781 lines
32 KiB
C++
781 lines
32 KiB
C++
//===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the AArch64 implementation of the TargetRegisterInfo
|
|
// class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64RegisterInfo.h"
|
|
#include "AArch64FrameLowering.h"
|
|
#include "AArch64InstrInfo.h"
|
|
#include "AArch64MachineFunctionInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define GET_REGINFO_TARGET_DESC
|
|
#include "AArch64GenRegisterInfo.inc"
|
|
|
|
AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT)
|
|
: AArch64GenRegisterInfo(AArch64::LR), TT(TT) {
|
|
AArch64_MC::initLLVMToCVRegMapping(this);
|
|
}
|
|
|
|
/// Return whether the register needs a CFI entry. Not all unwinders may know
|
|
/// about SVE registers, so we assume the lowest common denominator, i.e. the
|
|
/// callee-saves required by the base ABI. For the SVE registers z8-z15 only the
|
|
/// lower 64-bits (d8-d15) need to be saved. The lower 64-bits subreg is
|
|
/// returned in \p RegToUseForCFI.
|
|
bool AArch64RegisterInfo::regNeedsCFI(unsigned Reg,
|
|
unsigned &RegToUseForCFI) const {
|
|
if (AArch64::PPRRegClass.contains(Reg))
|
|
return false;
|
|
|
|
if (AArch64::ZPRRegClass.contains(Reg)) {
|
|
RegToUseForCFI = getSubReg(Reg, AArch64::dsub);
|
|
for (int I = 0; CSR_AArch64_AAPCS_SaveList[I]; ++I) {
|
|
if (CSR_AArch64_AAPCS_SaveList[I] == RegToUseForCFI)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
RegToUseForCFI = Reg;
|
|
return true;
|
|
}
|
|
|
|
bool AArch64RegisterInfo::hasSVEArgsOrReturn(const MachineFunction *MF) {
|
|
const Function &F = MF->getFunction();
|
|
return isa<ScalableVectorType>(F.getReturnType()) ||
|
|
any_of(F.args(), [](const Argument &Arg) {
|
|
return isa<ScalableVectorType>(Arg.getType());
|
|
});
|
|
}
|
|
|
|
const MCPhysReg *
|
|
AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
|
|
assert(MF && "Invalid MachineFunction pointer.");
|
|
|
|
if (MF->getFunction().getCallingConv() == CallingConv::GHC)
|
|
// GHC set of callee saved regs is empty as all those regs are
|
|
// used for passing STG regs around
|
|
return CSR_AArch64_NoRegs_SaveList;
|
|
if (MF->getFunction().getCallingConv() == CallingConv::AnyReg)
|
|
return CSR_AArch64_AllRegs_SaveList;
|
|
|
|
// Darwin has its own CSR_AArch64_AAPCS_SaveList, which means most CSR save
|
|
// lists depending on that will need to have their Darwin variant as well.
|
|
if (MF->getSubtarget<AArch64Subtarget>().isTargetDarwin())
|
|
return getDarwinCalleeSavedRegs(MF);
|
|
|
|
if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
|
|
return CSR_Win_AArch64_CFGuard_Check_SaveList;
|
|
if (MF->getSubtarget<AArch64Subtarget>().isTargetWindows())
|
|
return CSR_Win_AArch64_AAPCS_SaveList;
|
|
if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
|
|
return CSR_AArch64_AAVPCS_SaveList;
|
|
if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
|
|
return CSR_AArch64_SVE_AAPCS_SaveList;
|
|
if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
|
|
->supportSwiftError() &&
|
|
MF->getFunction().getAttributes().hasAttrSomewhere(
|
|
Attribute::SwiftError))
|
|
return CSR_AArch64_AAPCS_SwiftError_SaveList;
|
|
if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
|
|
return CSR_AArch64_RT_MostRegs_SaveList;
|
|
if (MF->getFunction().getCallingConv() == CallingConv::Win64)
|
|
// This is for OSes other than Windows; Windows is a separate case further
|
|
// above.
|
|
return CSR_AArch64_AAPCS_X18_SaveList;
|
|
if (hasSVEArgsOrReturn(MF))
|
|
return CSR_AArch64_SVE_AAPCS_SaveList;
|
|
return CSR_AArch64_AAPCS_SaveList;
|
|
}
|
|
|
|
const MCPhysReg *
|
|
AArch64RegisterInfo::getDarwinCalleeSavedRegs(const MachineFunction *MF) const {
|
|
assert(MF && "Invalid MachineFunction pointer.");
|
|
assert(MF->getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
|
|
"Invalid subtarget for getDarwinCalleeSavedRegs");
|
|
|
|
if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
|
|
report_fatal_error(
|
|
"Calling convention CFGuard_Check is unsupported on Darwin.");
|
|
if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
|
|
return CSR_Darwin_AArch64_AAVPCS_SaveList;
|
|
if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
|
|
report_fatal_error(
|
|
"Calling convention SVE_VectorCall is unsupported on Darwin.");
|
|
if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS)
|
|
return MF->getInfo<AArch64FunctionInfo>()->isSplitCSR()
|
|
? CSR_Darwin_AArch64_CXX_TLS_PE_SaveList
|
|
: CSR_Darwin_AArch64_CXX_TLS_SaveList;
|
|
if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
|
|
->supportSwiftError() &&
|
|
MF->getFunction().getAttributes().hasAttrSomewhere(
|
|
Attribute::SwiftError))
|
|
return CSR_Darwin_AArch64_AAPCS_SwiftError_SaveList;
|
|
if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
|
|
return CSR_Darwin_AArch64_RT_MostRegs_SaveList;
|
|
return CSR_Darwin_AArch64_AAPCS_SaveList;
|
|
}
|
|
|
|
const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy(
|
|
const MachineFunction *MF) const {
|
|
assert(MF && "Invalid MachineFunction pointer.");
|
|
if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
|
|
MF->getInfo<AArch64FunctionInfo>()->isSplitCSR())
|
|
return CSR_Darwin_AArch64_CXX_TLS_ViaCopy_SaveList;
|
|
return nullptr;
|
|
}
|
|
|
|
void AArch64RegisterInfo::UpdateCustomCalleeSavedRegs(
|
|
MachineFunction &MF) const {
|
|
const MCPhysReg *CSRs = getCalleeSavedRegs(&MF);
|
|
SmallVector<MCPhysReg, 32> UpdatedCSRs;
|
|
for (const MCPhysReg *I = CSRs; *I; ++I)
|
|
UpdatedCSRs.push_back(*I);
|
|
|
|
for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
|
|
if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
|
|
UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i));
|
|
}
|
|
}
|
|
// Register lists are zero-terminated.
|
|
UpdatedCSRs.push_back(0);
|
|
MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs);
|
|
}
|
|
|
|
const TargetRegisterClass *
|
|
AArch64RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
|
|
unsigned Idx) const {
|
|
// edge case for GPR/FPR register classes
|
|
if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub)
|
|
return &AArch64::FPR32RegClass;
|
|
else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub)
|
|
return &AArch64::FPR64RegClass;
|
|
|
|
// Forward to TableGen's default version.
|
|
return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
|
|
}
|
|
|
|
const uint32_t *
|
|
AArch64RegisterInfo::getDarwinCallPreservedMask(const MachineFunction &MF,
|
|
CallingConv::ID CC) const {
|
|
assert(MF.getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
|
|
"Invalid subtarget for getDarwinCallPreservedMask");
|
|
|
|
if (CC == CallingConv::CXX_FAST_TLS)
|
|
return CSR_Darwin_AArch64_CXX_TLS_RegMask;
|
|
if (CC == CallingConv::AArch64_VectorCall)
|
|
return CSR_Darwin_AArch64_AAVPCS_RegMask;
|
|
if (CC == CallingConv::AArch64_SVE_VectorCall)
|
|
report_fatal_error(
|
|
"Calling convention SVE_VectorCall is unsupported on Darwin.");
|
|
if (CC == CallingConv::CFGuard_Check)
|
|
report_fatal_error(
|
|
"Calling convention CFGuard_Check is unsupported on Darwin.");
|
|
if (MF.getSubtarget<AArch64Subtarget>()
|
|
.getTargetLowering()
|
|
->supportSwiftError() &&
|
|
MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
|
|
return CSR_Darwin_AArch64_AAPCS_SwiftError_RegMask;
|
|
if (CC == CallingConv::PreserveMost)
|
|
return CSR_Darwin_AArch64_RT_MostRegs_RegMask;
|
|
return CSR_Darwin_AArch64_AAPCS_RegMask;
|
|
}
|
|
|
|
const uint32_t *
|
|
AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
|
|
CallingConv::ID CC) const {
|
|
bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
|
|
if (CC == CallingConv::GHC)
|
|
// This is academic because all GHC calls are (supposed to be) tail calls
|
|
return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask;
|
|
if (CC == CallingConv::AnyReg)
|
|
return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask;
|
|
|
|
// All the following calling conventions are handled differently on Darwin.
|
|
if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin()) {
|
|
if (SCS)
|
|
report_fatal_error("ShadowCallStack attribute not supported on Darwin.");
|
|
return getDarwinCallPreservedMask(MF, CC);
|
|
}
|
|
|
|
if (CC == CallingConv::AArch64_VectorCall)
|
|
return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask;
|
|
if (CC == CallingConv::AArch64_SVE_VectorCall)
|
|
return SCS ? CSR_AArch64_SVE_AAPCS_SCS_RegMask
|
|
: CSR_AArch64_SVE_AAPCS_RegMask;
|
|
if (CC == CallingConv::CFGuard_Check)
|
|
return CSR_Win_AArch64_CFGuard_Check_RegMask;
|
|
if (MF.getSubtarget<AArch64Subtarget>().getTargetLowering()
|
|
->supportSwiftError() &&
|
|
MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
|
|
return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask
|
|
: CSR_AArch64_AAPCS_SwiftError_RegMask;
|
|
if (CC == CallingConv::PreserveMost)
|
|
return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask
|
|
: CSR_AArch64_RT_MostRegs_RegMask;
|
|
else
|
|
return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask;
|
|
}
|
|
|
|
const uint32_t *AArch64RegisterInfo::getCustomEHPadPreservedMask(
|
|
const MachineFunction &MF) const {
|
|
if (MF.getSubtarget<AArch64Subtarget>().isTargetLinux())
|
|
return CSR_AArch64_AAPCS_RegMask;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const {
|
|
if (TT.isOSDarwin())
|
|
return CSR_Darwin_AArch64_TLS_RegMask;
|
|
|
|
assert(TT.isOSBinFormatELF() && "Invalid target");
|
|
return CSR_AArch64_TLS_ELF_RegMask;
|
|
}
|
|
|
|
void AArch64RegisterInfo::UpdateCustomCallPreservedMask(MachineFunction &MF,
|
|
const uint32_t **Mask) const {
|
|
uint32_t *UpdatedMask = MF.allocateRegMask();
|
|
unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs());
|
|
memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize);
|
|
|
|
for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
|
|
if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
|
|
for (MCSubRegIterator SubReg(AArch64::GPR64commonRegClass.getRegister(i),
|
|
this, true);
|
|
SubReg.isValid(); ++SubReg) {
|
|
// See TargetRegisterInfo::getCallPreservedMask for how to interpret the
|
|
// register mask.
|
|
UpdatedMask[*SubReg / 32] |= 1u << (*SubReg % 32);
|
|
}
|
|
}
|
|
}
|
|
*Mask = UpdatedMask;
|
|
}
|
|
|
|
const uint32_t *AArch64RegisterInfo::getNoPreservedMask() const {
|
|
return CSR_AArch64_NoRegs_RegMask;
|
|
}
|
|
|
|
const uint32_t *
|
|
AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
|
|
CallingConv::ID CC) const {
|
|
// This should return a register mask that is the same as that returned by
|
|
// getCallPreservedMask but that additionally preserves the register used for
|
|
// the first i64 argument (which must also be the register used to return a
|
|
// single i64 return value)
|
|
//
|
|
// In case that the calling convention does not use the same register for
|
|
// both, the function should return NULL (does not currently apply)
|
|
assert(CC != CallingConv::GHC && "should not be GHC calling convention.");
|
|
if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin())
|
|
return CSR_Darwin_AArch64_AAPCS_ThisReturn_RegMask;
|
|
return CSR_AArch64_AAPCS_ThisReturn_RegMask;
|
|
}
|
|
|
|
const uint32_t *AArch64RegisterInfo::getWindowsStackProbePreservedMask() const {
|
|
return CSR_AArch64_StackProbe_Windows_RegMask;
|
|
}
|
|
|
|
BitVector
|
|
AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
|
|
const AArch64FrameLowering *TFI = getFrameLowering(MF);
|
|
|
|
// FIXME: avoid re-calculating this every time.
|
|
BitVector Reserved(getNumRegs());
|
|
markSuperRegs(Reserved, AArch64::WSP);
|
|
markSuperRegs(Reserved, AArch64::WZR);
|
|
|
|
if (TFI->hasFP(MF) || TT.isOSDarwin())
|
|
markSuperRegs(Reserved, AArch64::W29);
|
|
|
|
for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
|
|
if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(i))
|
|
markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
|
|
}
|
|
|
|
if (hasBasePointer(MF))
|
|
markSuperRegs(Reserved, AArch64::W19);
|
|
|
|
// SLH uses register W16/X16 as the taint register.
|
|
if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
|
|
markSuperRegs(Reserved, AArch64::W16);
|
|
|
|
assert(checkAllSuperRegsMarked(Reserved));
|
|
return Reserved;
|
|
}
|
|
|
|
bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF,
|
|
MCRegister Reg) const {
|
|
return getReservedRegs(MF)[Reg];
|
|
}
|
|
|
|
bool AArch64RegisterInfo::isAnyArgRegReserved(const MachineFunction &MF) const {
|
|
return llvm::any_of(*AArch64::GPR64argRegClass.MC, [this, &MF](MCPhysReg r) {
|
|
return isReservedReg(MF, r);
|
|
});
|
|
}
|
|
|
|
void AArch64RegisterInfo::emitReservedArgRegCallError(
|
|
const MachineFunction &MF) const {
|
|
const Function &F = MF.getFunction();
|
|
F.getContext().diagnose(DiagnosticInfoUnsupported{F, ("AArch64 doesn't support"
|
|
" function calls if any of the argument registers is reserved.")});
|
|
}
|
|
|
|
bool AArch64RegisterInfo::isAsmClobberable(const MachineFunction &MF,
|
|
MCRegister PhysReg) const {
|
|
return !isReservedReg(MF, PhysReg);
|
|
}
|
|
|
|
bool AArch64RegisterInfo::isConstantPhysReg(MCRegister PhysReg) const {
|
|
return PhysReg == AArch64::WZR || PhysReg == AArch64::XZR;
|
|
}
|
|
|
|
const TargetRegisterClass *
|
|
AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF,
|
|
unsigned Kind) const {
|
|
return &AArch64::GPR64spRegClass;
|
|
}
|
|
|
|
const TargetRegisterClass *
|
|
AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
|
|
if (RC == &AArch64::CCRRegClass)
|
|
return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV.
|
|
return RC;
|
|
}
|
|
|
|
unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; }
|
|
|
|
bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
// In the presence of variable sized objects or funclets, if the fixed stack
|
|
// size is large enough that referencing from the FP won't result in things
|
|
// being in range relatively often, we can use a base pointer to allow access
|
|
// from the other direction like the SP normally works.
|
|
//
|
|
// Furthermore, if both variable sized objects are present, and the
|
|
// stack needs to be dynamically re-aligned, the base pointer is the only
|
|
// reliable way to reference the locals.
|
|
if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) {
|
|
if (needsStackRealignment(MF))
|
|
return true;
|
|
|
|
if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) {
|
|
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
// Frames that have variable sized objects and scalable SVE objects,
|
|
// should always use a basepointer.
|
|
if (!AFI->hasCalculatedStackSizeSVE() || AFI->getStackSizeSVE())
|
|
return true;
|
|
}
|
|
|
|
// Conservatively estimate whether the negative offset from the frame
|
|
// pointer will be sufficient to reach. If a function has a smallish
|
|
// frame, it's less likely to have lots of spills and callee saved
|
|
// space, so it's all more likely to be within range of the frame pointer.
|
|
// If it's wrong, we'll materialize the constant and still get to the
|
|
// object; it's just suboptimal. Negative offsets use the unscaled
|
|
// load/store instructions, which have a 9-bit signed immediate.
|
|
return MFI.getLocalFrameSize() >= 256;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Register
|
|
AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
|
|
const AArch64FrameLowering *TFI = getFrameLowering(MF);
|
|
return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
|
|
}
|
|
|
|
bool AArch64RegisterInfo::requiresRegisterScavenging(
|
|
const MachineFunction &MF) const {
|
|
return true;
|
|
}
|
|
|
|
bool AArch64RegisterInfo::requiresVirtualBaseRegisters(
|
|
const MachineFunction &MF) const {
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
|
|
// This function indicates whether the emergency spillslot should be placed
|
|
// close to the beginning of the stackframe (closer to FP) or the end
|
|
// (closer to SP).
|
|
//
|
|
// The beginning works most reliably if we have a frame pointer.
|
|
// In the presence of any non-constant space between FP and locals,
|
|
// (e.g. in case of stack realignment or a scalable SVE area), it is
|
|
// better to use SP or BP.
|
|
const AArch64FrameLowering &TFI = *getFrameLowering(MF);
|
|
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
assert((!MF.getSubtarget<AArch64Subtarget>().hasSVE() ||
|
|
AFI->hasCalculatedStackSizeSVE()) &&
|
|
"Expected SVE area to be calculated by this point");
|
|
return TFI.hasFP(MF) && !needsStackRealignment(MF) && !AFI->getStackSizeSVE();
|
|
}
|
|
|
|
bool AArch64RegisterInfo::requiresFrameIndexScavenging(
|
|
const MachineFunction &MF) const {
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack())
|
|
return true;
|
|
return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken();
|
|
}
|
|
|
|
/// needsFrameBaseReg - Returns true if the instruction's frame index
|
|
/// reference would be better served by a base register other than FP
|
|
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
|
|
/// references it should create new base registers for.
|
|
bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI,
|
|
int64_t Offset) const {
|
|
for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i)
|
|
assert(i < MI->getNumOperands() &&
|
|
"Instr doesn't have FrameIndex operand!");
|
|
|
|
// It's the load/store FI references that cause issues, as it can be difficult
|
|
// to materialize the offset if it won't fit in the literal field. Estimate
|
|
// based on the size of the local frame and some conservative assumptions
|
|
// about the rest of the stack frame (note, this is pre-regalloc, so
|
|
// we don't know everything for certain yet) whether this offset is likely
|
|
// to be out of range of the immediate. Return true if so.
|
|
|
|
// We only generate virtual base registers for loads and stores, so
|
|
// return false for everything else.
|
|
if (!MI->mayLoad() && !MI->mayStore())
|
|
return false;
|
|
|
|
// Without a virtual base register, if the function has variable sized
|
|
// objects, all fixed-size local references will be via the frame pointer,
|
|
// Approximate the offset and see if it's legal for the instruction.
|
|
// Note that the incoming offset is based on the SP value at function entry,
|
|
// so it'll be negative.
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
const AArch64FrameLowering *TFI = getFrameLowering(MF);
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
// Estimate an offset from the frame pointer.
|
|
// Conservatively assume all GPR callee-saved registers get pushed.
|
|
// FP, LR, X19-X28, D8-D15. 64-bits each.
|
|
int64_t FPOffset = Offset - 16 * 20;
|
|
// Estimate an offset from the stack pointer.
|
|
// The incoming offset is relating to the SP at the start of the function,
|
|
// but when we access the local it'll be relative to the SP after local
|
|
// allocation, so adjust our SP-relative offset by that allocation size.
|
|
Offset += MFI.getLocalFrameSize();
|
|
// Assume that we'll have at least some spill slots allocated.
|
|
// FIXME: This is a total SWAG number. We should run some statistics
|
|
// and pick a real one.
|
|
Offset += 128; // 128 bytes of spill slots
|
|
|
|
// If there is a frame pointer, try using it.
|
|
// The FP is only available if there is no dynamic realignment. We
|
|
// don't know for sure yet whether we'll need that, so we guess based
|
|
// on whether there are any local variables that would trigger it.
|
|
if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset))
|
|
return false;
|
|
|
|
// If we can reference via the stack pointer or base pointer, try that.
|
|
// FIXME: This (and the code that resolves the references) can be improved
|
|
// to only disallow SP relative references in the live range of
|
|
// the VLA(s). In practice, it's unclear how much difference that
|
|
// would make, but it may be worth doing.
|
|
if (isFrameOffsetLegal(MI, AArch64::SP, Offset))
|
|
return false;
|
|
|
|
// If even offset 0 is illegal, we don't want a virtual base register.
|
|
if (!isFrameOffsetLegal(MI, AArch64::SP, 0))
|
|
return false;
|
|
|
|
// The offset likely isn't legal; we want to allocate a virtual base register.
|
|
return true;
|
|
}
|
|
|
|
bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
|
|
Register BaseReg,
|
|
int64_t Offset) const {
|
|
assert(MI && "Unable to get the legal offset for nil instruction.");
|
|
StackOffset SaveOffset = StackOffset::getFixed(Offset);
|
|
return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal;
|
|
}
|
|
|
|
/// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
|
|
/// at the beginning of the basic block.
|
|
void AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
|
|
Register BaseReg,
|
|
int FrameIdx,
|
|
int64_t Offset) const {
|
|
MachineBasicBlock::iterator Ins = MBB->begin();
|
|
DebugLoc DL; // Defaults to "unknown"
|
|
if (Ins != MBB->end())
|
|
DL = Ins->getDebugLoc();
|
|
const MachineFunction &MF = *MBB->getParent();
|
|
const AArch64InstrInfo *TII =
|
|
MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
|
|
const MCInstrDesc &MCID = TII->get(AArch64::ADDXri);
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF));
|
|
unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
|
|
|
|
BuildMI(*MBB, Ins, DL, MCID, BaseReg)
|
|
.addFrameIndex(FrameIdx)
|
|
.addImm(Offset)
|
|
.addImm(Shifter);
|
|
}
|
|
|
|
void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
|
|
int64_t Offset) const {
|
|
// ARM doesn't need the general 64-bit offsets
|
|
StackOffset Off = StackOffset::getFixed(Offset);
|
|
|
|
unsigned i = 0;
|
|
while (!MI.getOperand(i).isFI()) {
|
|
++i;
|
|
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
|
|
}
|
|
|
|
const MachineFunction *MF = MI.getParent()->getParent();
|
|
const AArch64InstrInfo *TII =
|
|
MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
|
|
bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII);
|
|
assert(Done && "Unable to resolve frame index!");
|
|
(void)Done;
|
|
}
|
|
|
|
// Create a scratch register for the frame index elimination in an instruction.
|
|
// This function has special handling of stack tagging loop pseudos, in which
|
|
// case it can also change the instruction opcode (but not the operands).
|
|
static Register
|
|
createScratchRegisterForInstruction(MachineInstr &MI,
|
|
const AArch64InstrInfo *TII) {
|
|
// ST*Gloop have a reserved scratch register in operand 1. Use it, and also
|
|
// replace the instruction with the writeback variant because it will now
|
|
// satisfy the operand constraints for it.
|
|
if (MI.getOpcode() == AArch64::STGloop) {
|
|
MI.setDesc(TII->get(AArch64::STGloop_wback));
|
|
return MI.getOperand(1).getReg();
|
|
} else if (MI.getOpcode() == AArch64::STZGloop) {
|
|
MI.setDesc(TII->get(AArch64::STZGloop_wback));
|
|
return MI.getOperand(1).getReg();
|
|
} else {
|
|
return MI.getMF()->getRegInfo().createVirtualRegister(
|
|
&AArch64::GPR64RegClass);
|
|
}
|
|
}
|
|
|
|
void AArch64RegisterInfo::getOffsetOpcodes(
|
|
const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const {
|
|
// The smallest scalable element supported by scaled SVE addressing
|
|
// modes are predicates, which are 2 scalable bytes in size. So the scalable
|
|
// byte offset must always be a multiple of 2.
|
|
assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
|
|
|
|
// Add fixed-sized offset using existing DIExpression interface.
|
|
DIExpression::appendOffset(Ops, Offset.getFixed());
|
|
|
|
unsigned VG = getDwarfRegNum(AArch64::VG, true);
|
|
int64_t VGSized = Offset.getScalable() / 2;
|
|
if (VGSized > 0) {
|
|
Ops.push_back(dwarf::DW_OP_constu);
|
|
Ops.push_back(VGSized);
|
|
Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
|
|
Ops.push_back(dwarf::DW_OP_mul);
|
|
Ops.push_back(dwarf::DW_OP_plus);
|
|
} else if (VGSized < 0) {
|
|
Ops.push_back(dwarf::DW_OP_constu);
|
|
Ops.push_back(-VGSized);
|
|
Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
|
|
Ops.push_back(dwarf::DW_OP_mul);
|
|
Ops.push_back(dwarf::DW_OP_minus);
|
|
}
|
|
}
|
|
|
|
void AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
|
|
int SPAdj, unsigned FIOperandNum,
|
|
RegScavenger *RS) const {
|
|
assert(SPAdj == 0 && "Unexpected");
|
|
|
|
MachineInstr &MI = *II;
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const AArch64InstrInfo *TII =
|
|
MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
|
|
const AArch64FrameLowering *TFI = getFrameLowering(MF);
|
|
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
|
|
bool Tagged =
|
|
MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED;
|
|
Register FrameReg;
|
|
|
|
// Special handling of dbg_value, stackmap patchpoint statepoint instructions.
|
|
if (MI.getOpcode() == TargetOpcode::STACKMAP ||
|
|
MI.getOpcode() == TargetOpcode::PATCHPOINT ||
|
|
MI.getOpcode() == TargetOpcode::STATEPOINT) {
|
|
StackOffset Offset =
|
|
TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg,
|
|
/*PreferFP=*/true,
|
|
/*ForSimm=*/false);
|
|
Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm());
|
|
MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
|
|
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed());
|
|
return;
|
|
}
|
|
|
|
if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) {
|
|
MachineOperand &FI = MI.getOperand(FIOperandNum);
|
|
StackOffset Offset = TFI->getNonLocalFrameIndexReference(MF, FrameIndex);
|
|
assert(!Offset.getScalable() &&
|
|
"Frame offsets with a scalable component are not supported");
|
|
FI.ChangeToImmediate(Offset.getFixed());
|
|
return;
|
|
}
|
|
|
|
StackOffset Offset;
|
|
if (MI.getOpcode() == AArch64::TAGPstack) {
|
|
// TAGPstack must use the virtual frame register in its 3rd operand.
|
|
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
FrameReg = MI.getOperand(3).getReg();
|
|
Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
|
|
AFI->getTaggedBasePointerOffset());
|
|
} else if (Tagged) {
|
|
StackOffset SPOffset = StackOffset::getFixed(
|
|
MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize());
|
|
if (MFI.hasVarSizedObjects() ||
|
|
isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) !=
|
|
(AArch64FrameOffsetCanUpdate | AArch64FrameOffsetIsLegal)) {
|
|
// Can't update to SP + offset in place. Precalculate the tagged pointer
|
|
// in a scratch register.
|
|
Offset = TFI->resolveFrameIndexReference(
|
|
MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
|
|
Register ScratchReg =
|
|
MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
|
|
emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset,
|
|
TII);
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg)
|
|
.addReg(ScratchReg)
|
|
.addReg(ScratchReg)
|
|
.addImm(0);
|
|
MI.getOperand(FIOperandNum)
|
|
.ChangeToRegister(ScratchReg, false, false, true);
|
|
return;
|
|
}
|
|
FrameReg = AArch64::SP;
|
|
Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
|
|
(int64_t)MFI.getStackSize());
|
|
} else {
|
|
Offset = TFI->resolveFrameIndexReference(
|
|
MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
|
|
}
|
|
|
|
// Modify MI as necessary to handle as much of 'Offset' as possible
|
|
if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
|
|
return;
|
|
|
|
assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) &&
|
|
"Emergency spill slot is out of reach");
|
|
|
|
// If we get here, the immediate doesn't fit into the instruction. We folded
|
|
// as much as possible above. Handle the rest, providing a register that is
|
|
// SP+LargeImm.
|
|
Register ScratchReg = createScratchRegisterForInstruction(MI, TII);
|
|
emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII);
|
|
MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false, true);
|
|
}
|
|
|
|
unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
|
|
MachineFunction &MF) const {
|
|
const AArch64FrameLowering *TFI = getFrameLowering(MF);
|
|
|
|
switch (RC->getID()) {
|
|
default:
|
|
return 0;
|
|
case AArch64::GPR32RegClassID:
|
|
case AArch64::GPR32spRegClassID:
|
|
case AArch64::GPR32allRegClassID:
|
|
case AArch64::GPR64spRegClassID:
|
|
case AArch64::GPR64allRegClassID:
|
|
case AArch64::GPR64RegClassID:
|
|
case AArch64::GPR32commonRegClassID:
|
|
case AArch64::GPR64commonRegClassID:
|
|
return 32 - 1 // XZR/SP
|
|
- (TFI->hasFP(MF) || TT.isOSDarwin()) // FP
|
|
- MF.getSubtarget<AArch64Subtarget>().getNumXRegisterReserved()
|
|
- hasBasePointer(MF); // X19
|
|
case AArch64::FPR8RegClassID:
|
|
case AArch64::FPR16RegClassID:
|
|
case AArch64::FPR32RegClassID:
|
|
case AArch64::FPR64RegClassID:
|
|
case AArch64::FPR128RegClassID:
|
|
return 32;
|
|
|
|
case AArch64::DDRegClassID:
|
|
case AArch64::DDDRegClassID:
|
|
case AArch64::DDDDRegClassID:
|
|
case AArch64::QQRegClassID:
|
|
case AArch64::QQQRegClassID:
|
|
case AArch64::QQQQRegClassID:
|
|
return 32;
|
|
|
|
case AArch64::FPR128_loRegClassID:
|
|
case AArch64::FPR64_loRegClassID:
|
|
case AArch64::FPR16_loRegClassID:
|
|
return 16;
|
|
}
|
|
}
|
|
|
|
unsigned AArch64RegisterInfo::getLocalAddressRegister(
|
|
const MachineFunction &MF) const {
|
|
const auto &MFI = MF.getFrameInfo();
|
|
if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects())
|
|
return AArch64::SP;
|
|
else if (needsStackRealignment(MF))
|
|
return getBaseRegister();
|
|
return getFrameRegister(MF);
|
|
}
|
|
|
|
/// SrcRC and DstRC will be morphed into NewRC if this returns true
|
|
bool AArch64RegisterInfo::shouldCoalesce(
|
|
MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg,
|
|
const TargetRegisterClass *DstRC, unsigned DstSubReg,
|
|
const TargetRegisterClass *NewRC, LiveIntervals &LIS) const {
|
|
if (MI->isCopy() &&
|
|
((DstRC->getID() == AArch64::GPR64RegClassID) ||
|
|
(DstRC->getID() == AArch64::GPR64commonRegClassID)) &&
|
|
MI->getOperand(0).getSubReg() && MI->getOperand(1).getSubReg())
|
|
// Do not coalesce in the case of a 32-bit subregister copy
|
|
// which implements a 32 to 64 bit zero extension
|
|
// which relies on the upper 32 bits being zeroed.
|
|
return false;
|
|
return true;
|
|
}
|