111 lines
3.6 KiB
MLIR
111 lines
3.6 KiB
MLIR
// RUN: mlir-opt %s --sparse-compiler | \
|
|
// RUN: TENSOR0="%mlir_integration_test_dir/data/wide.mtx" \
|
|
// RUN: mlir-cpu-runner \
|
|
// RUN: -e entry -entry-point-result=void \
|
|
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
|
// RUN: FileCheck %s
|
|
//
|
|
// Do the same run, but now with SIMDization as well. This should not change the outcome.
|
|
//
|
|
// RUN: mlir-opt %s \
|
|
// RUN: --sparse-compiler="vectorization-strategy=2 vl=16 enable-simd-index32" | \
|
|
// RUN: TENSOR0="%mlir_integration_test_dir/data/wide.mtx" \
|
|
// RUN: mlir-cpu-runner \
|
|
// RUN: -e entry -entry-point-result=void \
|
|
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
|
// RUN: FileCheck %s
|
|
|
|
!Filename = !llvm.ptr<i8>
|
|
|
|
#SparseMatrix = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "dense", "compressed" ],
|
|
pointerBitWidth = 8,
|
|
indexBitWidth = 8
|
|
}>
|
|
|
|
#matvec = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)>, // A
|
|
affine_map<(i,j) -> (j)>, // b
|
|
affine_map<(i,j) -> (i)> // x (out)
|
|
],
|
|
iterator_types = ["parallel", "reduction"],
|
|
doc = "X(i) += A(i,j) * B(j)"
|
|
}
|
|
|
|
//
|
|
// Integration test that lowers a kernel annotated as sparse to
|
|
// actual sparse code, initializes a matching sparse storage scheme
|
|
// from file, and runs the resulting code with the JIT compiler.
|
|
//
|
|
module {
|
|
//
|
|
// A kernel that multiplies a sparse matrix A with a dense vector b
|
|
// into a dense vector x.
|
|
//
|
|
func.func @kernel_matvec(%arga: tensor<?x?xi32, #SparseMatrix>,
|
|
%argb: tensor<?xi32>,
|
|
%argx: tensor<?xi32> {linalg.inplaceable = true})
|
|
-> tensor<?xi32> {
|
|
%0 = linalg.generic #matvec
|
|
ins(%arga, %argb: tensor<?x?xi32, #SparseMatrix>, tensor<?xi32>)
|
|
outs(%argx: tensor<?xi32>) {
|
|
^bb(%a: i32, %b: i32, %x: i32):
|
|
%0 = arith.muli %a, %b : i32
|
|
%1 = arith.addi %x, %0 : i32
|
|
linalg.yield %1 : i32
|
|
} -> tensor<?xi32>
|
|
return %0 : tensor<?xi32>
|
|
}
|
|
|
|
func.func private @getTensorFilename(index) -> (!Filename)
|
|
|
|
//
|
|
// Main driver that reads matrix from file and calls the sparse kernel.
|
|
//
|
|
func.func @entry() {
|
|
%i0 = arith.constant 0 : i32
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
%c4 = arith.constant 4 : index
|
|
%c256 = arith.constant 256 : index
|
|
|
|
// Read the sparse matrix from file, construct sparse storage.
|
|
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
|
|
%a = sparse_tensor.new %fileName : !Filename to tensor<?x?xi32, #SparseMatrix>
|
|
|
|
// Initialize dense vectors.
|
|
%bdata = memref.alloc(%c256) : memref<?xi32>
|
|
%xdata = memref.alloc(%c4) : memref<?xi32>
|
|
scf.for %i = %c0 to %c256 step %c1 {
|
|
%k = arith.addi %i, %c1 : index
|
|
%j = arith.index_cast %k : index to i32
|
|
memref.store %j, %bdata[%i] : memref<?xi32>
|
|
}
|
|
scf.for %i = %c0 to %c4 step %c1 {
|
|
memref.store %i0, %xdata[%i] : memref<?xi32>
|
|
}
|
|
%b = bufferization.to_tensor %bdata : memref<?xi32>
|
|
%x = bufferization.to_tensor %xdata : memref<?xi32>
|
|
|
|
// Call kernel.
|
|
%0 = call @kernel_matvec(%a, %b, %x)
|
|
: (tensor<?x?xi32, #SparseMatrix>, tensor<?xi32>, tensor<?xi32>) -> tensor<?xi32>
|
|
|
|
// Print the result for verification.
|
|
//
|
|
// CHECK: ( 889, 1514, -21, -3431 )
|
|
//
|
|
%m = bufferization.to_memref %0 : memref<?xi32>
|
|
%v = vector.transfer_read %m[%c0], %i0: memref<?xi32>, vector<4xi32>
|
|
vector.print %v : vector<4xi32>
|
|
|
|
// Release the resources.
|
|
memref.dealloc %bdata : memref<?xi32>
|
|
memref.dealloc %xdata : memref<?xi32>
|
|
sparse_tensor.release %a : tensor<?x?xi32, #SparseMatrix>
|
|
|
|
return
|
|
}
|
|
}
|