2716 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2716 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This contains code to emit Decl nodes as LLVM code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CGBlocks.h"
 | 
						|
#include "CGCXXABI.h"
 | 
						|
#include "CGCleanup.h"
 | 
						|
#include "CGDebugInfo.h"
 | 
						|
#include "CGOpenCLRuntime.h"
 | 
						|
#include "CGOpenMPRuntime.h"
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "ConstantEmitter.h"
 | 
						|
#include "PatternInit.h"
 | 
						|
#include "TargetInfo.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Attr.h"
 | 
						|
#include "clang/AST/CharUnits.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclOpenMP.h"
 | 
						|
#include "clang/Basic/CodeGenOptions.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/CodeGen/CGFunctionInfo.h"
 | 
						|
#include "clang/Sema/Sema.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
 | 
						|
              "Clang max alignment greater than what LLVM supports?");
 | 
						|
 | 
						|
void CodeGenFunction::EmitDecl(const Decl &D) {
 | 
						|
  switch (D.getKind()) {
 | 
						|
  case Decl::BuiltinTemplate:
 | 
						|
  case Decl::TranslationUnit:
 | 
						|
  case Decl::ExternCContext:
 | 
						|
  case Decl::Namespace:
 | 
						|
  case Decl::UnresolvedUsingTypename:
 | 
						|
  case Decl::ClassTemplateSpecialization:
 | 
						|
  case Decl::ClassTemplatePartialSpecialization:
 | 
						|
  case Decl::VarTemplateSpecialization:
 | 
						|
  case Decl::VarTemplatePartialSpecialization:
 | 
						|
  case Decl::TemplateTypeParm:
 | 
						|
  case Decl::UnresolvedUsingValue:
 | 
						|
  case Decl::NonTypeTemplateParm:
 | 
						|
  case Decl::CXXDeductionGuide:
 | 
						|
  case Decl::CXXMethod:
 | 
						|
  case Decl::CXXConstructor:
 | 
						|
  case Decl::CXXDestructor:
 | 
						|
  case Decl::CXXConversion:
 | 
						|
  case Decl::Field:
 | 
						|
  case Decl::MSProperty:
 | 
						|
  case Decl::IndirectField:
 | 
						|
  case Decl::ObjCIvar:
 | 
						|
  case Decl::ObjCAtDefsField:
 | 
						|
  case Decl::ParmVar:
 | 
						|
  case Decl::ImplicitParam:
 | 
						|
  case Decl::ClassTemplate:
 | 
						|
  case Decl::VarTemplate:
 | 
						|
  case Decl::FunctionTemplate:
 | 
						|
  case Decl::TypeAliasTemplate:
 | 
						|
  case Decl::TemplateTemplateParm:
 | 
						|
  case Decl::ObjCMethod:
 | 
						|
  case Decl::ObjCCategory:
 | 
						|
  case Decl::ObjCProtocol:
 | 
						|
  case Decl::ObjCInterface:
 | 
						|
  case Decl::ObjCCategoryImpl:
 | 
						|
  case Decl::ObjCImplementation:
 | 
						|
  case Decl::ObjCProperty:
 | 
						|
  case Decl::ObjCCompatibleAlias:
 | 
						|
  case Decl::PragmaComment:
 | 
						|
  case Decl::PragmaDetectMismatch:
 | 
						|
  case Decl::AccessSpec:
 | 
						|
  case Decl::LinkageSpec:
 | 
						|
  case Decl::Export:
 | 
						|
  case Decl::ObjCPropertyImpl:
 | 
						|
  case Decl::FileScopeAsm:
 | 
						|
  case Decl::Friend:
 | 
						|
  case Decl::FriendTemplate:
 | 
						|
  case Decl::Block:
 | 
						|
  case Decl::Captured:
 | 
						|
  case Decl::ClassScopeFunctionSpecialization:
 | 
						|
  case Decl::UsingShadow:
 | 
						|
  case Decl::ConstructorUsingShadow:
 | 
						|
  case Decl::ObjCTypeParam:
 | 
						|
  case Decl::Binding:
 | 
						|
  case Decl::UnresolvedUsingIfExists:
 | 
						|
    llvm_unreachable("Declaration should not be in declstmts!");
 | 
						|
  case Decl::Record:    // struct/union/class X;
 | 
						|
  case Decl::CXXRecord: // struct/union/class X; [C++]
 | 
						|
    if (CGDebugInfo *DI = getDebugInfo())
 | 
						|
      if (cast<RecordDecl>(D).getDefinition())
 | 
						|
        DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
 | 
						|
    return;
 | 
						|
  case Decl::Enum:      // enum X;
 | 
						|
    if (CGDebugInfo *DI = getDebugInfo())
 | 
						|
      if (cast<EnumDecl>(D).getDefinition())
 | 
						|
        DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
 | 
						|
    return;
 | 
						|
  case Decl::Function:     // void X();
 | 
						|
  case Decl::EnumConstant: // enum ? { X = ? }
 | 
						|
  case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
 | 
						|
  case Decl::Label:        // __label__ x;
 | 
						|
  case Decl::Import:
 | 
						|
  case Decl::MSGuid:    // __declspec(uuid("..."))
 | 
						|
  case Decl::UnnamedGlobalConstant:
 | 
						|
  case Decl::TemplateParamObject:
 | 
						|
  case Decl::OMPThreadPrivate:
 | 
						|
  case Decl::OMPAllocate:
 | 
						|
  case Decl::OMPCapturedExpr:
 | 
						|
  case Decl::OMPRequires:
 | 
						|
  case Decl::Empty:
 | 
						|
  case Decl::Concept:
 | 
						|
  case Decl::LifetimeExtendedTemporary:
 | 
						|
  case Decl::RequiresExprBody:
 | 
						|
    // None of these decls require codegen support.
 | 
						|
    return;
 | 
						|
 | 
						|
  case Decl::NamespaceAlias:
 | 
						|
    if (CGDebugInfo *DI = getDebugInfo())
 | 
						|
        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
 | 
						|
    return;
 | 
						|
  case Decl::Using:          // using X; [C++]
 | 
						|
    if (CGDebugInfo *DI = getDebugInfo())
 | 
						|
        DI->EmitUsingDecl(cast<UsingDecl>(D));
 | 
						|
    return;
 | 
						|
  case Decl::UsingEnum: // using enum X; [C++]
 | 
						|
    if (CGDebugInfo *DI = getDebugInfo())
 | 
						|
      DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D));
 | 
						|
    return;
 | 
						|
  case Decl::UsingPack:
 | 
						|
    for (auto *Using : cast<UsingPackDecl>(D).expansions())
 | 
						|
      EmitDecl(*Using);
 | 
						|
    return;
 | 
						|
  case Decl::UsingDirective: // using namespace X; [C++]
 | 
						|
    if (CGDebugInfo *DI = getDebugInfo())
 | 
						|
      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
 | 
						|
    return;
 | 
						|
  case Decl::Var:
 | 
						|
  case Decl::Decomposition: {
 | 
						|
    const VarDecl &VD = cast<VarDecl>(D);
 | 
						|
    assert(VD.isLocalVarDecl() &&
 | 
						|
           "Should not see file-scope variables inside a function!");
 | 
						|
    EmitVarDecl(VD);
 | 
						|
    if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
 | 
						|
      for (auto *B : DD->bindings())
 | 
						|
        if (auto *HD = B->getHoldingVar())
 | 
						|
          EmitVarDecl(*HD);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case Decl::OMPDeclareReduction:
 | 
						|
    return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
 | 
						|
 | 
						|
  case Decl::OMPDeclareMapper:
 | 
						|
    return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
 | 
						|
 | 
						|
  case Decl::Typedef:      // typedef int X;
 | 
						|
  case Decl::TypeAlias: {  // using X = int; [C++0x]
 | 
						|
    QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
 | 
						|
    if (CGDebugInfo *DI = getDebugInfo())
 | 
						|
      DI->EmitAndRetainType(Ty);
 | 
						|
    if (Ty->isVariablyModifiedType())
 | 
						|
      EmitVariablyModifiedType(Ty);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitVarDecl - This method handles emission of any variable declaration
 | 
						|
/// inside a function, including static vars etc.
 | 
						|
void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
 | 
						|
  if (D.hasExternalStorage())
 | 
						|
    // Don't emit it now, allow it to be emitted lazily on its first use.
 | 
						|
    return;
 | 
						|
 | 
						|
  // Some function-scope variable does not have static storage but still
 | 
						|
  // needs to be emitted like a static variable, e.g. a function-scope
 | 
						|
  // variable in constant address space in OpenCL.
 | 
						|
  if (D.getStorageDuration() != SD_Automatic) {
 | 
						|
    // Static sampler variables translated to function calls.
 | 
						|
    if (D.getType()->isSamplerT())
 | 
						|
      return;
 | 
						|
 | 
						|
    llvm::GlobalValue::LinkageTypes Linkage =
 | 
						|
        CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
 | 
						|
 | 
						|
    // FIXME: We need to force the emission/use of a guard variable for
 | 
						|
    // some variables even if we can constant-evaluate them because
 | 
						|
    // we can't guarantee every translation unit will constant-evaluate them.
 | 
						|
 | 
						|
    return EmitStaticVarDecl(D, Linkage);
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.getType().getAddressSpace() == LangAS::opencl_local)
 | 
						|
    return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
 | 
						|
 | 
						|
  assert(D.hasLocalStorage());
 | 
						|
  return EmitAutoVarDecl(D);
 | 
						|
}
 | 
						|
 | 
						|
static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
 | 
						|
  if (CGM.getLangOpts().CPlusPlus)
 | 
						|
    return CGM.getMangledName(&D).str();
 | 
						|
 | 
						|
  // If this isn't C++, we don't need a mangled name, just a pretty one.
 | 
						|
  assert(!D.isExternallyVisible() && "name shouldn't matter");
 | 
						|
  std::string ContextName;
 | 
						|
  const DeclContext *DC = D.getDeclContext();
 | 
						|
  if (auto *CD = dyn_cast<CapturedDecl>(DC))
 | 
						|
    DC = cast<DeclContext>(CD->getNonClosureContext());
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(DC))
 | 
						|
    ContextName = std::string(CGM.getMangledName(FD));
 | 
						|
  else if (const auto *BD = dyn_cast<BlockDecl>(DC))
 | 
						|
    ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
 | 
						|
  else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
 | 
						|
    ContextName = OMD->getSelector().getAsString();
 | 
						|
  else
 | 
						|
    llvm_unreachable("Unknown context for static var decl");
 | 
						|
 | 
						|
  ContextName += "." + D.getNameAsString();
 | 
						|
  return ContextName;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
 | 
						|
    const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
 | 
						|
  // In general, we don't always emit static var decls once before we reference
 | 
						|
  // them. It is possible to reference them before emitting the function that
 | 
						|
  // contains them, and it is possible to emit the containing function multiple
 | 
						|
  // times.
 | 
						|
  if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
 | 
						|
    return ExistingGV;
 | 
						|
 | 
						|
  QualType Ty = D.getType();
 | 
						|
  assert(Ty->isConstantSizeType() && "VLAs can't be static");
 | 
						|
 | 
						|
  // Use the label if the variable is renamed with the asm-label extension.
 | 
						|
  std::string Name;
 | 
						|
  if (D.hasAttr<AsmLabelAttr>())
 | 
						|
    Name = std::string(getMangledName(&D));
 | 
						|
  else
 | 
						|
    Name = getStaticDeclName(*this, D);
 | 
						|
 | 
						|
  llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
 | 
						|
  LangAS AS = GetGlobalVarAddressSpace(&D);
 | 
						|
  unsigned TargetAS = getContext().getTargetAddressSpace(AS);
 | 
						|
 | 
						|
  // OpenCL variables in local address space and CUDA shared
 | 
						|
  // variables cannot have an initializer.
 | 
						|
  llvm::Constant *Init = nullptr;
 | 
						|
  if (Ty.getAddressSpace() == LangAS::opencl_local ||
 | 
						|
      D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
 | 
						|
    Init = llvm::UndefValue::get(LTy);
 | 
						|
  else
 | 
						|
    Init = EmitNullConstant(Ty);
 | 
						|
 | 
						|
  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
 | 
						|
      getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
 | 
						|
      nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
 | 
						|
  GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
 | 
						|
 | 
						|
  if (supportsCOMDAT() && GV->isWeakForLinker())
 | 
						|
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
 | 
						|
 | 
						|
  if (D.getTLSKind())
 | 
						|
    setTLSMode(GV, D);
 | 
						|
 | 
						|
  setGVProperties(GV, &D);
 | 
						|
 | 
						|
  // Make sure the result is of the correct type.
 | 
						|
  LangAS ExpectedAS = Ty.getAddressSpace();
 | 
						|
  llvm::Constant *Addr = GV;
 | 
						|
  if (AS != ExpectedAS) {
 | 
						|
    Addr = getTargetCodeGenInfo().performAddrSpaceCast(
 | 
						|
        *this, GV, AS, ExpectedAS,
 | 
						|
        LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
 | 
						|
  }
 | 
						|
 | 
						|
  setStaticLocalDeclAddress(&D, Addr);
 | 
						|
 | 
						|
  // Ensure that the static local gets initialized by making sure the parent
 | 
						|
  // function gets emitted eventually.
 | 
						|
  const Decl *DC = cast<Decl>(D.getDeclContext());
 | 
						|
 | 
						|
  // We can't name blocks or captured statements directly, so try to emit their
 | 
						|
  // parents.
 | 
						|
  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
 | 
						|
    DC = DC->getNonClosureContext();
 | 
						|
    // FIXME: Ensure that global blocks get emitted.
 | 
						|
    if (!DC)
 | 
						|
      return Addr;
 | 
						|
  }
 | 
						|
 | 
						|
  GlobalDecl GD;
 | 
						|
  if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
 | 
						|
    GD = GlobalDecl(CD, Ctor_Base);
 | 
						|
  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
 | 
						|
    GD = GlobalDecl(DD, Dtor_Base);
 | 
						|
  else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
 | 
						|
    GD = GlobalDecl(FD);
 | 
						|
  else {
 | 
						|
    // Don't do anything for Obj-C method decls or global closures. We should
 | 
						|
    // never defer them.
 | 
						|
    assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
 | 
						|
  }
 | 
						|
  if (GD.getDecl()) {
 | 
						|
    // Disable emission of the parent function for the OpenMP device codegen.
 | 
						|
    CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
 | 
						|
    (void)GetAddrOfGlobal(GD);
 | 
						|
  }
 | 
						|
 | 
						|
  return Addr;
 | 
						|
}
 | 
						|
 | 
						|
/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
 | 
						|
/// global variable that has already been created for it.  If the initializer
 | 
						|
/// has a different type than GV does, this may free GV and return a different
 | 
						|
/// one.  Otherwise it just returns GV.
 | 
						|
llvm::GlobalVariable *
 | 
						|
CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
 | 
						|
                                               llvm::GlobalVariable *GV) {
 | 
						|
  ConstantEmitter emitter(*this);
 | 
						|
  llvm::Constant *Init = emitter.tryEmitForInitializer(D);
 | 
						|
 | 
						|
  // If constant emission failed, then this should be a C++ static
 | 
						|
  // initializer.
 | 
						|
  if (!Init) {
 | 
						|
    if (!getLangOpts().CPlusPlus)
 | 
						|
      CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
 | 
						|
    else if (D.hasFlexibleArrayInit(getContext()))
 | 
						|
      CGM.ErrorUnsupported(D.getInit(), "flexible array initializer");
 | 
						|
    else if (HaveInsertPoint()) {
 | 
						|
      // Since we have a static initializer, this global variable can't
 | 
						|
      // be constant.
 | 
						|
      GV->setConstant(false);
 | 
						|
 | 
						|
      EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
 | 
						|
    }
 | 
						|
    return GV;
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  CharUnits VarSize = CGM.getContext().getTypeSizeInChars(D.getType()) +
 | 
						|
                      D.getFlexibleArrayInitChars(getContext());
 | 
						|
  CharUnits CstSize = CharUnits::fromQuantity(
 | 
						|
      CGM.getDataLayout().getTypeAllocSize(Init->getType()));
 | 
						|
  assert(VarSize == CstSize && "Emitted constant has unexpected size");
 | 
						|
#endif
 | 
						|
 | 
						|
  // The initializer may differ in type from the global. Rewrite
 | 
						|
  // the global to match the initializer.  (We have to do this
 | 
						|
  // because some types, like unions, can't be completely represented
 | 
						|
  // in the LLVM type system.)
 | 
						|
  if (GV->getValueType() != Init->getType()) {
 | 
						|
    llvm::GlobalVariable *OldGV = GV;
 | 
						|
 | 
						|
    GV = new llvm::GlobalVariable(
 | 
						|
        CGM.getModule(), Init->getType(), OldGV->isConstant(),
 | 
						|
        OldGV->getLinkage(), Init, "",
 | 
						|
        /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(),
 | 
						|
        OldGV->getType()->getPointerAddressSpace());
 | 
						|
    GV->setVisibility(OldGV->getVisibility());
 | 
						|
    GV->setDSOLocal(OldGV->isDSOLocal());
 | 
						|
    GV->setComdat(OldGV->getComdat());
 | 
						|
 | 
						|
    // Steal the name of the old global
 | 
						|
    GV->takeName(OldGV);
 | 
						|
 | 
						|
    // Replace all uses of the old global with the new global
 | 
						|
    llvm::Constant *NewPtrForOldDecl =
 | 
						|
    llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
 | 
						|
    OldGV->replaceAllUsesWith(NewPtrForOldDecl);
 | 
						|
 | 
						|
    // Erase the old global, since it is no longer used.
 | 
						|
    OldGV->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  GV->setConstant(CGM.isTypeConstant(D.getType(), true));
 | 
						|
  GV->setInitializer(Init);
 | 
						|
 | 
						|
  emitter.finalize(GV);
 | 
						|
 | 
						|
  if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
 | 
						|
      HaveInsertPoint()) {
 | 
						|
    // We have a constant initializer, but a nontrivial destructor. We still
 | 
						|
    // need to perform a guarded "initialization" in order to register the
 | 
						|
    // destructor.
 | 
						|
    EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
 | 
						|
                                      llvm::GlobalValue::LinkageTypes Linkage) {
 | 
						|
  // Check to see if we already have a global variable for this
 | 
						|
  // declaration.  This can happen when double-emitting function
 | 
						|
  // bodies, e.g. with complete and base constructors.
 | 
						|
  llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
 | 
						|
  CharUnits alignment = getContext().getDeclAlign(&D);
 | 
						|
 | 
						|
  // Store into LocalDeclMap before generating initializer to handle
 | 
						|
  // circular references.
 | 
						|
  llvm::Type *elemTy = ConvertTypeForMem(D.getType());
 | 
						|
  setAddrOfLocalVar(&D, Address(addr, elemTy, alignment));
 | 
						|
 | 
						|
  // We can't have a VLA here, but we can have a pointer to a VLA,
 | 
						|
  // even though that doesn't really make any sense.
 | 
						|
  // Make sure to evaluate VLA bounds now so that we have them for later.
 | 
						|
  if (D.getType()->isVariablyModifiedType())
 | 
						|
    EmitVariablyModifiedType(D.getType());
 | 
						|
 | 
						|
  // Save the type in case adding the initializer forces a type change.
 | 
						|
  llvm::Type *expectedType = addr->getType();
 | 
						|
 | 
						|
  llvm::GlobalVariable *var =
 | 
						|
    cast<llvm::GlobalVariable>(addr->stripPointerCasts());
 | 
						|
 | 
						|
  // CUDA's local and local static __shared__ variables should not
 | 
						|
  // have any non-empty initializers. This is ensured by Sema.
 | 
						|
  // Whatever initializer such variable may have when it gets here is
 | 
						|
  // a no-op and should not be emitted.
 | 
						|
  bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
 | 
						|
                         D.hasAttr<CUDASharedAttr>();
 | 
						|
  // If this value has an initializer, emit it.
 | 
						|
  if (D.getInit() && !isCudaSharedVar)
 | 
						|
    var = AddInitializerToStaticVarDecl(D, var);
 | 
						|
 | 
						|
  var->setAlignment(alignment.getAsAlign());
 | 
						|
 | 
						|
  if (D.hasAttr<AnnotateAttr>())
 | 
						|
    CGM.AddGlobalAnnotations(&D, var);
 | 
						|
 | 
						|
  if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
 | 
						|
    var->addAttribute("bss-section", SA->getName());
 | 
						|
  if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
 | 
						|
    var->addAttribute("data-section", SA->getName());
 | 
						|
  if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
 | 
						|
    var->addAttribute("rodata-section", SA->getName());
 | 
						|
  if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
 | 
						|
    var->addAttribute("relro-section", SA->getName());
 | 
						|
 | 
						|
  if (const SectionAttr *SA = D.getAttr<SectionAttr>())
 | 
						|
    var->setSection(SA->getName());
 | 
						|
 | 
						|
  if (D.hasAttr<RetainAttr>())
 | 
						|
    CGM.addUsedGlobal(var);
 | 
						|
  else if (D.hasAttr<UsedAttr>())
 | 
						|
    CGM.addUsedOrCompilerUsedGlobal(var);
 | 
						|
 | 
						|
  // We may have to cast the constant because of the initializer
 | 
						|
  // mismatch above.
 | 
						|
  //
 | 
						|
  // FIXME: It is really dangerous to store this in the map; if anyone
 | 
						|
  // RAUW's the GV uses of this constant will be invalid.
 | 
						|
  llvm::Constant *castedAddr =
 | 
						|
    llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
 | 
						|
  LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment);
 | 
						|
  CGM.setStaticLocalDeclAddress(&D, castedAddr);
 | 
						|
 | 
						|
  CGM.getSanitizerMetadata()->reportGlobal(var, D);
 | 
						|
 | 
						|
  // Emit global variable debug descriptor for static vars.
 | 
						|
  CGDebugInfo *DI = getDebugInfo();
 | 
						|
  if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
 | 
						|
    DI->setLocation(D.getLocation());
 | 
						|
    DI->EmitGlobalVariable(var, &D);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct DestroyObject final : EHScopeStack::Cleanup {
 | 
						|
    DestroyObject(Address addr, QualType type,
 | 
						|
                  CodeGenFunction::Destroyer *destroyer,
 | 
						|
                  bool useEHCleanupForArray)
 | 
						|
      : addr(addr), type(type), destroyer(destroyer),
 | 
						|
        useEHCleanupForArray(useEHCleanupForArray) {}
 | 
						|
 | 
						|
    Address addr;
 | 
						|
    QualType type;
 | 
						|
    CodeGenFunction::Destroyer *destroyer;
 | 
						|
    bool useEHCleanupForArray;
 | 
						|
 | 
						|
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
      // Don't use an EH cleanup recursively from an EH cleanup.
 | 
						|
      bool useEHCleanupForArray =
 | 
						|
        flags.isForNormalCleanup() && this->useEHCleanupForArray;
 | 
						|
 | 
						|
      CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  template <class Derived>
 | 
						|
  struct DestroyNRVOVariable : EHScopeStack::Cleanup {
 | 
						|
    DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
 | 
						|
        : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
 | 
						|
 | 
						|
    llvm::Value *NRVOFlag;
 | 
						|
    Address Loc;
 | 
						|
    QualType Ty;
 | 
						|
 | 
						|
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
      // Along the exceptions path we always execute the dtor.
 | 
						|
      bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
 | 
						|
 | 
						|
      llvm::BasicBlock *SkipDtorBB = nullptr;
 | 
						|
      if (NRVO) {
 | 
						|
        // If we exited via NRVO, we skip the destructor call.
 | 
						|
        llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
 | 
						|
        SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
 | 
						|
        llvm::Value *DidNRVO =
 | 
						|
          CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
 | 
						|
        CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
 | 
						|
        CGF.EmitBlock(RunDtorBB);
 | 
						|
      }
 | 
						|
 | 
						|
      static_cast<Derived *>(this)->emitDestructorCall(CGF);
 | 
						|
 | 
						|
      if (NRVO) CGF.EmitBlock(SkipDtorBB);
 | 
						|
    }
 | 
						|
 | 
						|
    virtual ~DestroyNRVOVariable() = default;
 | 
						|
  };
 | 
						|
 | 
						|
  struct DestroyNRVOVariableCXX final
 | 
						|
      : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
 | 
						|
    DestroyNRVOVariableCXX(Address addr, QualType type,
 | 
						|
                           const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
 | 
						|
        : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
 | 
						|
          Dtor(Dtor) {}
 | 
						|
 | 
						|
    const CXXDestructorDecl *Dtor;
 | 
						|
 | 
						|
    void emitDestructorCall(CodeGenFunction &CGF) {
 | 
						|
      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
 | 
						|
                                /*ForVirtualBase=*/false,
 | 
						|
                                /*Delegating=*/false, Loc, Ty);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct DestroyNRVOVariableC final
 | 
						|
      : DestroyNRVOVariable<DestroyNRVOVariableC> {
 | 
						|
    DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
 | 
						|
        : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
 | 
						|
 | 
						|
    void emitDestructorCall(CodeGenFunction &CGF) {
 | 
						|
      CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct CallStackRestore final : EHScopeStack::Cleanup {
 | 
						|
    Address Stack;
 | 
						|
    CallStackRestore(Address Stack) : Stack(Stack) {}
 | 
						|
    bool isRedundantBeforeReturn() override { return true; }
 | 
						|
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
      llvm::Value *V = CGF.Builder.CreateLoad(Stack);
 | 
						|
      llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
 | 
						|
      CGF.Builder.CreateCall(F, V);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct ExtendGCLifetime final : EHScopeStack::Cleanup {
 | 
						|
    const VarDecl &Var;
 | 
						|
    ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
 | 
						|
 | 
						|
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
      // Compute the address of the local variable, in case it's a
 | 
						|
      // byref or something.
 | 
						|
      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
 | 
						|
                      Var.getType(), VK_LValue, SourceLocation());
 | 
						|
      llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
 | 
						|
                                                SourceLocation());
 | 
						|
      CGF.EmitExtendGCLifetime(value);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct CallCleanupFunction final : EHScopeStack::Cleanup {
 | 
						|
    llvm::Constant *CleanupFn;
 | 
						|
    const CGFunctionInfo &FnInfo;
 | 
						|
    const VarDecl &Var;
 | 
						|
 | 
						|
    CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
 | 
						|
                        const VarDecl *Var)
 | 
						|
      : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
 | 
						|
 | 
						|
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
 | 
						|
                      Var.getType(), VK_LValue, SourceLocation());
 | 
						|
      // Compute the address of the local variable, in case it's a byref
 | 
						|
      // or something.
 | 
						|
      llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
 | 
						|
 | 
						|
      // In some cases, the type of the function argument will be different from
 | 
						|
      // the type of the pointer. An example of this is
 | 
						|
      // void f(void* arg);
 | 
						|
      // __attribute__((cleanup(f))) void *g;
 | 
						|
      //
 | 
						|
      // To fix this we insert a bitcast here.
 | 
						|
      QualType ArgTy = FnInfo.arg_begin()->type;
 | 
						|
      llvm::Value *Arg =
 | 
						|
        CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
 | 
						|
 | 
						|
      CallArgList Args;
 | 
						|
      Args.add(RValue::get(Arg),
 | 
						|
               CGF.getContext().getPointerType(Var.getType()));
 | 
						|
      auto Callee = CGCallee::forDirect(CleanupFn);
 | 
						|
      CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// EmitAutoVarWithLifetime - Does the setup required for an automatic
 | 
						|
/// variable with lifetime.
 | 
						|
static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
 | 
						|
                                    Address addr,
 | 
						|
                                    Qualifiers::ObjCLifetime lifetime) {
 | 
						|
  switch (lifetime) {
 | 
						|
  case Qualifiers::OCL_None:
 | 
						|
    llvm_unreachable("present but none");
 | 
						|
 | 
						|
  case Qualifiers::OCL_ExplicitNone:
 | 
						|
    // nothing to do
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_Strong: {
 | 
						|
    CodeGenFunction::Destroyer *destroyer =
 | 
						|
      (var.hasAttr<ObjCPreciseLifetimeAttr>()
 | 
						|
       ? CodeGenFunction::destroyARCStrongPrecise
 | 
						|
       : CodeGenFunction::destroyARCStrongImprecise);
 | 
						|
 | 
						|
    CleanupKind cleanupKind = CGF.getARCCleanupKind();
 | 
						|
    CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
 | 
						|
                    cleanupKind & EHCleanup);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Qualifiers::OCL_Autoreleasing:
 | 
						|
    // nothing to do
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_Weak:
 | 
						|
    // __weak objects always get EH cleanups; otherwise, exceptions
 | 
						|
    // could cause really nasty crashes instead of mere leaks.
 | 
						|
    CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
 | 
						|
                    CodeGenFunction::destroyARCWeak,
 | 
						|
                    /*useEHCleanup*/ true);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
 | 
						|
  if (const Expr *e = dyn_cast<Expr>(s)) {
 | 
						|
    // Skip the most common kinds of expressions that make
 | 
						|
    // hierarchy-walking expensive.
 | 
						|
    s = e = e->IgnoreParenCasts();
 | 
						|
 | 
						|
    if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
 | 
						|
      return (ref->getDecl() == &var);
 | 
						|
    if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
 | 
						|
      const BlockDecl *block = be->getBlockDecl();
 | 
						|
      for (const auto &I : block->captures()) {
 | 
						|
        if (I.getVariable() == &var)
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (const Stmt *SubStmt : s->children())
 | 
						|
    // SubStmt might be null; as in missing decl or conditional of an if-stmt.
 | 
						|
    if (SubStmt && isAccessedBy(var, SubStmt))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
 | 
						|
  if (!decl) return false;
 | 
						|
  if (!isa<VarDecl>(decl)) return false;
 | 
						|
  const VarDecl *var = cast<VarDecl>(decl);
 | 
						|
  return isAccessedBy(*var, e);
 | 
						|
}
 | 
						|
 | 
						|
static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
 | 
						|
                                   const LValue &destLV, const Expr *init) {
 | 
						|
  bool needsCast = false;
 | 
						|
 | 
						|
  while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
 | 
						|
    switch (castExpr->getCastKind()) {
 | 
						|
    // Look through casts that don't require representation changes.
 | 
						|
    case CK_NoOp:
 | 
						|
    case CK_BitCast:
 | 
						|
    case CK_BlockPointerToObjCPointerCast:
 | 
						|
      needsCast = true;
 | 
						|
      break;
 | 
						|
 | 
						|
    // If we find an l-value to r-value cast from a __weak variable,
 | 
						|
    // emit this operation as a copy or move.
 | 
						|
    case CK_LValueToRValue: {
 | 
						|
      const Expr *srcExpr = castExpr->getSubExpr();
 | 
						|
      if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Emit the source l-value.
 | 
						|
      LValue srcLV = CGF.EmitLValue(srcExpr);
 | 
						|
 | 
						|
      // Handle a formal type change to avoid asserting.
 | 
						|
      auto srcAddr = srcLV.getAddress(CGF);
 | 
						|
      if (needsCast) {
 | 
						|
        srcAddr = CGF.Builder.CreateElementBitCast(
 | 
						|
            srcAddr, destLV.getAddress(CGF).getElementType());
 | 
						|
      }
 | 
						|
 | 
						|
      // If it was an l-value, use objc_copyWeak.
 | 
						|
      if (srcExpr->isLValue()) {
 | 
						|
        CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
 | 
						|
      } else {
 | 
						|
        assert(srcExpr->isXValue());
 | 
						|
        CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Stop at anything else.
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    init = castExpr->getSubExpr();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void drillIntoBlockVariable(CodeGenFunction &CGF,
 | 
						|
                                   LValue &lvalue,
 | 
						|
                                   const VarDecl *var) {
 | 
						|
  lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
 | 
						|
                                           SourceLocation Loc) {
 | 
						|
  if (!SanOpts.has(SanitizerKind::NullabilityAssign))
 | 
						|
    return;
 | 
						|
 | 
						|
  auto Nullability = LHS.getType()->getNullability(getContext());
 | 
						|
  if (!Nullability || *Nullability != NullabilityKind::NonNull)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if the right hand side of the assignment is nonnull, if the left
 | 
						|
  // hand side must be nonnull.
 | 
						|
  SanitizerScope SanScope(this);
 | 
						|
  llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
 | 
						|
  llvm::Constant *StaticData[] = {
 | 
						|
      EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
 | 
						|
      llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
 | 
						|
      llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
 | 
						|
  EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
 | 
						|
            SanitizerHandler::TypeMismatch, StaticData, RHS);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
 | 
						|
                                     LValue lvalue, bool capturedByInit) {
 | 
						|
  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
 | 
						|
  if (!lifetime) {
 | 
						|
    llvm::Value *value = EmitScalarExpr(init);
 | 
						|
    if (capturedByInit)
 | 
						|
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
 | 
						|
    EmitNullabilityCheck(lvalue, value, init->getExprLoc());
 | 
						|
    EmitStoreThroughLValue(RValue::get(value), lvalue, true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
 | 
						|
    init = DIE->getExpr();
 | 
						|
 | 
						|
  // If we're emitting a value with lifetime, we have to do the
 | 
						|
  // initialization *before* we leave the cleanup scopes.
 | 
						|
  if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) {
 | 
						|
    CodeGenFunction::RunCleanupsScope Scope(*this);
 | 
						|
    return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit);
 | 
						|
  }
 | 
						|
 | 
						|
  // We have to maintain the illusion that the variable is
 | 
						|
  // zero-initialized.  If the variable might be accessed in its
 | 
						|
  // initializer, zero-initialize before running the initializer, then
 | 
						|
  // actually perform the initialization with an assign.
 | 
						|
  bool accessedByInit = false;
 | 
						|
  if (lifetime != Qualifiers::OCL_ExplicitNone)
 | 
						|
    accessedByInit = (capturedByInit || isAccessedBy(D, init));
 | 
						|
  if (accessedByInit) {
 | 
						|
    LValue tempLV = lvalue;
 | 
						|
    // Drill down to the __block object if necessary.
 | 
						|
    if (capturedByInit) {
 | 
						|
      // We can use a simple GEP for this because it can't have been
 | 
						|
      // moved yet.
 | 
						|
      tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
 | 
						|
                                              cast<VarDecl>(D),
 | 
						|
                                              /*follow*/ false));
 | 
						|
    }
 | 
						|
 | 
						|
    auto ty =
 | 
						|
        cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
 | 
						|
    llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
 | 
						|
 | 
						|
    // If __weak, we want to use a barrier under certain conditions.
 | 
						|
    if (lifetime == Qualifiers::OCL_Weak)
 | 
						|
      EmitARCInitWeak(tempLV.getAddress(*this), zero);
 | 
						|
 | 
						|
    // Otherwise just do a simple store.
 | 
						|
    else
 | 
						|
      EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the initializer.
 | 
						|
  llvm::Value *value = nullptr;
 | 
						|
 | 
						|
  switch (lifetime) {
 | 
						|
  case Qualifiers::OCL_None:
 | 
						|
    llvm_unreachable("present but none");
 | 
						|
 | 
						|
  case Qualifiers::OCL_Strong: {
 | 
						|
    if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
 | 
						|
      value = EmitARCRetainScalarExpr(init);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
 | 
						|
    // that we omit the retain, and causes non-autoreleased return values to be
 | 
						|
    // immediately released.
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  }
 | 
						|
 | 
						|
  case Qualifiers::OCL_ExplicitNone:
 | 
						|
    value = EmitARCUnsafeUnretainedScalarExpr(init);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Qualifiers::OCL_Weak: {
 | 
						|
    // If it's not accessed by the initializer, try to emit the
 | 
						|
    // initialization with a copy or move.
 | 
						|
    if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // No way to optimize a producing initializer into this.  It's not
 | 
						|
    // worth optimizing for, because the value will immediately
 | 
						|
    // disappear in the common case.
 | 
						|
    value = EmitScalarExpr(init);
 | 
						|
 | 
						|
    if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
 | 
						|
    if (accessedByInit)
 | 
						|
      EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
 | 
						|
    else
 | 
						|
      EmitARCInitWeak(lvalue.getAddress(*this), value);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case Qualifiers::OCL_Autoreleasing:
 | 
						|
    value = EmitARCRetainAutoreleaseScalarExpr(init);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
 | 
						|
 | 
						|
  EmitNullabilityCheck(lvalue, value, init->getExprLoc());
 | 
						|
 | 
						|
  // If the variable might have been accessed by its initializer, we
 | 
						|
  // might have to initialize with a barrier.  We have to do this for
 | 
						|
  // both __weak and __strong, but __weak got filtered out above.
 | 
						|
  if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
 | 
						|
    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
 | 
						|
    EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
 | 
						|
    EmitARCRelease(oldValue, ARCImpreciseLifetime);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
 | 
						|
}
 | 
						|
 | 
						|
/// Decide whether we can emit the non-zero parts of the specified initializer
 | 
						|
/// with equal or fewer than NumStores scalar stores.
 | 
						|
static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
 | 
						|
                                               unsigned &NumStores) {
 | 
						|
  // Zero and Undef never requires any extra stores.
 | 
						|
  if (isa<llvm::ConstantAggregateZero>(Init) ||
 | 
						|
      isa<llvm::ConstantPointerNull>(Init) ||
 | 
						|
      isa<llvm::UndefValue>(Init))
 | 
						|
    return true;
 | 
						|
  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
 | 
						|
      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
 | 
						|
      isa<llvm::ConstantExpr>(Init))
 | 
						|
    return Init->isNullValue() || NumStores--;
 | 
						|
 | 
						|
  // See if we can emit each element.
 | 
						|
  if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
 | 
						|
    for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
 | 
						|
      llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
 | 
						|
      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (llvm::ConstantDataSequential *CDS =
 | 
						|
        dyn_cast<llvm::ConstantDataSequential>(Init)) {
 | 
						|
    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
 | 
						|
      llvm::Constant *Elt = CDS->getElementAsConstant(i);
 | 
						|
      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Anything else is hard and scary.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
 | 
						|
/// the scalar stores that would be required.
 | 
						|
static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
 | 
						|
                                        llvm::Constant *Init, Address Loc,
 | 
						|
                                        bool isVolatile, CGBuilderTy &Builder,
 | 
						|
                                        bool IsAutoInit) {
 | 
						|
  assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
 | 
						|
         "called emitStoresForInitAfterBZero for zero or undef value.");
 | 
						|
 | 
						|
  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
 | 
						|
      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
 | 
						|
      isa<llvm::ConstantExpr>(Init)) {
 | 
						|
    auto *I = Builder.CreateStore(Init, Loc, isVolatile);
 | 
						|
    if (IsAutoInit)
 | 
						|
      I->addAnnotationMetadata("auto-init");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (llvm::ConstantDataSequential *CDS =
 | 
						|
          dyn_cast<llvm::ConstantDataSequential>(Init)) {
 | 
						|
    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
 | 
						|
      llvm::Constant *Elt = CDS->getElementAsConstant(i);
 | 
						|
 | 
						|
      // If necessary, get a pointer to the element and emit it.
 | 
						|
      if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
 | 
						|
        emitStoresForInitAfterBZero(
 | 
						|
            CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
 | 
						|
            Builder, IsAutoInit);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
 | 
						|
         "Unknown value type!");
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
 | 
						|
    llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
 | 
						|
 | 
						|
    // If necessary, get a pointer to the element and emit it.
 | 
						|
    if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
 | 
						|
      emitStoresForInitAfterBZero(CGM, Elt,
 | 
						|
                                  Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
 | 
						|
                                  isVolatile, Builder, IsAutoInit);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Decide whether we should use bzero plus some stores to initialize a local
 | 
						|
/// variable instead of using a memcpy from a constant global.  It is beneficial
 | 
						|
/// to use bzero if the global is all zeros, or mostly zeros and large.
 | 
						|
static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
 | 
						|
                                                 uint64_t GlobalSize) {
 | 
						|
  // If a global is all zeros, always use a bzero.
 | 
						|
  if (isa<llvm::ConstantAggregateZero>(Init)) return true;
 | 
						|
 | 
						|
  // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
 | 
						|
  // do it if it will require 6 or fewer scalar stores.
 | 
						|
  // TODO: Should budget depends on the size?  Avoiding a large global warrants
 | 
						|
  // plopping in more stores.
 | 
						|
  unsigned StoreBudget = 6;
 | 
						|
  uint64_t SizeLimit = 32;
 | 
						|
 | 
						|
  return GlobalSize > SizeLimit &&
 | 
						|
         canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
 | 
						|
}
 | 
						|
 | 
						|
/// Decide whether we should use memset to initialize a local variable instead
 | 
						|
/// of using a memcpy from a constant global. Assumes we've already decided to
 | 
						|
/// not user bzero.
 | 
						|
/// FIXME We could be more clever, as we are for bzero above, and generate
 | 
						|
///       memset followed by stores. It's unclear that's worth the effort.
 | 
						|
static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
 | 
						|
                                                uint64_t GlobalSize,
 | 
						|
                                                const llvm::DataLayout &DL) {
 | 
						|
  uint64_t SizeLimit = 32;
 | 
						|
  if (GlobalSize <= SizeLimit)
 | 
						|
    return nullptr;
 | 
						|
  return llvm::isBytewiseValue(Init, DL);
 | 
						|
}
 | 
						|
 | 
						|
/// Decide whether we want to split a constant structure or array store into a
 | 
						|
/// sequence of its fields' stores. This may cost us code size and compilation
 | 
						|
/// speed, but plays better with store optimizations.
 | 
						|
static bool shouldSplitConstantStore(CodeGenModule &CGM,
 | 
						|
                                     uint64_t GlobalByteSize) {
 | 
						|
  // Don't break things that occupy more than one cacheline.
 | 
						|
  uint64_t ByteSizeLimit = 64;
 | 
						|
  if (CGM.getCodeGenOpts().OptimizationLevel == 0)
 | 
						|
    return false;
 | 
						|
  if (GlobalByteSize <= ByteSizeLimit)
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
enum class IsPattern { No, Yes };
 | 
						|
 | 
						|
/// Generate a constant filled with either a pattern or zeroes.
 | 
						|
static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
 | 
						|
                                        llvm::Type *Ty) {
 | 
						|
  if (isPattern == IsPattern::Yes)
 | 
						|
    return initializationPatternFor(CGM, Ty);
 | 
						|
  else
 | 
						|
    return llvm::Constant::getNullValue(Ty);
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
 | 
						|
                                        llvm::Constant *constant);
 | 
						|
 | 
						|
/// Helper function for constWithPadding() to deal with padding in structures.
 | 
						|
static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
 | 
						|
                                              IsPattern isPattern,
 | 
						|
                                              llvm::StructType *STy,
 | 
						|
                                              llvm::Constant *constant) {
 | 
						|
  const llvm::DataLayout &DL = CGM.getDataLayout();
 | 
						|
  const llvm::StructLayout *Layout = DL.getStructLayout(STy);
 | 
						|
  llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
 | 
						|
  unsigned SizeSoFar = 0;
 | 
						|
  SmallVector<llvm::Constant *, 8> Values;
 | 
						|
  bool NestedIntact = true;
 | 
						|
  for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
 | 
						|
    unsigned CurOff = Layout->getElementOffset(i);
 | 
						|
    if (SizeSoFar < CurOff) {
 | 
						|
      assert(!STy->isPacked());
 | 
						|
      auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
 | 
						|
      Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
 | 
						|
    }
 | 
						|
    llvm::Constant *CurOp;
 | 
						|
    if (constant->isZeroValue())
 | 
						|
      CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
 | 
						|
    else
 | 
						|
      CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
 | 
						|
    auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
 | 
						|
    if (CurOp != NewOp)
 | 
						|
      NestedIntact = false;
 | 
						|
    Values.push_back(NewOp);
 | 
						|
    SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
 | 
						|
  }
 | 
						|
  unsigned TotalSize = Layout->getSizeInBytes();
 | 
						|
  if (SizeSoFar < TotalSize) {
 | 
						|
    auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
 | 
						|
    Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
 | 
						|
  }
 | 
						|
  if (NestedIntact && Values.size() == STy->getNumElements())
 | 
						|
    return constant;
 | 
						|
  return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
 | 
						|
}
 | 
						|
 | 
						|
/// Replace all padding bytes in a given constant with either a pattern byte or
 | 
						|
/// 0x00.
 | 
						|
static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
 | 
						|
                                        llvm::Constant *constant) {
 | 
						|
  llvm::Type *OrigTy = constant->getType();
 | 
						|
  if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
 | 
						|
    return constStructWithPadding(CGM, isPattern, STy, constant);
 | 
						|
  if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
 | 
						|
    llvm::SmallVector<llvm::Constant *, 8> Values;
 | 
						|
    uint64_t Size = ArrayTy->getNumElements();
 | 
						|
    if (!Size)
 | 
						|
      return constant;
 | 
						|
    llvm::Type *ElemTy = ArrayTy->getElementType();
 | 
						|
    bool ZeroInitializer = constant->isNullValue();
 | 
						|
    llvm::Constant *OpValue, *PaddedOp;
 | 
						|
    if (ZeroInitializer) {
 | 
						|
      OpValue = llvm::Constant::getNullValue(ElemTy);
 | 
						|
      PaddedOp = constWithPadding(CGM, isPattern, OpValue);
 | 
						|
    }
 | 
						|
    for (unsigned Op = 0; Op != Size; ++Op) {
 | 
						|
      if (!ZeroInitializer) {
 | 
						|
        OpValue = constant->getAggregateElement(Op);
 | 
						|
        PaddedOp = constWithPadding(CGM, isPattern, OpValue);
 | 
						|
      }
 | 
						|
      Values.push_back(PaddedOp);
 | 
						|
    }
 | 
						|
    auto *NewElemTy = Values[0]->getType();
 | 
						|
    if (NewElemTy == ElemTy)
 | 
						|
      return constant;
 | 
						|
    auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
 | 
						|
    return llvm::ConstantArray::get(NewArrayTy, Values);
 | 
						|
  }
 | 
						|
  // FIXME: Add handling for tail padding in vectors. Vectors don't
 | 
						|
  // have padding between or inside elements, but the total amount of
 | 
						|
  // data can be less than the allocated size.
 | 
						|
  return constant;
 | 
						|
}
 | 
						|
 | 
						|
Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
 | 
						|
                                               llvm::Constant *Constant,
 | 
						|
                                               CharUnits Align) {
 | 
						|
  auto FunctionName = [&](const DeclContext *DC) -> std::string {
 | 
						|
    if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
 | 
						|
      if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
 | 
						|
        return CC->getNameAsString();
 | 
						|
      if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
 | 
						|
        return CD->getNameAsString();
 | 
						|
      return std::string(getMangledName(FD));
 | 
						|
    } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
 | 
						|
      return OM->getNameAsString();
 | 
						|
    } else if (isa<BlockDecl>(DC)) {
 | 
						|
      return "<block>";
 | 
						|
    } else if (isa<CapturedDecl>(DC)) {
 | 
						|
      return "<captured>";
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("expected a function or method");
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // Form a simple per-variable cache of these values in case we find we
 | 
						|
  // want to reuse them.
 | 
						|
  llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
 | 
						|
  if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
 | 
						|
    auto *Ty = Constant->getType();
 | 
						|
    bool isConstant = true;
 | 
						|
    llvm::GlobalVariable *InsertBefore = nullptr;
 | 
						|
    unsigned AS =
 | 
						|
        getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace());
 | 
						|
    std::string Name;
 | 
						|
    if (D.hasGlobalStorage())
 | 
						|
      Name = getMangledName(&D).str() + ".const";
 | 
						|
    else if (const DeclContext *DC = D.getParentFunctionOrMethod())
 | 
						|
      Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
 | 
						|
    else
 | 
						|
      llvm_unreachable("local variable has no parent function or method");
 | 
						|
    llvm::GlobalVariable *GV = new llvm::GlobalVariable(
 | 
						|
        getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
 | 
						|
        Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
 | 
						|
    GV->setAlignment(Align.getAsAlign());
 | 
						|
    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | 
						|
    CacheEntry = GV;
 | 
						|
  } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) {
 | 
						|
    CacheEntry->setAlignment(Align.getAsAlign());
 | 
						|
  }
 | 
						|
 | 
						|
  return Address(CacheEntry, CacheEntry->getValueType(), Align);
 | 
						|
}
 | 
						|
 | 
						|
static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
 | 
						|
                                                const VarDecl &D,
 | 
						|
                                                CGBuilderTy &Builder,
 | 
						|
                                                llvm::Constant *Constant,
 | 
						|
                                                CharUnits Align) {
 | 
						|
  Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
 | 
						|
  return Builder.CreateElementBitCast(SrcPtr, CGM.Int8Ty);
 | 
						|
}
 | 
						|
 | 
						|
static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
 | 
						|
                                  Address Loc, bool isVolatile,
 | 
						|
                                  CGBuilderTy &Builder,
 | 
						|
                                  llvm::Constant *constant, bool IsAutoInit) {
 | 
						|
  auto *Ty = constant->getType();
 | 
						|
  uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
 | 
						|
  if (!ConstantSize)
 | 
						|
    return;
 | 
						|
 | 
						|
  bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
 | 
						|
                          Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
 | 
						|
  if (canDoSingleStore) {
 | 
						|
    auto *I = Builder.CreateStore(constant, Loc, isVolatile);
 | 
						|
    if (IsAutoInit)
 | 
						|
      I->addAnnotationMetadata("auto-init");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
 | 
						|
 | 
						|
  // If the initializer is all or mostly the same, codegen with bzero / memset
 | 
						|
  // then do a few stores afterward.
 | 
						|
  if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
 | 
						|
    auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
 | 
						|
                                   SizeVal, isVolatile);
 | 
						|
    if (IsAutoInit)
 | 
						|
      I->addAnnotationMetadata("auto-init");
 | 
						|
 | 
						|
    bool valueAlreadyCorrect =
 | 
						|
        constant->isNullValue() || isa<llvm::UndefValue>(constant);
 | 
						|
    if (!valueAlreadyCorrect) {
 | 
						|
      Loc = Builder.CreateElementBitCast(Loc, Ty);
 | 
						|
      emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
 | 
						|
                                  IsAutoInit);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the initializer is a repeated byte pattern, use memset.
 | 
						|
  llvm::Value *Pattern =
 | 
						|
      shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
 | 
						|
  if (Pattern) {
 | 
						|
    uint64_t Value = 0x00;
 | 
						|
    if (!isa<llvm::UndefValue>(Pattern)) {
 | 
						|
      const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
 | 
						|
      assert(AP.getBitWidth() <= 8);
 | 
						|
      Value = AP.getLimitedValue();
 | 
						|
    }
 | 
						|
    auto *I = Builder.CreateMemSet(
 | 
						|
        Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
 | 
						|
    if (IsAutoInit)
 | 
						|
      I->addAnnotationMetadata("auto-init");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the initializer is small, use a handful of stores.
 | 
						|
  if (shouldSplitConstantStore(CGM, ConstantSize)) {
 | 
						|
    if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
 | 
						|
      // FIXME: handle the case when STy != Loc.getElementType().
 | 
						|
      if (STy == Loc.getElementType()) {
 | 
						|
        for (unsigned i = 0; i != constant->getNumOperands(); i++) {
 | 
						|
          Address EltPtr = Builder.CreateStructGEP(Loc, i);
 | 
						|
          emitStoresForConstant(
 | 
						|
              CGM, D, EltPtr, isVolatile, Builder,
 | 
						|
              cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
 | 
						|
              IsAutoInit);
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
 | 
						|
      // FIXME: handle the case when ATy != Loc.getElementType().
 | 
						|
      if (ATy == Loc.getElementType()) {
 | 
						|
        for (unsigned i = 0; i != ATy->getNumElements(); i++) {
 | 
						|
          Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
 | 
						|
          emitStoresForConstant(
 | 
						|
              CGM, D, EltPtr, isVolatile, Builder,
 | 
						|
              cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
 | 
						|
              IsAutoInit);
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy from a global.
 | 
						|
  auto *I =
 | 
						|
      Builder.CreateMemCpy(Loc,
 | 
						|
                           createUnnamedGlobalForMemcpyFrom(
 | 
						|
                               CGM, D, Builder, constant, Loc.getAlignment()),
 | 
						|
                           SizeVal, isVolatile);
 | 
						|
  if (IsAutoInit)
 | 
						|
    I->addAnnotationMetadata("auto-init");
 | 
						|
}
 | 
						|
 | 
						|
static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
 | 
						|
                                  Address Loc, bool isVolatile,
 | 
						|
                                  CGBuilderTy &Builder) {
 | 
						|
  llvm::Type *ElTy = Loc.getElementType();
 | 
						|
  llvm::Constant *constant =
 | 
						|
      constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
 | 
						|
  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
 | 
						|
                        /*IsAutoInit=*/true);
 | 
						|
}
 | 
						|
 | 
						|
static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
 | 
						|
                                     Address Loc, bool isVolatile,
 | 
						|
                                     CGBuilderTy &Builder) {
 | 
						|
  llvm::Type *ElTy = Loc.getElementType();
 | 
						|
  llvm::Constant *constant = constWithPadding(
 | 
						|
      CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
 | 
						|
  assert(!isa<llvm::UndefValue>(constant));
 | 
						|
  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
 | 
						|
                        /*IsAutoInit=*/true);
 | 
						|
}
 | 
						|
 | 
						|
static bool containsUndef(llvm::Constant *constant) {
 | 
						|
  auto *Ty = constant->getType();
 | 
						|
  if (isa<llvm::UndefValue>(constant))
 | 
						|
    return true;
 | 
						|
  if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
 | 
						|
    for (llvm::Use &Op : constant->operands())
 | 
						|
      if (containsUndef(cast<llvm::Constant>(Op)))
 | 
						|
        return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
 | 
						|
                                    llvm::Constant *constant) {
 | 
						|
  auto *Ty = constant->getType();
 | 
						|
  if (isa<llvm::UndefValue>(constant))
 | 
						|
    return patternOrZeroFor(CGM, isPattern, Ty);
 | 
						|
  if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
 | 
						|
    return constant;
 | 
						|
  if (!containsUndef(constant))
 | 
						|
    return constant;
 | 
						|
  llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
 | 
						|
  for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
 | 
						|
    auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
 | 
						|
    Values[Op] = replaceUndef(CGM, isPattern, OpValue);
 | 
						|
  }
 | 
						|
  if (Ty->isStructTy())
 | 
						|
    return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
 | 
						|
  if (Ty->isArrayTy())
 | 
						|
    return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
 | 
						|
  assert(Ty->isVectorTy());
 | 
						|
  return llvm::ConstantVector::get(Values);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
 | 
						|
/// variable declaration with auto, register, or no storage class specifier.
 | 
						|
/// These turn into simple stack objects, or GlobalValues depending on target.
 | 
						|
void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
 | 
						|
  AutoVarEmission emission = EmitAutoVarAlloca(D);
 | 
						|
  EmitAutoVarInit(emission);
 | 
						|
  EmitAutoVarCleanups(emission);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit a lifetime.begin marker if some criteria are satisfied.
 | 
						|
/// \return a pointer to the temporary size Value if a marker was emitted, null
 | 
						|
/// otherwise
 | 
						|
llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size,
 | 
						|
                                                llvm::Value *Addr) {
 | 
						|
  if (!ShouldEmitLifetimeMarkers)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert(Addr->getType()->getPointerAddressSpace() ==
 | 
						|
             CGM.getDataLayout().getAllocaAddrSpace() &&
 | 
						|
         "Pointer should be in alloca address space");
 | 
						|
  llvm::Value *SizeV = llvm::ConstantInt::get(
 | 
						|
      Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue());
 | 
						|
  Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
 | 
						|
  llvm::CallInst *C =
 | 
						|
      Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
 | 
						|
  C->setDoesNotThrow();
 | 
						|
  return SizeV;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
 | 
						|
  assert(Addr->getType()->getPointerAddressSpace() ==
 | 
						|
             CGM.getDataLayout().getAllocaAddrSpace() &&
 | 
						|
         "Pointer should be in alloca address space");
 | 
						|
  Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
 | 
						|
  llvm::CallInst *C =
 | 
						|
      Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
 | 
						|
  C->setDoesNotThrow();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
 | 
						|
    CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
 | 
						|
  // For each dimension stores its QualType and corresponding
 | 
						|
  // size-expression Value.
 | 
						|
  SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
 | 
						|
  SmallVector<IdentifierInfo *, 4> VLAExprNames;
 | 
						|
 | 
						|
  // Break down the array into individual dimensions.
 | 
						|
  QualType Type1D = D.getType();
 | 
						|
  while (getContext().getAsVariableArrayType(Type1D)) {
 | 
						|
    auto VlaSize = getVLAElements1D(Type1D);
 | 
						|
    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
 | 
						|
      Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
 | 
						|
    else {
 | 
						|
      // Generate a locally unique name for the size expression.
 | 
						|
      Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
 | 
						|
      SmallString<12> Buffer;
 | 
						|
      StringRef NameRef = Name.toStringRef(Buffer);
 | 
						|
      auto &Ident = getContext().Idents.getOwn(NameRef);
 | 
						|
      VLAExprNames.push_back(&Ident);
 | 
						|
      auto SizeExprAddr =
 | 
						|
          CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
 | 
						|
      Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
 | 
						|
      Dimensions.emplace_back(SizeExprAddr.getPointer(),
 | 
						|
                              Type1D.getUnqualifiedType());
 | 
						|
    }
 | 
						|
    Type1D = VlaSize.Type;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!EmitDebugInfo)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Register each dimension's size-expression with a DILocalVariable,
 | 
						|
  // so that it can be used by CGDebugInfo when instantiating a DISubrange
 | 
						|
  // to describe this array.
 | 
						|
  unsigned NameIdx = 0;
 | 
						|
  for (auto &VlaSize : Dimensions) {
 | 
						|
    llvm::Metadata *MD;
 | 
						|
    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
 | 
						|
      MD = llvm::ConstantAsMetadata::get(C);
 | 
						|
    else {
 | 
						|
      // Create an artificial VarDecl to generate debug info for.
 | 
						|
      IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
 | 
						|
      assert(cast<llvm::PointerType>(VlaSize.NumElts->getType())
 | 
						|
                 ->isOpaqueOrPointeeTypeMatches(SizeTy) &&
 | 
						|
             "Number of VLA elements must be SizeTy");
 | 
						|
      auto QT = getContext().getIntTypeForBitwidth(
 | 
						|
          SizeTy->getScalarSizeInBits(), false);
 | 
						|
      auto *ArtificialDecl = VarDecl::Create(
 | 
						|
          getContext(), const_cast<DeclContext *>(D.getDeclContext()),
 | 
						|
          D.getLocation(), D.getLocation(), NameIdent, QT,
 | 
						|
          getContext().CreateTypeSourceInfo(QT), SC_Auto);
 | 
						|
      ArtificialDecl->setImplicit();
 | 
						|
 | 
						|
      MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
 | 
						|
                                         Builder);
 | 
						|
    }
 | 
						|
    assert(MD && "No Size expression debug node created");
 | 
						|
    DI->registerVLASizeExpression(VlaSize.Type, MD);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitAutoVarAlloca - Emit the alloca and debug information for a
 | 
						|
/// local variable.  Does not emit initialization or destruction.
 | 
						|
CodeGenFunction::AutoVarEmission
 | 
						|
CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
 | 
						|
  QualType Ty = D.getType();
 | 
						|
  assert(
 | 
						|
      Ty.getAddressSpace() == LangAS::Default ||
 | 
						|
      (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
 | 
						|
 | 
						|
  AutoVarEmission emission(D);
 | 
						|
 | 
						|
  bool isEscapingByRef = D.isEscapingByref();
 | 
						|
  emission.IsEscapingByRef = isEscapingByRef;
 | 
						|
 | 
						|
  CharUnits alignment = getContext().getDeclAlign(&D);
 | 
						|
 | 
						|
  // If the type is variably-modified, emit all the VLA sizes for it.
 | 
						|
  if (Ty->isVariablyModifiedType())
 | 
						|
    EmitVariablyModifiedType(Ty);
 | 
						|
 | 
						|
  auto *DI = getDebugInfo();
 | 
						|
  bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
 | 
						|
 | 
						|
  Address address = Address::invalid();
 | 
						|
  Address AllocaAddr = Address::invalid();
 | 
						|
  Address OpenMPLocalAddr = Address::invalid();
 | 
						|
  if (CGM.getLangOpts().OpenMPIRBuilder)
 | 
						|
    OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
 | 
						|
  else
 | 
						|
    OpenMPLocalAddr =
 | 
						|
        getLangOpts().OpenMP
 | 
						|
            ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
 | 
						|
            : Address::invalid();
 | 
						|
 | 
						|
  bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
 | 
						|
 | 
						|
  if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
 | 
						|
    address = OpenMPLocalAddr;
 | 
						|
    AllocaAddr = OpenMPLocalAddr;
 | 
						|
  } else if (Ty->isConstantSizeType()) {
 | 
						|
    // If this value is an array or struct with a statically determinable
 | 
						|
    // constant initializer, there are optimizations we can do.
 | 
						|
    //
 | 
						|
    // TODO: We should constant-evaluate the initializer of any variable,
 | 
						|
    // as long as it is initialized by a constant expression. Currently,
 | 
						|
    // isConstantInitializer produces wrong answers for structs with
 | 
						|
    // reference or bitfield members, and a few other cases, and checking
 | 
						|
    // for POD-ness protects us from some of these.
 | 
						|
    if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
 | 
						|
        (D.isConstexpr() ||
 | 
						|
         ((Ty.isPODType(getContext()) ||
 | 
						|
           getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
 | 
						|
          D.getInit()->isConstantInitializer(getContext(), false)))) {
 | 
						|
 | 
						|
      // If the variable's a const type, and it's neither an NRVO
 | 
						|
      // candidate nor a __block variable and has no mutable members,
 | 
						|
      // emit it as a global instead.
 | 
						|
      // Exception is if a variable is located in non-constant address space
 | 
						|
      // in OpenCL.
 | 
						|
      if ((!getLangOpts().OpenCL ||
 | 
						|
           Ty.getAddressSpace() == LangAS::opencl_constant) &&
 | 
						|
          (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
 | 
						|
           !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
 | 
						|
        EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
 | 
						|
 | 
						|
        // Signal this condition to later callbacks.
 | 
						|
        emission.Addr = Address::invalid();
 | 
						|
        assert(emission.wasEmittedAsGlobal());
 | 
						|
        return emission;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, tell the initialization code that we're in this case.
 | 
						|
      emission.IsConstantAggregate = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // A normal fixed sized variable becomes an alloca in the entry block,
 | 
						|
    // unless:
 | 
						|
    // - it's an NRVO variable.
 | 
						|
    // - we are compiling OpenMP and it's an OpenMP local variable.
 | 
						|
    if (NRVO) {
 | 
						|
      // The named return value optimization: allocate this variable in the
 | 
						|
      // return slot, so that we can elide the copy when returning this
 | 
						|
      // variable (C++0x [class.copy]p34).
 | 
						|
      address = ReturnValue;
 | 
						|
      AllocaAddr = ReturnValue;
 | 
						|
 | 
						|
      if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
 | 
						|
        const auto *RD = RecordTy->getDecl();
 | 
						|
        const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
 | 
						|
        if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
 | 
						|
            RD->isNonTrivialToPrimitiveDestroy()) {
 | 
						|
          // Create a flag that is used to indicate when the NRVO was applied
 | 
						|
          // to this variable. Set it to zero to indicate that NRVO was not
 | 
						|
          // applied.
 | 
						|
          llvm::Value *Zero = Builder.getFalse();
 | 
						|
          Address NRVOFlag =
 | 
						|
              CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo",
 | 
						|
                               /*ArraySize=*/nullptr, &AllocaAddr);
 | 
						|
          EnsureInsertPoint();
 | 
						|
          Builder.CreateStore(Zero, NRVOFlag);
 | 
						|
 | 
						|
          // Record the NRVO flag for this variable.
 | 
						|
          NRVOFlags[&D] = NRVOFlag.getPointer();
 | 
						|
          emission.NRVOFlag = NRVOFlag.getPointer();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      CharUnits allocaAlignment;
 | 
						|
      llvm::Type *allocaTy;
 | 
						|
      if (isEscapingByRef) {
 | 
						|
        auto &byrefInfo = getBlockByrefInfo(&D);
 | 
						|
        allocaTy = byrefInfo.Type;
 | 
						|
        allocaAlignment = byrefInfo.ByrefAlignment;
 | 
						|
      } else {
 | 
						|
        allocaTy = ConvertTypeForMem(Ty);
 | 
						|
        allocaAlignment = alignment;
 | 
						|
      }
 | 
						|
 | 
						|
      // Create the alloca.  Note that we set the name separately from
 | 
						|
      // building the instruction so that it's there even in no-asserts
 | 
						|
      // builds.
 | 
						|
      address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
 | 
						|
                                 /*ArraySize=*/nullptr, &AllocaAddr);
 | 
						|
 | 
						|
      // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
 | 
						|
      // the catch parameter starts in the catchpad instruction, and we can't
 | 
						|
      // insert code in those basic blocks.
 | 
						|
      bool IsMSCatchParam =
 | 
						|
          D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
 | 
						|
 | 
						|
      // Emit a lifetime intrinsic if meaningful. There's no point in doing this
 | 
						|
      // if we don't have a valid insertion point (?).
 | 
						|
      if (HaveInsertPoint() && !IsMSCatchParam) {
 | 
						|
        // If there's a jump into the lifetime of this variable, its lifetime
 | 
						|
        // gets broken up into several regions in IR, which requires more work
 | 
						|
        // to handle correctly. For now, just omit the intrinsics; this is a
 | 
						|
        // rare case, and it's better to just be conservatively correct.
 | 
						|
        // PR28267.
 | 
						|
        //
 | 
						|
        // We have to do this in all language modes if there's a jump past the
 | 
						|
        // declaration. We also have to do it in C if there's a jump to an
 | 
						|
        // earlier point in the current block because non-VLA lifetimes begin as
 | 
						|
        // soon as the containing block is entered, not when its variables
 | 
						|
        // actually come into scope; suppressing the lifetime annotations
 | 
						|
        // completely in this case is unnecessarily pessimistic, but again, this
 | 
						|
        // is rare.
 | 
						|
        if (!Bypasses.IsBypassed(&D) &&
 | 
						|
            !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
 | 
						|
          llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
 | 
						|
          emission.SizeForLifetimeMarkers =
 | 
						|
              EmitLifetimeStart(Size, AllocaAddr.getPointer());
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        assert(!emission.useLifetimeMarkers());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    EnsureInsertPoint();
 | 
						|
 | 
						|
    if (!DidCallStackSave) {
 | 
						|
      // Save the stack.
 | 
						|
      Address Stack =
 | 
						|
        CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
 | 
						|
 | 
						|
      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
 | 
						|
      llvm::Value *V = Builder.CreateCall(F);
 | 
						|
      Builder.CreateStore(V, Stack);
 | 
						|
 | 
						|
      DidCallStackSave = true;
 | 
						|
 | 
						|
      // Push a cleanup block and restore the stack there.
 | 
						|
      // FIXME: in general circumstances, this should be an EH cleanup.
 | 
						|
      pushStackRestore(NormalCleanup, Stack);
 | 
						|
    }
 | 
						|
 | 
						|
    auto VlaSize = getVLASize(Ty);
 | 
						|
    llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
 | 
						|
 | 
						|
    // Allocate memory for the array.
 | 
						|
    address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
 | 
						|
                               &AllocaAddr);
 | 
						|
 | 
						|
    // If we have debug info enabled, properly describe the VLA dimensions for
 | 
						|
    // this type by registering the vla size expression for each of the
 | 
						|
    // dimensions.
 | 
						|
    EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
 | 
						|
  }
 | 
						|
 | 
						|
  setAddrOfLocalVar(&D, address);
 | 
						|
  emission.Addr = address;
 | 
						|
  emission.AllocaAddr = AllocaAddr;
 | 
						|
 | 
						|
  // Emit debug info for local var declaration.
 | 
						|
  if (EmitDebugInfo && HaveInsertPoint()) {
 | 
						|
    Address DebugAddr = address;
 | 
						|
    bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
 | 
						|
    DI->setLocation(D.getLocation());
 | 
						|
 | 
						|
    // If NRVO, use a pointer to the return address.
 | 
						|
    if (UsePointerValue) {
 | 
						|
      DebugAddr = ReturnValuePointer;
 | 
						|
      AllocaAddr = ReturnValuePointer;
 | 
						|
    }
 | 
						|
    (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder,
 | 
						|
                                        UsePointerValue);
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
 | 
						|
    EmitVarAnnotations(&D, address.getPointer());
 | 
						|
 | 
						|
  // Make sure we call @llvm.lifetime.end.
 | 
						|
  if (emission.useLifetimeMarkers())
 | 
						|
    EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
 | 
						|
                                         emission.getOriginalAllocatedAddress(),
 | 
						|
                                         emission.getSizeForLifetimeMarkers());
 | 
						|
 | 
						|
  return emission;
 | 
						|
}
 | 
						|
 | 
						|
static bool isCapturedBy(const VarDecl &, const Expr *);
 | 
						|
 | 
						|
/// Determines whether the given __block variable is potentially
 | 
						|
/// captured by the given statement.
 | 
						|
static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
 | 
						|
  if (const Expr *E = dyn_cast<Expr>(S))
 | 
						|
    return isCapturedBy(Var, E);
 | 
						|
  for (const Stmt *SubStmt : S->children())
 | 
						|
    if (isCapturedBy(Var, SubStmt))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Determines whether the given __block variable is potentially
 | 
						|
/// captured by the given expression.
 | 
						|
static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
 | 
						|
  // Skip the most common kinds of expressions that make
 | 
						|
  // hierarchy-walking expensive.
 | 
						|
  E = E->IgnoreParenCasts();
 | 
						|
 | 
						|
  if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
 | 
						|
    const BlockDecl *Block = BE->getBlockDecl();
 | 
						|
    for (const auto &I : Block->captures()) {
 | 
						|
      if (I.getVariable() == &Var)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // No need to walk into the subexpressions.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
 | 
						|
    const CompoundStmt *CS = SE->getSubStmt();
 | 
						|
    for (const auto *BI : CS->body())
 | 
						|
      if (const auto *BIE = dyn_cast<Expr>(BI)) {
 | 
						|
        if (isCapturedBy(Var, BIE))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
      else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
 | 
						|
          // special case declarations
 | 
						|
          for (const auto *I : DS->decls()) {
 | 
						|
              if (const auto *VD = dyn_cast<VarDecl>((I))) {
 | 
						|
                const Expr *Init = VD->getInit();
 | 
						|
                if (Init && isCapturedBy(Var, Init))
 | 
						|
                  return true;
 | 
						|
              }
 | 
						|
          }
 | 
						|
      }
 | 
						|
      else
 | 
						|
        // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
 | 
						|
        // Later, provide code to poke into statements for capture analysis.
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (const Stmt *SubStmt : E->children())
 | 
						|
    if (isCapturedBy(Var, SubStmt))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether the given initializer is trivial in the sense
 | 
						|
/// that it requires no code to be generated.
 | 
						|
bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
 | 
						|
  if (!Init)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
 | 
						|
    if (CXXConstructorDecl *Constructor = Construct->getConstructor())
 | 
						|
      if (Constructor->isTrivial() &&
 | 
						|
          Constructor->isDefaultConstructor() &&
 | 
						|
          !Construct->requiresZeroInitialization())
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
 | 
						|
                                                      const VarDecl &D,
 | 
						|
                                                      Address Loc) {
 | 
						|
  auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
 | 
						|
  CharUnits Size = getContext().getTypeSizeInChars(type);
 | 
						|
  bool isVolatile = type.isVolatileQualified();
 | 
						|
  if (!Size.isZero()) {
 | 
						|
    switch (trivialAutoVarInit) {
 | 
						|
    case LangOptions::TrivialAutoVarInitKind::Uninitialized:
 | 
						|
      llvm_unreachable("Uninitialized handled by caller");
 | 
						|
    case LangOptions::TrivialAutoVarInitKind::Zero:
 | 
						|
      if (CGM.stopAutoInit())
 | 
						|
        return;
 | 
						|
      emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
 | 
						|
      break;
 | 
						|
    case LangOptions::TrivialAutoVarInitKind::Pattern:
 | 
						|
      if (CGM.stopAutoInit())
 | 
						|
        return;
 | 
						|
      emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
 | 
						|
  // them, so emit a memcpy with the VLA size to initialize each element.
 | 
						|
  // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
 | 
						|
  // will catch that code, but there exists code which generates zero-sized
 | 
						|
  // VLAs. Be nice and initialize whatever they requested.
 | 
						|
  const auto *VlaType = getContext().getAsVariableArrayType(type);
 | 
						|
  if (!VlaType)
 | 
						|
    return;
 | 
						|
  auto VlaSize = getVLASize(VlaType);
 | 
						|
  auto SizeVal = VlaSize.NumElts;
 | 
						|
  CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
 | 
						|
  switch (trivialAutoVarInit) {
 | 
						|
  case LangOptions::TrivialAutoVarInitKind::Uninitialized:
 | 
						|
    llvm_unreachable("Uninitialized handled by caller");
 | 
						|
 | 
						|
  case LangOptions::TrivialAutoVarInitKind::Zero: {
 | 
						|
    if (CGM.stopAutoInit())
 | 
						|
      return;
 | 
						|
    if (!EltSize.isOne())
 | 
						|
      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
 | 
						|
    auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
 | 
						|
                                   SizeVal, isVolatile);
 | 
						|
    I->addAnnotationMetadata("auto-init");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case LangOptions::TrivialAutoVarInitKind::Pattern: {
 | 
						|
    if (CGM.stopAutoInit())
 | 
						|
      return;
 | 
						|
    llvm::Type *ElTy = Loc.getElementType();
 | 
						|
    llvm::Constant *Constant = constWithPadding(
 | 
						|
        CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
 | 
						|
    CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
 | 
						|
    llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
 | 
						|
    llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
 | 
						|
    llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
 | 
						|
    llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
 | 
						|
        SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
 | 
						|
        "vla.iszerosized");
 | 
						|
    Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
 | 
						|
    EmitBlock(SetupBB);
 | 
						|
    if (!EltSize.isOne())
 | 
						|
      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
 | 
						|
    llvm::Value *BaseSizeInChars =
 | 
						|
        llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
 | 
						|
    Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
 | 
						|
    llvm::Value *End = Builder.CreateInBoundsGEP(
 | 
						|
        Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end");
 | 
						|
    llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
 | 
						|
    EmitBlock(LoopBB);
 | 
						|
    llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
 | 
						|
    Cur->addIncoming(Begin.getPointer(), OriginBB);
 | 
						|
    CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
 | 
						|
    auto *I =
 | 
						|
        Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign),
 | 
						|
                             createUnnamedGlobalForMemcpyFrom(
 | 
						|
                                 CGM, D, Builder, Constant, ConstantAlign),
 | 
						|
                             BaseSizeInChars, isVolatile);
 | 
						|
    I->addAnnotationMetadata("auto-init");
 | 
						|
    llvm::Value *Next =
 | 
						|
        Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
 | 
						|
    llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
 | 
						|
    Builder.CreateCondBr(Done, ContBB, LoopBB);
 | 
						|
    Cur->addIncoming(Next, LoopBB);
 | 
						|
    EmitBlock(ContBB);
 | 
						|
  } break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
 | 
						|
  assert(emission.Variable && "emission was not valid!");
 | 
						|
 | 
						|
  // If this was emitted as a global constant, we're done.
 | 
						|
  if (emission.wasEmittedAsGlobal()) return;
 | 
						|
 | 
						|
  const VarDecl &D = *emission.Variable;
 | 
						|
  auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
 | 
						|
  QualType type = D.getType();
 | 
						|
 | 
						|
  // If this local has an initializer, emit it now.
 | 
						|
  const Expr *Init = D.getInit();
 | 
						|
 | 
						|
  // If we are at an unreachable point, we don't need to emit the initializer
 | 
						|
  // unless it contains a label.
 | 
						|
  if (!HaveInsertPoint()) {
 | 
						|
    if (!Init || !ContainsLabel(Init)) return;
 | 
						|
    EnsureInsertPoint();
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize the structure of a __block variable.
 | 
						|
  if (emission.IsEscapingByRef)
 | 
						|
    emitByrefStructureInit(emission);
 | 
						|
 | 
						|
  // Initialize the variable here if it doesn't have a initializer and it is a
 | 
						|
  // C struct that is non-trivial to initialize or an array containing such a
 | 
						|
  // struct.
 | 
						|
  if (!Init &&
 | 
						|
      type.isNonTrivialToPrimitiveDefaultInitialize() ==
 | 
						|
          QualType::PDIK_Struct) {
 | 
						|
    LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
 | 
						|
    if (emission.IsEscapingByRef)
 | 
						|
      drillIntoBlockVariable(*this, Dst, &D);
 | 
						|
    defaultInitNonTrivialCStructVar(Dst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether this is a byref variable that's potentially
 | 
						|
  // captured and moved by its own initializer.  If so, we'll need to
 | 
						|
  // emit the initializer first, then copy into the variable.
 | 
						|
  bool capturedByInit =
 | 
						|
      Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
 | 
						|
 | 
						|
  bool locIsByrefHeader = !capturedByInit;
 | 
						|
  const Address Loc =
 | 
						|
      locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
 | 
						|
 | 
						|
  // Note: constexpr already initializes everything correctly.
 | 
						|
  LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
 | 
						|
      (D.isConstexpr()
 | 
						|
           ? LangOptions::TrivialAutoVarInitKind::Uninitialized
 | 
						|
           : (D.getAttr<UninitializedAttr>()
 | 
						|
                  ? LangOptions::TrivialAutoVarInitKind::Uninitialized
 | 
						|
                  : getContext().getLangOpts().getTrivialAutoVarInit()));
 | 
						|
 | 
						|
  auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
 | 
						|
    if (trivialAutoVarInit ==
 | 
						|
        LangOptions::TrivialAutoVarInitKind::Uninitialized)
 | 
						|
      return;
 | 
						|
 | 
						|
    // Only initialize a __block's storage: we always initialize the header.
 | 
						|
    if (emission.IsEscapingByRef && !locIsByrefHeader)
 | 
						|
      Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
 | 
						|
 | 
						|
    return emitZeroOrPatternForAutoVarInit(type, D, Loc);
 | 
						|
  };
 | 
						|
 | 
						|
  if (isTrivialInitializer(Init))
 | 
						|
    return initializeWhatIsTechnicallyUninitialized(Loc);
 | 
						|
 | 
						|
  llvm::Constant *constant = nullptr;
 | 
						|
  if (emission.IsConstantAggregate ||
 | 
						|
      D.mightBeUsableInConstantExpressions(getContext())) {
 | 
						|
    assert(!capturedByInit && "constant init contains a capturing block?");
 | 
						|
    constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
 | 
						|
    if (constant && !constant->isZeroValue() &&
 | 
						|
        (trivialAutoVarInit !=
 | 
						|
         LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
 | 
						|
      IsPattern isPattern =
 | 
						|
          (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
 | 
						|
              ? IsPattern::Yes
 | 
						|
              : IsPattern::No;
 | 
						|
      // C guarantees that brace-init with fewer initializers than members in
 | 
						|
      // the aggregate will initialize the rest of the aggregate as-if it were
 | 
						|
      // static initialization. In turn static initialization guarantees that
 | 
						|
      // padding is initialized to zero bits. We could instead pattern-init if D
 | 
						|
      // has any ImplicitValueInitExpr, but that seems to be unintuitive
 | 
						|
      // behavior.
 | 
						|
      constant = constWithPadding(CGM, IsPattern::No,
 | 
						|
                                  replaceUndef(CGM, isPattern, constant));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!constant) {
 | 
						|
    initializeWhatIsTechnicallyUninitialized(Loc);
 | 
						|
    LValue lv = MakeAddrLValue(Loc, type);
 | 
						|
    lv.setNonGC(true);
 | 
						|
    return EmitExprAsInit(Init, &D, lv, capturedByInit);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!emission.IsConstantAggregate) {
 | 
						|
    // For simple scalar/complex initialization, store the value directly.
 | 
						|
    LValue lv = MakeAddrLValue(Loc, type);
 | 
						|
    lv.setNonGC(true);
 | 
						|
    return EmitStoreThroughLValue(RValue::get(constant), lv, true);
 | 
						|
  }
 | 
						|
 | 
						|
  emitStoresForConstant(CGM, D, Builder.CreateElementBitCast(Loc, CGM.Int8Ty),
 | 
						|
                        type.isVolatileQualified(), Builder, constant,
 | 
						|
                        /*IsAutoInit=*/false);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit an expression as an initializer for an object (variable, field, etc.)
 | 
						|
/// at the given location.  The expression is not necessarily the normal
 | 
						|
/// initializer for the object, and the address is not necessarily
 | 
						|
/// its normal location.
 | 
						|
///
 | 
						|
/// \param init the initializing expression
 | 
						|
/// \param D the object to act as if we're initializing
 | 
						|
/// \param lvalue the lvalue to initialize
 | 
						|
/// \param capturedByInit true if \p D is a __block variable
 | 
						|
///   whose address is potentially changed by the initializer
 | 
						|
void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
 | 
						|
                                     LValue lvalue, bool capturedByInit) {
 | 
						|
  QualType type = D->getType();
 | 
						|
 | 
						|
  if (type->isReferenceType()) {
 | 
						|
    RValue rvalue = EmitReferenceBindingToExpr(init);
 | 
						|
    if (capturedByInit)
 | 
						|
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
 | 
						|
    EmitStoreThroughLValue(rvalue, lvalue, true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  switch (getEvaluationKind(type)) {
 | 
						|
  case TEK_Scalar:
 | 
						|
    EmitScalarInit(init, D, lvalue, capturedByInit);
 | 
						|
    return;
 | 
						|
  case TEK_Complex: {
 | 
						|
    ComplexPairTy complex = EmitComplexExpr(init);
 | 
						|
    if (capturedByInit)
 | 
						|
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
 | 
						|
    EmitStoreOfComplex(complex, lvalue, /*init*/ true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case TEK_Aggregate:
 | 
						|
    if (type->isAtomicType()) {
 | 
						|
      EmitAtomicInit(const_cast<Expr*>(init), lvalue);
 | 
						|
    } else {
 | 
						|
      AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
 | 
						|
      if (isa<VarDecl>(D))
 | 
						|
        Overlap = AggValueSlot::DoesNotOverlap;
 | 
						|
      else if (auto *FD = dyn_cast<FieldDecl>(D))
 | 
						|
        Overlap = getOverlapForFieldInit(FD);
 | 
						|
      // TODO: how can we delay here if D is captured by its initializer?
 | 
						|
      EmitAggExpr(init, AggValueSlot::forLValue(
 | 
						|
                            lvalue, *this, AggValueSlot::IsDestructed,
 | 
						|
                            AggValueSlot::DoesNotNeedGCBarriers,
 | 
						|
                            AggValueSlot::IsNotAliased, Overlap));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad evaluation kind");
 | 
						|
}
 | 
						|
 | 
						|
/// Enter a destroy cleanup for the given local variable.
 | 
						|
void CodeGenFunction::emitAutoVarTypeCleanup(
 | 
						|
                            const CodeGenFunction::AutoVarEmission &emission,
 | 
						|
                            QualType::DestructionKind dtorKind) {
 | 
						|
  assert(dtorKind != QualType::DK_none);
 | 
						|
 | 
						|
  // Note that for __block variables, we want to destroy the
 | 
						|
  // original stack object, not the possibly forwarded object.
 | 
						|
  Address addr = emission.getObjectAddress(*this);
 | 
						|
 | 
						|
  const VarDecl *var = emission.Variable;
 | 
						|
  QualType type = var->getType();
 | 
						|
 | 
						|
  CleanupKind cleanupKind = NormalAndEHCleanup;
 | 
						|
  CodeGenFunction::Destroyer *destroyer = nullptr;
 | 
						|
 | 
						|
  switch (dtorKind) {
 | 
						|
  case QualType::DK_none:
 | 
						|
    llvm_unreachable("no cleanup for trivially-destructible variable");
 | 
						|
 | 
						|
  case QualType::DK_cxx_destructor:
 | 
						|
    // If there's an NRVO flag on the emission, we need a different
 | 
						|
    // cleanup.
 | 
						|
    if (emission.NRVOFlag) {
 | 
						|
      assert(!type->isArrayType());
 | 
						|
      CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
 | 
						|
      EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
 | 
						|
                                                  emission.NRVOFlag);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case QualType::DK_objc_strong_lifetime:
 | 
						|
    // Suppress cleanups for pseudo-strong variables.
 | 
						|
    if (var->isARCPseudoStrong()) return;
 | 
						|
 | 
						|
    // Otherwise, consider whether to use an EH cleanup or not.
 | 
						|
    cleanupKind = getARCCleanupKind();
 | 
						|
 | 
						|
    // Use the imprecise destroyer by default.
 | 
						|
    if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
 | 
						|
      destroyer = CodeGenFunction::destroyARCStrongImprecise;
 | 
						|
    break;
 | 
						|
 | 
						|
  case QualType::DK_objc_weak_lifetime:
 | 
						|
    break;
 | 
						|
 | 
						|
  case QualType::DK_nontrivial_c_struct:
 | 
						|
    destroyer = CodeGenFunction::destroyNonTrivialCStruct;
 | 
						|
    if (emission.NRVOFlag) {
 | 
						|
      assert(!type->isArrayType());
 | 
						|
      EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
 | 
						|
                                                emission.NRVOFlag, type);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we haven't chosen a more specific destroyer, use the default.
 | 
						|
  if (!destroyer) destroyer = getDestroyer(dtorKind);
 | 
						|
 | 
						|
  // Use an EH cleanup in array destructors iff the destructor itself
 | 
						|
  // is being pushed as an EH cleanup.
 | 
						|
  bool useEHCleanup = (cleanupKind & EHCleanup);
 | 
						|
  EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
 | 
						|
                                     useEHCleanup);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
 | 
						|
  assert(emission.Variable && "emission was not valid!");
 | 
						|
 | 
						|
  // If this was emitted as a global constant, we're done.
 | 
						|
  if (emission.wasEmittedAsGlobal()) return;
 | 
						|
 | 
						|
  // If we don't have an insertion point, we're done.  Sema prevents
 | 
						|
  // us from jumping into any of these scopes anyway.
 | 
						|
  if (!HaveInsertPoint()) return;
 | 
						|
 | 
						|
  const VarDecl &D = *emission.Variable;
 | 
						|
 | 
						|
  // Check the type for a cleanup.
 | 
						|
  if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
 | 
						|
    emitAutoVarTypeCleanup(emission, dtorKind);
 | 
						|
 | 
						|
  // In GC mode, honor objc_precise_lifetime.
 | 
						|
  if (getLangOpts().getGC() != LangOptions::NonGC &&
 | 
						|
      D.hasAttr<ObjCPreciseLifetimeAttr>()) {
 | 
						|
    EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle the cleanup attribute.
 | 
						|
  if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
 | 
						|
    const FunctionDecl *FD = CA->getFunctionDecl();
 | 
						|
 | 
						|
    llvm::Constant *F = CGM.GetAddrOfFunction(FD);
 | 
						|
    assert(F && "Could not find function!");
 | 
						|
 | 
						|
    const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
 | 
						|
    EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a block variable, call _Block_object_destroy
 | 
						|
  // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
 | 
						|
  // mode.
 | 
						|
  if (emission.IsEscapingByRef &&
 | 
						|
      CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
 | 
						|
    BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
 | 
						|
    if (emission.Variable->getType().isObjCGCWeak())
 | 
						|
      Flags |= BLOCK_FIELD_IS_WEAK;
 | 
						|
    enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
 | 
						|
                      /*LoadBlockVarAddr*/ false,
 | 
						|
                      cxxDestructorCanThrow(emission.Variable->getType()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::Destroyer *
 | 
						|
CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
 | 
						|
  switch (kind) {
 | 
						|
  case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
 | 
						|
  case QualType::DK_cxx_destructor:
 | 
						|
    return destroyCXXObject;
 | 
						|
  case QualType::DK_objc_strong_lifetime:
 | 
						|
    return destroyARCStrongPrecise;
 | 
						|
  case QualType::DK_objc_weak_lifetime:
 | 
						|
    return destroyARCWeak;
 | 
						|
  case QualType::DK_nontrivial_c_struct:
 | 
						|
    return destroyNonTrivialCStruct;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unknown DestructionKind");
 | 
						|
}
 | 
						|
 | 
						|
/// pushEHDestroy - Push the standard destructor for the given type as
 | 
						|
/// an EH-only cleanup.
 | 
						|
void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
 | 
						|
                                    Address addr, QualType type) {
 | 
						|
  assert(dtorKind && "cannot push destructor for trivial type");
 | 
						|
  assert(needsEHCleanup(dtorKind));
 | 
						|
 | 
						|
  pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
 | 
						|
}
 | 
						|
 | 
						|
/// pushDestroy - Push the standard destructor for the given type as
 | 
						|
/// at least a normal cleanup.
 | 
						|
void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
 | 
						|
                                  Address addr, QualType type) {
 | 
						|
  assert(dtorKind && "cannot push destructor for trivial type");
 | 
						|
 | 
						|
  CleanupKind cleanupKind = getCleanupKind(dtorKind);
 | 
						|
  pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
 | 
						|
              cleanupKind & EHCleanup);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
 | 
						|
                                  QualType type, Destroyer *destroyer,
 | 
						|
                                  bool useEHCleanupForArray) {
 | 
						|
  pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
 | 
						|
                                     destroyer, useEHCleanupForArray);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
 | 
						|
  EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind,
 | 
						|
                                                  Address addr, QualType type,
 | 
						|
                                                  Destroyer *destroyer,
 | 
						|
                                                  bool useEHCleanupForArray) {
 | 
						|
  // If we're not in a conditional branch, we don't need to bother generating a
 | 
						|
  // conditional cleanup.
 | 
						|
  if (!isInConditionalBranch()) {
 | 
						|
    // Push an EH-only cleanup for the object now.
 | 
						|
    // FIXME: When popping normal cleanups, we need to keep this EH cleanup
 | 
						|
    // around in case a temporary's destructor throws an exception.
 | 
						|
    if (cleanupKind & EHCleanup)
 | 
						|
      EHStack.pushCleanup<DestroyObject>(
 | 
						|
          static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
 | 
						|
          destroyer, useEHCleanupForArray);
 | 
						|
 | 
						|
    return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
 | 
						|
        cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we should only destroy the object if it's been initialized.
 | 
						|
  // Re-use the active flag and saved address across both the EH and end of
 | 
						|
  // scope cleanups.
 | 
						|
 | 
						|
  using SavedType = typename DominatingValue<Address>::saved_type;
 | 
						|
  using ConditionalCleanupType =
 | 
						|
      EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType,
 | 
						|
                                       Destroyer *, bool>;
 | 
						|
 | 
						|
  Address ActiveFlag = createCleanupActiveFlag();
 | 
						|
  SavedType SavedAddr = saveValueInCond(addr);
 | 
						|
 | 
						|
  if (cleanupKind & EHCleanup) {
 | 
						|
    EHStack.pushCleanup<ConditionalCleanupType>(
 | 
						|
        static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type,
 | 
						|
        destroyer, useEHCleanupForArray);
 | 
						|
    initFullExprCleanupWithFlag(ActiveFlag);
 | 
						|
  }
 | 
						|
 | 
						|
  pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
 | 
						|
      cleanupKind, ActiveFlag, SavedAddr, type, destroyer,
 | 
						|
      useEHCleanupForArray);
 | 
						|
}
 | 
						|
 | 
						|
/// emitDestroy - Immediately perform the destruction of the given
 | 
						|
/// object.
 | 
						|
///
 | 
						|
/// \param addr - the address of the object; a type*
 | 
						|
/// \param type - the type of the object; if an array type, all
 | 
						|
///   objects are destroyed in reverse order
 | 
						|
/// \param destroyer - the function to call to destroy individual
 | 
						|
///   elements
 | 
						|
/// \param useEHCleanupForArray - whether an EH cleanup should be
 | 
						|
///   used when destroying array elements, in case one of the
 | 
						|
///   destructions throws an exception
 | 
						|
void CodeGenFunction::emitDestroy(Address addr, QualType type,
 | 
						|
                                  Destroyer *destroyer,
 | 
						|
                                  bool useEHCleanupForArray) {
 | 
						|
  const ArrayType *arrayType = getContext().getAsArrayType(type);
 | 
						|
  if (!arrayType)
 | 
						|
    return destroyer(*this, addr, type);
 | 
						|
 | 
						|
  llvm::Value *length = emitArrayLength(arrayType, type, addr);
 | 
						|
 | 
						|
  CharUnits elementAlign =
 | 
						|
    addr.getAlignment()
 | 
						|
        .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
 | 
						|
 | 
						|
  // Normally we have to check whether the array is zero-length.
 | 
						|
  bool checkZeroLength = true;
 | 
						|
 | 
						|
  // But if the array length is constant, we can suppress that.
 | 
						|
  if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
 | 
						|
    // ...and if it's constant zero, we can just skip the entire thing.
 | 
						|
    if (constLength->isZero()) return;
 | 
						|
    checkZeroLength = false;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Value *begin = addr.getPointer();
 | 
						|
  llvm::Value *end =
 | 
						|
      Builder.CreateInBoundsGEP(addr.getElementType(), begin, length);
 | 
						|
  emitArrayDestroy(begin, end, type, elementAlign, destroyer,
 | 
						|
                   checkZeroLength, useEHCleanupForArray);
 | 
						|
}
 | 
						|
 | 
						|
/// emitArrayDestroy - Destroys all the elements of the given array,
 | 
						|
/// beginning from last to first.  The array cannot be zero-length.
 | 
						|
///
 | 
						|
/// \param begin - a type* denoting the first element of the array
 | 
						|
/// \param end - a type* denoting one past the end of the array
 | 
						|
/// \param elementType - the element type of the array
 | 
						|
/// \param destroyer - the function to call to destroy elements
 | 
						|
/// \param useEHCleanup - whether to push an EH cleanup to destroy
 | 
						|
///   the remaining elements in case the destruction of a single
 | 
						|
///   element throws
 | 
						|
void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
 | 
						|
                                       llvm::Value *end,
 | 
						|
                                       QualType elementType,
 | 
						|
                                       CharUnits elementAlign,
 | 
						|
                                       Destroyer *destroyer,
 | 
						|
                                       bool checkZeroLength,
 | 
						|
                                       bool useEHCleanup) {
 | 
						|
  assert(!elementType->isArrayType());
 | 
						|
 | 
						|
  // The basic structure here is a do-while loop, because we don't
 | 
						|
  // need to check for the zero-element case.
 | 
						|
  llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
 | 
						|
  llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
 | 
						|
 | 
						|
  if (checkZeroLength) {
 | 
						|
    llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
 | 
						|
                                                "arraydestroy.isempty");
 | 
						|
    Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Enter the loop body, making that address the current address.
 | 
						|
  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
 | 
						|
  EmitBlock(bodyBB);
 | 
						|
  llvm::PHINode *elementPast =
 | 
						|
    Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
 | 
						|
  elementPast->addIncoming(end, entryBB);
 | 
						|
 | 
						|
  // Shift the address back by one element.
 | 
						|
  llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
 | 
						|
  llvm::Type *llvmElementType = ConvertTypeForMem(elementType);
 | 
						|
  llvm::Value *element = Builder.CreateInBoundsGEP(
 | 
						|
      llvmElementType, elementPast, negativeOne, "arraydestroy.element");
 | 
						|
 | 
						|
  if (useEHCleanup)
 | 
						|
    pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
 | 
						|
                                   destroyer);
 | 
						|
 | 
						|
  // Perform the actual destruction there.
 | 
						|
  destroyer(*this, Address(element, llvmElementType, elementAlign),
 | 
						|
            elementType);
 | 
						|
 | 
						|
  if (useEHCleanup)
 | 
						|
    PopCleanupBlock();
 | 
						|
 | 
						|
  // Check whether we've reached the end.
 | 
						|
  llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
 | 
						|
  Builder.CreateCondBr(done, doneBB, bodyBB);
 | 
						|
  elementPast->addIncoming(element, Builder.GetInsertBlock());
 | 
						|
 | 
						|
  // Done.
 | 
						|
  EmitBlock(doneBB);
 | 
						|
}
 | 
						|
 | 
						|
/// Perform partial array destruction as if in an EH cleanup.  Unlike
 | 
						|
/// emitArrayDestroy, the element type here may still be an array type.
 | 
						|
static void emitPartialArrayDestroy(CodeGenFunction &CGF,
 | 
						|
                                    llvm::Value *begin, llvm::Value *end,
 | 
						|
                                    QualType type, CharUnits elementAlign,
 | 
						|
                                    CodeGenFunction::Destroyer *destroyer) {
 | 
						|
  llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
 | 
						|
 | 
						|
  // If the element type is itself an array, drill down.
 | 
						|
  unsigned arrayDepth = 0;
 | 
						|
  while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
 | 
						|
    // VLAs don't require a GEP index to walk into.
 | 
						|
    if (!isa<VariableArrayType>(arrayType))
 | 
						|
      arrayDepth++;
 | 
						|
    type = arrayType->getElementType();
 | 
						|
  }
 | 
						|
 | 
						|
  if (arrayDepth) {
 | 
						|
    llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
 | 
						|
 | 
						|
    SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
 | 
						|
    begin = CGF.Builder.CreateInBoundsGEP(
 | 
						|
        elemTy, begin, gepIndices, "pad.arraybegin");
 | 
						|
    end = CGF.Builder.CreateInBoundsGEP(
 | 
						|
        elemTy, end, gepIndices, "pad.arrayend");
 | 
						|
  }
 | 
						|
 | 
						|
  // Destroy the array.  We don't ever need an EH cleanup because we
 | 
						|
  // assume that we're in an EH cleanup ourselves, so a throwing
 | 
						|
  // destructor causes an immediate terminate.
 | 
						|
  CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
 | 
						|
                       /*checkZeroLength*/ true, /*useEHCleanup*/ false);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// RegularPartialArrayDestroy - a cleanup which performs a partial
 | 
						|
  /// array destroy where the end pointer is regularly determined and
 | 
						|
  /// does not need to be loaded from a local.
 | 
						|
  class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
 | 
						|
    llvm::Value *ArrayBegin;
 | 
						|
    llvm::Value *ArrayEnd;
 | 
						|
    QualType ElementType;
 | 
						|
    CodeGenFunction::Destroyer *Destroyer;
 | 
						|
    CharUnits ElementAlign;
 | 
						|
  public:
 | 
						|
    RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
 | 
						|
                               QualType elementType, CharUnits elementAlign,
 | 
						|
                               CodeGenFunction::Destroyer *destroyer)
 | 
						|
      : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
 | 
						|
        ElementType(elementType), Destroyer(destroyer),
 | 
						|
        ElementAlign(elementAlign) {}
 | 
						|
 | 
						|
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
      emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
 | 
						|
                              ElementType, ElementAlign, Destroyer);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// IrregularPartialArrayDestroy - a cleanup which performs a
 | 
						|
  /// partial array destroy where the end pointer is irregularly
 | 
						|
  /// determined and must be loaded from a local.
 | 
						|
  class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
 | 
						|
    llvm::Value *ArrayBegin;
 | 
						|
    Address ArrayEndPointer;
 | 
						|
    QualType ElementType;
 | 
						|
    CodeGenFunction::Destroyer *Destroyer;
 | 
						|
    CharUnits ElementAlign;
 | 
						|
  public:
 | 
						|
    IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
 | 
						|
                                 Address arrayEndPointer,
 | 
						|
                                 QualType elementType,
 | 
						|
                                 CharUnits elementAlign,
 | 
						|
                                 CodeGenFunction::Destroyer *destroyer)
 | 
						|
      : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
 | 
						|
        ElementType(elementType), Destroyer(destroyer),
 | 
						|
        ElementAlign(elementAlign) {}
 | 
						|
 | 
						|
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
      llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
 | 
						|
      emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
 | 
						|
                              ElementType, ElementAlign, Destroyer);
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
 | 
						|
/// already-constructed elements of the given array.  The cleanup
 | 
						|
/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
 | 
						|
///
 | 
						|
/// \param elementType - the immediate element type of the array;
 | 
						|
///   possibly still an array type
 | 
						|
void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
 | 
						|
                                                       Address arrayEndPointer,
 | 
						|
                                                       QualType elementType,
 | 
						|
                                                       CharUnits elementAlign,
 | 
						|
                                                       Destroyer *destroyer) {
 | 
						|
  pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
 | 
						|
                                                    arrayBegin, arrayEndPointer,
 | 
						|
                                                    elementType, elementAlign,
 | 
						|
                                                    destroyer);
 | 
						|
}
 | 
						|
 | 
						|
/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
 | 
						|
/// already-constructed elements of the given array.  The cleanup
 | 
						|
/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
 | 
						|
///
 | 
						|
/// \param elementType - the immediate element type of the array;
 | 
						|
///   possibly still an array type
 | 
						|
void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
 | 
						|
                                                     llvm::Value *arrayEnd,
 | 
						|
                                                     QualType elementType,
 | 
						|
                                                     CharUnits elementAlign,
 | 
						|
                                                     Destroyer *destroyer) {
 | 
						|
  pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
 | 
						|
                                                  arrayBegin, arrayEnd,
 | 
						|
                                                  elementType, elementAlign,
 | 
						|
                                                  destroyer);
 | 
						|
}
 | 
						|
 | 
						|
/// Lazily declare the @llvm.lifetime.start intrinsic.
 | 
						|
llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
 | 
						|
  if (LifetimeStartFn)
 | 
						|
    return LifetimeStartFn;
 | 
						|
  LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
 | 
						|
    llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
 | 
						|
  return LifetimeStartFn;
 | 
						|
}
 | 
						|
 | 
						|
/// Lazily declare the @llvm.lifetime.end intrinsic.
 | 
						|
llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
 | 
						|
  if (LifetimeEndFn)
 | 
						|
    return LifetimeEndFn;
 | 
						|
  LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
 | 
						|
    llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
 | 
						|
  return LifetimeEndFn;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// A cleanup to perform a release of an object at the end of a
 | 
						|
  /// function.  This is used to balance out the incoming +1 of a
 | 
						|
  /// ns_consumed argument when we can't reasonably do that just by
 | 
						|
  /// not doing the initial retain for a __block argument.
 | 
						|
  struct ConsumeARCParameter final : EHScopeStack::Cleanup {
 | 
						|
    ConsumeARCParameter(llvm::Value *param,
 | 
						|
                        ARCPreciseLifetime_t precise)
 | 
						|
      : Param(param), Precise(precise) {}
 | 
						|
 | 
						|
    llvm::Value *Param;
 | 
						|
    ARCPreciseLifetime_t Precise;
 | 
						|
 | 
						|
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
      CGF.EmitARCRelease(Param, Precise);
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Emit an alloca (or GlobalValue depending on target)
 | 
						|
/// for the specified parameter and set up LocalDeclMap.
 | 
						|
void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
 | 
						|
                                   unsigned ArgNo) {
 | 
						|
  bool NoDebugInfo = false;
 | 
						|
  // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
 | 
						|
  assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
 | 
						|
         "Invalid argument to EmitParmDecl");
 | 
						|
 | 
						|
  Arg.getAnyValue()->setName(D.getName());
 | 
						|
 | 
						|
  QualType Ty = D.getType();
 | 
						|
 | 
						|
  // Use better IR generation for certain implicit parameters.
 | 
						|
  if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
 | 
						|
    // The only implicit argument a block has is its literal.
 | 
						|
    // This may be passed as an inalloca'ed value on Windows x86.
 | 
						|
    if (BlockInfo) {
 | 
						|
      llvm::Value *V = Arg.isIndirect()
 | 
						|
                           ? Builder.CreateLoad(Arg.getIndirectAddress())
 | 
						|
                           : Arg.getDirectValue();
 | 
						|
      setBlockContextParameter(IPD, ArgNo, V);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // Suppressing debug info for ThreadPrivateVar parameters, else it hides
 | 
						|
    // debug info of TLS variables.
 | 
						|
    NoDebugInfo =
 | 
						|
        (IPD->getParameterKind() == ImplicitParamDecl::ThreadPrivateVar);
 | 
						|
  }
 | 
						|
 | 
						|
  Address DeclPtr = Address::invalid();
 | 
						|
  Address AllocaPtr = Address::invalid();
 | 
						|
  bool DoStore = false;
 | 
						|
  bool IsScalar = hasScalarEvaluationKind(Ty);
 | 
						|
  // If we already have a pointer to the argument, reuse the input pointer.
 | 
						|
  if (Arg.isIndirect()) {
 | 
						|
    // If we have a prettier pointer type at this point, bitcast to that.
 | 
						|
    DeclPtr = Arg.getIndirectAddress();
 | 
						|
    DeclPtr = Builder.CreateElementBitCast(DeclPtr, ConvertTypeForMem(Ty),
 | 
						|
                                           D.getName());
 | 
						|
    // Indirect argument is in alloca address space, which may be different
 | 
						|
    // from the default address space.
 | 
						|
    auto AllocaAS = CGM.getASTAllocaAddressSpace();
 | 
						|
    auto *V = DeclPtr.getPointer();
 | 
						|
    AllocaPtr = DeclPtr;
 | 
						|
    auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
 | 
						|
    auto DestLangAS =
 | 
						|
        getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
 | 
						|
    if (SrcLangAS != DestLangAS) {
 | 
						|
      assert(getContext().getTargetAddressSpace(SrcLangAS) ==
 | 
						|
             CGM.getDataLayout().getAllocaAddrSpace());
 | 
						|
      auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
 | 
						|
      auto *T = DeclPtr.getElementType()->getPointerTo(DestAS);
 | 
						|
      DeclPtr = DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast(
 | 
						|
          *this, V, SrcLangAS, DestLangAS, T, true));
 | 
						|
    }
 | 
						|
 | 
						|
    // Push a destructor cleanup for this parameter if the ABI requires it.
 | 
						|
    // Don't push a cleanup in a thunk for a method that will also emit a
 | 
						|
    // cleanup.
 | 
						|
    if (Ty->isRecordType() && !CurFuncIsThunk &&
 | 
						|
        Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
 | 
						|
      if (QualType::DestructionKind DtorKind =
 | 
						|
              D.needsDestruction(getContext())) {
 | 
						|
        assert((DtorKind == QualType::DK_cxx_destructor ||
 | 
						|
                DtorKind == QualType::DK_nontrivial_c_struct) &&
 | 
						|
               "unexpected destructor type");
 | 
						|
        pushDestroy(DtorKind, DeclPtr, Ty);
 | 
						|
        CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
 | 
						|
            EHStack.stable_begin();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Check if the parameter address is controlled by OpenMP runtime.
 | 
						|
    Address OpenMPLocalAddr =
 | 
						|
        getLangOpts().OpenMP
 | 
						|
            ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
 | 
						|
            : Address::invalid();
 | 
						|
    if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
 | 
						|
      DeclPtr = OpenMPLocalAddr;
 | 
						|
      AllocaPtr = DeclPtr;
 | 
						|
    } else {
 | 
						|
      // Otherwise, create a temporary to hold the value.
 | 
						|
      DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
 | 
						|
                              D.getName() + ".addr", &AllocaPtr);
 | 
						|
    }
 | 
						|
    DoStore = true;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
 | 
						|
 | 
						|
  LValue lv = MakeAddrLValue(DeclPtr, Ty);
 | 
						|
  if (IsScalar) {
 | 
						|
    Qualifiers qs = Ty.getQualifiers();
 | 
						|
    if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
 | 
						|
      // We honor __attribute__((ns_consumed)) for types with lifetime.
 | 
						|
      // For __strong, it's handled by just skipping the initial retain;
 | 
						|
      // otherwise we have to balance out the initial +1 with an extra
 | 
						|
      // cleanup to do the release at the end of the function.
 | 
						|
      bool isConsumed = D.hasAttr<NSConsumedAttr>();
 | 
						|
 | 
						|
      // If a parameter is pseudo-strong then we can omit the implicit retain.
 | 
						|
      if (D.isARCPseudoStrong()) {
 | 
						|
        assert(lt == Qualifiers::OCL_Strong &&
 | 
						|
               "pseudo-strong variable isn't strong?");
 | 
						|
        assert(qs.hasConst() && "pseudo-strong variable should be const!");
 | 
						|
        lt = Qualifiers::OCL_ExplicitNone;
 | 
						|
      }
 | 
						|
 | 
						|
      // Load objects passed indirectly.
 | 
						|
      if (Arg.isIndirect() && !ArgVal)
 | 
						|
        ArgVal = Builder.CreateLoad(DeclPtr);
 | 
						|
 | 
						|
      if (lt == Qualifiers::OCL_Strong) {
 | 
						|
        if (!isConsumed) {
 | 
						|
          if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
 | 
						|
            // use objc_storeStrong(&dest, value) for retaining the
 | 
						|
            // object. But first, store a null into 'dest' because
 | 
						|
            // objc_storeStrong attempts to release its old value.
 | 
						|
            llvm::Value *Null = CGM.EmitNullConstant(D.getType());
 | 
						|
            EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
 | 
						|
            EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
 | 
						|
            DoStore = false;
 | 
						|
          }
 | 
						|
          else
 | 
						|
          // Don't use objc_retainBlock for block pointers, because we
 | 
						|
          // don't want to Block_copy something just because we got it
 | 
						|
          // as a parameter.
 | 
						|
            ArgVal = EmitARCRetainNonBlock(ArgVal);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Push the cleanup for a consumed parameter.
 | 
						|
        if (isConsumed) {
 | 
						|
          ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
 | 
						|
                                ? ARCPreciseLifetime : ARCImpreciseLifetime);
 | 
						|
          EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
 | 
						|
                                                   precise);
 | 
						|
        }
 | 
						|
 | 
						|
        if (lt == Qualifiers::OCL_Weak) {
 | 
						|
          EmitARCInitWeak(DeclPtr, ArgVal);
 | 
						|
          DoStore = false; // The weak init is a store, no need to do two.
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Enter the cleanup scope.
 | 
						|
      EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Store the initial value into the alloca.
 | 
						|
  if (DoStore)
 | 
						|
    EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
 | 
						|
 | 
						|
  setAddrOfLocalVar(&D, DeclPtr);
 | 
						|
 | 
						|
  // Emit debug info for param declarations in non-thunk functions.
 | 
						|
  if (CGDebugInfo *DI = getDebugInfo()) {
 | 
						|
    if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk &&
 | 
						|
        !NoDebugInfo) {
 | 
						|
      llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable(
 | 
						|
          &D, AllocaPtr.getPointer(), ArgNo, Builder);
 | 
						|
      if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D))
 | 
						|
        DI->getParamDbgMappings().insert({Var, DILocalVar});
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.hasAttr<AnnotateAttr>())
 | 
						|
    EmitVarAnnotations(&D, DeclPtr.getPointer());
 | 
						|
 | 
						|
  // We can only check return value nullability if all arguments to the
 | 
						|
  // function satisfy their nullability preconditions. This makes it necessary
 | 
						|
  // to emit null checks for args in the function body itself.
 | 
						|
  if (requiresReturnValueNullabilityCheck()) {
 | 
						|
    auto Nullability = Ty->getNullability(getContext());
 | 
						|
    if (Nullability && *Nullability == NullabilityKind::NonNull) {
 | 
						|
      SanitizerScope SanScope(this);
 | 
						|
      RetValNullabilityPrecondition =
 | 
						|
          Builder.CreateAnd(RetValNullabilityPrecondition,
 | 
						|
                            Builder.CreateIsNotNull(Arg.getAnyValue()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
 | 
						|
                                            CodeGenFunction *CGF) {
 | 
						|
  if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
 | 
						|
    return;
 | 
						|
  getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
 | 
						|
                                         CodeGenFunction *CGF) {
 | 
						|
  if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
 | 
						|
      (!LangOpts.EmitAllDecls && !D->isUsed()))
 | 
						|
    return;
 | 
						|
  getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
 | 
						|
  getOpenMPRuntime().processRequiresDirective(D);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) {
 | 
						|
  for (const Expr *E : D->varlists()) {
 | 
						|
    const auto *DE = cast<DeclRefExpr>(E);
 | 
						|
    const auto *VD = cast<VarDecl>(DE->getDecl());
 | 
						|
 | 
						|
    // Skip all but globals.
 | 
						|
    if (!VD->hasGlobalStorage())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check if the global has been materialized yet or not. If not, we are done
 | 
						|
    // as any later generation will utilize the OMPAllocateDeclAttr. However, if
 | 
						|
    // we already emitted the global we might have done so before the
 | 
						|
    // OMPAllocateDeclAttr was attached, leading to the wrong address space
 | 
						|
    // (potentially). While not pretty, common practise is to remove the old IR
 | 
						|
    // global and generate a new one, so we do that here too. Uses are replaced
 | 
						|
    // properly.
 | 
						|
    StringRef MangledName = getMangledName(VD);
 | 
						|
    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
 | 
						|
    if (!Entry)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We can also keep the existing global if the address space is what we
 | 
						|
    // expect it to be, if not, it is replaced.
 | 
						|
    QualType ASTTy = VD->getType();
 | 
						|
    clang::LangAS GVAS = GetGlobalVarAddressSpace(VD);
 | 
						|
    auto TargetAS = getContext().getTargetAddressSpace(GVAS);
 | 
						|
    if (Entry->getType()->getAddressSpace() == TargetAS)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Make a new global with the correct type / address space.
 | 
						|
    llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy);
 | 
						|
    llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS);
 | 
						|
 | 
						|
    // Replace all uses of the old global with a cast. Since we mutate the type
 | 
						|
    // in place we neeed an intermediate that takes the spot of the old entry
 | 
						|
    // until we can create the cast.
 | 
						|
    llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable(
 | 
						|
        getModule(), Entry->getValueType(), false,
 | 
						|
        llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr,
 | 
						|
        llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace());
 | 
						|
    Entry->replaceAllUsesWith(DummyGV);
 | 
						|
 | 
						|
    Entry->mutateType(PTy);
 | 
						|
    llvm::Constant *NewPtrForOldDecl =
 | 
						|
        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
 | 
						|
            Entry, DummyGV->getType());
 | 
						|
 | 
						|
    // Now we have a casted version of the changed global, the dummy can be
 | 
						|
    // replaced and deleted.
 | 
						|
    DummyGV->replaceAllUsesWith(NewPtrForOldDecl);
 | 
						|
    DummyGV->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::Optional<CharUnits>
 | 
						|
CodeGenModule::getOMPAllocateAlignment(const VarDecl *VD) {
 | 
						|
  if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) {
 | 
						|
    if (Expr *Alignment = AA->getAlignment()) {
 | 
						|
      unsigned UserAlign =
 | 
						|
          Alignment->EvaluateKnownConstInt(getContext()).getExtValue();
 | 
						|
      CharUnits NaturalAlign =
 | 
						|
          getNaturalTypeAlignment(VD->getType().getNonReferenceType());
 | 
						|
 | 
						|
      // OpenMP5.1 pg 185 lines 7-10
 | 
						|
      //   Each item in the align modifier list must be aligned to the maximum
 | 
						|
      //   of the specified alignment and the type's natural alignment.
 | 
						|
      return CharUnits::fromQuantity(
 | 
						|
          std::max<unsigned>(UserAlign, NaturalAlign.getQuantity()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return llvm::None;
 | 
						|
}
 |