455 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			455 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ICF.cpp ------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//                             The LLVM Linker
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// ICF is short for Identical Code Folding. This is a size optimization to
 | 
						|
// identify and merge two or more read-only sections (typically functions)
 | 
						|
// that happened to have the same contents. It usually reduces output size
 | 
						|
// by a few percent.
 | 
						|
//
 | 
						|
// In ICF, two sections are considered identical if they have the same
 | 
						|
// section flags, section data, and relocations. Relocations are tricky,
 | 
						|
// because two relocations are considered the same if they have the same
 | 
						|
// relocation types, values, and if they point to the same sections *in
 | 
						|
// terms of ICF*.
 | 
						|
//
 | 
						|
// Here is an example. If foo and bar defined below are compiled to the
 | 
						|
// same machine instructions, ICF can and should merge the two, although
 | 
						|
// their relocations point to each other.
 | 
						|
//
 | 
						|
//   void foo() { bar(); }
 | 
						|
//   void bar() { foo(); }
 | 
						|
//
 | 
						|
// If you merge the two, their relocations point to the same section and
 | 
						|
// thus you know they are mergeable, but how do you know they are
 | 
						|
// mergeable in the first place? This is not an easy problem to solve.
 | 
						|
//
 | 
						|
// What we are doing in LLD is to partition sections into equivalence
 | 
						|
// classes. Sections in the same equivalence class when the algorithm
 | 
						|
// terminates are considered identical. Here are details:
 | 
						|
//
 | 
						|
// 1. First, we partition sections using their hash values as keys. Hash
 | 
						|
//    values contain section types, section contents and numbers of
 | 
						|
//    relocations. During this step, relocation targets are not taken into
 | 
						|
//    account. We just put sections that apparently differ into different
 | 
						|
//    equivalence classes.
 | 
						|
//
 | 
						|
// 2. Next, for each equivalence class, we visit sections to compare
 | 
						|
//    relocation targets. Relocation targets are considered equivalent if
 | 
						|
//    their targets are in the same equivalence class. Sections with
 | 
						|
//    different relocation targets are put into different equivalence
 | 
						|
//    clases.
 | 
						|
//
 | 
						|
// 3. If we split an equivalence class in step 2, two relocations
 | 
						|
//    previously target the same equivalence class may now target
 | 
						|
//    different equivalence classes. Therefore, we repeat step 2 until a
 | 
						|
//    convergence is obtained.
 | 
						|
//
 | 
						|
// 4. For each equivalence class C, pick an arbitrary section in C, and
 | 
						|
//    merge all the other sections in C with it.
 | 
						|
//
 | 
						|
// For small programs, this algorithm needs 3-5 iterations. For large
 | 
						|
// programs such as Chromium, it takes more than 20 iterations.
 | 
						|
//
 | 
						|
// This algorithm was mentioned as an "optimistic algorithm" in [1],
 | 
						|
// though gold implements a different algorithm than this.
 | 
						|
//
 | 
						|
// We parallelize each step so that multiple threads can work on different
 | 
						|
// equivalence classes concurrently. That gave us a large performance
 | 
						|
// boost when applying ICF on large programs. For example, MSVC link.exe
 | 
						|
// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
 | 
						|
// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
 | 
						|
// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
 | 
						|
// faster than MSVC or gold though.
 | 
						|
//
 | 
						|
// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
 | 
						|
// in the Gold Linker
 | 
						|
// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ICF.h"
 | 
						|
#include "Config.h"
 | 
						|
#include "SymbolTable.h"
 | 
						|
#include "Symbols.h"
 | 
						|
#include "lld/Common/Threads.h"
 | 
						|
#include "llvm/ADT/Hashing.h"
 | 
						|
#include "llvm/BinaryFormat/ELF.h"
 | 
						|
#include "llvm/Object/ELF.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <atomic>
 | 
						|
 | 
						|
using namespace lld;
 | 
						|
using namespace lld::elf;
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::ELF;
 | 
						|
using namespace llvm::object;
 | 
						|
 | 
						|
namespace {
 | 
						|
template <class ELFT> class ICF {
 | 
						|
public:
 | 
						|
  void run();
 | 
						|
 | 
						|
private:
 | 
						|
  void segregate(size_t Begin, size_t End, bool Constant);
 | 
						|
 | 
						|
  template <class RelTy>
 | 
						|
  bool constantEq(const InputSection *A, ArrayRef<RelTy> RelsA,
 | 
						|
                  const InputSection *B, ArrayRef<RelTy> RelsB);
 | 
						|
 | 
						|
  template <class RelTy>
 | 
						|
  bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
 | 
						|
                  const InputSection *B, ArrayRef<RelTy> RelsB);
 | 
						|
 | 
						|
  bool equalsConstant(const InputSection *A, const InputSection *B);
 | 
						|
  bool equalsVariable(const InputSection *A, const InputSection *B);
 | 
						|
 | 
						|
  size_t findBoundary(size_t Begin, size_t End);
 | 
						|
 | 
						|
  void forEachClassRange(size_t Begin, size_t End,
 | 
						|
                         std::function<void(size_t, size_t)> Fn);
 | 
						|
 | 
						|
  void forEachClass(std::function<void(size_t, size_t)> Fn);
 | 
						|
 | 
						|
  std::vector<InputSection *> Sections;
 | 
						|
 | 
						|
  // We repeat the main loop while `Repeat` is true.
 | 
						|
  std::atomic<bool> Repeat;
 | 
						|
 | 
						|
  // The main loop counter.
 | 
						|
  int Cnt = 0;
 | 
						|
 | 
						|
  // We have two locations for equivalence classes. On the first iteration
 | 
						|
  // of the main loop, Class[0] has a valid value, and Class[1] contains
 | 
						|
  // garbage. We read equivalence classes from slot 0 and write to slot 1.
 | 
						|
  // So, Class[0] represents the current class, and Class[1] represents
 | 
						|
  // the next class. On each iteration, we switch their roles and use them
 | 
						|
  // alternately.
 | 
						|
  //
 | 
						|
  // Why are we doing this? Recall that other threads may be working on
 | 
						|
  // other equivalence classes in parallel. They may read sections that we
 | 
						|
  // are updating. We cannot update equivalence classes in place because
 | 
						|
  // it breaks the invariance that all possibly-identical sections must be
 | 
						|
  // in the same equivalence class at any moment. In other words, the for
 | 
						|
  // loop to update equivalence classes is not atomic, and that is
 | 
						|
  // observable from other threads. By writing new classes to other
 | 
						|
  // places, we can keep the invariance.
 | 
						|
  //
 | 
						|
  // Below, `Current` has the index of the current class, and `Next` has
 | 
						|
  // the index of the next class. If threading is enabled, they are either
 | 
						|
  // (0, 1) or (1, 0).
 | 
						|
  //
 | 
						|
  // Note on single-thread: if that's the case, they are always (0, 0)
 | 
						|
  // because we can safely read the next class without worrying about race
 | 
						|
  // conditions. Using the same location makes this algorithm converge
 | 
						|
  // faster because it uses results of the same iteration earlier.
 | 
						|
  int Current = 0;
 | 
						|
  int Next = 0;
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
// Returns a hash value for S. Note that the information about
 | 
						|
// relocation targets is not included in the hash value.
 | 
						|
template <class ELFT> static uint32_t getHash(InputSection *S) {
 | 
						|
  return hash_combine(S->Flags, S->getSize(), S->NumRelocations, S->Data);
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if section S is subject of ICF.
 | 
						|
static bool isEligible(InputSection *S) {
 | 
						|
  // Don't merge read only data sections unless --icf-data was passed.
 | 
						|
  if (!(S->Flags & SHF_EXECINSTR) && !Config->ICFData)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // .init and .fini contains instructions that must be executed to
 | 
						|
  // initialize and finalize the process. They cannot and should not
 | 
						|
  // be merged.
 | 
						|
  return S->Live && (S->Flags & SHF_ALLOC) && !(S->Flags & SHF_WRITE) &&
 | 
						|
         S->Name != ".init" && S->Name != ".fini";
 | 
						|
}
 | 
						|
 | 
						|
// Split an equivalence class into smaller classes.
 | 
						|
template <class ELFT>
 | 
						|
void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
 | 
						|
  // This loop rearranges sections in [Begin, End) so that all sections
 | 
						|
  // that are equal in terms of equals{Constant,Variable} are contiguous
 | 
						|
  // in [Begin, End).
 | 
						|
  //
 | 
						|
  // The algorithm is quadratic in the worst case, but that is not an
 | 
						|
  // issue in practice because the number of the distinct sections in
 | 
						|
  // each range is usually very small.
 | 
						|
 | 
						|
  while (Begin < End) {
 | 
						|
    // Divide [Begin, End) into two. Let Mid be the start index of the
 | 
						|
    // second group.
 | 
						|
    auto Bound =
 | 
						|
        std::stable_partition(Sections.begin() + Begin + 1,
 | 
						|
                              Sections.begin() + End, [&](InputSection *S) {
 | 
						|
                                if (Constant)
 | 
						|
                                  return equalsConstant(Sections[Begin], S);
 | 
						|
                                return equalsVariable(Sections[Begin], S);
 | 
						|
                              });
 | 
						|
    size_t Mid = Bound - Sections.begin();
 | 
						|
 | 
						|
    // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
 | 
						|
    // updating the sections in [Begin, Mid). We use Mid as an equivalence
 | 
						|
    // class ID because every group ends with a unique index.
 | 
						|
    for (size_t I = Begin; I < Mid; ++I)
 | 
						|
      Sections[I]->Class[Next] = Mid;
 | 
						|
 | 
						|
    // If we created a group, we need to iterate the main loop again.
 | 
						|
    if (Mid != End)
 | 
						|
      Repeat = true;
 | 
						|
 | 
						|
    Begin = Mid;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Compare two lists of relocations.
 | 
						|
template <class ELFT>
 | 
						|
template <class RelTy>
 | 
						|
bool ICF<ELFT>::constantEq(const InputSection *SecA, ArrayRef<RelTy> RA,
 | 
						|
                           const InputSection *SecB, ArrayRef<RelTy> RB) {
 | 
						|
  if (RA.size() != RB.size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (size_t I = 0; I < RA.size(); ++I) {
 | 
						|
    if (RA[I].r_offset != RB[I].r_offset ||
 | 
						|
        RA[I].getType(Config->IsMips64EL) != RB[I].getType(Config->IsMips64EL))
 | 
						|
      return false;
 | 
						|
 | 
						|
    uint64_t AddA = getAddend<ELFT>(RA[I]);
 | 
						|
    uint64_t AddB = getAddend<ELFT>(RB[I]);
 | 
						|
 | 
						|
    Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
 | 
						|
    Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
 | 
						|
    if (&SA == &SB) {
 | 
						|
      if (AddA == AddB)
 | 
						|
        continue;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    auto *DA = dyn_cast<Defined>(&SA);
 | 
						|
    auto *DB = dyn_cast<Defined>(&SB);
 | 
						|
    if (!DA || !DB)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Relocations referring to absolute symbols are constant-equal if their
 | 
						|
    // values are equal.
 | 
						|
    if (!DA->Section && !DB->Section && DA->Value + AddA == DB->Value + AddB)
 | 
						|
      continue;
 | 
						|
    if (!DA->Section || !DB->Section)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (DA->Section->kind() != DB->Section->kind())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Relocations referring to InputSections are constant-equal if their
 | 
						|
    // section offsets are equal.
 | 
						|
    if (isa<InputSection>(DA->Section)) {
 | 
						|
      if (DA->Value + AddA == DB->Value + AddB)
 | 
						|
        continue;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Relocations referring to MergeInputSections are constant-equal if their
 | 
						|
    // offsets in the output section are equal.
 | 
						|
    auto *X = dyn_cast<MergeInputSection>(DA->Section);
 | 
						|
    if (!X)
 | 
						|
      return false;
 | 
						|
    auto *Y = cast<MergeInputSection>(DB->Section);
 | 
						|
    if (X->getParent() != Y->getParent())
 | 
						|
      return false;
 | 
						|
 | 
						|
    uint64_t OffsetA =
 | 
						|
        SA.isSection() ? X->getOffset(AddA) : X->getOffset(DA->Value) + AddA;
 | 
						|
    uint64_t OffsetB =
 | 
						|
        SB.isSection() ? Y->getOffset(AddB) : Y->getOffset(DB->Value) + AddB;
 | 
						|
    if (OffsetA != OffsetB)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Compare "non-moving" part of two InputSections, namely everything
 | 
						|
// except relocation targets.
 | 
						|
template <class ELFT>
 | 
						|
bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) {
 | 
						|
  if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
 | 
						|
      A->getSize() != B->getSize() || A->Data != B->Data)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (A->AreRelocsRela)
 | 
						|
    return constantEq(A, A->template relas<ELFT>(), B,
 | 
						|
                      B->template relas<ELFT>());
 | 
						|
  return constantEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
 | 
						|
}
 | 
						|
 | 
						|
// Compare two lists of relocations. Returns true if all pairs of
 | 
						|
// relocations point to the same section in terms of ICF.
 | 
						|
template <class ELFT>
 | 
						|
template <class RelTy>
 | 
						|
bool ICF<ELFT>::variableEq(const InputSection *SecA, ArrayRef<RelTy> RA,
 | 
						|
                           const InputSection *SecB, ArrayRef<RelTy> RB) {
 | 
						|
  assert(RA.size() == RB.size());
 | 
						|
 | 
						|
  for (size_t I = 0; I < RA.size(); ++I) {
 | 
						|
    // The two sections must be identical.
 | 
						|
    Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
 | 
						|
    Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
 | 
						|
    if (&SA == &SB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto *DA = cast<Defined>(&SA);
 | 
						|
    auto *DB = cast<Defined>(&SB);
 | 
						|
 | 
						|
    // We already dealt with absolute and non-InputSection symbols in
 | 
						|
    // constantEq, and for InputSections we have already checked everything
 | 
						|
    // except the equivalence class.
 | 
						|
    if (!DA->Section)
 | 
						|
      continue;
 | 
						|
    auto *X = dyn_cast<InputSection>(DA->Section);
 | 
						|
    if (!X)
 | 
						|
      continue;
 | 
						|
    auto *Y = cast<InputSection>(DB->Section);
 | 
						|
 | 
						|
    // Ineligible sections are in the special equivalence class 0.
 | 
						|
    // They can never be the same in terms of the equivalence class.
 | 
						|
    if (X->Class[Current] == 0)
 | 
						|
      return false;
 | 
						|
    if (X->Class[Current] != Y->Class[Current])
 | 
						|
      return false;
 | 
						|
  };
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Compare "moving" part of two InputSections, namely relocation targets.
 | 
						|
template <class ELFT>
 | 
						|
bool ICF<ELFT>::equalsVariable(const InputSection *A, const InputSection *B) {
 | 
						|
  if (A->AreRelocsRela)
 | 
						|
    return variableEq(A, A->template relas<ELFT>(), B,
 | 
						|
                      B->template relas<ELFT>());
 | 
						|
  return variableEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
 | 
						|
  uint32_t Class = Sections[Begin]->Class[Current];
 | 
						|
  for (size_t I = Begin + 1; I < End; ++I)
 | 
						|
    if (Class != Sections[I]->Class[Current])
 | 
						|
      return I;
 | 
						|
  return End;
 | 
						|
}
 | 
						|
 | 
						|
// Sections in the same equivalence class are contiguous in Sections
 | 
						|
// vector. Therefore, Sections vector can be considered as contiguous
 | 
						|
// groups of sections, grouped by the class.
 | 
						|
//
 | 
						|
// This function calls Fn on every group that starts within [Begin, End).
 | 
						|
// Note that a group must start in that range but doesn't necessarily
 | 
						|
// have to end before End.
 | 
						|
template <class ELFT>
 | 
						|
void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End,
 | 
						|
                                  std::function<void(size_t, size_t)> Fn) {
 | 
						|
  if (Begin > 0)
 | 
						|
    Begin = findBoundary(Begin - 1, End);
 | 
						|
 | 
						|
  while (Begin < End) {
 | 
						|
    size_t Mid = findBoundary(Begin, Sections.size());
 | 
						|
    Fn(Begin, Mid);
 | 
						|
    Begin = Mid;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Call Fn on each equivalence class.
 | 
						|
template <class ELFT>
 | 
						|
void ICF<ELFT>::forEachClass(std::function<void(size_t, size_t)> Fn) {
 | 
						|
  // If threading is disabled or the number of sections are
 | 
						|
  // too small to use threading, call Fn sequentially.
 | 
						|
  if (!ThreadsEnabled || Sections.size() < 1024) {
 | 
						|
    forEachClassRange(0, Sections.size(), Fn);
 | 
						|
    ++Cnt;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Current = Cnt % 2;
 | 
						|
  Next = (Cnt + 1) % 2;
 | 
						|
 | 
						|
  // Split sections into 256 shards and call Fn in parallel.
 | 
						|
  size_t NumShards = 256;
 | 
						|
  size_t Step = Sections.size() / NumShards;
 | 
						|
  parallelForEachN(0, NumShards, [&](size_t I) {
 | 
						|
    size_t End = (I == NumShards - 1) ? Sections.size() : (I + 1) * Step;
 | 
						|
    forEachClassRange(I * Step, End, Fn);
 | 
						|
  });
 | 
						|
  ++Cnt;
 | 
						|
}
 | 
						|
 | 
						|
// The main function of ICF.
 | 
						|
template <class ELFT> void ICF<ELFT>::run() {
 | 
						|
  // Collect sections to merge.
 | 
						|
  for (InputSectionBase *Sec : InputSections)
 | 
						|
    if (auto *S = dyn_cast<InputSection>(Sec))
 | 
						|
      if (isEligible(S))
 | 
						|
        Sections.push_back(S);
 | 
						|
 | 
						|
  // Initially, we use hash values to partition sections.
 | 
						|
  parallelForEach(Sections, [&](InputSection *S) {
 | 
						|
    // Set MSB to 1 to avoid collisions with non-hash IDs.
 | 
						|
    S->Class[0] = getHash<ELFT>(S) | (1 << 31);
 | 
						|
  });
 | 
						|
 | 
						|
  // From now on, sections in Sections vector are ordered so that sections
 | 
						|
  // in the same equivalence class are consecutive in the vector.
 | 
						|
  std::stable_sort(Sections.begin(), Sections.end(),
 | 
						|
                   [](InputSection *A, InputSection *B) {
 | 
						|
                     return A->Class[0] < B->Class[0];
 | 
						|
                   });
 | 
						|
 | 
						|
  // Compare static contents and assign unique IDs for each static content.
 | 
						|
  forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
 | 
						|
 | 
						|
  // Split groups by comparing relocations until convergence is obtained.
 | 
						|
  do {
 | 
						|
    Repeat = false;
 | 
						|
    forEachClass(
 | 
						|
        [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
 | 
						|
  } while (Repeat);
 | 
						|
 | 
						|
  log("ICF needed " + Twine(Cnt) + " iterations");
 | 
						|
 | 
						|
  // Merge sections by the equivalence class.
 | 
						|
  forEachClass([&](size_t Begin, size_t End) {
 | 
						|
    if (End - Begin == 1)
 | 
						|
      return;
 | 
						|
 | 
						|
    log("selected " + Sections[Begin]->Name);
 | 
						|
    for (size_t I = Begin + 1; I < End; ++I) {
 | 
						|
      log("  removed " + Sections[I]->Name);
 | 
						|
      Sections[Begin]->replace(Sections[I]);
 | 
						|
    }
 | 
						|
  });
 | 
						|
 | 
						|
  // Mark ARM Exception Index table sections that refer to folded code
 | 
						|
  // sections as not live. These sections have an implict dependency
 | 
						|
  // via the link order dependency.
 | 
						|
  if (Config->EMachine == EM_ARM)
 | 
						|
    for (InputSectionBase *Sec : InputSections)
 | 
						|
      if (auto *S = dyn_cast<InputSection>(Sec))
 | 
						|
        if (S->Flags & SHF_LINK_ORDER)
 | 
						|
          S->Live = S->getLinkOrderDep()->Live;
 | 
						|
}
 | 
						|
 | 
						|
// ICF entry point function.
 | 
						|
template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
 | 
						|
 | 
						|
template void elf::doIcf<ELF32LE>();
 | 
						|
template void elf::doIcf<ELF32BE>();
 | 
						|
template void elf::doIcf<ELF64LE>();
 | 
						|
template void elf::doIcf<ELF64BE>();
 |