1190 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1190 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This contains code to emit Expr nodes with complex types as LLVM code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CGOpenMPRuntime.h"
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "ConstantEmitter.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        Complex Expression Emitter
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
 | 
						|
 | 
						|
/// Return the complex type that we are meant to emit.
 | 
						|
static const ComplexType *getComplexType(QualType type) {
 | 
						|
  type = type.getCanonicalType();
 | 
						|
  if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
 | 
						|
    return comp;
 | 
						|
  } else {
 | 
						|
    return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace  {
 | 
						|
class ComplexExprEmitter
 | 
						|
  : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
 | 
						|
  CodeGenFunction &CGF;
 | 
						|
  CGBuilderTy &Builder;
 | 
						|
  bool IgnoreReal;
 | 
						|
  bool IgnoreImag;
 | 
						|
public:
 | 
						|
  ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
 | 
						|
    : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //                               Utilities
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  bool TestAndClearIgnoreReal() {
 | 
						|
    bool I = IgnoreReal;
 | 
						|
    IgnoreReal = false;
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
  bool TestAndClearIgnoreImag() {
 | 
						|
    bool I = IgnoreImag;
 | 
						|
    IgnoreImag = false;
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  /// EmitLoadOfLValue - Given an expression with complex type that represents a
 | 
						|
  /// value l-value, this method emits the address of the l-value, then loads
 | 
						|
  /// and returns the result.
 | 
						|
  ComplexPairTy EmitLoadOfLValue(const Expr *E) {
 | 
						|
    return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
 | 
						|
 | 
						|
  /// EmitStoreOfComplex - Store the specified real/imag parts into the
 | 
						|
  /// specified value pointer.
 | 
						|
  void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
 | 
						|
 | 
						|
  /// Emit a cast from complex value Val to DestType.
 | 
						|
  ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
 | 
						|
                                         QualType DestType, SourceLocation Loc);
 | 
						|
  /// Emit a cast from scalar value Val to DestType.
 | 
						|
  ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
 | 
						|
                                        QualType DestType, SourceLocation Loc);
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //                            Visitor Methods
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  ComplexPairTy Visit(Expr *E) {
 | 
						|
    ApplyDebugLocation DL(CGF, E);
 | 
						|
    return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
 | 
						|
  }
 | 
						|
 | 
						|
  ComplexPairTy VisitStmt(Stmt *S) {
 | 
						|
    S->dump(llvm::errs(), CGF.getContext());
 | 
						|
    llvm_unreachable("Stmt can't have complex result type!");
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitExpr(Expr *S);
 | 
						|
  ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
 | 
						|
    if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
 | 
						|
      return ComplexPairTy(Result->getAggregateElement(0U),
 | 
						|
                           Result->getAggregateElement(1U));
 | 
						|
    return Visit(E->getSubExpr());
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
 | 
						|
  ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
 | 
						|
    return Visit(GE->getResultExpr());
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
 | 
						|
  ComplexPairTy
 | 
						|
  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
 | 
						|
    return Visit(PE->getReplacement());
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
 | 
						|
    return CGF.EmitCoawaitExpr(*S).getComplexVal();
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
 | 
						|
    return CGF.EmitCoyieldExpr(*S).getComplexVal();
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
 | 
						|
    return Visit(E->getSubExpr());
 | 
						|
  }
 | 
						|
 | 
						|
  ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
 | 
						|
                             Expr *E) {
 | 
						|
    assert(Constant && "not a constant");
 | 
						|
    if (Constant.isReference())
 | 
						|
      return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
 | 
						|
                              E->getExprLoc());
 | 
						|
 | 
						|
    llvm::Constant *pair = Constant.getValue();
 | 
						|
    return ComplexPairTy(pair->getAggregateElement(0U),
 | 
						|
                         pair->getAggregateElement(1U));
 | 
						|
  }
 | 
						|
 | 
						|
  // l-values.
 | 
						|
  ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
 | 
						|
    if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
 | 
						|
      return emitConstant(Constant, E);
 | 
						|
    return EmitLoadOfLValue(E);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
 | 
						|
    return EmitLoadOfLValue(E);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
 | 
						|
    return CGF.EmitObjCMessageExpr(E).getComplexVal();
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
 | 
						|
  ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
 | 
						|
    if (CodeGenFunction::ConstantEmission Constant =
 | 
						|
            CGF.tryEmitAsConstant(ME)) {
 | 
						|
      CGF.EmitIgnoredExpr(ME->getBase());
 | 
						|
      return emitConstant(Constant, ME);
 | 
						|
    }
 | 
						|
    return EmitLoadOfLValue(ME);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
 | 
						|
    if (E->isGLValue())
 | 
						|
      return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
 | 
						|
                              E->getExprLoc());
 | 
						|
    return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
 | 
						|
  }
 | 
						|
 | 
						|
  ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
 | 
						|
    return CGF.EmitPseudoObjectRValue(E).getComplexVal();
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: CompoundLiteralExpr
 | 
						|
 | 
						|
  ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
 | 
						|
  ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
 | 
						|
    // Unlike for scalars, we don't have to worry about function->ptr demotion
 | 
						|
    // here.
 | 
						|
    return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitCastExpr(CastExpr *E) {
 | 
						|
    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
 | 
						|
      CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
 | 
						|
    return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitCallExpr(const CallExpr *E);
 | 
						|
  ComplexPairTy VisitStmtExpr(const StmtExpr *E);
 | 
						|
 | 
						|
  // Operators.
 | 
						|
  ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
 | 
						|
                                   bool isInc, bool isPre) {
 | 
						|
    LValue LV = CGF.EmitLValue(E->getSubExpr());
 | 
						|
    return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
 | 
						|
    return VisitPrePostIncDec(E, false, false);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
 | 
						|
    return VisitPrePostIncDec(E, true, false);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
 | 
						|
    return VisitPrePostIncDec(E, false, true);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
 | 
						|
    return VisitPrePostIncDec(E, true, true);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
 | 
						|
  ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
 | 
						|
    TestAndClearIgnoreReal();
 | 
						|
    TestAndClearIgnoreImag();
 | 
						|
    return Visit(E->getSubExpr());
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
 | 
						|
  ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
 | 
						|
  // LNot,Real,Imag never return complex.
 | 
						|
  ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
 | 
						|
    return Visit(E->getSubExpr());
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
 | 
						|
    CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
 | 
						|
    return Visit(DAE->getExpr());
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
 | 
						|
    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
 | 
						|
    return Visit(DIE->getExpr());
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
 | 
						|
    CodeGenFunction::RunCleanupsScope Scope(CGF);
 | 
						|
    ComplexPairTy Vals = Visit(E->getSubExpr());
 | 
						|
    // Defend against dominance problems caused by jumps out of expression
 | 
						|
    // evaluation through the shared cleanup block.
 | 
						|
    Scope.ForceCleanup({&Vals.first, &Vals.second});
 | 
						|
    return Vals;
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
 | 
						|
    assert(E->getType()->isAnyComplexType() && "Expected complex type!");
 | 
						|
    QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
 | 
						|
    llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
 | 
						|
    return ComplexPairTy(Null, Null);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
 | 
						|
    assert(E->getType()->isAnyComplexType() && "Expected complex type!");
 | 
						|
    QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
 | 
						|
    llvm::Constant *Null =
 | 
						|
                       llvm::Constant::getNullValue(CGF.ConvertType(Elem));
 | 
						|
    return ComplexPairTy(Null, Null);
 | 
						|
  }
 | 
						|
 | 
						|
  struct BinOpInfo {
 | 
						|
    ComplexPairTy LHS;
 | 
						|
    ComplexPairTy RHS;
 | 
						|
    QualType Ty;  // Computation Type.
 | 
						|
  };
 | 
						|
 | 
						|
  BinOpInfo EmitBinOps(const BinaryOperator *E);
 | 
						|
  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
 | 
						|
                                  ComplexPairTy (ComplexExprEmitter::*Func)
 | 
						|
                                  (const BinOpInfo &),
 | 
						|
                                  RValue &Val);
 | 
						|
  ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
 | 
						|
                                   ComplexPairTy (ComplexExprEmitter::*Func)
 | 
						|
                                   (const BinOpInfo &));
 | 
						|
 | 
						|
  ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
 | 
						|
  ComplexPairTy EmitBinSub(const BinOpInfo &Op);
 | 
						|
  ComplexPairTy EmitBinMul(const BinOpInfo &Op);
 | 
						|
  ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
 | 
						|
 | 
						|
  ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
 | 
						|
                                        const BinOpInfo &Op);
 | 
						|
 | 
						|
  ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
 | 
						|
    return EmitBinAdd(EmitBinOps(E));
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitBinSub(const BinaryOperator *E) {
 | 
						|
    return EmitBinSub(EmitBinOps(E));
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitBinMul(const BinaryOperator *E) {
 | 
						|
    return EmitBinMul(EmitBinOps(E));
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
 | 
						|
    return EmitBinDiv(EmitBinOps(E));
 | 
						|
  }
 | 
						|
 | 
						|
  ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
 | 
						|
    return Visit(E->getSemanticForm());
 | 
						|
  }
 | 
						|
 | 
						|
  // Compound assignments.
 | 
						|
  ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
 | 
						|
    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
 | 
						|
    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
 | 
						|
    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
 | 
						|
  }
 | 
						|
  ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
 | 
						|
    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
 | 
						|
  }
 | 
						|
 | 
						|
  // GCC rejects rem/and/or/xor for integer complex.
 | 
						|
  // Logical and/or always return int, never complex.
 | 
						|
 | 
						|
  // No comparisons produce a complex result.
 | 
						|
 | 
						|
  LValue EmitBinAssignLValue(const BinaryOperator *E,
 | 
						|
                             ComplexPairTy &Val);
 | 
						|
  ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
 | 
						|
  ComplexPairTy VisitBinComma      (const BinaryOperator *E);
 | 
						|
 | 
						|
 | 
						|
  ComplexPairTy
 | 
						|
  VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
 | 
						|
  ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
 | 
						|
 | 
						|
  ComplexPairTy VisitInitListExpr(InitListExpr *E);
 | 
						|
 | 
						|
  ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
 | 
						|
    return EmitLoadOfLValue(E);
 | 
						|
  }
 | 
						|
 | 
						|
  ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
 | 
						|
 | 
						|
  ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
 | 
						|
    return CGF.EmitAtomicExpr(E).getComplexVal();
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // end anonymous namespace.
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                Utilities
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
 | 
						|
                                                 QualType complexType) {
 | 
						|
  return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
 | 
						|
}
 | 
						|
 | 
						|
Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
 | 
						|
                                                 QualType complexType) {
 | 
						|
  return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
 | 
						|
}
 | 
						|
 | 
						|
/// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
 | 
						|
/// load the real and imaginary pieces, returning them as Real/Imag.
 | 
						|
ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
 | 
						|
                                                   SourceLocation loc) {
 | 
						|
  assert(lvalue.isSimple() && "non-simple complex l-value?");
 | 
						|
  if (lvalue.getType()->isAtomicType())
 | 
						|
    return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
 | 
						|
 | 
						|
  Address SrcPtr = lvalue.getAddress(CGF);
 | 
						|
  bool isVolatile = lvalue.isVolatileQualified();
 | 
						|
 | 
						|
  llvm::Value *Real = nullptr, *Imag = nullptr;
 | 
						|
 | 
						|
  if (!IgnoreReal || isVolatile) {
 | 
						|
    Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
 | 
						|
    Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IgnoreImag || isVolatile) {
 | 
						|
    Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
 | 
						|
    Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
 | 
						|
  }
 | 
						|
 | 
						|
  return ComplexPairTy(Real, Imag);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitStoreOfComplex - Store the specified real/imag parts into the
 | 
						|
/// specified value pointer.
 | 
						|
void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
 | 
						|
                                            bool isInit) {
 | 
						|
  if (lvalue.getType()->isAtomicType() ||
 | 
						|
      (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
 | 
						|
    return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
 | 
						|
 | 
						|
  Address Ptr = lvalue.getAddress(CGF);
 | 
						|
  Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
 | 
						|
  Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
 | 
						|
 | 
						|
  Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
 | 
						|
  Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            Visitor Methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
 | 
						|
  CGF.ErrorUnsupported(E, "complex expression");
 | 
						|
  llvm::Type *EltTy =
 | 
						|
    CGF.ConvertType(getComplexType(E->getType())->getElementType());
 | 
						|
  llvm::Value *U = llvm::UndefValue::get(EltTy);
 | 
						|
  return ComplexPairTy(U, U);
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::
 | 
						|
VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
 | 
						|
  llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
 | 
						|
  return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
 | 
						|
  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
 | 
						|
    return EmitLoadOfLValue(E);
 | 
						|
 | 
						|
  return CGF.EmitCallExpr(E).getComplexVal();
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
 | 
						|
  CodeGenFunction::StmtExprEvaluation eval(CGF);
 | 
						|
  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
 | 
						|
  assert(RetAlloca.isValid() && "Expected complex return value");
 | 
						|
  return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
 | 
						|
                          E->getExprLoc());
 | 
						|
}
 | 
						|
 | 
						|
/// Emit a cast from complex value Val to DestType.
 | 
						|
ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
 | 
						|
                                                           QualType SrcType,
 | 
						|
                                                           QualType DestType,
 | 
						|
                                                           SourceLocation Loc) {
 | 
						|
  // Get the src/dest element type.
 | 
						|
  SrcType = SrcType->castAs<ComplexType>()->getElementType();
 | 
						|
  DestType = DestType->castAs<ComplexType>()->getElementType();
 | 
						|
 | 
						|
  // C99 6.3.1.6: When a value of complex type is converted to another
 | 
						|
  // complex type, both the real and imaginary parts follow the conversion
 | 
						|
  // rules for the corresponding real types.
 | 
						|
  if (Val.first)
 | 
						|
    Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
 | 
						|
  if (Val.second)
 | 
						|
    Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
 | 
						|
                                                          QualType SrcType,
 | 
						|
                                                          QualType DestType,
 | 
						|
                                                          SourceLocation Loc) {
 | 
						|
  // Convert the input element to the element type of the complex.
 | 
						|
  DestType = DestType->castAs<ComplexType>()->getElementType();
 | 
						|
  Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
 | 
						|
 | 
						|
  // Return (realval, 0).
 | 
						|
  return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
 | 
						|
                                           QualType DestTy) {
 | 
						|
  switch (CK) {
 | 
						|
  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
 | 
						|
 | 
						|
  // Atomic to non-atomic casts may be more than a no-op for some platforms and
 | 
						|
  // for some types.
 | 
						|
  case CK_AtomicToNonAtomic:
 | 
						|
  case CK_NonAtomicToAtomic:
 | 
						|
  case CK_NoOp:
 | 
						|
  case CK_LValueToRValue:
 | 
						|
  case CK_UserDefinedConversion:
 | 
						|
    return Visit(Op);
 | 
						|
 | 
						|
  case CK_LValueBitCast: {
 | 
						|
    LValue origLV = CGF.EmitLValue(Op);
 | 
						|
    Address V = origLV.getAddress(CGF);
 | 
						|
    V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
 | 
						|
    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_LValueToRValueBitCast: {
 | 
						|
    LValue SourceLVal = CGF.EmitLValue(Op);
 | 
						|
    Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
 | 
						|
                                                CGF.ConvertTypeForMem(DestTy));
 | 
						|
    LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
 | 
						|
    DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
 | 
						|
    return EmitLoadOfLValue(DestLV, Op->getExprLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_BitCast:
 | 
						|
  case CK_BaseToDerived:
 | 
						|
  case CK_DerivedToBase:
 | 
						|
  case CK_UncheckedDerivedToBase:
 | 
						|
  case CK_Dynamic:
 | 
						|
  case CK_ToUnion:
 | 
						|
  case CK_ArrayToPointerDecay:
 | 
						|
  case CK_FunctionToPointerDecay:
 | 
						|
  case CK_NullToPointer:
 | 
						|
  case CK_NullToMemberPointer:
 | 
						|
  case CK_BaseToDerivedMemberPointer:
 | 
						|
  case CK_DerivedToBaseMemberPointer:
 | 
						|
  case CK_MemberPointerToBoolean:
 | 
						|
  case CK_ReinterpretMemberPointer:
 | 
						|
  case CK_ConstructorConversion:
 | 
						|
  case CK_IntegralToPointer:
 | 
						|
  case CK_PointerToIntegral:
 | 
						|
  case CK_PointerToBoolean:
 | 
						|
  case CK_ToVoid:
 | 
						|
  case CK_VectorSplat:
 | 
						|
  case CK_IntegralCast:
 | 
						|
  case CK_BooleanToSignedIntegral:
 | 
						|
  case CK_IntegralToBoolean:
 | 
						|
  case CK_IntegralToFloating:
 | 
						|
  case CK_FloatingToIntegral:
 | 
						|
  case CK_FloatingToBoolean:
 | 
						|
  case CK_FloatingCast:
 | 
						|
  case CK_CPointerToObjCPointerCast:
 | 
						|
  case CK_BlockPointerToObjCPointerCast:
 | 
						|
  case CK_AnyPointerToBlockPointerCast:
 | 
						|
  case CK_ObjCObjectLValueCast:
 | 
						|
  case CK_FloatingComplexToReal:
 | 
						|
  case CK_FloatingComplexToBoolean:
 | 
						|
  case CK_IntegralComplexToReal:
 | 
						|
  case CK_IntegralComplexToBoolean:
 | 
						|
  case CK_ARCProduceObject:
 | 
						|
  case CK_ARCConsumeObject:
 | 
						|
  case CK_ARCReclaimReturnedObject:
 | 
						|
  case CK_ARCExtendBlockObject:
 | 
						|
  case CK_CopyAndAutoreleaseBlockObject:
 | 
						|
  case CK_BuiltinFnToFnPtr:
 | 
						|
  case CK_ZeroToOCLOpaqueType:
 | 
						|
  case CK_AddressSpaceConversion:
 | 
						|
  case CK_IntToOCLSampler:
 | 
						|
  case CK_FloatingToFixedPoint:
 | 
						|
  case CK_FixedPointToFloating:
 | 
						|
  case CK_FixedPointCast:
 | 
						|
  case CK_FixedPointToBoolean:
 | 
						|
  case CK_FixedPointToIntegral:
 | 
						|
  case CK_IntegralToFixedPoint:
 | 
						|
  case CK_MatrixCast:
 | 
						|
    llvm_unreachable("invalid cast kind for complex value");
 | 
						|
 | 
						|
  case CK_FloatingRealToComplex:
 | 
						|
  case CK_IntegralRealToComplex: {
 | 
						|
    CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
 | 
						|
    return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
 | 
						|
                                   DestTy, Op->getExprLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_FloatingComplexCast:
 | 
						|
  case CK_FloatingComplexToIntegralComplex:
 | 
						|
  case CK_IntegralComplexCast:
 | 
						|
  case CK_IntegralComplexToFloatingComplex: {
 | 
						|
    CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
 | 
						|
    return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
 | 
						|
                                    Op->getExprLoc());
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown cast resulting in complex value");
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
 | 
						|
  TestAndClearIgnoreReal();
 | 
						|
  TestAndClearIgnoreImag();
 | 
						|
  ComplexPairTy Op = Visit(E->getSubExpr());
 | 
						|
 | 
						|
  llvm::Value *ResR, *ResI;
 | 
						|
  if (Op.first->getType()->isFloatingPointTy()) {
 | 
						|
    ResR = Builder.CreateFNeg(Op.first,  "neg.r");
 | 
						|
    ResI = Builder.CreateFNeg(Op.second, "neg.i");
 | 
						|
  } else {
 | 
						|
    ResR = Builder.CreateNeg(Op.first,  "neg.r");
 | 
						|
    ResI = Builder.CreateNeg(Op.second, "neg.i");
 | 
						|
  }
 | 
						|
  return ComplexPairTy(ResR, ResI);
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
 | 
						|
  TestAndClearIgnoreReal();
 | 
						|
  TestAndClearIgnoreImag();
 | 
						|
  // ~(a+ib) = a + i*-b
 | 
						|
  ComplexPairTy Op = Visit(E->getSubExpr());
 | 
						|
  llvm::Value *ResI;
 | 
						|
  if (Op.second->getType()->isFloatingPointTy())
 | 
						|
    ResI = Builder.CreateFNeg(Op.second, "conj.i");
 | 
						|
  else
 | 
						|
    ResI = Builder.CreateNeg(Op.second, "conj.i");
 | 
						|
 | 
						|
  return ComplexPairTy(Op.first, ResI);
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
 | 
						|
  llvm::Value *ResR, *ResI;
 | 
						|
 | 
						|
  if (Op.LHS.first->getType()->isFloatingPointTy()) {
 | 
						|
    ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
 | 
						|
    if (Op.LHS.second && Op.RHS.second)
 | 
						|
      ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
 | 
						|
    else
 | 
						|
      ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
 | 
						|
    assert(ResI && "Only one operand may be real!");
 | 
						|
  } else {
 | 
						|
    ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
 | 
						|
    assert(Op.LHS.second && Op.RHS.second &&
 | 
						|
           "Both operands of integer complex operators must be complex!");
 | 
						|
    ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
 | 
						|
  }
 | 
						|
  return ComplexPairTy(ResR, ResI);
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
 | 
						|
  llvm::Value *ResR, *ResI;
 | 
						|
  if (Op.LHS.first->getType()->isFloatingPointTy()) {
 | 
						|
    ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
 | 
						|
    if (Op.LHS.second && Op.RHS.second)
 | 
						|
      ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
 | 
						|
    else
 | 
						|
      ResI = Op.LHS.second ? Op.LHS.second
 | 
						|
                           : Builder.CreateFNeg(Op.RHS.second, "sub.i");
 | 
						|
    assert(ResI && "Only one operand may be real!");
 | 
						|
  } else {
 | 
						|
    ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
 | 
						|
    assert(Op.LHS.second && Op.RHS.second &&
 | 
						|
           "Both operands of integer complex operators must be complex!");
 | 
						|
    ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
 | 
						|
  }
 | 
						|
  return ComplexPairTy(ResR, ResI);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit a libcall for a binary operation on complex types.
 | 
						|
ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
 | 
						|
                                                          const BinOpInfo &Op) {
 | 
						|
  CallArgList Args;
 | 
						|
  Args.add(RValue::get(Op.LHS.first),
 | 
						|
           Op.Ty->castAs<ComplexType>()->getElementType());
 | 
						|
  Args.add(RValue::get(Op.LHS.second),
 | 
						|
           Op.Ty->castAs<ComplexType>()->getElementType());
 | 
						|
  Args.add(RValue::get(Op.RHS.first),
 | 
						|
           Op.Ty->castAs<ComplexType>()->getElementType());
 | 
						|
  Args.add(RValue::get(Op.RHS.second),
 | 
						|
           Op.Ty->castAs<ComplexType>()->getElementType());
 | 
						|
 | 
						|
  // We *must* use the full CG function call building logic here because the
 | 
						|
  // complex type has special ABI handling. We also should not forget about
 | 
						|
  // special calling convention which may be used for compiler builtins.
 | 
						|
 | 
						|
  // We create a function qualified type to state that this call does not have
 | 
						|
  // any exceptions.
 | 
						|
  FunctionProtoType::ExtProtoInfo EPI;
 | 
						|
  EPI = EPI.withExceptionSpec(
 | 
						|
      FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
 | 
						|
  SmallVector<QualType, 4> ArgsQTys(
 | 
						|
      4, Op.Ty->castAs<ComplexType>()->getElementType());
 | 
						|
  QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
 | 
						|
  const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
 | 
						|
      Args, cast<FunctionType>(FQTy.getTypePtr()), false);
 | 
						|
 | 
						|
  llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
 | 
						|
  llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
 | 
						|
      FTy, LibCallName, llvm::AttributeList(), true);
 | 
						|
  CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
 | 
						|
 | 
						|
  llvm::CallBase *Call;
 | 
						|
  RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
 | 
						|
  Call->setCallingConv(CGF.CGM.getRuntimeCC());
 | 
						|
  return Res.getComplexVal();
 | 
						|
}
 | 
						|
 | 
						|
/// Lookup the libcall name for a given floating point type complex
 | 
						|
/// multiply.
 | 
						|
static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unsupported floating point type!");
 | 
						|
  case llvm::Type::HalfTyID:
 | 
						|
    return "__mulhc3";
 | 
						|
  case llvm::Type::FloatTyID:
 | 
						|
    return "__mulsc3";
 | 
						|
  case llvm::Type::DoubleTyID:
 | 
						|
    return "__muldc3";
 | 
						|
  case llvm::Type::PPC_FP128TyID:
 | 
						|
    return "__multc3";
 | 
						|
  case llvm::Type::X86_FP80TyID:
 | 
						|
    return "__mulxc3";
 | 
						|
  case llvm::Type::FP128TyID:
 | 
						|
    return "__multc3";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
 | 
						|
// typed values.
 | 
						|
ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
 | 
						|
  using llvm::Value;
 | 
						|
  Value *ResR, *ResI;
 | 
						|
  llvm::MDBuilder MDHelper(CGF.getLLVMContext());
 | 
						|
 | 
						|
  if (Op.LHS.first->getType()->isFloatingPointTy()) {
 | 
						|
    // The general formulation is:
 | 
						|
    // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
 | 
						|
    //
 | 
						|
    // But we can fold away components which would be zero due to a real
 | 
						|
    // operand according to C11 Annex G.5.1p2.
 | 
						|
    // FIXME: C11 also provides for imaginary types which would allow folding
 | 
						|
    // still more of this within the type system.
 | 
						|
 | 
						|
    if (Op.LHS.second && Op.RHS.second) {
 | 
						|
      // If both operands are complex, emit the core math directly, and then
 | 
						|
      // test for NaNs. If we find NaNs in the result, we delegate to a libcall
 | 
						|
      // to carefully re-compute the correct infinity representation if
 | 
						|
      // possible. The expectation is that the presence of NaNs here is
 | 
						|
      // *extremely* rare, and so the cost of the libcall is almost irrelevant.
 | 
						|
      // This is good, because the libcall re-computes the core multiplication
 | 
						|
      // exactly the same as we do here and re-tests for NaNs in order to be
 | 
						|
      // a generic complex*complex libcall.
 | 
						|
 | 
						|
      // First compute the four products.
 | 
						|
      Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
 | 
						|
      Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
 | 
						|
      Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
 | 
						|
      Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
 | 
						|
 | 
						|
      // The real part is the difference of the first two, the imaginary part is
 | 
						|
      // the sum of the second.
 | 
						|
      ResR = Builder.CreateFSub(AC, BD, "mul_r");
 | 
						|
      ResI = Builder.CreateFAdd(AD, BC, "mul_i");
 | 
						|
 | 
						|
      // Emit the test for the real part becoming NaN and create a branch to
 | 
						|
      // handle it. We test for NaN by comparing the number to itself.
 | 
						|
      Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
 | 
						|
      llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
 | 
						|
      llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
 | 
						|
      llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
 | 
						|
      llvm::BasicBlock *OrigBB = Branch->getParent();
 | 
						|
 | 
						|
      // Give hint that we very much don't expect to see NaNs.
 | 
						|
      // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
 | 
						|
      llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
 | 
						|
      Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
 | 
						|
 | 
						|
      // Now test the imaginary part and create its branch.
 | 
						|
      CGF.EmitBlock(INaNBB);
 | 
						|
      Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
 | 
						|
      llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
 | 
						|
      Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
 | 
						|
      Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
 | 
						|
 | 
						|
      // Now emit the libcall on this slowest of the slow paths.
 | 
						|
      CGF.EmitBlock(LibCallBB);
 | 
						|
      Value *LibCallR, *LibCallI;
 | 
						|
      std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
 | 
						|
          getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
 | 
						|
      Builder.CreateBr(ContBB);
 | 
						|
 | 
						|
      // Finally continue execution by phi-ing together the different
 | 
						|
      // computation paths.
 | 
						|
      CGF.EmitBlock(ContBB);
 | 
						|
      llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
 | 
						|
      RealPHI->addIncoming(ResR, OrigBB);
 | 
						|
      RealPHI->addIncoming(ResR, INaNBB);
 | 
						|
      RealPHI->addIncoming(LibCallR, LibCallBB);
 | 
						|
      llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
 | 
						|
      ImagPHI->addIncoming(ResI, OrigBB);
 | 
						|
      ImagPHI->addIncoming(ResI, INaNBB);
 | 
						|
      ImagPHI->addIncoming(LibCallI, LibCallBB);
 | 
						|
      return ComplexPairTy(RealPHI, ImagPHI);
 | 
						|
    }
 | 
						|
    assert((Op.LHS.second || Op.RHS.second) &&
 | 
						|
           "At least one operand must be complex!");
 | 
						|
 | 
						|
    // If either of the operands is a real rather than a complex, the
 | 
						|
    // imaginary component is ignored when computing the real component of the
 | 
						|
    // result.
 | 
						|
    ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
 | 
						|
 | 
						|
    ResI = Op.LHS.second
 | 
						|
               ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
 | 
						|
               : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
 | 
						|
  } else {
 | 
						|
    assert(Op.LHS.second && Op.RHS.second &&
 | 
						|
           "Both operands of integer complex operators must be complex!");
 | 
						|
    Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
 | 
						|
    Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
 | 
						|
    ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
 | 
						|
 | 
						|
    Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
 | 
						|
    Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
 | 
						|
    ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
 | 
						|
  }
 | 
						|
  return ComplexPairTy(ResR, ResI);
 | 
						|
}
 | 
						|
 | 
						|
// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
 | 
						|
// typed values.
 | 
						|
ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
 | 
						|
  llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
 | 
						|
  llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
 | 
						|
 | 
						|
  llvm::Value *DSTr, *DSTi;
 | 
						|
  if (LHSr->getType()->isFloatingPointTy()) {
 | 
						|
    // If we have a complex operand on the RHS and FastMath is not allowed, we
 | 
						|
    // delegate to a libcall to handle all of the complexities and minimize
 | 
						|
    // underflow/overflow cases. When FastMath is allowed we construct the
 | 
						|
    // divide inline using the same algorithm as for integer operands.
 | 
						|
    //
 | 
						|
    // FIXME: We would be able to avoid the libcall in many places if we
 | 
						|
    // supported imaginary types in addition to complex types.
 | 
						|
    if (RHSi && !CGF.getLangOpts().FastMath) {
 | 
						|
      BinOpInfo LibCallOp = Op;
 | 
						|
      // If LHS was a real, supply a null imaginary part.
 | 
						|
      if (!LHSi)
 | 
						|
        LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
 | 
						|
 | 
						|
      switch (LHSr->getType()->getTypeID()) {
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unsupported floating point type!");
 | 
						|
      case llvm::Type::HalfTyID:
 | 
						|
        return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
 | 
						|
      case llvm::Type::FloatTyID:
 | 
						|
        return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
 | 
						|
      case llvm::Type::DoubleTyID:
 | 
						|
        return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
 | 
						|
      case llvm::Type::PPC_FP128TyID:
 | 
						|
        return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
 | 
						|
      case llvm::Type::X86_FP80TyID:
 | 
						|
        return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
 | 
						|
      case llvm::Type::FP128TyID:
 | 
						|
        return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
 | 
						|
      }
 | 
						|
    } else if (RHSi) {
 | 
						|
      if (!LHSi)
 | 
						|
        LHSi = llvm::Constant::getNullValue(RHSi->getType());
 | 
						|
 | 
						|
      // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
 | 
						|
      llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
 | 
						|
      llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
 | 
						|
      llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
 | 
						|
 | 
						|
      llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
 | 
						|
      llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
 | 
						|
      llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
 | 
						|
 | 
						|
      llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
 | 
						|
      llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
 | 
						|
      llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
 | 
						|
 | 
						|
      DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
 | 
						|
      DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
 | 
						|
    } else {
 | 
						|
      assert(LHSi && "Can have at most one non-complex operand!");
 | 
						|
 | 
						|
      DSTr = Builder.CreateFDiv(LHSr, RHSr);
 | 
						|
      DSTi = Builder.CreateFDiv(LHSi, RHSr);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(Op.LHS.second && Op.RHS.second &&
 | 
						|
           "Both operands of integer complex operators must be complex!");
 | 
						|
    // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
 | 
						|
    llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
 | 
						|
    llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
 | 
						|
    llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
 | 
						|
 | 
						|
    llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
 | 
						|
    llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
 | 
						|
    llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
 | 
						|
 | 
						|
    llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
 | 
						|
    llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
 | 
						|
    llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
 | 
						|
 | 
						|
    if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
 | 
						|
      DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
 | 
						|
      DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
 | 
						|
    } else {
 | 
						|
      DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
 | 
						|
      DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ComplexPairTy(DSTr, DSTi);
 | 
						|
}
 | 
						|
 | 
						|
ComplexExprEmitter::BinOpInfo
 | 
						|
ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
 | 
						|
  TestAndClearIgnoreReal();
 | 
						|
  TestAndClearIgnoreImag();
 | 
						|
  BinOpInfo Ops;
 | 
						|
  if (E->getLHS()->getType()->isRealFloatingType())
 | 
						|
    Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
 | 
						|
  else
 | 
						|
    Ops.LHS = Visit(E->getLHS());
 | 
						|
  if (E->getRHS()->getType()->isRealFloatingType())
 | 
						|
    Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
 | 
						|
  else
 | 
						|
    Ops.RHS = Visit(E->getRHS());
 | 
						|
 | 
						|
  Ops.Ty = E->getType();
 | 
						|
  return Ops;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
LValue ComplexExprEmitter::
 | 
						|
EmitCompoundAssignLValue(const CompoundAssignOperator *E,
 | 
						|
          ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
 | 
						|
                         RValue &Val) {
 | 
						|
  TestAndClearIgnoreReal();
 | 
						|
  TestAndClearIgnoreImag();
 | 
						|
  QualType LHSTy = E->getLHS()->getType();
 | 
						|
  if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
 | 
						|
    LHSTy = AT->getValueType();
 | 
						|
 | 
						|
  CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
 | 
						|
  BinOpInfo OpInfo;
 | 
						|
 | 
						|
  // Load the RHS and LHS operands.
 | 
						|
  // __block variables need to have the rhs evaluated first, plus this should
 | 
						|
  // improve codegen a little.
 | 
						|
  OpInfo.Ty = E->getComputationResultType();
 | 
						|
  QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
 | 
						|
 | 
						|
  // The RHS should have been converted to the computation type.
 | 
						|
  if (E->getRHS()->getType()->isRealFloatingType()) {
 | 
						|
    assert(
 | 
						|
        CGF.getContext()
 | 
						|
            .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
 | 
						|
    OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
 | 
						|
  } else {
 | 
						|
    assert(CGF.getContext()
 | 
						|
               .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
 | 
						|
    OpInfo.RHS = Visit(E->getRHS());
 | 
						|
  }
 | 
						|
 | 
						|
  LValue LHS = CGF.EmitLValue(E->getLHS());
 | 
						|
 | 
						|
  // Load from the l-value and convert it.
 | 
						|
  SourceLocation Loc = E->getExprLoc();
 | 
						|
  if (LHSTy->isAnyComplexType()) {
 | 
						|
    ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
 | 
						|
    OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
 | 
						|
  } else {
 | 
						|
    llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
 | 
						|
    // For floating point real operands we can directly pass the scalar form
 | 
						|
    // to the binary operator emission and potentially get more efficient code.
 | 
						|
    if (LHSTy->isRealFloatingType()) {
 | 
						|
      if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
 | 
						|
        LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
 | 
						|
      OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
 | 
						|
    } else {
 | 
						|
      OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand the binary operator.
 | 
						|
  ComplexPairTy Result = (this->*Func)(OpInfo);
 | 
						|
 | 
						|
  // Truncate the result and store it into the LHS lvalue.
 | 
						|
  if (LHSTy->isAnyComplexType()) {
 | 
						|
    ComplexPairTy ResVal =
 | 
						|
        EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
 | 
						|
    EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
 | 
						|
    Val = RValue::getComplex(ResVal);
 | 
						|
  } else {
 | 
						|
    llvm::Value *ResVal =
 | 
						|
        CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
 | 
						|
    CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
 | 
						|
    Val = RValue::get(ResVal);
 | 
						|
  }
 | 
						|
 | 
						|
  return LHS;
 | 
						|
}
 | 
						|
 | 
						|
// Compound assignments.
 | 
						|
ComplexPairTy ComplexExprEmitter::
 | 
						|
EmitCompoundAssign(const CompoundAssignOperator *E,
 | 
						|
                   ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
 | 
						|
  RValue Val;
 | 
						|
  LValue LV = EmitCompoundAssignLValue(E, Func, Val);
 | 
						|
 | 
						|
  // The result of an assignment in C is the assigned r-value.
 | 
						|
  if (!CGF.getLangOpts().CPlusPlus)
 | 
						|
    return Val.getComplexVal();
 | 
						|
 | 
						|
  // If the lvalue is non-volatile, return the computed value of the assignment.
 | 
						|
  if (!LV.isVolatileQualified())
 | 
						|
    return Val.getComplexVal();
 | 
						|
 | 
						|
  return EmitLoadOfLValue(LV, E->getExprLoc());
 | 
						|
}
 | 
						|
 | 
						|
LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
 | 
						|
                                               ComplexPairTy &Val) {
 | 
						|
  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
 | 
						|
                                                 E->getRHS()->getType()) &&
 | 
						|
         "Invalid assignment");
 | 
						|
  TestAndClearIgnoreReal();
 | 
						|
  TestAndClearIgnoreImag();
 | 
						|
 | 
						|
  // Emit the RHS.  __block variables need the RHS evaluated first.
 | 
						|
  Val = Visit(E->getRHS());
 | 
						|
 | 
						|
  // Compute the address to store into.
 | 
						|
  LValue LHS = CGF.EmitLValue(E->getLHS());
 | 
						|
 | 
						|
  // Store the result value into the LHS lvalue.
 | 
						|
  EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
 | 
						|
 | 
						|
  return LHS;
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
 | 
						|
  ComplexPairTy Val;
 | 
						|
  LValue LV = EmitBinAssignLValue(E, Val);
 | 
						|
 | 
						|
  // The result of an assignment in C is the assigned r-value.
 | 
						|
  if (!CGF.getLangOpts().CPlusPlus)
 | 
						|
    return Val;
 | 
						|
 | 
						|
  // If the lvalue is non-volatile, return the computed value of the assignment.
 | 
						|
  if (!LV.isVolatileQualified())
 | 
						|
    return Val;
 | 
						|
 | 
						|
  return EmitLoadOfLValue(LV, E->getExprLoc());
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
 | 
						|
  CGF.EmitIgnoredExpr(E->getLHS());
 | 
						|
  return Visit(E->getRHS());
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::
 | 
						|
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
 | 
						|
  TestAndClearIgnoreReal();
 | 
						|
  TestAndClearIgnoreImag();
 | 
						|
  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
 | 
						|
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
 | 
						|
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
 | 
						|
 | 
						|
  // Bind the common expression if necessary.
 | 
						|
  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
 | 
						|
 | 
						|
 | 
						|
  CodeGenFunction::ConditionalEvaluation eval(CGF);
 | 
						|
  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
 | 
						|
                           CGF.getProfileCount(E));
 | 
						|
 | 
						|
  eval.begin(CGF);
 | 
						|
  CGF.EmitBlock(LHSBlock);
 | 
						|
  CGF.incrementProfileCounter(E);
 | 
						|
  ComplexPairTy LHS = Visit(E->getTrueExpr());
 | 
						|
  LHSBlock = Builder.GetInsertBlock();
 | 
						|
  CGF.EmitBranch(ContBlock);
 | 
						|
  eval.end(CGF);
 | 
						|
 | 
						|
  eval.begin(CGF);
 | 
						|
  CGF.EmitBlock(RHSBlock);
 | 
						|
  ComplexPairTy RHS = Visit(E->getFalseExpr());
 | 
						|
  RHSBlock = Builder.GetInsertBlock();
 | 
						|
  CGF.EmitBlock(ContBlock);
 | 
						|
  eval.end(CGF);
 | 
						|
 | 
						|
  // Create a PHI node for the real part.
 | 
						|
  llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
 | 
						|
  RealPN->addIncoming(LHS.first, LHSBlock);
 | 
						|
  RealPN->addIncoming(RHS.first, RHSBlock);
 | 
						|
 | 
						|
  // Create a PHI node for the imaginary part.
 | 
						|
  llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
 | 
						|
  ImagPN->addIncoming(LHS.second, LHSBlock);
 | 
						|
  ImagPN->addIncoming(RHS.second, RHSBlock);
 | 
						|
 | 
						|
  return ComplexPairTy(RealPN, ImagPN);
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
 | 
						|
  return Visit(E->getChosenSubExpr());
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
 | 
						|
    bool Ignore = TestAndClearIgnoreReal();
 | 
						|
    (void)Ignore;
 | 
						|
    assert (Ignore == false && "init list ignored");
 | 
						|
    Ignore = TestAndClearIgnoreImag();
 | 
						|
    (void)Ignore;
 | 
						|
    assert (Ignore == false && "init list ignored");
 | 
						|
 | 
						|
  if (E->getNumInits() == 2) {
 | 
						|
    llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
 | 
						|
    llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
 | 
						|
    return ComplexPairTy(Real, Imag);
 | 
						|
  } else if (E->getNumInits() == 1) {
 | 
						|
    return Visit(E->getInit(0));
 | 
						|
  }
 | 
						|
 | 
						|
  // Empty init list initializes to null
 | 
						|
  assert(E->getNumInits() == 0 && "Unexpected number of inits");
 | 
						|
  QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
 | 
						|
  llvm::Type* LTy = CGF.ConvertType(Ty);
 | 
						|
  llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
 | 
						|
  return ComplexPairTy(zeroConstant, zeroConstant);
 | 
						|
}
 | 
						|
 | 
						|
ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
 | 
						|
  Address ArgValue = Address::invalid();
 | 
						|
  Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
 | 
						|
 | 
						|
  if (!ArgPtr.isValid()) {
 | 
						|
    CGF.ErrorUnsupported(E, "complex va_arg expression");
 | 
						|
    llvm::Type *EltTy =
 | 
						|
      CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
 | 
						|
    llvm::Value *U = llvm::UndefValue::get(EltTy);
 | 
						|
    return ComplexPairTy(U, U);
 | 
						|
  }
 | 
						|
 | 
						|
  return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
 | 
						|
                          E->getExprLoc());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Entry Point into this File
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// EmitComplexExpr - Emit the computation of the specified expression of
 | 
						|
/// complex type, ignoring the result.
 | 
						|
ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
 | 
						|
                                               bool IgnoreImag) {
 | 
						|
  assert(E && getComplexType(E->getType()) &&
 | 
						|
         "Invalid complex expression to emit");
 | 
						|
 | 
						|
  return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
 | 
						|
      .Visit(const_cast<Expr *>(E));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
 | 
						|
                                                bool isInit) {
 | 
						|
  assert(E && getComplexType(E->getType()) &&
 | 
						|
         "Invalid complex expression to emit");
 | 
						|
  ComplexExprEmitter Emitter(*this);
 | 
						|
  ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
 | 
						|
  Emitter.EmitStoreOfComplex(Val, dest, isInit);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitStoreOfComplex - Store a complex number into the specified l-value.
 | 
						|
void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
 | 
						|
                                         bool isInit) {
 | 
						|
  ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitLoadOfComplex - Load a complex number from the specified address.
 | 
						|
ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
 | 
						|
                                                 SourceLocation loc) {
 | 
						|
  return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
 | 
						|
  assert(E->getOpcode() == BO_Assign);
 | 
						|
  ComplexPairTy Val; // ignored
 | 
						|
  LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
 | 
						|
  if (getLangOpts().OpenMP)
 | 
						|
    CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
 | 
						|
                                                              E->getLHS());
 | 
						|
  return LVal;
 | 
						|
}
 | 
						|
 | 
						|
typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
 | 
						|
    const ComplexExprEmitter::BinOpInfo &);
 | 
						|
 | 
						|
static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
 | 
						|
  switch (Op) {
 | 
						|
  case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
 | 
						|
  case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
 | 
						|
  case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
 | 
						|
  case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unexpected complex compound assignment");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::
 | 
						|
EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
 | 
						|
  CompoundFunc Op = getComplexOp(E->getOpcode());
 | 
						|
  RValue Val;
 | 
						|
  return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::
 | 
						|
EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
 | 
						|
                                    llvm::Value *&Result) {
 | 
						|
  CompoundFunc Op = getComplexOp(E->getOpcode());
 | 
						|
  RValue Val;
 | 
						|
  LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
 | 
						|
  Result = Val.getScalarVal();
 | 
						|
  return Ret;
 | 
						|
}
 |