476 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			476 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is dual licensed under the MIT and the University of Illinois Open
 | 
						|
// Source Licenses. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// REQUIRES: long_tests
 | 
						|
 | 
						|
// <random>
 | 
						|
 | 
						|
// template<class RealType = double>
 | 
						|
// class uniform_real_distribution
 | 
						|
 | 
						|
// template<class _URNG> result_type operator()(_URNG& g);
 | 
						|
 | 
						|
#include <random>
 | 
						|
#include <cassert>
 | 
						|
#include <vector>
 | 
						|
#include <numeric>
 | 
						|
#include <cstddef>
 | 
						|
 | 
						|
template <class T>
 | 
						|
inline
 | 
						|
T
 | 
						|
sqr(T x)
 | 
						|
{
 | 
						|
    return x * x;
 | 
						|
}
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
    {
 | 
						|
        typedef std::uniform_real_distribution<> D;
 | 
						|
        typedef std::minstd_rand0 G;
 | 
						|
        G g;
 | 
						|
        D d;
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.a() <= v && v < d.b());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        D::result_type mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              D::result_type(0)) / u.size();
 | 
						|
        D::result_type var = 0;
 | 
						|
        D::result_type skew = 0;
 | 
						|
        D::result_type kurtosis = 0;
 | 
						|
        for (std::size_t i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            D::result_type dbl = (u[i] - mean);
 | 
						|
            D::result_type d2 = sqr(dbl);
 | 
						|
            var += d2;
 | 
						|
            skew += dbl * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        D::result_type dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        D::result_type x_mean = (d.a() + d.b()) / 2;
 | 
						|
        D::result_type x_var = sqr(d.b() - d.a()) / 12;
 | 
						|
        D::result_type x_skew = 0;
 | 
						|
        D::result_type x_kurtosis = -6./5;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::uniform_real_distribution<> D;
 | 
						|
        typedef std::minstd_rand G;
 | 
						|
        G g;
 | 
						|
        D d;
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.a() <= v && v < d.b());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        D::result_type mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              D::result_type(0)) / u.size();
 | 
						|
        D::result_type var = 0;
 | 
						|
        D::result_type skew = 0;
 | 
						|
        D::result_type kurtosis = 0;
 | 
						|
        for (std::size_t i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            D::result_type dbl = (u[i] - mean);
 | 
						|
            D::result_type d2 = sqr(dbl);
 | 
						|
            var += d2;
 | 
						|
            skew += dbl * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        D::result_type dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        D::result_type x_mean = (d.a() + d.b()) / 2;
 | 
						|
        D::result_type x_var = sqr(d.b() - d.a()) / 12;
 | 
						|
        D::result_type x_skew = 0;
 | 
						|
        D::result_type x_kurtosis = -6./5;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::uniform_real_distribution<> D;
 | 
						|
        typedef std::mt19937 G;
 | 
						|
        G g;
 | 
						|
        D d;
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.a() <= v && v < d.b());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        D::result_type mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              D::result_type(0)) / u.size();
 | 
						|
        D::result_type var = 0;
 | 
						|
        D::result_type skew = 0;
 | 
						|
        D::result_type kurtosis = 0;
 | 
						|
        for (std::size_t i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            D::result_type dbl = (u[i] - mean);
 | 
						|
            D::result_type d2 = sqr(dbl);
 | 
						|
            var += d2;
 | 
						|
            skew += dbl * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        D::result_type dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        D::result_type x_mean = (d.a() + d.b()) / 2;
 | 
						|
        D::result_type x_var = sqr(d.b() - d.a()) / 12;
 | 
						|
        D::result_type x_skew = 0;
 | 
						|
        D::result_type x_kurtosis = -6./5;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::uniform_real_distribution<> D;
 | 
						|
        typedef std::mt19937_64 G;
 | 
						|
        G g;
 | 
						|
        D d;
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.a() <= v && v < d.b());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        D::result_type mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              D::result_type(0)) / u.size();
 | 
						|
        D::result_type var = 0;
 | 
						|
        D::result_type skew = 0;
 | 
						|
        D::result_type kurtosis = 0;
 | 
						|
        for (std::size_t i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            D::result_type dbl = (u[i] - mean);
 | 
						|
            D::result_type d2 = sqr(dbl);
 | 
						|
            var += d2;
 | 
						|
            skew += dbl * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        D::result_type dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        D::result_type x_mean = (d.a() + d.b()) / 2;
 | 
						|
        D::result_type x_var = sqr(d.b() - d.a()) / 12;
 | 
						|
        D::result_type x_skew = 0;
 | 
						|
        D::result_type x_kurtosis = -6./5;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::uniform_real_distribution<> D;
 | 
						|
        typedef std::ranlux24_base G;
 | 
						|
        G g;
 | 
						|
        D d;
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.a() <= v && v < d.b());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        D::result_type mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              D::result_type(0)) / u.size();
 | 
						|
        D::result_type var = 0;
 | 
						|
        D::result_type skew = 0;
 | 
						|
        D::result_type kurtosis = 0;
 | 
						|
        for (std::size_t i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            D::result_type dbl = (u[i] - mean);
 | 
						|
            D::result_type d2 = sqr(dbl);
 | 
						|
            var += d2;
 | 
						|
            skew += dbl * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        D::result_type dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        D::result_type x_mean = (d.a() + d.b()) / 2;
 | 
						|
        D::result_type x_var = sqr(d.b() - d.a()) / 12;
 | 
						|
        D::result_type x_skew = 0;
 | 
						|
        D::result_type x_kurtosis = -6./5;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs(skew - x_skew) < 0.02);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::uniform_real_distribution<> D;
 | 
						|
        typedef std::ranlux48_base G;
 | 
						|
        G g;
 | 
						|
        D d;
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.a() <= v && v < d.b());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        D::result_type mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              D::result_type(0)) / u.size();
 | 
						|
        D::result_type var = 0;
 | 
						|
        D::result_type skew = 0;
 | 
						|
        D::result_type kurtosis = 0;
 | 
						|
        for (std::size_t i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            D::result_type dbl = (u[i] - mean);
 | 
						|
            D::result_type d2 = sqr(dbl);
 | 
						|
            var += d2;
 | 
						|
            skew += dbl * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        D::result_type dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        D::result_type x_mean = (d.a() + d.b()) / 2;
 | 
						|
        D::result_type x_var = sqr(d.b() - d.a()) / 12;
 | 
						|
        D::result_type x_skew = 0;
 | 
						|
        D::result_type x_kurtosis = -6./5;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::uniform_real_distribution<> D;
 | 
						|
        typedef std::ranlux24 G;
 | 
						|
        G g;
 | 
						|
        D d;
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.a() <= v && v < d.b());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        D::result_type mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              D::result_type(0)) / u.size();
 | 
						|
        D::result_type var = 0;
 | 
						|
        D::result_type skew = 0;
 | 
						|
        D::result_type kurtosis = 0;
 | 
						|
        for (std::size_t i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            D::result_type dbl = (u[i] - mean);
 | 
						|
            D::result_type d2 = sqr(dbl);
 | 
						|
            var += d2;
 | 
						|
            skew += dbl * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        D::result_type dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        D::result_type x_mean = (d.a() + d.b()) / 2;
 | 
						|
        D::result_type x_var = sqr(d.b() - d.a()) / 12;
 | 
						|
        D::result_type x_skew = 0;
 | 
						|
        D::result_type x_kurtosis = -6./5;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::uniform_real_distribution<> D;
 | 
						|
        typedef std::ranlux48 G;
 | 
						|
        G g;
 | 
						|
        D d;
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.a() <= v && v < d.b());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        D::result_type mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              D::result_type(0)) / u.size();
 | 
						|
        D::result_type var = 0;
 | 
						|
        D::result_type skew = 0;
 | 
						|
        D::result_type kurtosis = 0;
 | 
						|
        for (std::size_t i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            D::result_type dbl = (u[i] - mean);
 | 
						|
            D::result_type d2 = sqr(dbl);
 | 
						|
            var += d2;
 | 
						|
            skew += dbl * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        D::result_type dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        D::result_type x_mean = (d.a() + d.b()) / 2;
 | 
						|
        D::result_type x_var = sqr(d.b() - d.a()) / 12;
 | 
						|
        D::result_type x_skew = 0;
 | 
						|
        D::result_type x_kurtosis = -6./5;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::uniform_real_distribution<> D;
 | 
						|
        typedef std::knuth_b G;
 | 
						|
        G g;
 | 
						|
        D d;
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.a() <= v && v < d.b());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        D::result_type mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              D::result_type(0)) / u.size();
 | 
						|
        D::result_type var = 0;
 | 
						|
        D::result_type skew = 0;
 | 
						|
        D::result_type kurtosis = 0;
 | 
						|
        for (std::size_t i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            D::result_type dbl = (u[i] - mean);
 | 
						|
            D::result_type d2 = sqr(dbl);
 | 
						|
            var += d2;
 | 
						|
            skew += dbl * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        D::result_type dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        D::result_type x_mean = (d.a() + d.b()) / 2;
 | 
						|
        D::result_type x_var = sqr(d.b() - d.a()) / 12;
 | 
						|
        D::result_type x_skew = 0;
 | 
						|
        D::result_type x_kurtosis = -6./5;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::uniform_real_distribution<> D;
 | 
						|
        typedef std::minstd_rand G;
 | 
						|
        G g;
 | 
						|
        D d(-1, 1);
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.a() <= v && v < d.b());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        D::result_type mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              D::result_type(0)) / u.size();
 | 
						|
        D::result_type var = 0;
 | 
						|
        D::result_type skew = 0;
 | 
						|
        D::result_type kurtosis = 0;
 | 
						|
        for (std::size_t i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            D::result_type dbl = (u[i] - mean);
 | 
						|
            D::result_type d2 = sqr(dbl);
 | 
						|
            var += d2;
 | 
						|
            skew += dbl * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        D::result_type dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        D::result_type x_mean = (d.a() + d.b()) / 2;
 | 
						|
        D::result_type x_var = sqr(d.b() - d.a()) / 12;
 | 
						|
        D::result_type x_skew = 0;
 | 
						|
        D::result_type x_kurtosis = -6./5;
 | 
						|
        assert(std::abs(mean - x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::uniform_real_distribution<> D;
 | 
						|
        typedef std::minstd_rand G;
 | 
						|
        G g;
 | 
						|
        D d(5.5, 25);
 | 
						|
        const int N = 100000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.a() <= v && v < d.b());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        D::result_type mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              D::result_type(0)) / u.size();
 | 
						|
        D::result_type var = 0;
 | 
						|
        D::result_type skew = 0;
 | 
						|
        D::result_type kurtosis = 0;
 | 
						|
        for (std::size_t i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            D::result_type dbl = (u[i] - mean);
 | 
						|
            D::result_type d2 = sqr(dbl);
 | 
						|
            var += d2;
 | 
						|
            skew += dbl * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        D::result_type dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        D::result_type x_mean = (d.a() + d.b()) / 2;
 | 
						|
        D::result_type x_var = sqr(d.b() - d.a()) / 12;
 | 
						|
        D::result_type x_skew = 0;
 | 
						|
        D::result_type x_kurtosis = -6./5;
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
}
 |