| 
 | |
|   StringRef CommentDelimiter = AsmParser->getValueAsString("CommentDelimiter");
 | |
|   
 | |
|   // Parse the instructions; we need to do this first so that we can gather the
 | |
|   // singleton register classes.
 | |
|   SmallPtrSet<Record*, 16> SingletonRegisters;
 | |
|   for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
 | |
|        E = Target.inst_end(); I != E; ++I) {
 | |
|     const CodeGenInstruction &CGI = **I;
 | |
| 
 | |
|     // If the tblgen -match-prefix option is specified (for tblgen hackers),
 | |
|     // filter the set of instructions we consider.
 | |
|     if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
 | |
|       continue;
 | |
| 
 | |
|     // Ignore "codegen only" instructions.
 | |
|     if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
 | |
|       continue;
 | |
|     
 | |
|     // Validate the operand list to ensure we can handle this instruction.
 | |
|     for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
 | |
|       const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
 | |
|       
 | |
|       // Validate tied operands.
 | |
|       if (OI.getTiedRegister() != -1) {
 | |
|         // If we have a tied operand that consists of multiple MCOperands, reject
 | |
|         // it.  We reject aliases and ignore instructions for now.
 | |
|         if (OI.MINumOperands != 1) {
 | |
|           // FIXME: Should reject these.  The ARM backend hits this with $lane
 | |
|           // in a bunch of instructions. It is unclear what the right answer is.
 | |
|           DEBUG({
 | |
|             errs() << "warning: '" << CGI.TheDef->getName() << "': "
 | |
|             << "ignoring instruction with multi-operand tied operand '"
 | |
|             << OI.Name << "'\n";
 | |
|           });
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
 | |
| 
 | |
|     II->Initialize(*this, SingletonRegisters);
 | |
|     
 | |
|     // Ignore instructions which shouldn't be matched and diagnose invalid
 | |
|     // instruction definitions with an error.
 | |
|     if (!II->Validate(CommentDelimiter, true))
 | |
|       continue;
 | |
|     
 | |
|     // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
 | |
|     //
 | |
|     // FIXME: This is a total hack.
 | |
|     if (StringRef(II->TheDef->getName()).startswith("Int_") ||
 | |
|         StringRef(II->TheDef->getName()).endswith("_Int"))
 | |
|       continue;
 | |
|     
 | |
|      Matchables.push_back(II.take());
 | |
|   }
 | |
|   
 | |
|   // Parse all of the InstAlias definitions and stick them in the list of
 | |
|   // matchables.
 | |
|   std::vector<Record*> AllInstAliases =
 | |
|     Records.getAllDerivedDefinitions("InstAlias");
 | |
|   for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
 | |
|     CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
 | |
| 
 | |
|     OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
 | |
|     
 | |
|     II->Initialize(*this, SingletonRegisters);
 | |
|     
 | |
|     // Validate the alias definitions.
 | |
|     II->Validate(CommentDelimiter, false);
 | |
|     
 | |
|     Matchables.push_back(II.take());
 | |
|   }
 | |
| 
 | |
|   // Build info for the register classes.
 | |
|   BuildRegisterClasses(SingletonRegisters);
 | |
| 
 | |
|   // Build info for the user defined assembly operand classes.
 | |
|   BuildOperandClasses();
 | |
| 
 | |
|   // Build the information about matchables, now that we have fully formed
 | |
|   // classes.
 | |
|   for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
 | |
|          ie = Matchables.end(); it != ie; ++it) {
 | |
|     MatchableInfo *II = *it;
 | |
| 
 | |
|     // Parse the tokens after the mnemonic.
 | |
|     for (unsigned i = 0, e = II->AsmOperands.size(); i != e; ++i) {
 | |
|       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
 | |
|       StringRef Token = Op.Token;
 | |
| 
 | |
|       // Check for singleton registers.
 | |
|       if (Record *RegRecord = II->getSingletonRegisterForAsmOperand(i, *this)) {
 | |
|         Op.Class = RegisterClasses[RegRecord];
 | |
|         assert(Op.Class && Op.Class->Registers.size() == 1 &&
 | |
|                "Unexpected class for singleton register");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check for simple tokens.
 | |
|       if (Token[0] != '$') {
 | |
|         Op.Class = getTokenClass(Token);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (Token.size() > 1 && isdigit(Token[1])) {
 | |
|         Op.Class = getTokenClass(Token);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Otherwise this is an operand reference.
 | |
|       StringRef OperandName;
 | |
|       if (Token[1] == '{')
 | |
|         OperandName = Token.substr(2, Token.size() - 3);
 | |
|       else
 | |
|         OperandName = Token.substr(1);
 | |
|       
 | |
|       if (II->DefRec.is<const CodeGenInstruction*>())
 | |
|         BuildInstructionOperandReference(II, OperandName, Op);
 | |
|       else
 | |
|         BuildAliasOperandReference(II, OperandName, Op);
 | |
|     }
 | |
|     
 | |
|     if (II->DefRec.is<const CodeGenInstruction*>())
 | |
|       II->BuildInstructionResultOperands();
 | |
|     else
 | |
|       II->BuildAliasResultOperands();
 | |
|   }
 | |
| 
 | |
|   // Reorder classes so that classes preceed super classes.
 | |
|   std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
 | |
| }
 | |
| 
 | |
| /// BuildInstructionOperandReference - The specified operand is a reference to a
 | |
| /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
 | |
| void AsmMatcherInfo::
 | |
| BuildInstructionOperandReference(MatchableInfo *II,
 | |
|                                  StringRef OperandName,
 | |
|                                  MatchableInfo::AsmOperand &Op) {
 | |
|   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
 | |
|   const CGIOperandList &Operands = CGI.Operands;
 | |
|   
 | |
|   // Map this token to an operand.
 | |
|   unsigned Idx;
 | |
|   if (!Operands.hasOperandNamed(OperandName, Idx))
 | |
|     throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
 | |
|                   OperandName.str() + "'");
 | |
| 
 | |
|   // Set up the operand class.
 | |
|   Op.Class = getOperandClass(Operands[Idx]);
 | |
| 
 | |
|   // If the named operand is tied, canonicalize it to the untied operand.
 | |
|   // For example, something like:
 | |
|   //   (outs GPR:$dst), (ins GPR:$src)
 | |
|   // with an asmstring of
 | |
|   //   "inc $src"
 | |
|   // we want to canonicalize to:
 | |
|   //   "inc $dst"
 | |
|   // so that we know how to provide the $dst operand when filling in the result.
 | |
|   int OITied = Operands[Idx].getTiedRegister();
 | |
|   if (OITied != -1) {
 | |
|     // The tied operand index is an MIOperand index, find the operand that
 | |
|     // contains it.
 | |
|     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | |
|       if (Operands[i].MIOperandNo == unsigned(OITied)) {
 | |
|         OperandName = Operands[i].Name;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   Op.SrcOpName = OperandName;
 | |
| }
 | |
| 
 | |
| /// BuildAliasOperandReference - When parsing an operand reference out of the
 | |
| /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
 | |
| /// operand reference is by looking it up in the result pattern definition.
 | |
| void AsmMatcherInfo::BuildAliasOperandReference(MatchableInfo *II,
 | |
|                                                 StringRef OperandName,
 | |
|                                                 MatchableInfo::AsmOperand &Op) {
 | |
|   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
 | |
|    
 | |
|   // Set up the operand class.
 | |
|   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
 | |
|     if (CGA.ResultOperands[i].isRecord() &&
 | |
|         CGA.ResultOperands[i].getName() == OperandName) {
 | |
|       // It's safe to go with the first one we find, because CodeGenInstAlias
 | |
|       // validates that all operands with the same name have the same record.
 | |
|       unsigned ResultIdx =CGA.getResultInstOperandIndexForResultOperandIndex(i);
 | |
|       Op.Class = getOperandClass(CGA.ResultInst->Operands[ResultIdx]);
 | |
|       Op.SrcOpName = OperandName;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
 | |
|                 OperandName.str() + "'");
 | |
| }
 | |
| 
 | |
| void MatchableInfo::BuildInstructionResultOperands() {
 | |
|   const CodeGenInstruction *ResultInst = getResultInst();
 | |
|   
 | |
|   // Loop over all operands of the result instruction, determining how to
 | |
|   // populate them.
 | |
|   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
 | |
|     const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
 | |
| 
 | |
|     // If this is a tied operand, just copy from the previously handled operand.
 | |
|     int TiedOp = OpInfo.getTiedRegister();
 | |
|     if (TiedOp != -1) {
 | |
|       ResOperands.push_back(ResOperand::getTiedOp(TiedOp, &OpInfo));
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Find out what operand from the asmparser that this MCInst operand comes
 | |
|     // from.
 | |
|     int SrcOperand = FindAsmOperandNamed(OpInfo.Name);
 | |
| 
 | |
|     if (!OpInfo.Name.empty() && SrcOperand != -1) {
 | |
|       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, &OpInfo));
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     throw TGError(TheDef->getLoc(), "Instruction '" +
 | |
|                   TheDef->getName() + "' has operand '" + OpInfo.Name +
 | |
|                   "' that doesn't appear in asm string!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MatchableInfo::BuildAliasResultOperands() {
 | |
|   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
 | |
|   const CodeGenInstruction *ResultInst = getResultInst();
 | |
|   
 | |
|   // Loop over all operands of the result instruction, determining how to
 | |
|   // populate them.
 | |
|   unsigned AliasOpNo = 0;
 | |
|   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
 | |
|     const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
 | |
|     
 | |
|     // If this is a tied operand, just copy from the previously handled operand.
 | |
|     int TiedOp = OpInfo.getTiedRegister();
 | |
|     if (TiedOp != -1) {
 | |
|       ResOperands.push_back(ResOperand::getTiedOp(TiedOp, &OpInfo));
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Find out what operand from the asmparser that this MCInst operand comes
 | |
|     // from.
 | |
|     switch (CGA.ResultOperands[AliasOpNo].Kind) {
 | |
|     case CodeGenInstAlias::ResultOperand::K_Record: {
 | |
|       StringRef Name = CGA.ResultOperands[AliasOpNo++].getName();
 | |
|       int SrcOperand = FindAsmOperandNamed(Name);
 | |
|       if (SrcOperand != -1) {
 | |
|         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, &OpInfo));
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       throw TGError(TheDef->getLoc(), "Instruction '" +
 | |
|                     TheDef->getName() + "' has operand '" + OpInfo.Name +
 | |
|                     "' that doesn't appear in asm string!");
 | |
|     }
 | |
|     case CodeGenInstAlias::ResultOperand::K_Imm: {
 | |
|       int64_t ImmVal = CGA.ResultOperands[AliasOpNo++].getImm();
 | |
|       ResOperands.push_back(ResOperand::getImmOp(ImmVal, &OpInfo));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case CodeGenInstAlias::ResultOperand::K_Reg: {
 | |
|       Record *Reg = CGA.ResultOperands[AliasOpNo++].getRegister();
 | |
|       ResOperands.push_back(ResOperand::getRegOp(Reg, &OpInfo));
 | |
|       continue;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void EmitConvertToMCInst(CodeGenTarget &Target,
 | |
|                                 std::vector<MatchableInfo*> &Infos,
 | |
|                                 raw_ostream &OS) {
 | |
|   // Write the convert function to a separate stream, so we can drop it after
 | |
|   // the enum.
 | |
|   std::string ConvertFnBody;
 | |
|   raw_string_ostream CvtOS(ConvertFnBody);
 | |
| 
 | |
|   // Function we have already generated.
 | |
|   std::set<std::string> GeneratedFns;
 | |
| 
 | |
|   // Start the unified conversion function.
 | |
|   CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
 | |
|         << "unsigned Opcode,\n"
 | |
|         << "                      const SmallVectorImpl<MCParsedAsmOperand*"
 | |
|         << "> &Operands) {\n";
 | |
|   CvtOS << "  Inst.setOpcode(Opcode);\n";
 | |
|   CvtOS << "  switch (Kind) {\n";
 | |
|   CvtOS << "  default:\n";
 | |
| 
 | |
|   // Start the enum, which we will generate inline.
 | |
| 
 | |
|   OS << "// Unified function for converting operands to MCInst instances.\n\n";
 | |
|   OS << "enum ConversionKind {\n";
 | |
| 
 | |
|   // TargetOperandClass - This is the target's operand class, like X86Operand.
 | |
|   std::string TargetOperandClass = Target.getName() + "Operand";
 | |
| 
 | |
|   for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
 | |
|          ie = Infos.end(); it != ie; ++it) {
 | |
|     MatchableInfo &II = **it;
 | |
| 
 | |
|     // Build the conversion function signature.
 | |
|     std::string Signature = "Convert";
 | |
|     std::string CaseBody;
 | |
|     raw_string_ostream CaseOS(CaseBody);
 | |
|     
 | |
|     // Compute the convert enum and the case body.
 | |
|     for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
 | |
|       const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
 | |
| 
 | |
|       // Generate code to populate each result operand.
 | |
|       switch (OpInfo.Kind) {
 | |
|       case MatchableInfo::ResOperand::RenderAsmOperand: {
 | |
|         // This comes from something we parsed.
 | |
|         MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
 | |
|         
 | |
|         // Registers are always converted the same, don't duplicate the
 | |
|         // conversion function based on them.
 | |
|         Signature += "__";
 | |
|         if (Op.Class->isRegisterClass())
 | |
|           Signature += "Reg";
 | |
|         else
 | |
|           Signature += Op.Class->ClassName;
 | |
|         Signature += utostr(OpInfo.OpInfo->MINumOperands);
 | |
|         Signature += "_" + itostr(OpInfo.AsmOperandNum);
 | |
|         
 | |
|         CaseOS << "    ((" << TargetOperandClass << "*)Operands["
 | |
|                << (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod
 | |
|                << "(Inst, " << OpInfo.OpInfo->MINumOperands << ");\n";
 | |
|         break;
 | |
|       }
 | |
|           
 | |
|       case MatchableInfo::ResOperand::TiedOperand: {
 | |
|         // If this operand is tied to a previous one, just copy the MCInst
 | |
|         // operand from the earlier one.We can only tie single MCOperand values.
 | |
|       //assert(OpInfo.OpInfo->MINumOperands == 1 && "Not a singular MCOperand");
 | |
|         unsigned TiedOp = OpInfo.TiedOperandNum;
 | |
|         assert(i > TiedOp && "Tied operand preceeds its target!");
 | |
|         CaseOS << "    Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n";
 | |
|         Signature += "__Tie" + utostr(TiedOp);
 | |
|         break;
 | |
|       }
 | |
|       case MatchableInfo::ResOperand::ImmOperand: {
 | |
|         int64_t Val = OpInfo.ImmVal;
 | |
|         CaseOS << "    Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n";
 | |
|         Signature += "__imm" + itostr(Val);
 | |
|         break;
 | |
|       }
 | |
|       case MatchableInfo::ResOperand::RegOperand: {
 | |
|         std::string N = getQualifiedName(OpInfo.Register);
 | |
|         CaseOS << "    Inst.addOperand(MCOperand::CreateReg(" << N << "));\n";
 | |
|         Signature += "__reg" + OpInfo.Register->getName();
 | |
|       }  
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     II.ConversionFnKind = Signature;
 | |
| 
 | |
|     // Check if we have already generated this signature.
 | |
|     if (!GeneratedFns.insert(Signature).second)
 | |
|       continue;
 | |
| 
 | |
|     // If not, emit it now.  Add to the enum list.
 | |
|     OS << "  " << Signature << ",\n";
 | |
| 
 | |
|     CvtOS << "  case " << Signature << ":\n";
 | |
|     CvtOS << CaseOS.str();
 | |
|     CvtOS << "    return;\n";
 | |
|   }
 | |
| 
 | |
|   // Finish the convert function.
 | |
| 
 | |
|   CvtOS << "  }\n";
 | |
|   CvtOS << "}\n\n";
 | |
| 
 | |
|   // Finish the enum, and drop the convert function after it.
 | |
| 
 | |
|   OS << "  NumConversionVariants\n";
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   OS << CvtOS.str();
 | |
| }
 | |
| 
 | |
| /// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
 | |
| static void EmitMatchClassEnumeration(CodeGenTarget &Target,
 | |
|                                       std::vector<ClassInfo*> &Infos,
 | |
|                                       raw_ostream &OS) {
 | |
|   OS << "namespace {\n\n";
 | |
| 
 | |
|   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
 | |
|      << "/// instruction matching.\n";
 | |
|   OS << "enum MatchClassKind {\n";
 | |
|   OS << "  InvalidMatchClass = 0,\n";
 | |
|   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
 | |
|          ie = Infos.end(); it != ie; ++it) {
 | |
|     ClassInfo &CI = **it;
 | |
|     OS << "  " << CI.Name << ", // ";
 | |
|     if (CI.Kind == ClassInfo::Token) {
 | |
|       OS << "'" << CI.ValueName << "'\n";
 | |
|     } else if (CI.isRegisterClass()) {
 | |
|       if (!CI.ValueName.empty())
 | |
|         OS << "register class '" << CI.ValueName << "'\n";
 | |
|       else
 | |
|         OS << "derived register class\n";
 | |
|     } else {
 | |
|       OS << "user defined class '" << CI.ValueName << "'\n";
 | |
|     }
 | |
|   }
 | |
|   OS << "  NumMatchClassKinds\n";
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// EmitClassifyOperand - Emit the function to classify an operand.
 | |
| static void EmitClassifyOperand(AsmMatcherInfo &Info,
 | |
|                                 raw_ostream &OS) {
 | |
|   OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
 | |
|      << "  " << Info.Target.getName() << "Operand &Operand = *("
 | |
|      << Info.Target.getName() << "Operand*)GOp;\n";
 | |
| 
 | |
|   // Classify tokens.
 | |
|   OS << "  if (Operand.isToken())\n";
 | |
|   OS << "    return MatchTokenString(Operand.getToken());\n\n";
 | |
| 
 | |
|   // Classify registers.
 | |
|   //
 | |
|   // FIXME: Don't hardcode isReg, getReg.
 | |
|   OS << "  if (Operand.isReg()) {\n";
 | |
|   OS << "    switch (Operand.getReg()) {\n";
 | |
|   OS << "    default: return InvalidMatchClass;\n";
 | |
|   for (std::map<Record*, ClassInfo*>::iterator
 | |
|          it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
 | |
|        it != ie; ++it)
 | |
|     OS << "    case " << Info.Target.getName() << "::"
 | |
|        << it->first->getName() << ": return " << it->second->Name << ";\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "  }\n\n";
 | |
| 
 | |
|   // Classify user defined operands.
 | |
|   for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
 | |
|          ie = Info.Classes.end(); it != ie; ++it) {
 | |
|     ClassInfo &CI = **it;
 | |
| 
 | |
|     if (!CI.isUserClass())
 | |
|       continue;
 | |
| 
 | |
|     OS << "  // '" << CI.ClassName << "' class";
 | |
|     if (!CI.SuperClasses.empty()) {
 | |
|       OS << ", subclass of ";
 | |
|       for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
 | |
|         if (i) OS << ", ";
 | |
|         OS << "'" << CI.SuperClasses[i]->ClassName << "'";
 | |
|         assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
 | |
|       }
 | |
|     }
 | |
|     OS << "\n";
 | |
| 
 | |
|     OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
 | |
| 
 | |
|     // Validate subclass relationships.
 | |
|     if (!CI.SuperClasses.empty()) {
 | |
|       for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
 | |
|         OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
 | |
|            << "() && \"Invalid class relationship!\");\n";
 | |
|     }
 | |
| 
 | |
|     OS << "    return " << CI.Name << ";\n";
 | |
|     OS << "  }\n\n";
 | |
|   }
 | |
|   OS << "  return InvalidMatchClass;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// EmitIsSubclass - Emit the subclass predicate function.
 | |
| static void EmitIsSubclass(CodeGenTarget &Target,
 | |
|                            std::vector<ClassInfo*> &Infos,
 | |
|                            raw_ostream &OS) {
 | |
|   OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
 | |
|   OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
 | |
|   OS << "  if (A == B)\n";
 | |
|   OS << "    return true;\n\n";
 | |
| 
 | |
|   OS << "  switch (A) {\n";
 | |
|   OS << "  default:\n";
 | |
|   OS << "    return false;\n";
 | |
|   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
 | |
|          ie = Infos.end(); it != ie; ++it) {
 | |
|     ClassInfo &A = **it;
 | |
| 
 | |
|     if (A.Kind != ClassInfo::Token) {
 | |
|       std::vector<StringRef> SuperClasses;
 | |
|       for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
 | |
|              ie = Infos.end(); it != ie; ++it) {
 | |
|         ClassInfo &B = **it;
 | |
| 
 | |
|         if (&A != &B && A.isSubsetOf(B))
 | |
|           SuperClasses.push_back(B.Name);
 | |
|       }
 | |
| 
 | |
|       if (SuperClasses.empty())
 | |
|         continue;
 | |
| 
 | |
|       OS << "\n  case " << A.Name << ":\n";
 | |
| 
 | |
|       if (SuperClasses.size() == 1) {
 | |
|         OS << "    return B == " << SuperClasses.back() << ";\n";
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       OS << "    switch (B) {\n";
 | |
|       OS << "    default: return false;\n";
 | |
|       for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
 | |
|         OS << "    case " << SuperClasses[i] << ": return true;\n";
 | |
|       OS << "    }\n";
 | |
|     }
 | |
|   }
 | |
|   OS << "  }\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// EmitMatchTokenString - Emit the function to match a token string to the
 | |
| /// appropriate match class value.
 | |
| static void EmitMatchTokenString(CodeGenTarget &Target,
 | |
|                                  std::vector<ClassInfo*> &Infos,
 | |
|                                  raw_ostream &OS) {
 | |
|   // Construct the match list.
 | |
|   std::vector<StringMatcher::StringPair> Matches;
 | |
|   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
 | |
|          ie = Infos.end(); it != ie; ++it) {
 | |
|     ClassInfo &CI = **it;
 | |
| 
 | |
|     if (CI.Kind == ClassInfo::Token)
 | |
|       Matches.push_back(StringMatcher::StringPair(CI.ValueName,
 | |
|                                                   "return " + CI.Name + ";"));
 | |
|   }
 | |
| 
 | |
|   OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
 | |
| 
 | |
|   StringMatcher("Name", Matches, OS).Emit();
 | |
| 
 | |
|   OS << "  return InvalidMatchClass;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// EmitMatchRegisterName - Emit the function to match a string to the target
 | |
| /// specific register enum.
 | |
| static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
 | |
|                                   raw_ostream &OS) {
 | |
|   // Construct the match list.
 | |
|   std::vector<StringMatcher::StringPair> Matches;
 | |
|   for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
 | |
|     const CodeGenRegister &Reg = Target.getRegisters()[i];
 | |
|     if (Reg.TheDef->getValueAsString("AsmName").empty())
 | |
|       continue;
 | |
| 
 | |
|     Matches.push_back(StringMatcher::StringPair(
 | |
|                                         Reg.TheDef->getValueAsString("AsmName"),
 | |
|                                         "return " + utostr(i + 1) + ";"));
 | |
|   }
 | |
| 
 | |
|   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
 | |
| 
 | |
|   StringMatcher("Name", Matches, OS).Emit();
 | |
| 
 | |
|   OS << "  return 0;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| /// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
 | |
| /// definitions.
 | |
| static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
 | |
|                                                 raw_ostream &OS) {
 | |
|   OS << "// Flags for subtarget features that participate in "
 | |
|      << "instruction matching.\n";
 | |
|   OS << "enum SubtargetFeatureFlag {\n";
 | |
|   for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
 | |
|          it = Info.SubtargetFeatures.begin(),
 | |
|          ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
 | |
|     SubtargetFeatureInfo &SFI = *it->second;
 | |
|     OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
 | |
|   }
 | |
|   OS << "  Feature_None = 0\n";
 | |
|   OS << "};\n\n";
 | |
| }
 | |
| 
 | |
| /// EmitComputeAvailableFeatures - Emit the function to compute the list of
 | |
| /// available features given a subtarget.
 | |
| static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info,
 | |
|                                          raw_ostream &OS) {
 | |
|   std::string ClassName =
 | |
|     Info.AsmParser->getValueAsString("AsmParserClassName");
 | |
| 
 | |
|   OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
 | |
|      << "ComputeAvailableFeatures(const " << Info.Target.getName()
 | |
|      << "Subtarget *Subtarget) const {\n";
 | |
|   OS << "  unsigned Features = 0;\n";
 | |
|   for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
 | |
|          it = Info.SubtargetFeatures.begin(),
 | |
|          ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
 | |
|     SubtargetFeatureInfo &SFI = *it->second;
 | |
|     OS << "  if (" << SFI.TheDef->getValueAsString("CondString")
 | |
|        << ")\n";
 | |
|     OS << "    Features |= " << SFI.getEnumName() << ";\n";
 | |
|   }
 | |
|   OS << "  return Features;\n";
 | |
|   OS << "}\n\n";
 | |
| }
 | |
| 
 | |
| static std::string GetAliasRequiredFeatures(Record *R,
 | |
|                                             const AsmMatcherInfo &Info) {
 | |
|   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
 | |
|   std::string Result;
 | |
|   unsigned NumFeatures = 0;
 | |
|   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
 | |
|     SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
 | |
|     
 | |
|     if (F == 0)
 | |
|       throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
 | |
|                     "' is not marked as an AssemblerPredicate!");
 | |
|     
 | |
|     if (NumFeatures)
 | |
|       Result += '|';
 | |
|   
 | |
|     Result += F->getEnumName();
 | |
|     ++NumFeatures;
 | |
|   }
 | |
|   
 | |
|   if (NumFeatures > 1)
 | |
|     Result = '(' + Result + ')';
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
 | |
| /// emit a function for them and return true, otherwise return false.
 | |
| static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
 | |
|   std::vector<Record*> Aliases =
 | |
|     Records.getAllDerivedDefinitions("MnemonicAlias");
 | |
|   if (Aliases.empty()) return false;
 | |
| 
 | |
|   OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, "
 | |
|         "unsigned Features) {\n";
 | |
|   
 | |
|   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
 | |
|   // iteration order of the map is stable.
 | |
|   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
 | |
|   
 | |
|   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
 | |
|     Record *R = Aliases[i];
 | |
|     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
 | |
|   }
 | |
| 
 | |
|   // Process each alias a "from" mnemonic at a time, building the code executed
 | |
|   // by the string remapper.
 | |
|   std::vector<StringMatcher::StringPair> Cases;
 | |
|   for (std::map<std::string, std::vector<Record*> >::iterator
 | |
|        I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
 | |
|        I != E; ++I) {
 | |
|     const std::vector<Record*> &ToVec = I->second;
 | |
| 
 | |
|     // Loop through each alias and emit code that handles each case.  If there
 | |
|     // are two instructions without predicates, emit an error.  If there is one,
 | |
|     // emit it last.
 | |
|     std::string MatchCode;
 | |
|     int AliasWithNoPredicate = -1;
 | |
|     
 | |
|     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
 | |
|       Record *R = ToVec[i];
 | |
|       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
 | |
|     
 | |
|       // If this unconditionally matches, remember it for later and diagnose
 | |
|       // duplicates.
 | |
|       if (FeatureMask.empty()) {
 | |
|         if (AliasWithNoPredicate != -1) {
 | |
|           // We can't have two aliases from the same mnemonic with no predicate.
 | |
|           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
 | |
|                      "two MnemonicAliases with the same 'from' mnemonic!");
 | |
|           throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
 | |
|         }
 | |
|         
 | |
|         AliasWithNoPredicate = i;
 | |
|         continue;
 | |
|       }
 | |
|      
 | |
|       if (!MatchCode.empty())
 | |
|         MatchCode += "else ";
 | |
|       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
 | |
|       MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
 | |
|     }
 | |
|     
 | |
|     if (AliasWithNoPredicate != -1) {
 | |
|       Record *R = ToVec[AliasWithNoPredicate];
 | |
|       if (!MatchCode.empty())
 | |
|         MatchCode += "else\n  ";
 | |
|       MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
 | |
|     }
 | |
|     
 | |
|     MatchCode += "return;";
 | |
| 
 | |
|     Cases.push_back(std::make_pair(I->first, MatchCode));
 | |
|   }
 | |
|   
 | |
|   
 | |
|   StringMatcher("Mnemonic", Cases, OS).Emit();
 | |
|   OS << "}\n";
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void AsmMatcherEmitter::run(raw_ostream &OS) {
 | |
|   CodeGenTarget Target;
 | |
|   Record *AsmParser = Target.getAsmParser();
 | |
|   std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
 | |
| 
 | |
|   // Compute the information on the instructions to match.
 | |
|   AsmMatcherInfo Info(AsmParser, Target);
 | |
|   Info.BuildInfo();
 | |
| 
 | |
|   // Sort the instruction table using the partial order on classes. We use
 | |
|   // stable_sort to ensure that ambiguous instructions are still
 | |
|   // deterministically ordered.
 | |
|   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
 | |
|                    less_ptr<MatchableInfo>());
 | |
| 
 | |
|   DEBUG_WITH_TYPE("instruction_info", {
 | |
|       for (std::vector<MatchableInfo*>::iterator
 | |
|              it = Info.Matchables.begin(), ie = Info.Matchables.end();
 | |
|            it != ie; ++it)
 | |
|         (*it)->dump();
 | |
|     });
 | |
| 
 | |
|   // Check for ambiguous matchables.
 | |
|   DEBUG_WITH_TYPE("ambiguous_instrs", {
 | |
|     unsigned NumAmbiguous = 0;
 | |
|     for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
 | |
|       for (unsigned j = i + 1; j != e; ++j) {
 | |
|         MatchableInfo &A = *Info.Matchables[i];
 | |
|         MatchableInfo &B = *Info.Matchables[j];
 | |
| 
 | |
|         if (A.CouldMatchAmiguouslyWith(B)) {
 | |
|           errs() << "warning: ambiguous matchables:\n";
 | |
|           A.dump();
 | |
|           errs() << "\nis incomparable with:\n";
 | |
|           B.dump();
 | |
|           errs() << "\n\n";
 | |
|           ++NumAmbiguous;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (NumAmbiguous)
 | |
|       errs() << "warning: " << NumAmbiguous
 | |
|              << " ambiguous matchables!\n";
 | |
|   });
 | |
| 
 | |
|   // Write the output.
 | |
| 
 | |
|   EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
 | |
| 
 | |
|   // Information for the class declaration.
 | |
|   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
 | |
|   OS << "#undef GET_ASSEMBLER_HEADER\n";
 | |
|   OS << "  // This should be included into the middle of the declaration of \n";
 | |
|   OS << "  // your subclasses implementation of TargetAsmParser.\n";
 | |
|   OS << "  unsigned ComputeAvailableFeatures(const " <<
 | |
|            Target.getName() << "Subtarget *Subtarget) const;\n";
 | |
|   OS << "  enum MatchResultTy {\n";
 | |
|   OS << "    Match_Success, Match_MnemonicFail, Match_InvalidOperand,\n";
 | |
|   OS << "    Match_MissingFeature\n";
 | |
|   OS << "  };\n";
 | |
|   OS << "  MatchResultTy MatchInstructionImpl(const "
 | |
|      << "SmallVectorImpl<MCParsedAsmOperand*>"
 | |
|      << " &Operands, MCInst &Inst, unsigned &ErrorInfo);\n\n";
 | |
|   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
 | |
|   OS << "#undef GET_REGISTER_MATCHER\n\n";
 | |
| 
 | |
|   // Emit the subtarget feature enumeration.
 | |
|   EmitSubtargetFeatureFlagEnumeration(Info, OS);
 | |
| 
 | |
|   // Emit the function to match a register name to number.
 | |
|   EmitMatchRegisterName(Target, AsmParser, OS);
 | |
| 
 | |
|   OS << "#endif // GET_REGISTER_MATCHER\n\n";
 | |
| 
 | |
| 
 | |
|   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
 | |
|   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
 | |
| 
 | |
|   // Generate the function that remaps for mnemonic aliases.
 | |
|   bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
 | |
|   
 | |
|   // Generate the unified function to convert operands into an MCInst.
 | |
|   EmitConvertToMCInst(Target, Info.Matchables, OS);
 | |
| 
 | |
|   // Emit the enumeration for classes which participate in matching.
 | |
|   EmitMatchClassEnumeration(Target, Info.Classes, OS);
 | |
| 
 | |
|   // Emit the routine to match token strings to their match class.
 | |
|   EmitMatchTokenString(Target, Info.Classes, OS);
 | |
| 
 | |
|   // Emit the routine to classify an operand.
 | |
|   EmitClassifyOperand(Info, OS);
 | |
| 
 | |
|   // Emit the subclass predicate routine.
 | |
|   EmitIsSubclass(Target, Info.Classes, OS);
 | |
| 
 | |
|   // Emit the available features compute function.
 | |
|   EmitComputeAvailableFeatures(Info, OS);
 | |
| 
 | |
| 
 | |
|   size_t MaxNumOperands = 0;
 | |
|   for (std::vector<MatchableInfo*>::const_iterator it =
 | |
|          Info.Matchables.begin(), ie = Info.Matchables.end();
 | |
|        it != ie; ++it)
 | |
|     MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size());
 | |
| 
 | |
| 
 | |
|   // Emit the static match table; unused classes get initalized to 0 which is
 | |
|   // guaranteed to be InvalidMatchClass.
 | |
|   //
 | |
|   // FIXME: We can reduce the size of this table very easily. First, we change
 | |
|   // it so that store the kinds in separate bit-fields for each index, which
 | |
|   // only needs to be the max width used for classes at that index (we also need
 | |
|   // to reject based on this during classification). If we then make sure to
 | |
|   // order the match kinds appropriately (putting mnemonics last), then we
 | |
|   // should only end up using a few bits for each class, especially the ones
 | |
|   // following the mnemonic.
 | |
|   OS << "namespace {\n";
 | |
|   OS << "  struct MatchEntry {\n";
 | |
|   OS << "    unsigned Opcode;\n";
 | |
|   OS << "    const char *Mnemonic;\n";
 | |
|   OS << "    ConversionKind ConvertFn;\n";
 | |
|   OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
 | |
|   OS << "    unsigned RequiredFeatures;\n";
 | |
|   OS << "  };\n\n";
 | |
| 
 | |
|   OS << "// Predicate for searching for an opcode.\n";
 | |
|   OS << "  struct LessOpcode {\n";
 | |
|   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
 | |
|   OS << "      return StringRef(LHS.Mnemonic) < RHS;\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
 | |
|   OS << "      return LHS < StringRef(RHS.Mnemonic);\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
 | |
|   OS << "      return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "  };\n";
 | |
| 
 | |
|   OS << "} // end anonymous namespace.\n\n";
 | |
| 
 | |
|   OS << "static const MatchEntry MatchTable["
 | |
|      << Info.Matchables.size() << "] = {\n";
 | |
| 
 | |
|   for (std::vector<MatchableInfo*>::const_iterator it =
 | |
|        Info.Matchables.begin(), ie = Info.Matchables.end();
 | |
|        it != ie; ++it) {
 | |
|     MatchableInfo &II = **it;
 | |
| 
 | |
| 
 | |
|     OS << "  { " << Target.getName() << "::"
 | |
|        << II.getResultInst()->TheDef->getName() << ", \"" << II.Mnemonic << "\""
 | |
|        << ", " << II.ConversionFnKind << ", { ";
 | |
|     for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
 | |
|       MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
 | |
| 
 | |
|       if (i) OS << ", ";
 | |
|       OS << Op.Class->Name;
 | |
|     }
 | |
|     OS << " }, ";
 | |
| 
 | |
|     // Write the required features mask.
 | |
|     if (!II.RequiredFeatures.empty()) {
 | |
|       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
 | |
|         if (i) OS << "|";
 | |
|         OS << II.RequiredFeatures[i]->getEnumName();
 | |
|       }
 | |
|     } else
 | |
|       OS << "0";
 | |
| 
 | |
|     OS << "},\n";
 | |
|   }
 | |
| 
 | |
|   OS << "};\n\n";
 | |
| 
 | |
|   // Finally, build the match function.
 | |
|   OS << Target.getName() << ClassName << "::MatchResultTy "
 | |
|      << Target.getName() << ClassName << "::\n"
 | |
|      << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
 | |
|      << " &Operands,\n";
 | |
|   OS << "                     MCInst &Inst, unsigned &ErrorInfo) {\n";
 | |
| 
 | |
|   // Emit code to get the available features.
 | |
|   OS << "  // Get the current feature set.\n";
 | |
|   OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
 | |
| 
 | |
|   OS << "  // Get the instruction mnemonic, which is the first token.\n";
 | |
|   OS << "  StringRef Mnemonic = ((" << Target.getName()
 | |
|      << "Operand*)Operands[0])->getToken();\n\n";
 | |
| 
 | |
|   if (HasMnemonicAliases) {
 | |
|     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
 | |
|     OS << "  ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
 | |
|   }
 | |
|   
 | |
|   // Emit code to compute the class list for this operand vector.
 | |
|   OS << "  // Eliminate obvious mismatches.\n";
 | |
|   OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
 | |
|   OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
 | |
|   OS << "    return Match_InvalidOperand;\n";
 | |
|   OS << "  }\n\n";
 | |
| 
 | |
|   OS << "  // Compute the class list for this operand vector.\n";
 | |
|   OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
 | |
|   OS << "  for (unsigned i = 1, e = Operands.size(); i != e; ++i) {\n";
 | |
|   OS << "    Classes[i-1] = ClassifyOperand(Operands[i]);\n\n";
 | |
| 
 | |
|   OS << "    // Check for invalid operands before matching.\n";
 | |
|   OS << "    if (Classes[i-1] == InvalidMatchClass) {\n";
 | |
|   OS << "      ErrorInfo = i;\n";
 | |
|   OS << "      return Match_InvalidOperand;\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "  }\n\n";
 | |
| 
 | |
|   OS << "  // Mark unused classes.\n";
 | |
|   OS << "  for (unsigned i = Operands.size()-1, e = " << MaxNumOperands << "; "
 | |
|      << "i != e; ++i)\n";
 | |
|   OS << "    Classes[i] = InvalidMatchClass;\n\n";
 | |
| 
 | |
|   OS << "  // Some state to try to produce better error messages.\n";
 | |
|   OS << "  bool HadMatchOtherThanFeatures = false;\n\n";
 | |
|   OS << "  // Set ErrorInfo to the operand that mismatches if it is \n";
 | |
|   OS << "  // wrong for all instances of the instruction.\n";
 | |
|   OS << "  ErrorInfo = ~0U;\n";
 | |
| 
 | |
|   // Emit code to search the table.
 | |
|   OS << "  // Search the table.\n";
 | |
|   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
 | |
|   OS << "    std::equal_range(MatchTable, MatchTable+"
 | |
|      << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
 | |
| 
 | |
|   OS << "  // Return a more specific error code if no mnemonics match.\n";
 | |
|   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
 | |
|   OS << "    return Match_MnemonicFail;\n\n";
 | |
| 
 | |
|   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
 | |
|      << "*ie = MnemonicRange.second;\n";
 | |
|   OS << "       it != ie; ++it) {\n";
 | |
| 
 | |
|   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
 | |
|   OS << "    assert(Mnemonic == it->Mnemonic);\n";
 | |
| 
 | |
|   // Emit check that the subclasses match.
 | |
|   OS << "    bool OperandsValid = true;\n";
 | |
|   OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
 | |
|   OS << "      if (IsSubclass(Classes[i], it->Classes[i]))\n";
 | |
|   OS << "        continue;\n";
 | |
|   OS << "      // If this operand is broken for all of the instances of this\n";
 | |
|   OS << "      // mnemonic, keep track of it so we can report loc info.\n";
 | |
|   OS << "      if (it == MnemonicRange.first || ErrorInfo == i+1)\n";
 | |
|   OS << "        ErrorInfo = i+1;\n";
 | |
|   OS << "      else\n";
 | |
|   OS << "        ErrorInfo = ~0U;";
 | |
|   OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
 | |
|   OS << "      OperandsValid = false;\n";
 | |
|   OS << "      break;\n";
 | |
|   OS << "    }\n\n";
 | |
| 
 | |
|   OS << "    if (!OperandsValid) continue;\n";
 | |
| 
 | |
|   // Emit check that the required features are available.
 | |
|   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
 | |
|      << "!= it->RequiredFeatures) {\n";
 | |
|   OS << "      HadMatchOtherThanFeatures = true;\n";
 | |
|   OS << "      continue;\n";
 | |
|   OS << "    }\n";
 | |
| 
 | |
|   OS << "\n";
 | |
|   OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
 | |
| 
 | |
|   // Call the post-processing function, if used.
 | |
|   std::string InsnCleanupFn =
 | |
|     AsmParser->getValueAsString("AsmParserInstCleanup");
 | |
|   if (!InsnCleanupFn.empty())
 | |
|     OS << "    " << InsnCleanupFn << "(Inst);\n";
 | |
| 
 | |
|   OS << "    return Match_Success;\n";
 | |
|   OS << "  }\n\n";
 | |
| 
 | |
|   OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
 | |
|   OS << "  if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n";
 | |
|   OS << "  return Match_InvalidOperand;\n";
 | |
|   OS << "}\n\n";
 | |
| 
 | |
|   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
 | |
| }
 |