1271 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1271 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file declares the CodeGenDAGPatterns class, which is used to read and
 | 
						|
// represent the patterns present in a .td file for instructions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
 | 
						|
#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
 | 
						|
 | 
						|
#include "CodeGenIntrinsics.h"
 | 
						|
#include "CodeGenTarget.h"
 | 
						|
#include "SDNodeProperties.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include "llvm/ADT/StringSet.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <array>
 | 
						|
#include <functional>
 | 
						|
#include <map>
 | 
						|
#include <numeric>
 | 
						|
#include <set>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class Record;
 | 
						|
class Init;
 | 
						|
class ListInit;
 | 
						|
class DagInit;
 | 
						|
class SDNodeInfo;
 | 
						|
class TreePattern;
 | 
						|
class TreePatternNode;
 | 
						|
class CodeGenDAGPatterns;
 | 
						|
 | 
						|
/// Shared pointer for TreePatternNode.
 | 
						|
using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
 | 
						|
 | 
						|
/// This represents a set of MVTs. Since the underlying type for the MVT
 | 
						|
/// is uint8_t, there are at most 256 values. To reduce the number of memory
 | 
						|
/// allocations and deallocations, represent the set as a sequence of bits.
 | 
						|
/// To reduce the allocations even further, make MachineValueTypeSet own
 | 
						|
/// the storage and use std::array as the bit container.
 | 
						|
struct MachineValueTypeSet {
 | 
						|
  static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
 | 
						|
                             uint8_t>::value,
 | 
						|
                "Change uint8_t here to the SimpleValueType's type");
 | 
						|
  static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
 | 
						|
  using WordType = uint64_t;
 | 
						|
  static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
 | 
						|
  static unsigned constexpr NumWords = Capacity/WordWidth;
 | 
						|
  static_assert(NumWords*WordWidth == Capacity,
 | 
						|
                "Capacity should be a multiple of WordWidth");
 | 
						|
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  MachineValueTypeSet() {
 | 
						|
    clear();
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  unsigned size() const {
 | 
						|
    unsigned Count = 0;
 | 
						|
    for (WordType W : Words)
 | 
						|
      Count += countPopulation(W);
 | 
						|
    return Count;
 | 
						|
  }
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  void clear() {
 | 
						|
    std::memset(Words.data(), 0, NumWords*sizeof(WordType));
 | 
						|
  }
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  bool empty() const {
 | 
						|
    for (WordType W : Words)
 | 
						|
      if (W != 0)
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  unsigned count(MVT T) const {
 | 
						|
    return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
 | 
						|
  }
 | 
						|
  std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
 | 
						|
    bool V = count(T.SimpleTy);
 | 
						|
    Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
 | 
						|
    return {*this, V};
 | 
						|
  }
 | 
						|
  MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
 | 
						|
    for (unsigned i = 0; i != NumWords; ++i)
 | 
						|
      Words[i] |= S.Words[i];
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  void erase(MVT T) {
 | 
						|
    Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
 | 
						|
  }
 | 
						|
 | 
						|
  struct const_iterator {
 | 
						|
    // Some implementations of the C++ library require these traits to be
 | 
						|
    // defined.
 | 
						|
    using iterator_category = std::forward_iterator_tag;
 | 
						|
    using value_type = MVT;
 | 
						|
    using difference_type = ptrdiff_t;
 | 
						|
    using pointer = const MVT*;
 | 
						|
    using reference = const MVT&;
 | 
						|
 | 
						|
    LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
    MVT operator*() const {
 | 
						|
      assert(Pos != Capacity);
 | 
						|
      return MVT::SimpleValueType(Pos);
 | 
						|
    }
 | 
						|
    LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
    const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
 | 
						|
      Pos = End ? Capacity : find_from_pos(0);
 | 
						|
    }
 | 
						|
    LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
    const_iterator &operator++() {
 | 
						|
      assert(Pos != Capacity);
 | 
						|
      Pos = find_from_pos(Pos+1);
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
    bool operator==(const const_iterator &It) const {
 | 
						|
      return Set == It.Set && Pos == It.Pos;
 | 
						|
    }
 | 
						|
    LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
    bool operator!=(const const_iterator &It) const {
 | 
						|
      return !operator==(It);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    unsigned find_from_pos(unsigned P) const {
 | 
						|
      unsigned SkipWords = P / WordWidth;
 | 
						|
      unsigned SkipBits = P % WordWidth;
 | 
						|
      unsigned Count = SkipWords * WordWidth;
 | 
						|
 | 
						|
      // If P is in the middle of a word, process it manually here, because
 | 
						|
      // the trailing bits need to be masked off to use findFirstSet.
 | 
						|
      if (SkipBits != 0) {
 | 
						|
        WordType W = Set->Words[SkipWords];
 | 
						|
        W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
 | 
						|
        if (W != 0)
 | 
						|
          return Count + findFirstSet(W);
 | 
						|
        Count += WordWidth;
 | 
						|
        SkipWords++;
 | 
						|
      }
 | 
						|
 | 
						|
      for (unsigned i = SkipWords; i != NumWords; ++i) {
 | 
						|
        WordType W = Set->Words[i];
 | 
						|
        if (W != 0)
 | 
						|
          return Count + findFirstSet(W);
 | 
						|
        Count += WordWidth;
 | 
						|
      }
 | 
						|
      return Capacity;
 | 
						|
    }
 | 
						|
 | 
						|
    const MachineValueTypeSet *Set;
 | 
						|
    unsigned Pos;
 | 
						|
  };
 | 
						|
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  const_iterator begin() const { return const_iterator(this, false); }
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  const_iterator end()   const { return const_iterator(this, true); }
 | 
						|
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  bool operator==(const MachineValueTypeSet &S) const {
 | 
						|
    return Words == S.Words;
 | 
						|
  }
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  bool operator!=(const MachineValueTypeSet &S) const {
 | 
						|
    return !operator==(S);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  friend struct const_iterator;
 | 
						|
  std::array<WordType,NumWords> Words;
 | 
						|
};
 | 
						|
 | 
						|
struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
 | 
						|
  using SetType = MachineValueTypeSet;
 | 
						|
  SmallVector<unsigned, 16> AddrSpaces;
 | 
						|
 | 
						|
  TypeSetByHwMode() = default;
 | 
						|
  TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
 | 
						|
  TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
 | 
						|
  TypeSetByHwMode(MVT::SimpleValueType VT)
 | 
						|
    : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
 | 
						|
  TypeSetByHwMode(ValueTypeByHwMode VT)
 | 
						|
    : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
 | 
						|
  TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
 | 
						|
 | 
						|
  SetType &getOrCreate(unsigned Mode) {
 | 
						|
    return Map[Mode];
 | 
						|
  }
 | 
						|
 | 
						|
  bool isValueTypeByHwMode(bool AllowEmpty) const;
 | 
						|
  ValueTypeByHwMode getValueTypeByHwMode() const;
 | 
						|
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  bool isMachineValueType() const {
 | 
						|
    return isDefaultOnly() && Map.begin()->second.size() == 1;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  MVT getMachineValueType() const {
 | 
						|
    assert(isMachineValueType());
 | 
						|
    return *Map.begin()->second.begin();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isPossible() const;
 | 
						|
 | 
						|
  LLVM_ATTRIBUTE_ALWAYS_INLINE
 | 
						|
  bool isDefaultOnly() const {
 | 
						|
    return Map.size() == 1 && Map.begin()->first == DefaultMode;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isPointer() const {
 | 
						|
    return getValueTypeByHwMode().isPointer();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getPtrAddrSpace() const {
 | 
						|
    assert(isPointer());
 | 
						|
    return getValueTypeByHwMode().PtrAddrSpace;
 | 
						|
  }
 | 
						|
 | 
						|
  bool insert(const ValueTypeByHwMode &VVT);
 | 
						|
  bool constrain(const TypeSetByHwMode &VTS);
 | 
						|
  template <typename Predicate> bool constrain(Predicate P);
 | 
						|
  template <typename Predicate>
 | 
						|
  bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
 | 
						|
 | 
						|
  void writeToStream(raw_ostream &OS) const;
 | 
						|
  static void writeToStream(const SetType &S, raw_ostream &OS);
 | 
						|
 | 
						|
  bool operator==(const TypeSetByHwMode &VTS) const;
 | 
						|
  bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
 | 
						|
 | 
						|
  void dump() const;
 | 
						|
  bool validate() const;
 | 
						|
 | 
						|
private:
 | 
						|
  unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
 | 
						|
  /// Intersect two sets. Return true if anything has changed.
 | 
						|
  bool intersect(SetType &Out, const SetType &In);
 | 
						|
};
 | 
						|
 | 
						|
raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
 | 
						|
 | 
						|
struct TypeInfer {
 | 
						|
  TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
 | 
						|
 | 
						|
  bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
 | 
						|
    return VTS.isValueTypeByHwMode(AllowEmpty);
 | 
						|
  }
 | 
						|
  ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
 | 
						|
                                bool AllowEmpty) const {
 | 
						|
    assert(VTS.isValueTypeByHwMode(AllowEmpty));
 | 
						|
    return VTS.getValueTypeByHwMode();
 | 
						|
  }
 | 
						|
 | 
						|
  /// The protocol in the following functions (Merge*, force*, Enforce*,
 | 
						|
  /// expand*) is to return "true" if a change has been made, "false"
 | 
						|
  /// otherwise.
 | 
						|
 | 
						|
  bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
 | 
						|
  bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
 | 
						|
    return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
 | 
						|
  }
 | 
						|
  bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
 | 
						|
    return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
 | 
						|
  }
 | 
						|
 | 
						|
  /// Reduce the set \p Out to have at most one element for each mode.
 | 
						|
  bool forceArbitrary(TypeSetByHwMode &Out);
 | 
						|
 | 
						|
  /// The following four functions ensure that upon return the set \p Out
 | 
						|
  /// will only contain types of the specified kind: integer, floating-point,
 | 
						|
  /// scalar, or vector.
 | 
						|
  /// If \p Out is empty, all legal types of the specified kind will be added
 | 
						|
  /// to it. Otherwise, all types that are not of the specified kind will be
 | 
						|
  /// removed from \p Out.
 | 
						|
  bool EnforceInteger(TypeSetByHwMode &Out);
 | 
						|
  bool EnforceFloatingPoint(TypeSetByHwMode &Out);
 | 
						|
  bool EnforceScalar(TypeSetByHwMode &Out);
 | 
						|
  bool EnforceVector(TypeSetByHwMode &Out);
 | 
						|
 | 
						|
  /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
 | 
						|
  /// unchanged.
 | 
						|
  bool EnforceAny(TypeSetByHwMode &Out);
 | 
						|
  /// Make sure that for each type in \p Small, there exists a larger type
 | 
						|
  /// in \p Big. \p SmallIsVT indicates that this is being called for
 | 
						|
  /// SDTCisVTSmallerThanOp. In that case the TypeSetByHwMode is re-created for
 | 
						|
  /// each call and needs special consideration in how we detect changes.
 | 
						|
  bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
 | 
						|
                          bool SmallIsVT = false);
 | 
						|
  /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
 | 
						|
  ///    for each type U in \p Elem, U is a scalar type.
 | 
						|
  /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
 | 
						|
  ///    (vector) type T in \p Vec, such that U is the element type of T.
 | 
						|
  bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
 | 
						|
  bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
 | 
						|
                              const ValueTypeByHwMode &VVT);
 | 
						|
  /// Ensure that for each type T in \p Sub, T is a vector type, and there
 | 
						|
  /// exists a type U in \p Vec such that U is a vector type with the same
 | 
						|
  /// element type as T and at least as many elements as T.
 | 
						|
  bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
 | 
						|
                                    TypeSetByHwMode &Sub);
 | 
						|
  /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
 | 
						|
  /// 2. Ensure that for each vector type T in \p V, there exists a vector
 | 
						|
  ///    type U in \p W, such that T and U have the same number of elements.
 | 
						|
  /// 3. Ensure that for each vector type U in \p W, there exists a vector
 | 
						|
  ///    type T in \p V, such that T and U have the same number of elements
 | 
						|
  ///    (reverse of 2).
 | 
						|
  bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
 | 
						|
  /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
 | 
						|
  ///    such that T and U have equal size in bits.
 | 
						|
  /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
 | 
						|
  ///    such that T and U have equal size in bits (reverse of 1).
 | 
						|
  bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
 | 
						|
 | 
						|
  /// For each overloaded type (i.e. of form *Any), replace it with the
 | 
						|
  /// corresponding subset of legal, specific types.
 | 
						|
  void expandOverloads(TypeSetByHwMode &VTS);
 | 
						|
  void expandOverloads(TypeSetByHwMode::SetType &Out,
 | 
						|
                       const TypeSetByHwMode::SetType &Legal);
 | 
						|
 | 
						|
  struct ValidateOnExit {
 | 
						|
    ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
 | 
						|
  #ifndef NDEBUG
 | 
						|
    ~ValidateOnExit();
 | 
						|
  #else
 | 
						|
    ~ValidateOnExit() {}  // Empty destructor with NDEBUG.
 | 
						|
  #endif
 | 
						|
    TypeInfer &Infer;
 | 
						|
    TypeSetByHwMode &VTS;
 | 
						|
  };
 | 
						|
 | 
						|
  struct SuppressValidation {
 | 
						|
    SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
 | 
						|
      Infer.Validate = false;
 | 
						|
    }
 | 
						|
    ~SuppressValidation() {
 | 
						|
      Infer.Validate = SavedValidate;
 | 
						|
    }
 | 
						|
    TypeInfer &Infer;
 | 
						|
    bool SavedValidate;
 | 
						|
  };
 | 
						|
 | 
						|
  TreePattern &TP;
 | 
						|
  unsigned ForceMode;     // Mode to use when set.
 | 
						|
  bool CodeGen = false;   // Set during generation of matcher code.
 | 
						|
  bool Validate = true;   // Indicate whether to validate types.
 | 
						|
 | 
						|
private:
 | 
						|
  const TypeSetByHwMode &getLegalTypes();
 | 
						|
 | 
						|
  /// Cached legal types (in default mode).
 | 
						|
  bool LegalTypesCached = false;
 | 
						|
  TypeSetByHwMode LegalCache;
 | 
						|
};
 | 
						|
 | 
						|
/// Set type used to track multiply used variables in patterns
 | 
						|
typedef StringSet<> MultipleUseVarSet;
 | 
						|
 | 
						|
/// SDTypeConstraint - This is a discriminated union of constraints,
 | 
						|
/// corresponding to the SDTypeConstraint tablegen class in Target.td.
 | 
						|
struct SDTypeConstraint {
 | 
						|
  SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
 | 
						|
 | 
						|
  unsigned OperandNo;   // The operand # this constraint applies to.
 | 
						|
  enum {
 | 
						|
    SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
 | 
						|
    SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
 | 
						|
    SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
 | 
						|
  } ConstraintType;
 | 
						|
 | 
						|
  union {   // The discriminated union.
 | 
						|
    struct {
 | 
						|
      unsigned OtherOperandNum;
 | 
						|
    } SDTCisSameAs_Info;
 | 
						|
    struct {
 | 
						|
      unsigned OtherOperandNum;
 | 
						|
    } SDTCisVTSmallerThanOp_Info;
 | 
						|
    struct {
 | 
						|
      unsigned BigOperandNum;
 | 
						|
    } SDTCisOpSmallerThanOp_Info;
 | 
						|
    struct {
 | 
						|
      unsigned OtherOperandNum;
 | 
						|
    } SDTCisEltOfVec_Info;
 | 
						|
    struct {
 | 
						|
      unsigned OtherOperandNum;
 | 
						|
    } SDTCisSubVecOfVec_Info;
 | 
						|
    struct {
 | 
						|
      unsigned OtherOperandNum;
 | 
						|
    } SDTCisSameNumEltsAs_Info;
 | 
						|
    struct {
 | 
						|
      unsigned OtherOperandNum;
 | 
						|
    } SDTCisSameSizeAs_Info;
 | 
						|
  } x;
 | 
						|
 | 
						|
  // The VT for SDTCisVT and SDTCVecEltisVT.
 | 
						|
  // Must not be in the union because it has a non-trivial destructor.
 | 
						|
  ValueTypeByHwMode VVT;
 | 
						|
 | 
						|
  /// ApplyTypeConstraint - Given a node in a pattern, apply this type
 | 
						|
  /// constraint to the nodes operands.  This returns true if it makes a
 | 
						|
  /// change, false otherwise.  If a type contradiction is found, an error
 | 
						|
  /// is flagged.
 | 
						|
  bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
 | 
						|
                           TreePattern &TP) const;
 | 
						|
};
 | 
						|
 | 
						|
/// ScopedName - A name of a node associated with a "scope" that indicates
 | 
						|
/// the context (e.g. instance of Pattern or PatFrag) in which the name was
 | 
						|
/// used. This enables substitution of pattern fragments while keeping track
 | 
						|
/// of what name(s) were originally given to various nodes in the tree.
 | 
						|
class ScopedName {
 | 
						|
  unsigned Scope;
 | 
						|
  std::string Identifier;
 | 
						|
public:
 | 
						|
  ScopedName(unsigned Scope, StringRef Identifier)
 | 
						|
      : Scope(Scope), Identifier(std::string(Identifier)) {
 | 
						|
    assert(Scope != 0 &&
 | 
						|
           "Scope == 0 is used to indicate predicates without arguments");
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getScope() const { return Scope; }
 | 
						|
  const std::string &getIdentifier() const { return Identifier; }
 | 
						|
 | 
						|
  bool operator==(const ScopedName &o) const;
 | 
						|
  bool operator!=(const ScopedName &o) const;
 | 
						|
};
 | 
						|
 | 
						|
/// SDNodeInfo - One of these records is created for each SDNode instance in
 | 
						|
/// the target .td file.  This represents the various dag nodes we will be
 | 
						|
/// processing.
 | 
						|
class SDNodeInfo {
 | 
						|
  Record *Def;
 | 
						|
  StringRef EnumName;
 | 
						|
  StringRef SDClassName;
 | 
						|
  unsigned Properties;
 | 
						|
  unsigned NumResults;
 | 
						|
  int NumOperands;
 | 
						|
  std::vector<SDTypeConstraint> TypeConstraints;
 | 
						|
public:
 | 
						|
  // Parse the specified record.
 | 
						|
  SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
 | 
						|
 | 
						|
  unsigned getNumResults() const { return NumResults; }
 | 
						|
 | 
						|
  /// getNumOperands - This is the number of operands required or -1 if
 | 
						|
  /// variadic.
 | 
						|
  int getNumOperands() const { return NumOperands; }
 | 
						|
  Record *getRecord() const { return Def; }
 | 
						|
  StringRef getEnumName() const { return EnumName; }
 | 
						|
  StringRef getSDClassName() const { return SDClassName; }
 | 
						|
 | 
						|
  const std::vector<SDTypeConstraint> &getTypeConstraints() const {
 | 
						|
    return TypeConstraints;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getKnownType - If the type constraints on this node imply a fixed type
 | 
						|
  /// (e.g. all stores return void, etc), then return it as an
 | 
						|
  /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
 | 
						|
  MVT::SimpleValueType getKnownType(unsigned ResNo) const;
 | 
						|
 | 
						|
  /// hasProperty - Return true if this node has the specified property.
 | 
						|
  ///
 | 
						|
  bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
 | 
						|
 | 
						|
  /// ApplyTypeConstraints - Given a node in a pattern, apply the type
 | 
						|
  /// constraints for this node to the operands of the node.  This returns
 | 
						|
  /// true if it makes a change, false otherwise.  If a type contradiction is
 | 
						|
  /// found, an error is flagged.
 | 
						|
  bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
 | 
						|
};
 | 
						|
 | 
						|
/// TreePredicateFn - This is an abstraction that represents the predicates on
 | 
						|
/// a PatFrag node.  This is a simple one-word wrapper around a pointer to
 | 
						|
/// provide nice accessors.
 | 
						|
class TreePredicateFn {
 | 
						|
  /// PatFragRec - This is the TreePattern for the PatFrag that we
 | 
						|
  /// originally came from.
 | 
						|
  TreePattern *PatFragRec;
 | 
						|
public:
 | 
						|
  /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
 | 
						|
  TreePredicateFn(TreePattern *N);
 | 
						|
 | 
						|
 | 
						|
  TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
 | 
						|
 | 
						|
  /// isAlwaysTrue - Return true if this is a noop predicate.
 | 
						|
  bool isAlwaysTrue() const;
 | 
						|
 | 
						|
  bool isImmediatePattern() const { return hasImmCode(); }
 | 
						|
 | 
						|
  /// getImmediatePredicateCode - Return the code that evaluates this pattern if
 | 
						|
  /// this is an immediate predicate.  It is an error to call this on a
 | 
						|
  /// non-immediate pattern.
 | 
						|
  std::string getImmediatePredicateCode() const {
 | 
						|
    std::string Result = getImmCode();
 | 
						|
    assert(!Result.empty() && "Isn't an immediate pattern!");
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const TreePredicateFn &RHS) const {
 | 
						|
    return PatFragRec == RHS.PatFragRec;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
 | 
						|
 | 
						|
  /// Return the name to use in the generated code to reference this, this is
 | 
						|
  /// "Predicate_foo" if from a pattern fragment "foo".
 | 
						|
  std::string getFnName() const;
 | 
						|
 | 
						|
  /// getCodeToRunOnSDNode - Return the code for the function body that
 | 
						|
  /// evaluates this predicate.  The argument is expected to be in "Node",
 | 
						|
  /// not N.  This handles casting and conversion to a concrete node type as
 | 
						|
  /// appropriate.
 | 
						|
  std::string getCodeToRunOnSDNode() const;
 | 
						|
 | 
						|
  /// Get the data type of the argument to getImmediatePredicateCode().
 | 
						|
  StringRef getImmType() const;
 | 
						|
 | 
						|
  /// Get a string that describes the type returned by getImmType() but is
 | 
						|
  /// usable as part of an identifier.
 | 
						|
  StringRef getImmTypeIdentifier() const;
 | 
						|
 | 
						|
  // Predicate code uses the PatFrag's captured operands.
 | 
						|
  bool usesOperands() const;
 | 
						|
 | 
						|
  // Is the desired predefined predicate for a load?
 | 
						|
  bool isLoad() const;
 | 
						|
  // Is the desired predefined predicate for a store?
 | 
						|
  bool isStore() const;
 | 
						|
  // Is the desired predefined predicate for an atomic?
 | 
						|
  bool isAtomic() const;
 | 
						|
 | 
						|
  /// Is this predicate the predefined unindexed load predicate?
 | 
						|
  /// Is this predicate the predefined unindexed store predicate?
 | 
						|
  bool isUnindexed() const;
 | 
						|
  /// Is this predicate the predefined non-extending load predicate?
 | 
						|
  bool isNonExtLoad() const;
 | 
						|
  /// Is this predicate the predefined any-extend load predicate?
 | 
						|
  bool isAnyExtLoad() const;
 | 
						|
  /// Is this predicate the predefined sign-extend load predicate?
 | 
						|
  bool isSignExtLoad() const;
 | 
						|
  /// Is this predicate the predefined zero-extend load predicate?
 | 
						|
  bool isZeroExtLoad() const;
 | 
						|
  /// Is this predicate the predefined non-truncating store predicate?
 | 
						|
  bool isNonTruncStore() const;
 | 
						|
  /// Is this predicate the predefined truncating store predicate?
 | 
						|
  bool isTruncStore() const;
 | 
						|
 | 
						|
  /// Is this predicate the predefined monotonic atomic predicate?
 | 
						|
  bool isAtomicOrderingMonotonic() const;
 | 
						|
  /// Is this predicate the predefined acquire atomic predicate?
 | 
						|
  bool isAtomicOrderingAcquire() const;
 | 
						|
  /// Is this predicate the predefined release atomic predicate?
 | 
						|
  bool isAtomicOrderingRelease() const;
 | 
						|
  /// Is this predicate the predefined acquire-release atomic predicate?
 | 
						|
  bool isAtomicOrderingAcquireRelease() const;
 | 
						|
  /// Is this predicate the predefined sequentially consistent atomic predicate?
 | 
						|
  bool isAtomicOrderingSequentiallyConsistent() const;
 | 
						|
 | 
						|
  /// Is this predicate the predefined acquire-or-stronger atomic predicate?
 | 
						|
  bool isAtomicOrderingAcquireOrStronger() const;
 | 
						|
  /// Is this predicate the predefined weaker-than-acquire atomic predicate?
 | 
						|
  bool isAtomicOrderingWeakerThanAcquire() const;
 | 
						|
 | 
						|
  /// Is this predicate the predefined release-or-stronger atomic predicate?
 | 
						|
  bool isAtomicOrderingReleaseOrStronger() const;
 | 
						|
  /// Is this predicate the predefined weaker-than-release atomic predicate?
 | 
						|
  bool isAtomicOrderingWeakerThanRelease() const;
 | 
						|
 | 
						|
  /// If non-null, indicates that this predicate is a predefined memory VT
 | 
						|
  /// predicate for a load/store and returns the ValueType record for the memory VT.
 | 
						|
  Record *getMemoryVT() const;
 | 
						|
  /// If non-null, indicates that this predicate is a predefined memory VT
 | 
						|
  /// predicate (checking only the scalar type) for load/store and returns the
 | 
						|
  /// ValueType record for the memory VT.
 | 
						|
  Record *getScalarMemoryVT() const;
 | 
						|
 | 
						|
  ListInit *getAddressSpaces() const;
 | 
						|
  int64_t getMinAlignment() const;
 | 
						|
 | 
						|
  // If true, indicates that GlobalISel-based C++ code was supplied.
 | 
						|
  bool hasGISelPredicateCode() const;
 | 
						|
  std::string getGISelPredicateCode() const;
 | 
						|
 | 
						|
private:
 | 
						|
  bool hasPredCode() const;
 | 
						|
  bool hasImmCode() const;
 | 
						|
  std::string getPredCode() const;
 | 
						|
  std::string getImmCode() const;
 | 
						|
  bool immCodeUsesAPInt() const;
 | 
						|
  bool immCodeUsesAPFloat() const;
 | 
						|
 | 
						|
  bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
 | 
						|
};
 | 
						|
 | 
						|
struct TreePredicateCall {
 | 
						|
  TreePredicateFn Fn;
 | 
						|
 | 
						|
  // Scope -- unique identifier for retrieving named arguments. 0 is used when
 | 
						|
  // the predicate does not use named arguments.
 | 
						|
  unsigned Scope;
 | 
						|
 | 
						|
  TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
 | 
						|
    : Fn(Fn), Scope(Scope) {}
 | 
						|
 | 
						|
  bool operator==(const TreePredicateCall &o) const {
 | 
						|
    return Fn == o.Fn && Scope == o.Scope;
 | 
						|
  }
 | 
						|
  bool operator!=(const TreePredicateCall &o) const {
 | 
						|
    return !(*this == o);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class TreePatternNode {
 | 
						|
  /// The type of each node result.  Before and during type inference, each
 | 
						|
  /// result may be a set of possible types.  After (successful) type inference,
 | 
						|
  /// each is a single concrete type.
 | 
						|
  std::vector<TypeSetByHwMode> Types;
 | 
						|
 | 
						|
  /// The index of each result in results of the pattern.
 | 
						|
  std::vector<unsigned> ResultPerm;
 | 
						|
 | 
						|
  /// Operator - The Record for the operator if this is an interior node (not
 | 
						|
  /// a leaf).
 | 
						|
  Record *Operator;
 | 
						|
 | 
						|
  /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
 | 
						|
  ///
 | 
						|
  Init *Val;
 | 
						|
 | 
						|
  /// Name - The name given to this node with the :$foo notation.
 | 
						|
  ///
 | 
						|
  std::string Name;
 | 
						|
 | 
						|
  std::vector<ScopedName> NamesAsPredicateArg;
 | 
						|
 | 
						|
  /// PredicateCalls - The predicate functions to execute on this node to check
 | 
						|
  /// for a match.  If this list is empty, no predicate is involved.
 | 
						|
  std::vector<TreePredicateCall> PredicateCalls;
 | 
						|
 | 
						|
  /// TransformFn - The transformation function to execute on this node before
 | 
						|
  /// it can be substituted into the resulting instruction on a pattern match.
 | 
						|
  Record *TransformFn;
 | 
						|
 | 
						|
  std::vector<TreePatternNodePtr> Children;
 | 
						|
 | 
						|
public:
 | 
						|
  TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
 | 
						|
                  unsigned NumResults)
 | 
						|
      : Operator(Op), Val(nullptr), TransformFn(nullptr),
 | 
						|
        Children(std::move(Ch)) {
 | 
						|
    Types.resize(NumResults);
 | 
						|
    ResultPerm.resize(NumResults);
 | 
						|
    std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
 | 
						|
  }
 | 
						|
  TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
 | 
						|
    : Operator(nullptr), Val(val), TransformFn(nullptr) {
 | 
						|
    Types.resize(NumResults);
 | 
						|
    ResultPerm.resize(NumResults);
 | 
						|
    std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  bool hasName() const { return !Name.empty(); }
 | 
						|
  const std::string &getName() const { return Name; }
 | 
						|
  void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
 | 
						|
 | 
						|
  const std::vector<ScopedName> &getNamesAsPredicateArg() const {
 | 
						|
    return NamesAsPredicateArg;
 | 
						|
  }
 | 
						|
  void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
 | 
						|
    NamesAsPredicateArg = Names;
 | 
						|
  }
 | 
						|
  void addNameAsPredicateArg(const ScopedName &N) {
 | 
						|
    NamesAsPredicateArg.push_back(N);
 | 
						|
  }
 | 
						|
 | 
						|
  bool isLeaf() const { return Val != nullptr; }
 | 
						|
 | 
						|
  // Type accessors.
 | 
						|
  unsigned getNumTypes() const { return Types.size(); }
 | 
						|
  ValueTypeByHwMode getType(unsigned ResNo) const {
 | 
						|
    return Types[ResNo].getValueTypeByHwMode();
 | 
						|
  }
 | 
						|
  const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
 | 
						|
  const TypeSetByHwMode &getExtType(unsigned ResNo) const {
 | 
						|
    return Types[ResNo];
 | 
						|
  }
 | 
						|
  TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
 | 
						|
  void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
 | 
						|
  MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
 | 
						|
    return Types[ResNo].getMachineValueType().SimpleTy;
 | 
						|
  }
 | 
						|
 | 
						|
  bool hasConcreteType(unsigned ResNo) const {
 | 
						|
    return Types[ResNo].isValueTypeByHwMode(false);
 | 
						|
  }
 | 
						|
  bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
 | 
						|
    return Types[ResNo].empty();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getNumResults() const { return ResultPerm.size(); }
 | 
						|
  unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
 | 
						|
  void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
 | 
						|
 | 
						|
  Init *getLeafValue() const { assert(isLeaf()); return Val; }
 | 
						|
  Record *getOperator() const { assert(!isLeaf()); return Operator; }
 | 
						|
 | 
						|
  unsigned getNumChildren() const { return Children.size(); }
 | 
						|
  TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
 | 
						|
  const TreePatternNodePtr &getChildShared(unsigned N) const {
 | 
						|
    return Children[N];
 | 
						|
  }
 | 
						|
  void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
 | 
						|
 | 
						|
  /// hasChild - Return true if N is any of our children.
 | 
						|
  bool hasChild(const TreePatternNode *N) const {
 | 
						|
    for (unsigned i = 0, e = Children.size(); i != e; ++i)
 | 
						|
      if (Children[i].get() == N)
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool hasProperTypeByHwMode() const;
 | 
						|
  bool hasPossibleType() const;
 | 
						|
  bool setDefaultMode(unsigned Mode);
 | 
						|
 | 
						|
  bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
 | 
						|
 | 
						|
  const std::vector<TreePredicateCall> &getPredicateCalls() const {
 | 
						|
    return PredicateCalls;
 | 
						|
  }
 | 
						|
  void clearPredicateCalls() { PredicateCalls.clear(); }
 | 
						|
  void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
 | 
						|
    assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
 | 
						|
    PredicateCalls = Calls;
 | 
						|
  }
 | 
						|
  void addPredicateCall(const TreePredicateCall &Call) {
 | 
						|
    assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
 | 
						|
    assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
 | 
						|
    PredicateCalls.push_back(Call);
 | 
						|
  }
 | 
						|
  void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
 | 
						|
    assert((Scope != 0) == Fn.usesOperands());
 | 
						|
    addPredicateCall(TreePredicateCall(Fn, Scope));
 | 
						|
  }
 | 
						|
 | 
						|
  Record *getTransformFn() const { return TransformFn; }
 | 
						|
  void setTransformFn(Record *Fn) { TransformFn = Fn; }
 | 
						|
 | 
						|
  /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
 | 
						|
  /// CodeGenIntrinsic information for it, otherwise return a null pointer.
 | 
						|
  const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
 | 
						|
 | 
						|
  /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
 | 
						|
  /// return the ComplexPattern information, otherwise return null.
 | 
						|
  const ComplexPattern *
 | 
						|
  getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
 | 
						|
 | 
						|
  /// Returns the number of MachineInstr operands that would be produced by this
 | 
						|
  /// node if it mapped directly to an output Instruction's
 | 
						|
  /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
 | 
						|
  /// for Operands; otherwise 1.
 | 
						|
  unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
 | 
						|
 | 
						|
  /// NodeHasProperty - Return true if this node has the specified property.
 | 
						|
  bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
 | 
						|
 | 
						|
  /// TreeHasProperty - Return true if any node in this tree has the specified
 | 
						|
  /// property.
 | 
						|
  bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
 | 
						|
 | 
						|
  /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
 | 
						|
  /// marked isCommutative.
 | 
						|
  bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
  void dump() const;
 | 
						|
 | 
						|
public:   // Higher level manipulation routines.
 | 
						|
 | 
						|
  /// clone - Return a new copy of this tree.
 | 
						|
  ///
 | 
						|
  TreePatternNodePtr clone() const;
 | 
						|
 | 
						|
  /// RemoveAllTypes - Recursively strip all the types of this tree.
 | 
						|
  void RemoveAllTypes();
 | 
						|
 | 
						|
  /// isIsomorphicTo - Return true if this node is recursively isomorphic to
 | 
						|
  /// the specified node.  For this comparison, all of the state of the node
 | 
						|
  /// is considered, except for the assigned name.  Nodes with differing names
 | 
						|
  /// that are otherwise identical are considered isomorphic.
 | 
						|
  bool isIsomorphicTo(const TreePatternNode *N,
 | 
						|
                      const MultipleUseVarSet &DepVars) const;
 | 
						|
 | 
						|
  /// SubstituteFormalArguments - Replace the formal arguments in this tree
 | 
						|
  /// with actual values specified by ArgMap.
 | 
						|
  void
 | 
						|
  SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
 | 
						|
 | 
						|
  /// InlinePatternFragments - If this pattern refers to any pattern
 | 
						|
  /// fragments, return the set of inlined versions (this can be more than
 | 
						|
  /// one if a PatFrags record has multiple alternatives).
 | 
						|
  void InlinePatternFragments(TreePatternNodePtr T,
 | 
						|
                              TreePattern &TP,
 | 
						|
                              std::vector<TreePatternNodePtr> &OutAlternatives);
 | 
						|
 | 
						|
  /// ApplyTypeConstraints - Apply all of the type constraints relevant to
 | 
						|
  /// this node and its children in the tree.  This returns true if it makes a
 | 
						|
  /// change, false otherwise.  If a type contradiction is found, flag an error.
 | 
						|
  bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
 | 
						|
 | 
						|
  /// UpdateNodeType - Set the node type of N to VT if VT contains
 | 
						|
  /// information.  If N already contains a conflicting type, then flag an
 | 
						|
  /// error.  This returns true if any information was updated.
 | 
						|
  ///
 | 
						|
  bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
 | 
						|
                      TreePattern &TP);
 | 
						|
  bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
 | 
						|
                      TreePattern &TP);
 | 
						|
  bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
 | 
						|
                      TreePattern &TP);
 | 
						|
 | 
						|
  // Update node type with types inferred from an instruction operand or result
 | 
						|
  // def from the ins/outs lists.
 | 
						|
  // Return true if the type changed.
 | 
						|
  bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
 | 
						|
 | 
						|
  /// ContainsUnresolvedType - Return true if this tree contains any
 | 
						|
  /// unresolved types.
 | 
						|
  bool ContainsUnresolvedType(TreePattern &TP) const;
 | 
						|
 | 
						|
  /// canPatternMatch - If it is impossible for this pattern to match on this
 | 
						|
  /// target, fill in Reason and return false.  Otherwise, return true.
 | 
						|
  bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
 | 
						|
};
 | 
						|
 | 
						|
inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
 | 
						|
  TPN.print(OS);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// TreePattern - Represent a pattern, used for instructions, pattern
 | 
						|
/// fragments, etc.
 | 
						|
///
 | 
						|
class TreePattern {
 | 
						|
  /// Trees - The list of pattern trees which corresponds to this pattern.
 | 
						|
  /// Note that PatFrag's only have a single tree.
 | 
						|
  ///
 | 
						|
  std::vector<TreePatternNodePtr> Trees;
 | 
						|
 | 
						|
  /// NamedNodes - This is all of the nodes that have names in the trees in this
 | 
						|
  /// pattern.
 | 
						|
  StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
 | 
						|
 | 
						|
  /// TheRecord - The actual TableGen record corresponding to this pattern.
 | 
						|
  ///
 | 
						|
  Record *TheRecord;
 | 
						|
 | 
						|
  /// Args - This is a list of all of the arguments to this pattern (for
 | 
						|
  /// PatFrag patterns), which are the 'node' markers in this pattern.
 | 
						|
  std::vector<std::string> Args;
 | 
						|
 | 
						|
  /// CDP - the top-level object coordinating this madness.
 | 
						|
  ///
 | 
						|
  CodeGenDAGPatterns &CDP;
 | 
						|
 | 
						|
  /// isInputPattern - True if this is an input pattern, something to match.
 | 
						|
  /// False if this is an output pattern, something to emit.
 | 
						|
  bool isInputPattern;
 | 
						|
 | 
						|
  /// hasError - True if the currently processed nodes have unresolvable types
 | 
						|
  /// or other non-fatal errors
 | 
						|
  bool HasError;
 | 
						|
 | 
						|
  /// It's important that the usage of operands in ComplexPatterns is
 | 
						|
  /// consistent: each named operand can be defined by at most one
 | 
						|
  /// ComplexPattern. This records the ComplexPattern instance and the operand
 | 
						|
  /// number for each operand encountered in a ComplexPattern to aid in that
 | 
						|
  /// check.
 | 
						|
  StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
 | 
						|
 | 
						|
  TypeInfer Infer;
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  /// TreePattern constructor - Parse the specified DagInits into the
 | 
						|
  /// current record.
 | 
						|
  TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
 | 
						|
              CodeGenDAGPatterns &ise);
 | 
						|
  TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
 | 
						|
              CodeGenDAGPatterns &ise);
 | 
						|
  TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
 | 
						|
              CodeGenDAGPatterns &ise);
 | 
						|
 | 
						|
  /// getTrees - Return the tree patterns which corresponds to this pattern.
 | 
						|
  ///
 | 
						|
  const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
 | 
						|
  unsigned getNumTrees() const { return Trees.size(); }
 | 
						|
  const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
 | 
						|
  void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
 | 
						|
  const TreePatternNodePtr &getOnlyTree() const {
 | 
						|
    assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
 | 
						|
    return Trees[0];
 | 
						|
  }
 | 
						|
 | 
						|
  const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
 | 
						|
    if (NamedNodes.empty())
 | 
						|
      ComputeNamedNodes();
 | 
						|
    return NamedNodes;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getRecord - Return the actual TableGen record corresponding to this
 | 
						|
  /// pattern.
 | 
						|
  ///
 | 
						|
  Record *getRecord() const { return TheRecord; }
 | 
						|
 | 
						|
  unsigned getNumArgs() const { return Args.size(); }
 | 
						|
  const std::string &getArgName(unsigned i) const {
 | 
						|
    assert(i < Args.size() && "Argument reference out of range!");
 | 
						|
    return Args[i];
 | 
						|
  }
 | 
						|
  std::vector<std::string> &getArgList() { return Args; }
 | 
						|
 | 
						|
  CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
 | 
						|
 | 
						|
  /// InlinePatternFragments - If this pattern refers to any pattern
 | 
						|
  /// fragments, inline them into place, giving us a pattern without any
 | 
						|
  /// PatFrags references.  This may increase the number of trees in the
 | 
						|
  /// pattern if a PatFrags has multiple alternatives.
 | 
						|
  void InlinePatternFragments() {
 | 
						|
    std::vector<TreePatternNodePtr> Copy = Trees;
 | 
						|
    Trees.clear();
 | 
						|
    for (unsigned i = 0, e = Copy.size(); i != e; ++i)
 | 
						|
      Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
 | 
						|
  }
 | 
						|
 | 
						|
  /// InferAllTypes - Infer/propagate as many types throughout the expression
 | 
						|
  /// patterns as possible.  Return true if all types are inferred, false
 | 
						|
  /// otherwise.  Bail out if a type contradiction is found.
 | 
						|
  bool InferAllTypes(
 | 
						|
      const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
 | 
						|
 | 
						|
  /// error - If this is the first error in the current resolution step,
 | 
						|
  /// print it and set the error flag.  Otherwise, continue silently.
 | 
						|
  void error(const Twine &Msg);
 | 
						|
  bool hasError() const {
 | 
						|
    return HasError;
 | 
						|
  }
 | 
						|
  void resetError() {
 | 
						|
    HasError = false;
 | 
						|
  }
 | 
						|
 | 
						|
  TypeInfer &getInfer() { return Infer; }
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
  void dump() const;
 | 
						|
 | 
						|
private:
 | 
						|
  TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
 | 
						|
  void ComputeNamedNodes();
 | 
						|
  void ComputeNamedNodes(TreePatternNode *N);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
 | 
						|
                                            const TypeSetByHwMode &InTy,
 | 
						|
                                            TreePattern &TP) {
 | 
						|
  TypeSetByHwMode VTS(InTy);
 | 
						|
  TP.getInfer().expandOverloads(VTS);
 | 
						|
  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
 | 
						|
}
 | 
						|
 | 
						|
inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
 | 
						|
                                            MVT::SimpleValueType InTy,
 | 
						|
                                            TreePattern &TP) {
 | 
						|
  TypeSetByHwMode VTS(InTy);
 | 
						|
  TP.getInfer().expandOverloads(VTS);
 | 
						|
  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
 | 
						|
}
 | 
						|
 | 
						|
inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
 | 
						|
                                            ValueTypeByHwMode InTy,
 | 
						|
                                            TreePattern &TP) {
 | 
						|
  TypeSetByHwMode VTS(InTy);
 | 
						|
  TP.getInfer().expandOverloads(VTS);
 | 
						|
  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
 | 
						|
/// that has a set ExecuteAlways / DefaultOps field.
 | 
						|
struct DAGDefaultOperand {
 | 
						|
  std::vector<TreePatternNodePtr> DefaultOps;
 | 
						|
};
 | 
						|
 | 
						|
class DAGInstruction {
 | 
						|
  std::vector<Record*> Results;
 | 
						|
  std::vector<Record*> Operands;
 | 
						|
  std::vector<Record*> ImpResults;
 | 
						|
  TreePatternNodePtr SrcPattern;
 | 
						|
  TreePatternNodePtr ResultPattern;
 | 
						|
 | 
						|
public:
 | 
						|
  DAGInstruction(const std::vector<Record*> &results,
 | 
						|
                 const std::vector<Record*> &operands,
 | 
						|
                 const std::vector<Record*> &impresults,
 | 
						|
                 TreePatternNodePtr srcpattern = nullptr,
 | 
						|
                 TreePatternNodePtr resultpattern = nullptr)
 | 
						|
    : Results(results), Operands(operands), ImpResults(impresults),
 | 
						|
      SrcPattern(srcpattern), ResultPattern(resultpattern) {}
 | 
						|
 | 
						|
  unsigned getNumResults() const { return Results.size(); }
 | 
						|
  unsigned getNumOperands() const { return Operands.size(); }
 | 
						|
  unsigned getNumImpResults() const { return ImpResults.size(); }
 | 
						|
  const std::vector<Record*>& getImpResults() const { return ImpResults; }
 | 
						|
 | 
						|
  Record *getResult(unsigned RN) const {
 | 
						|
    assert(RN < Results.size());
 | 
						|
    return Results[RN];
 | 
						|
  }
 | 
						|
 | 
						|
  Record *getOperand(unsigned ON) const {
 | 
						|
    assert(ON < Operands.size());
 | 
						|
    return Operands[ON];
 | 
						|
  }
 | 
						|
 | 
						|
  Record *getImpResult(unsigned RN) const {
 | 
						|
    assert(RN < ImpResults.size());
 | 
						|
    return ImpResults[RN];
 | 
						|
  }
 | 
						|
 | 
						|
  TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
 | 
						|
  TreePatternNodePtr getResultPattern() const { return ResultPattern; }
 | 
						|
};
 | 
						|
 | 
						|
/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
 | 
						|
/// processed to produce isel.
 | 
						|
class PatternToMatch {
 | 
						|
  Record          *SrcRecord;   // Originating Record for the pattern.
 | 
						|
  ListInit        *Predicates;  // Top level predicate conditions to match.
 | 
						|
  TreePatternNodePtr SrcPattern;      // Source pattern to match.
 | 
						|
  TreePatternNodePtr DstPattern;      // Resulting pattern.
 | 
						|
  std::vector<Record*> Dstregs; // Physical register defs being matched.
 | 
						|
  std::string      HwModeFeatures;
 | 
						|
  int              AddedComplexity; // Add to matching pattern complexity.
 | 
						|
  unsigned         ID;          // Unique ID for the record.
 | 
						|
  unsigned         ForceMode;   // Force this mode in type inference when set.
 | 
						|
 | 
						|
public:
 | 
						|
  PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNodePtr src,
 | 
						|
                 TreePatternNodePtr dst, std::vector<Record *> dstregs,
 | 
						|
                 int complexity, unsigned uid, unsigned setmode = 0,
 | 
						|
                 const Twine &hwmodefeatures = "")
 | 
						|
      : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src),
 | 
						|
        DstPattern(dst), Dstregs(std::move(dstregs)),
 | 
						|
        HwModeFeatures(hwmodefeatures.str()), AddedComplexity(complexity),
 | 
						|
        ID(uid), ForceMode(setmode) {}
 | 
						|
 | 
						|
  Record          *getSrcRecord()  const { return SrcRecord; }
 | 
						|
  ListInit        *getPredicates() const { return Predicates; }
 | 
						|
  TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
 | 
						|
  TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
 | 
						|
  TreePatternNode *getDstPattern() const { return DstPattern.get(); }
 | 
						|
  TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
 | 
						|
  const std::vector<Record*> &getDstRegs() const { return Dstregs; }
 | 
						|
  StringRef   getHwModeFeatures() const { return HwModeFeatures; }
 | 
						|
  int         getAddedComplexity() const { return AddedComplexity; }
 | 
						|
  unsigned getID() const { return ID; }
 | 
						|
  unsigned getForceMode() const { return ForceMode; }
 | 
						|
 | 
						|
  std::string getPredicateCheck() const;
 | 
						|
  void getPredicateRecords(SmallVectorImpl<Record *> &PredicateRecs) const;
 | 
						|
 | 
						|
  /// Compute the complexity metric for the input pattern.  This roughly
 | 
						|
  /// corresponds to the number of nodes that are covered.
 | 
						|
  int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
 | 
						|
};
 | 
						|
 | 
						|
class CodeGenDAGPatterns {
 | 
						|
  RecordKeeper &Records;
 | 
						|
  CodeGenTarget Target;
 | 
						|
  CodeGenIntrinsicTable Intrinsics;
 | 
						|
 | 
						|
  std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
 | 
						|
  std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
 | 
						|
      SDNodeXForms;
 | 
						|
  std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
 | 
						|
  std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
 | 
						|
      PatternFragments;
 | 
						|
  std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
 | 
						|
  std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
 | 
						|
 | 
						|
  // Specific SDNode definitions:
 | 
						|
  Record *intrinsic_void_sdnode;
 | 
						|
  Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
 | 
						|
 | 
						|
  /// PatternsToMatch - All of the things we are matching on the DAG.  The first
 | 
						|
  /// value is the pattern to match, the second pattern is the result to
 | 
						|
  /// emit.
 | 
						|
  std::vector<PatternToMatch> PatternsToMatch;
 | 
						|
 | 
						|
  TypeSetByHwMode LegalVTS;
 | 
						|
 | 
						|
  using PatternRewriterFn = std::function<void (TreePattern *)>;
 | 
						|
  PatternRewriterFn PatternRewriter;
 | 
						|
 | 
						|
  unsigned NumScopes = 0;
 | 
						|
 | 
						|
public:
 | 
						|
  CodeGenDAGPatterns(RecordKeeper &R,
 | 
						|
                     PatternRewriterFn PatternRewriter = nullptr);
 | 
						|
 | 
						|
  CodeGenTarget &getTargetInfo() { return Target; }
 | 
						|
  const CodeGenTarget &getTargetInfo() const { return Target; }
 | 
						|
  const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
 | 
						|
 | 
						|
  Record *getSDNodeNamed(StringRef Name) const;
 | 
						|
 | 
						|
  const SDNodeInfo &getSDNodeInfo(Record *R) const {
 | 
						|
    auto F = SDNodes.find(R);
 | 
						|
    assert(F != SDNodes.end() && "Unknown node!");
 | 
						|
    return F->second;
 | 
						|
  }
 | 
						|
 | 
						|
  // Node transformation lookups.
 | 
						|
  typedef std::pair<Record*, std::string> NodeXForm;
 | 
						|
  const NodeXForm &getSDNodeTransform(Record *R) const {
 | 
						|
    auto F = SDNodeXForms.find(R);
 | 
						|
    assert(F != SDNodeXForms.end() && "Invalid transform!");
 | 
						|
    return F->second;
 | 
						|
  }
 | 
						|
 | 
						|
  const ComplexPattern &getComplexPattern(Record *R) const {
 | 
						|
    auto F = ComplexPatterns.find(R);
 | 
						|
    assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
 | 
						|
    return F->second;
 | 
						|
  }
 | 
						|
 | 
						|
  const CodeGenIntrinsic &getIntrinsic(Record *R) const {
 | 
						|
    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
 | 
						|
      if (Intrinsics[i].TheDef == R) return Intrinsics[i];
 | 
						|
    llvm_unreachable("Unknown intrinsic!");
 | 
						|
  }
 | 
						|
 | 
						|
  const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
 | 
						|
    if (IID-1 < Intrinsics.size())
 | 
						|
      return Intrinsics[IID-1];
 | 
						|
    llvm_unreachable("Bad intrinsic ID!");
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getIntrinsicID(Record *R) const {
 | 
						|
    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
 | 
						|
      if (Intrinsics[i].TheDef == R) return i;
 | 
						|
    llvm_unreachable("Unknown intrinsic!");
 | 
						|
  }
 | 
						|
 | 
						|
  const DAGDefaultOperand &getDefaultOperand(Record *R) const {
 | 
						|
    auto F = DefaultOperands.find(R);
 | 
						|
    assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
 | 
						|
    return F->second;
 | 
						|
  }
 | 
						|
 | 
						|
  // Pattern Fragment information.
 | 
						|
  TreePattern *getPatternFragment(Record *R) const {
 | 
						|
    auto F = PatternFragments.find(R);
 | 
						|
    assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
 | 
						|
    return F->second.get();
 | 
						|
  }
 | 
						|
  TreePattern *getPatternFragmentIfRead(Record *R) const {
 | 
						|
    auto F = PatternFragments.find(R);
 | 
						|
    if (F == PatternFragments.end())
 | 
						|
      return nullptr;
 | 
						|
    return F->second.get();
 | 
						|
  }
 | 
						|
 | 
						|
  typedef std::map<Record *, std::unique_ptr<TreePattern>,
 | 
						|
                   LessRecordByID>::const_iterator pf_iterator;
 | 
						|
  pf_iterator pf_begin() const { return PatternFragments.begin(); }
 | 
						|
  pf_iterator pf_end() const { return PatternFragments.end(); }
 | 
						|
  iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
 | 
						|
 | 
						|
  // Patterns to match information.
 | 
						|
  typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
 | 
						|
  ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
 | 
						|
  ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
 | 
						|
  iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
 | 
						|
 | 
						|
  /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
 | 
						|
  typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
 | 
						|
  void parseInstructionPattern(
 | 
						|
      CodeGenInstruction &CGI, ListInit *Pattern,
 | 
						|
      DAGInstMap &DAGInsts);
 | 
						|
 | 
						|
  const DAGInstruction &getInstruction(Record *R) const {
 | 
						|
    auto F = Instructions.find(R);
 | 
						|
    assert(F != Instructions.end() && "Unknown instruction!");
 | 
						|
    return F->second;
 | 
						|
  }
 | 
						|
 | 
						|
  Record *get_intrinsic_void_sdnode() const {
 | 
						|
    return intrinsic_void_sdnode;
 | 
						|
  }
 | 
						|
  Record *get_intrinsic_w_chain_sdnode() const {
 | 
						|
    return intrinsic_w_chain_sdnode;
 | 
						|
  }
 | 
						|
  Record *get_intrinsic_wo_chain_sdnode() const {
 | 
						|
    return intrinsic_wo_chain_sdnode;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned allocateScope() { return ++NumScopes; }
 | 
						|
 | 
						|
  bool operandHasDefault(Record *Op) const {
 | 
						|
    return Op->isSubClassOf("OperandWithDefaultOps") &&
 | 
						|
      !getDefaultOperand(Op).DefaultOps.empty();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void ParseNodeInfo();
 | 
						|
  void ParseNodeTransforms();
 | 
						|
  void ParseComplexPatterns();
 | 
						|
  void ParsePatternFragments(bool OutFrags = false);
 | 
						|
  void ParseDefaultOperands();
 | 
						|
  void ParseInstructions();
 | 
						|
  void ParsePatterns();
 | 
						|
  void ExpandHwModeBasedTypes();
 | 
						|
  void InferInstructionFlags();
 | 
						|
  void GenerateVariants();
 | 
						|
  void VerifyInstructionFlags();
 | 
						|
 | 
						|
  void ParseOnePattern(Record *TheDef,
 | 
						|
                       TreePattern &Pattern, TreePattern &Result,
 | 
						|
                       const std::vector<Record *> &InstImpResults);
 | 
						|
  void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
 | 
						|
  void FindPatternInputsAndOutputs(
 | 
						|
      TreePattern &I, TreePatternNodePtr Pat,
 | 
						|
      std::map<std::string, TreePatternNodePtr> &InstInputs,
 | 
						|
      MapVector<std::string, TreePatternNodePtr,
 | 
						|
                std::map<std::string, unsigned>> &InstResults,
 | 
						|
      std::vector<Record *> &InstImpResults);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
 | 
						|
                                             TreePattern &TP) const {
 | 
						|
    bool MadeChange = false;
 | 
						|
    for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
 | 
						|
      MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
 | 
						|
    return MadeChange;
 | 
						|
  }
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
#endif
 |