2785 lines
		
	
	
		
			107 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2785 lines
		
	
	
		
			107 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This coordinates the per-function state used while generating code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CGBlocks.h"
 | 
						|
#include "CGCUDARuntime.h"
 | 
						|
#include "CGCXXABI.h"
 | 
						|
#include "CGCleanup.h"
 | 
						|
#include "CGDebugInfo.h"
 | 
						|
#include "CGOpenMPRuntime.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "CodeGenPGO.h"
 | 
						|
#include "TargetInfo.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/ASTLambda.h"
 | 
						|
#include "clang/AST/Attr.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/StmtCXX.h"
 | 
						|
#include "clang/AST/StmtObjC.h"
 | 
						|
#include "clang/Basic/Builtins.h"
 | 
						|
#include "clang/Basic/CodeGenOptions.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/CodeGen/CGFunctionInfo.h"
 | 
						|
#include "clang/Frontend/FrontendDiagnostic.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/FPEnv.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/Support/CRC.h"
 | 
						|
#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
 | 
						|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
/// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
 | 
						|
/// markers.
 | 
						|
static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
 | 
						|
                                      const LangOptions &LangOpts) {
 | 
						|
  if (CGOpts.DisableLifetimeMarkers)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Sanitizers may use markers.
 | 
						|
  if (CGOpts.SanitizeAddressUseAfterScope ||
 | 
						|
      LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
 | 
						|
      LangOpts.Sanitize.has(SanitizerKind::Memory))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // For now, only in optimized builds.
 | 
						|
  return CGOpts.OptimizationLevel != 0;
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
 | 
						|
    : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
 | 
						|
      Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
 | 
						|
              CGBuilderInserterTy(this)),
 | 
						|
      SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
 | 
						|
      DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
 | 
						|
      ShouldEmitLifetimeMarkers(
 | 
						|
          shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
 | 
						|
  if (!suppressNewContext)
 | 
						|
    CGM.getCXXABI().getMangleContext().startNewFunction();
 | 
						|
  EHStack.setCGF(this);
 | 
						|
 | 
						|
  SetFastMathFlags(CurFPFeatures);
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::~CodeGenFunction() {
 | 
						|
  assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
 | 
						|
 | 
						|
  if (getLangOpts().OpenMP && CurFn)
 | 
						|
    CGM.getOpenMPRuntime().functionFinished(*this);
 | 
						|
 | 
						|
  // If we have an OpenMPIRBuilder we want to finalize functions (incl.
 | 
						|
  // outlining etc) at some point. Doing it once the function codegen is done
 | 
						|
  // seems to be a reasonable spot. We do it here, as opposed to the deletion
 | 
						|
  // time of the CodeGenModule, because we have to ensure the IR has not yet
 | 
						|
  // been "emitted" to the outside, thus, modifications are still sensible.
 | 
						|
  if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
 | 
						|
    CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
 | 
						|
}
 | 
						|
 | 
						|
// Map the LangOption for exception behavior into
 | 
						|
// the corresponding enum in the IR.
 | 
						|
llvm::fp::ExceptionBehavior
 | 
						|
clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
 | 
						|
 | 
						|
  switch (Kind) {
 | 
						|
  case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
 | 
						|
  case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
 | 
						|
  case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unsupported FP Exception Behavior");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
 | 
						|
  llvm::FastMathFlags FMF;
 | 
						|
  FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
 | 
						|
  FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
 | 
						|
  FMF.setNoInfs(FPFeatures.getNoHonorInfs());
 | 
						|
  FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
 | 
						|
  FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
 | 
						|
  FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
 | 
						|
  FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
 | 
						|
  Builder.setFastMathFlags(FMF);
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
 | 
						|
                                                  const Expr *E)
 | 
						|
    : CGF(CGF) {
 | 
						|
  ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
 | 
						|
                                                  FPOptions FPFeatures)
 | 
						|
    : CGF(CGF) {
 | 
						|
  ConstructorHelper(FPFeatures);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
 | 
						|
  OldFPFeatures = CGF.CurFPFeatures;
 | 
						|
  CGF.CurFPFeatures = FPFeatures;
 | 
						|
 | 
						|
  OldExcept = CGF.Builder.getDefaultConstrainedExcept();
 | 
						|
  OldRounding = CGF.Builder.getDefaultConstrainedRounding();
 | 
						|
 | 
						|
  if (OldFPFeatures == FPFeatures)
 | 
						|
    return;
 | 
						|
 | 
						|
  FMFGuard.emplace(CGF.Builder);
 | 
						|
 | 
						|
  llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
 | 
						|
  CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
 | 
						|
  auto NewExceptionBehavior =
 | 
						|
      ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
 | 
						|
          FPFeatures.getExceptionMode()));
 | 
						|
  CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
 | 
						|
 | 
						|
  CGF.SetFastMathFlags(FPFeatures);
 | 
						|
 | 
						|
  assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
 | 
						|
          isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
 | 
						|
          isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
 | 
						|
          (NewExceptionBehavior == llvm::fp::ebIgnore &&
 | 
						|
           NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
 | 
						|
         "FPConstrained should be enabled on entire function");
 | 
						|
 | 
						|
  auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
 | 
						|
    auto OldValue =
 | 
						|
        CGF.CurFn->getFnAttribute(Name).getValueAsBool();
 | 
						|
    auto NewValue = OldValue & Value;
 | 
						|
    if (OldValue != NewValue)
 | 
						|
      CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
 | 
						|
  };
 | 
						|
  mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
 | 
						|
  mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
 | 
						|
  mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
 | 
						|
  mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
 | 
						|
                                         FPFeatures.getAllowReciprocal() &&
 | 
						|
                                         FPFeatures.getAllowApproxFunc() &&
 | 
						|
                                         FPFeatures.getNoSignedZero());
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
 | 
						|
  CGF.CurFPFeatures = OldFPFeatures;
 | 
						|
  CGF.Builder.setDefaultConstrainedExcept(OldExcept);
 | 
						|
  CGF.Builder.setDefaultConstrainedRounding(OldRounding);
 | 
						|
}
 | 
						|
 | 
						|
LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
 | 
						|
  LValueBaseInfo BaseInfo;
 | 
						|
  TBAAAccessInfo TBAAInfo;
 | 
						|
  CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
 | 
						|
  Address Addr(V, ConvertTypeForMem(T), Alignment);
 | 
						|
  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
 | 
						|
}
 | 
						|
 | 
						|
/// Given a value of type T* that may not be to a complete object,
 | 
						|
/// construct an l-value with the natural pointee alignment of T.
 | 
						|
LValue
 | 
						|
CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
 | 
						|
  LValueBaseInfo BaseInfo;
 | 
						|
  TBAAAccessInfo TBAAInfo;
 | 
						|
  CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
 | 
						|
                                                /* forPointeeType= */ true);
 | 
						|
  Address Addr(V, ConvertTypeForMem(T), Align);
 | 
						|
  return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
 | 
						|
  return CGM.getTypes().ConvertTypeForMem(T);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Type *CodeGenFunction::ConvertType(QualType T) {
 | 
						|
  return CGM.getTypes().ConvertType(T);
 | 
						|
}
 | 
						|
 | 
						|
TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
 | 
						|
  type = type.getCanonicalType();
 | 
						|
  while (true) {
 | 
						|
    switch (type->getTypeClass()) {
 | 
						|
#define TYPE(name, parent)
 | 
						|
#define ABSTRACT_TYPE(name, parent)
 | 
						|
#define NON_CANONICAL_TYPE(name, parent) case Type::name:
 | 
						|
#define DEPENDENT_TYPE(name, parent) case Type::name:
 | 
						|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
 | 
						|
#include "clang/AST/TypeNodes.inc"
 | 
						|
      llvm_unreachable("non-canonical or dependent type in IR-generation");
 | 
						|
 | 
						|
    case Type::Auto:
 | 
						|
    case Type::DeducedTemplateSpecialization:
 | 
						|
      llvm_unreachable("undeduced type in IR-generation");
 | 
						|
 | 
						|
    // Various scalar types.
 | 
						|
    case Type::Builtin:
 | 
						|
    case Type::Pointer:
 | 
						|
    case Type::BlockPointer:
 | 
						|
    case Type::LValueReference:
 | 
						|
    case Type::RValueReference:
 | 
						|
    case Type::MemberPointer:
 | 
						|
    case Type::Vector:
 | 
						|
    case Type::ExtVector:
 | 
						|
    case Type::ConstantMatrix:
 | 
						|
    case Type::FunctionProto:
 | 
						|
    case Type::FunctionNoProto:
 | 
						|
    case Type::Enum:
 | 
						|
    case Type::ObjCObjectPointer:
 | 
						|
    case Type::Pipe:
 | 
						|
    case Type::BitInt:
 | 
						|
      return TEK_Scalar;
 | 
						|
 | 
						|
    // Complexes.
 | 
						|
    case Type::Complex:
 | 
						|
      return TEK_Complex;
 | 
						|
 | 
						|
    // Arrays, records, and Objective-C objects.
 | 
						|
    case Type::ConstantArray:
 | 
						|
    case Type::IncompleteArray:
 | 
						|
    case Type::VariableArray:
 | 
						|
    case Type::Record:
 | 
						|
    case Type::ObjCObject:
 | 
						|
    case Type::ObjCInterface:
 | 
						|
      return TEK_Aggregate;
 | 
						|
 | 
						|
    // We operate on atomic values according to their underlying type.
 | 
						|
    case Type::Atomic:
 | 
						|
      type = cast<AtomicType>(type)->getValueType();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    llvm_unreachable("unknown type kind!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
 | 
						|
  // For cleanliness, we try to avoid emitting the return block for
 | 
						|
  // simple cases.
 | 
						|
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
 | 
						|
 | 
						|
  if (CurBB) {
 | 
						|
    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
 | 
						|
 | 
						|
    // We have a valid insert point, reuse it if it is empty or there are no
 | 
						|
    // explicit jumps to the return block.
 | 
						|
    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
 | 
						|
      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
 | 
						|
      delete ReturnBlock.getBlock();
 | 
						|
      ReturnBlock = JumpDest();
 | 
						|
    } else
 | 
						|
      EmitBlock(ReturnBlock.getBlock());
 | 
						|
    return llvm::DebugLoc();
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if the return block is the target of a single direct
 | 
						|
  // branch then we can just put the code in that block instead. This
 | 
						|
  // cleans up functions which started with a unified return block.
 | 
						|
  if (ReturnBlock.getBlock()->hasOneUse()) {
 | 
						|
    llvm::BranchInst *BI =
 | 
						|
      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
 | 
						|
    if (BI && BI->isUnconditional() &&
 | 
						|
        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
 | 
						|
      // Record/return the DebugLoc of the simple 'return' expression to be used
 | 
						|
      // later by the actual 'ret' instruction.
 | 
						|
      llvm::DebugLoc Loc = BI->getDebugLoc();
 | 
						|
      Builder.SetInsertPoint(BI->getParent());
 | 
						|
      BI->eraseFromParent();
 | 
						|
      delete ReturnBlock.getBlock();
 | 
						|
      ReturnBlock = JumpDest();
 | 
						|
      return Loc;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We are at an unreachable point, there is no reason to emit the block
 | 
						|
  // unless it has uses. However, we still need a place to put the debug
 | 
						|
  // region.end for now.
 | 
						|
 | 
						|
  EmitBlock(ReturnBlock.getBlock());
 | 
						|
  return llvm::DebugLoc();
 | 
						|
}
 | 
						|
 | 
						|
static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
 | 
						|
  if (!BB) return;
 | 
						|
  if (!BB->use_empty())
 | 
						|
    return CGF.CurFn->getBasicBlockList().push_back(BB);
 | 
						|
  delete BB;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
 | 
						|
  assert(BreakContinueStack.empty() &&
 | 
						|
         "mismatched push/pop in break/continue stack!");
 | 
						|
 | 
						|
  bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
 | 
						|
    && NumSimpleReturnExprs == NumReturnExprs
 | 
						|
    && ReturnBlock.getBlock()->use_empty();
 | 
						|
  // Usually the return expression is evaluated before the cleanup
 | 
						|
  // code.  If the function contains only a simple return statement,
 | 
						|
  // such as a constant, the location before the cleanup code becomes
 | 
						|
  // the last useful breakpoint in the function, because the simple
 | 
						|
  // return expression will be evaluated after the cleanup code. To be
 | 
						|
  // safe, set the debug location for cleanup code to the location of
 | 
						|
  // the return statement.  Otherwise the cleanup code should be at the
 | 
						|
  // end of the function's lexical scope.
 | 
						|
  //
 | 
						|
  // If there are multiple branches to the return block, the branch
 | 
						|
  // instructions will get the location of the return statements and
 | 
						|
  // all will be fine.
 | 
						|
  if (CGDebugInfo *DI = getDebugInfo()) {
 | 
						|
    if (OnlySimpleReturnStmts)
 | 
						|
      DI->EmitLocation(Builder, LastStopPoint);
 | 
						|
    else
 | 
						|
      DI->EmitLocation(Builder, EndLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  // Pop any cleanups that might have been associated with the
 | 
						|
  // parameters.  Do this in whatever block we're currently in; it's
 | 
						|
  // important to do this before we enter the return block or return
 | 
						|
  // edges will be *really* confused.
 | 
						|
  bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
 | 
						|
  bool HasOnlyLifetimeMarkers =
 | 
						|
      HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
 | 
						|
  bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
 | 
						|
  if (HasCleanups) {
 | 
						|
    // Make sure the line table doesn't jump back into the body for
 | 
						|
    // the ret after it's been at EndLoc.
 | 
						|
    Optional<ApplyDebugLocation> AL;
 | 
						|
    if (CGDebugInfo *DI = getDebugInfo()) {
 | 
						|
      if (OnlySimpleReturnStmts)
 | 
						|
        DI->EmitLocation(Builder, EndLoc);
 | 
						|
      else
 | 
						|
        // We may not have a valid end location. Try to apply it anyway, and
 | 
						|
        // fall back to an artificial location if needed.
 | 
						|
        AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    PopCleanupBlocks(PrologueCleanupDepth);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit function epilog (to return).
 | 
						|
  llvm::DebugLoc Loc = EmitReturnBlock();
 | 
						|
 | 
						|
  if (ShouldInstrumentFunction()) {
 | 
						|
    if (CGM.getCodeGenOpts().InstrumentFunctions)
 | 
						|
      CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
 | 
						|
    if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
 | 
						|
      CurFn->addFnAttr("instrument-function-exit-inlined",
 | 
						|
                       "__cyg_profile_func_exit");
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit debug descriptor for function end.
 | 
						|
  if (CGDebugInfo *DI = getDebugInfo())
 | 
						|
    DI->EmitFunctionEnd(Builder, CurFn);
 | 
						|
 | 
						|
  // Reset the debug location to that of the simple 'return' expression, if any
 | 
						|
  // rather than that of the end of the function's scope '}'.
 | 
						|
  ApplyDebugLocation AL(*this, Loc);
 | 
						|
  EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
 | 
						|
  EmitEndEHSpec(CurCodeDecl);
 | 
						|
 | 
						|
  assert(EHStack.empty() &&
 | 
						|
         "did not remove all scopes from cleanup stack!");
 | 
						|
 | 
						|
  // If someone did an indirect goto, emit the indirect goto block at the end of
 | 
						|
  // the function.
 | 
						|
  if (IndirectBranch) {
 | 
						|
    EmitBlock(IndirectBranch->getParent());
 | 
						|
    Builder.ClearInsertionPoint();
 | 
						|
  }
 | 
						|
 | 
						|
  // If some of our locals escaped, insert a call to llvm.localescape in the
 | 
						|
  // entry block.
 | 
						|
  if (!EscapedLocals.empty()) {
 | 
						|
    // Invert the map from local to index into a simple vector. There should be
 | 
						|
    // no holes.
 | 
						|
    SmallVector<llvm::Value *, 4> EscapeArgs;
 | 
						|
    EscapeArgs.resize(EscapedLocals.size());
 | 
						|
    for (auto &Pair : EscapedLocals)
 | 
						|
      EscapeArgs[Pair.second] = Pair.first;
 | 
						|
    llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
 | 
						|
        &CGM.getModule(), llvm::Intrinsic::localescape);
 | 
						|
    CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
 | 
						|
  llvm::Instruction *Ptr = AllocaInsertPt;
 | 
						|
  AllocaInsertPt = nullptr;
 | 
						|
  Ptr->eraseFromParent();
 | 
						|
 | 
						|
  // PostAllocaInsertPt, if created, was lazily created when it was required,
 | 
						|
  // remove it now since it was just created for our own convenience.
 | 
						|
  if (PostAllocaInsertPt) {
 | 
						|
    llvm::Instruction *PostPtr = PostAllocaInsertPt;
 | 
						|
    PostAllocaInsertPt = nullptr;
 | 
						|
    PostPtr->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // If someone took the address of a label but never did an indirect goto, we
 | 
						|
  // made a zero entry PHI node, which is illegal, zap it now.
 | 
						|
  if (IndirectBranch) {
 | 
						|
    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
 | 
						|
    if (PN->getNumIncomingValues() == 0) {
 | 
						|
      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
 | 
						|
      PN->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  EmitIfUsed(*this, EHResumeBlock);
 | 
						|
  EmitIfUsed(*this, TerminateLandingPad);
 | 
						|
  EmitIfUsed(*this, TerminateHandler);
 | 
						|
  EmitIfUsed(*this, UnreachableBlock);
 | 
						|
 | 
						|
  for (const auto &FuncletAndParent : TerminateFunclets)
 | 
						|
    EmitIfUsed(*this, FuncletAndParent.second);
 | 
						|
 | 
						|
  if (CGM.getCodeGenOpts().EmitDeclMetadata)
 | 
						|
    EmitDeclMetadata();
 | 
						|
 | 
						|
  for (const auto &R : DeferredReplacements) {
 | 
						|
    if (llvm::Value *Old = R.first) {
 | 
						|
      Old->replaceAllUsesWith(R.second);
 | 
						|
      cast<llvm::Instruction>(Old)->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DeferredReplacements.clear();
 | 
						|
 | 
						|
  // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
 | 
						|
  // PHIs if the current function is a coroutine. We don't do it for all
 | 
						|
  // functions as it may result in slight increase in numbers of instructions
 | 
						|
  // if compiled with no optimizations. We do it for coroutine as the lifetime
 | 
						|
  // of CleanupDestSlot alloca make correct coroutine frame building very
 | 
						|
  // difficult.
 | 
						|
  if (NormalCleanupDest.isValid() && isCoroutine()) {
 | 
						|
    llvm::DominatorTree DT(*CurFn);
 | 
						|
    llvm::PromoteMemToReg(
 | 
						|
        cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
 | 
						|
    NormalCleanupDest = Address::invalid();
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan function arguments for vector width.
 | 
						|
  for (llvm::Argument &A : CurFn->args())
 | 
						|
    if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
 | 
						|
      LargestVectorWidth =
 | 
						|
          std::max((uint64_t)LargestVectorWidth,
 | 
						|
                   VT->getPrimitiveSizeInBits().getKnownMinSize());
 | 
						|
 | 
						|
  // Update vector width based on return type.
 | 
						|
  if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
 | 
						|
    LargestVectorWidth =
 | 
						|
        std::max((uint64_t)LargestVectorWidth,
 | 
						|
                 VT->getPrimitiveSizeInBits().getKnownMinSize());
 | 
						|
 | 
						|
  if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
 | 
						|
    LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
 | 
						|
 | 
						|
  // Add the required-vector-width attribute. This contains the max width from:
 | 
						|
  // 1. min-vector-width attribute used in the source program.
 | 
						|
  // 2. Any builtins used that have a vector width specified.
 | 
						|
  // 3. Values passed in and out of inline assembly.
 | 
						|
  // 4. Width of vector arguments and return types for this function.
 | 
						|
  // 5. Width of vector aguments and return types for functions called by this
 | 
						|
  //    function.
 | 
						|
  CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
 | 
						|
 | 
						|
  // Add vscale_range attribute if appropriate.
 | 
						|
  Optional<std::pair<unsigned, unsigned>> VScaleRange =
 | 
						|
      getContext().getTargetInfo().getVScaleRange(getLangOpts());
 | 
						|
  if (VScaleRange) {
 | 
						|
    CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
 | 
						|
        getLLVMContext(), VScaleRange->first, VScaleRange->second));
 | 
						|
  }
 | 
						|
 | 
						|
  // If we generated an unreachable return block, delete it now.
 | 
						|
  if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
 | 
						|
    Builder.ClearInsertionPoint();
 | 
						|
    ReturnBlock.getBlock()->eraseFromParent();
 | 
						|
  }
 | 
						|
  if (ReturnValue.isValid()) {
 | 
						|
    auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
 | 
						|
    if (RetAlloca && RetAlloca->use_empty()) {
 | 
						|
      RetAlloca->eraseFromParent();
 | 
						|
      ReturnValue = Address::invalid();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ShouldInstrumentFunction - Return true if the current function should be
 | 
						|
/// instrumented with __cyg_profile_func_* calls
 | 
						|
bool CodeGenFunction::ShouldInstrumentFunction() {
 | 
						|
  if (!CGM.getCodeGenOpts().InstrumentFunctions &&
 | 
						|
      !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
 | 
						|
      !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
 | 
						|
    return false;
 | 
						|
  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
 | 
						|
  if (!CurFuncDecl)
 | 
						|
    return false;
 | 
						|
  return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
 | 
						|
}
 | 
						|
 | 
						|
/// ShouldXRayInstrument - Return true if the current function should be
 | 
						|
/// instrumented with XRay nop sleds.
 | 
						|
bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
 | 
						|
  return CGM.getCodeGenOpts().XRayInstrumentFunctions;
 | 
						|
}
 | 
						|
 | 
						|
/// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
 | 
						|
/// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
 | 
						|
bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
 | 
						|
  return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
 | 
						|
         (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
 | 
						|
          CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
 | 
						|
              XRayInstrKind::Custom);
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
 | 
						|
  return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
 | 
						|
         (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
 | 
						|
          CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
 | 
						|
              XRayInstrKind::Typed);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
 | 
						|
                                            llvm::Constant *Addr) {
 | 
						|
  // Addresses stored in prologue data can't require run-time fixups and must
 | 
						|
  // be PC-relative. Run-time fixups are undesirable because they necessitate
 | 
						|
  // writable text segments, which are unsafe. And absolute addresses are
 | 
						|
  // undesirable because they break PIE mode.
 | 
						|
 | 
						|
  // Add a layer of indirection through a private global. Taking its address
 | 
						|
  // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
 | 
						|
  auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
 | 
						|
                                      /*isConstant=*/true,
 | 
						|
                                      llvm::GlobalValue::PrivateLinkage, Addr);
 | 
						|
 | 
						|
  // Create a PC-relative address.
 | 
						|
  auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
 | 
						|
  auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
 | 
						|
  auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
 | 
						|
  return (IntPtrTy == Int32Ty)
 | 
						|
             ? PCRelAsInt
 | 
						|
             : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *
 | 
						|
CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
 | 
						|
                                          llvm::Value *EncodedAddr) {
 | 
						|
  // Reconstruct the address of the global.
 | 
						|
  auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
 | 
						|
  auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
 | 
						|
  auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
 | 
						|
  auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
 | 
						|
 | 
						|
  // Load the original pointer through the global.
 | 
						|
  return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()),
 | 
						|
                            "decoded_addr");
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
 | 
						|
                                         llvm::Function *Fn) {
 | 
						|
  if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::LLVMContext &Context = getLLVMContext();
 | 
						|
 | 
						|
  CGM.GenKernelArgMetadata(Fn, FD, this);
 | 
						|
 | 
						|
  if (!getLangOpts().OpenCL)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
 | 
						|
    QualType HintQTy = A->getTypeHint();
 | 
						|
    const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
 | 
						|
    bool IsSignedInteger =
 | 
						|
        HintQTy->isSignedIntegerType() ||
 | 
						|
        (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
 | 
						|
    llvm::Metadata *AttrMDArgs[] = {
 | 
						|
        llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
 | 
						|
            CGM.getTypes().ConvertType(A->getTypeHint()))),
 | 
						|
        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
 | 
						|
            llvm::IntegerType::get(Context, 32),
 | 
						|
            llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
 | 
						|
    Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
 | 
						|
  }
 | 
						|
 | 
						|
  if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
 | 
						|
    llvm::Metadata *AttrMDArgs[] = {
 | 
						|
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
 | 
						|
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
 | 
						|
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
 | 
						|
    Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
 | 
						|
    llvm::Metadata *AttrMDArgs[] = {
 | 
						|
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
 | 
						|
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
 | 
						|
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
 | 
						|
    Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
 | 
						|
  }
 | 
						|
 | 
						|
  if (const OpenCLIntelReqdSubGroupSizeAttr *A =
 | 
						|
          FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
 | 
						|
    llvm::Metadata *AttrMDArgs[] = {
 | 
						|
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
 | 
						|
    Fn->setMetadata("intel_reqd_sub_group_size",
 | 
						|
                    llvm::MDNode::get(Context, AttrMDArgs));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether the function F ends with a return stmt.
 | 
						|
static bool endsWithReturn(const Decl* F) {
 | 
						|
  const Stmt *Body = nullptr;
 | 
						|
  if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
 | 
						|
    Body = FD->getBody();
 | 
						|
  else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
 | 
						|
    Body = OMD->getBody();
 | 
						|
 | 
						|
  if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
 | 
						|
    auto LastStmt = CS->body_rbegin();
 | 
						|
    if (LastStmt != CS->body_rend())
 | 
						|
      return isa<ReturnStmt>(*LastStmt);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
 | 
						|
  if (SanOpts.has(SanitizerKind::Thread)) {
 | 
						|
    Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
 | 
						|
    Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the return value of this function requires sanitization.
 | 
						|
bool CodeGenFunction::requiresReturnValueCheck() const {
 | 
						|
  return requiresReturnValueNullabilityCheck() ||
 | 
						|
         (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
 | 
						|
          CurCodeDecl->getAttr<ReturnsNonNullAttr>());
 | 
						|
}
 | 
						|
 | 
						|
static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
 | 
						|
  auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
 | 
						|
  if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
 | 
						|
      !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
 | 
						|
      (MD->getNumParams() != 1 && MD->getNumParams() != 2))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (MD->getNumParams() == 2) {
 | 
						|
    auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
 | 
						|
    if (!PT || !PT->isVoidPointerType() ||
 | 
						|
        !PT->getPointeeType().isConstQualified())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the UBSan prologue signature for \p FD if one is available.
 | 
						|
static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
 | 
						|
                                            const FunctionDecl *FD) {
 | 
						|
  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
 | 
						|
    if (!MD->isStatic())
 | 
						|
      return nullptr;
 | 
						|
  return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
 | 
						|
                                    llvm::Function *Fn,
 | 
						|
                                    const CGFunctionInfo &FnInfo,
 | 
						|
                                    const FunctionArgList &Args,
 | 
						|
                                    SourceLocation Loc,
 | 
						|
                                    SourceLocation StartLoc) {
 | 
						|
  assert(!CurFn &&
 | 
						|
         "Do not use a CodeGenFunction object for more than one function");
 | 
						|
 | 
						|
  const Decl *D = GD.getDecl();
 | 
						|
 | 
						|
  DidCallStackSave = false;
 | 
						|
  CurCodeDecl = D;
 | 
						|
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
 | 
						|
  if (FD && FD->usesSEHTry())
 | 
						|
    CurSEHParent = FD;
 | 
						|
  CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
 | 
						|
  FnRetTy = RetTy;
 | 
						|
  CurFn = Fn;
 | 
						|
  CurFnInfo = &FnInfo;
 | 
						|
  assert(CurFn->isDeclaration() && "Function already has body?");
 | 
						|
 | 
						|
  // If this function is ignored for any of the enabled sanitizers,
 | 
						|
  // disable the sanitizer for the function.
 | 
						|
  do {
 | 
						|
#define SANITIZER(NAME, ID)                                                    \
 | 
						|
  if (SanOpts.empty())                                                         \
 | 
						|
    break;                                                                     \
 | 
						|
  if (SanOpts.has(SanitizerKind::ID))                                          \
 | 
						|
    if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
 | 
						|
      SanOpts.set(SanitizerKind::ID, false);
 | 
						|
 | 
						|
#include "clang/Basic/Sanitizers.def"
 | 
						|
#undef SANITIZER
 | 
						|
  } while (false);
 | 
						|
 | 
						|
  if (D) {
 | 
						|
    const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
 | 
						|
    bool NoSanitizeCoverage = false;
 | 
						|
 | 
						|
    for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
 | 
						|
      // Apply the no_sanitize* attributes to SanOpts.
 | 
						|
      SanitizerMask mask = Attr->getMask();
 | 
						|
      SanOpts.Mask &= ~mask;
 | 
						|
      if (mask & SanitizerKind::Address)
 | 
						|
        SanOpts.set(SanitizerKind::KernelAddress, false);
 | 
						|
      if (mask & SanitizerKind::KernelAddress)
 | 
						|
        SanOpts.set(SanitizerKind::Address, false);
 | 
						|
      if (mask & SanitizerKind::HWAddress)
 | 
						|
        SanOpts.set(SanitizerKind::KernelHWAddress, false);
 | 
						|
      if (mask & SanitizerKind::KernelHWAddress)
 | 
						|
        SanOpts.set(SanitizerKind::HWAddress, false);
 | 
						|
 | 
						|
      // SanitizeCoverage is not handled by SanOpts.
 | 
						|
      if (Attr->hasCoverage())
 | 
						|
        NoSanitizeCoverage = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
 | 
						|
      Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
 | 
						|
 | 
						|
    if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
 | 
						|
      Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShouldSkipSanitizerInstrumentation()) {
 | 
						|
    CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
 | 
						|
  } else {
 | 
						|
    // Apply sanitizer attributes to the function.
 | 
						|
    if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
 | 
						|
      Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
 | 
						|
    if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
 | 
						|
                         SanitizerKind::KernelHWAddress))
 | 
						|
      Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
 | 
						|
    if (SanOpts.has(SanitizerKind::MemtagStack))
 | 
						|
      Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
 | 
						|
    if (SanOpts.has(SanitizerKind::Thread))
 | 
						|
      Fn->addFnAttr(llvm::Attribute::SanitizeThread);
 | 
						|
    if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
 | 
						|
      Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
 | 
						|
  }
 | 
						|
  if (SanOpts.has(SanitizerKind::SafeStack))
 | 
						|
    Fn->addFnAttr(llvm::Attribute::SafeStack);
 | 
						|
  if (SanOpts.has(SanitizerKind::ShadowCallStack))
 | 
						|
    Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
 | 
						|
 | 
						|
  // Apply fuzzing attribute to the function.
 | 
						|
  if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
 | 
						|
    Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
 | 
						|
 | 
						|
  // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
 | 
						|
  // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
 | 
						|
  if (SanOpts.has(SanitizerKind::Thread)) {
 | 
						|
    if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
 | 
						|
      IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
 | 
						|
      if (OMD->getMethodFamily() == OMF_dealloc ||
 | 
						|
          OMD->getMethodFamily() == OMF_initialize ||
 | 
						|
          (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
 | 
						|
        markAsIgnoreThreadCheckingAtRuntime(Fn);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ignore unrelated casts in STL allocate() since the allocator must cast
 | 
						|
  // from void* to T* before object initialization completes. Don't match on the
 | 
						|
  // namespace because not all allocators are in std::
 | 
						|
  if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
 | 
						|
    if (matchesStlAllocatorFn(D, getContext()))
 | 
						|
      SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ignore null checks in coroutine functions since the coroutines passes
 | 
						|
  // are not aware of how to move the extra UBSan instructions across the split
 | 
						|
  // coroutine boundaries.
 | 
						|
  if (D && SanOpts.has(SanitizerKind::Null))
 | 
						|
    if (FD && FD->getBody() &&
 | 
						|
        FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
 | 
						|
      SanOpts.Mask &= ~SanitizerKind::Null;
 | 
						|
 | 
						|
  // Apply xray attributes to the function (as a string, for now)
 | 
						|
  bool AlwaysXRayAttr = false;
 | 
						|
  if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
 | 
						|
    if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
 | 
						|
            XRayInstrKind::FunctionEntry) ||
 | 
						|
        CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
 | 
						|
            XRayInstrKind::FunctionExit)) {
 | 
						|
      if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
 | 
						|
        Fn->addFnAttr("function-instrument", "xray-always");
 | 
						|
        AlwaysXRayAttr = true;
 | 
						|
      }
 | 
						|
      if (XRayAttr->neverXRayInstrument())
 | 
						|
        Fn->addFnAttr("function-instrument", "xray-never");
 | 
						|
      if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
 | 
						|
        if (ShouldXRayInstrumentFunction())
 | 
						|
          Fn->addFnAttr("xray-log-args",
 | 
						|
                        llvm::utostr(LogArgs->getArgumentCount()));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
 | 
						|
      Fn->addFnAttr(
 | 
						|
          "xray-instruction-threshold",
 | 
						|
          llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShouldXRayInstrumentFunction()) {
 | 
						|
    if (CGM.getCodeGenOpts().XRayIgnoreLoops)
 | 
						|
      Fn->addFnAttr("xray-ignore-loops");
 | 
						|
 | 
						|
    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
 | 
						|
            XRayInstrKind::FunctionExit))
 | 
						|
      Fn->addFnAttr("xray-skip-exit");
 | 
						|
 | 
						|
    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
 | 
						|
            XRayInstrKind::FunctionEntry))
 | 
						|
      Fn->addFnAttr("xray-skip-entry");
 | 
						|
 | 
						|
    auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
 | 
						|
    if (FuncGroups > 1) {
 | 
						|
      auto FuncName = llvm::makeArrayRef<uint8_t>(
 | 
						|
          CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
 | 
						|
      auto Group = crc32(FuncName) % FuncGroups;
 | 
						|
      if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
 | 
						|
          !AlwaysXRayAttr)
 | 
						|
        Fn->addFnAttr("function-instrument", "xray-never");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
 | 
						|
    if (CGM.isProfileInstrExcluded(Fn, Loc))
 | 
						|
      Fn->addFnAttr(llvm::Attribute::NoProfile);
 | 
						|
 | 
						|
  unsigned Count, Offset;
 | 
						|
  if (const auto *Attr =
 | 
						|
          D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
 | 
						|
    Count = Attr->getCount();
 | 
						|
    Offset = Attr->getOffset();
 | 
						|
  } else {
 | 
						|
    Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
 | 
						|
    Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
 | 
						|
  }
 | 
						|
  if (Count && Offset <= Count) {
 | 
						|
    Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
 | 
						|
    if (Offset)
 | 
						|
      Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
 | 
						|
  }
 | 
						|
  // Instruct that functions for COFF/CodeView targets should start with a
 | 
						|
  // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
 | 
						|
  // backends as they don't need it -- instructions on these architectures are
 | 
						|
  // always atomically patchable at runtime.
 | 
						|
  if (CGM.getCodeGenOpts().HotPatch &&
 | 
						|
      getContext().getTargetInfo().getTriple().isX86())
 | 
						|
    Fn->addFnAttr("patchable-function", "prologue-short-redirect");
 | 
						|
 | 
						|
  // Add no-jump-tables value.
 | 
						|
  if (CGM.getCodeGenOpts().NoUseJumpTables)
 | 
						|
    Fn->addFnAttr("no-jump-tables", "true");
 | 
						|
 | 
						|
  // Add no-inline-line-tables value.
 | 
						|
  if (CGM.getCodeGenOpts().NoInlineLineTables)
 | 
						|
    Fn->addFnAttr("no-inline-line-tables");
 | 
						|
 | 
						|
  // Add profile-sample-accurate value.
 | 
						|
  if (CGM.getCodeGenOpts().ProfileSampleAccurate)
 | 
						|
    Fn->addFnAttr("profile-sample-accurate");
 | 
						|
 | 
						|
  if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
 | 
						|
    Fn->addFnAttr("use-sample-profile");
 | 
						|
 | 
						|
  if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
 | 
						|
    Fn->addFnAttr("cfi-canonical-jump-table");
 | 
						|
 | 
						|
  if (D && D->hasAttr<NoProfileFunctionAttr>())
 | 
						|
    Fn->addFnAttr(llvm::Attribute::NoProfile);
 | 
						|
 | 
						|
  if (FD && (getLangOpts().OpenCL ||
 | 
						|
             (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
 | 
						|
    // Add metadata for a kernel function.
 | 
						|
    EmitKernelMetadata(FD, Fn);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are checking function types, emit a function type signature as
 | 
						|
  // prologue data.
 | 
						|
  if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
 | 
						|
    if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
 | 
						|
      // Remove any (C++17) exception specifications, to allow calling e.g. a
 | 
						|
      // noexcept function through a non-noexcept pointer.
 | 
						|
      auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
 | 
						|
          FD->getType(), EST_None);
 | 
						|
      llvm::Constant *FTRTTIConst =
 | 
						|
          CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
 | 
						|
      llvm::Constant *FTRTTIConstEncoded =
 | 
						|
          EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
 | 
						|
      llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded};
 | 
						|
      llvm::Constant *PrologueStructConst =
 | 
						|
          llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
 | 
						|
      Fn->setPrologueData(PrologueStructConst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're checking nullability, we need to know whether we can check the
 | 
						|
  // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
 | 
						|
  if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
 | 
						|
    auto Nullability = FnRetTy->getNullability(getContext());
 | 
						|
    if (Nullability && *Nullability == NullabilityKind::NonNull) {
 | 
						|
      if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
 | 
						|
            CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
 | 
						|
        RetValNullabilityPrecondition =
 | 
						|
            llvm::ConstantInt::getTrue(getLLVMContext());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're in C++ mode and the function name is "main", it is guaranteed
 | 
						|
  // to be norecurse by the standard (3.6.1.3 "The function main shall not be
 | 
						|
  // used within a program").
 | 
						|
  //
 | 
						|
  // OpenCL C 2.0 v2.2-11 s6.9.i:
 | 
						|
  //     Recursion is not supported.
 | 
						|
  //
 | 
						|
  // SYCL v1.2.1 s3.10:
 | 
						|
  //     kernels cannot include RTTI information, exception classes,
 | 
						|
  //     recursive code, virtual functions or make use of C++ libraries that
 | 
						|
  //     are not compiled for the device.
 | 
						|
  if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
 | 
						|
             getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
 | 
						|
             (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
 | 
						|
    Fn->addFnAttr(llvm::Attribute::NoRecurse);
 | 
						|
 | 
						|
  llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
 | 
						|
  llvm::fp::ExceptionBehavior FPExceptionBehavior =
 | 
						|
      ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
 | 
						|
  Builder.setDefaultConstrainedRounding(RM);
 | 
						|
  Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
 | 
						|
  if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
 | 
						|
      (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
 | 
						|
               RM != llvm::RoundingMode::NearestTiesToEven))) {
 | 
						|
    Builder.setIsFPConstrained(true);
 | 
						|
    Fn->addFnAttr(llvm::Attribute::StrictFP);
 | 
						|
  }
 | 
						|
 | 
						|
  // If a custom alignment is used, force realigning to this alignment on
 | 
						|
  // any main function which certainly will need it.
 | 
						|
  if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
 | 
						|
             CGM.getCodeGenOpts().StackAlignment))
 | 
						|
    Fn->addFnAttr("stackrealign");
 | 
						|
 | 
						|
  // "main" doesn't need to zero out call-used registers.
 | 
						|
  if (FD && FD->isMain())
 | 
						|
    Fn->removeFnAttr("zero-call-used-regs");
 | 
						|
 | 
						|
  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
 | 
						|
 | 
						|
  // Create a marker to make it easy to insert allocas into the entryblock
 | 
						|
  // later.  Don't create this with the builder, because we don't want it
 | 
						|
  // folded.
 | 
						|
  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
 | 
						|
  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
 | 
						|
 | 
						|
  ReturnBlock = getJumpDestInCurrentScope("return");
 | 
						|
 | 
						|
  Builder.SetInsertPoint(EntryBB);
 | 
						|
 | 
						|
  // If we're checking the return value, allocate space for a pointer to a
 | 
						|
  // precise source location of the checked return statement.
 | 
						|
  if (requiresReturnValueCheck()) {
 | 
						|
    ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
 | 
						|
    Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
 | 
						|
                        ReturnLocation);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit subprogram debug descriptor.
 | 
						|
  if (CGDebugInfo *DI = getDebugInfo()) {
 | 
						|
    // Reconstruct the type from the argument list so that implicit parameters,
 | 
						|
    // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
 | 
						|
    // convention.
 | 
						|
    DI->emitFunctionStart(GD, Loc, StartLoc,
 | 
						|
                          DI->getFunctionType(FD, RetTy, Args), CurFn,
 | 
						|
                          CurFuncIsThunk);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShouldInstrumentFunction()) {
 | 
						|
    if (CGM.getCodeGenOpts().InstrumentFunctions)
 | 
						|
      CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
 | 
						|
    if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
 | 
						|
      CurFn->addFnAttr("instrument-function-entry-inlined",
 | 
						|
                       "__cyg_profile_func_enter");
 | 
						|
    if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
 | 
						|
      CurFn->addFnAttr("instrument-function-entry-inlined",
 | 
						|
                       "__cyg_profile_func_enter_bare");
 | 
						|
  }
 | 
						|
 | 
						|
  // Since emitting the mcount call here impacts optimizations such as function
 | 
						|
  // inlining, we just add an attribute to insert a mcount call in backend.
 | 
						|
  // The attribute "counting-function" is set to mcount function name which is
 | 
						|
  // architecture dependent.
 | 
						|
  if (CGM.getCodeGenOpts().InstrumentForProfiling) {
 | 
						|
    // Calls to fentry/mcount should not be generated if function has
 | 
						|
    // the no_instrument_function attribute.
 | 
						|
    if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
 | 
						|
      if (CGM.getCodeGenOpts().CallFEntry)
 | 
						|
        Fn->addFnAttr("fentry-call", "true");
 | 
						|
      else {
 | 
						|
        Fn->addFnAttr("instrument-function-entry-inlined",
 | 
						|
                      getTarget().getMCountName());
 | 
						|
      }
 | 
						|
      if (CGM.getCodeGenOpts().MNopMCount) {
 | 
						|
        if (!CGM.getCodeGenOpts().CallFEntry)
 | 
						|
          CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
 | 
						|
            << "-mnop-mcount" << "-mfentry";
 | 
						|
        Fn->addFnAttr("mnop-mcount");
 | 
						|
      }
 | 
						|
 | 
						|
      if (CGM.getCodeGenOpts().RecordMCount) {
 | 
						|
        if (!CGM.getCodeGenOpts().CallFEntry)
 | 
						|
          CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
 | 
						|
            << "-mrecord-mcount" << "-mfentry";
 | 
						|
        Fn->addFnAttr("mrecord-mcount");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CGM.getCodeGenOpts().PackedStack) {
 | 
						|
    if (getContext().getTargetInfo().getTriple().getArch() !=
 | 
						|
        llvm::Triple::systemz)
 | 
						|
      CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
 | 
						|
        << "-mpacked-stack";
 | 
						|
    Fn->addFnAttr("packed-stack");
 | 
						|
  }
 | 
						|
 | 
						|
  if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
 | 
						|
      !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
 | 
						|
    Fn->addFnAttr("warn-stack-size",
 | 
						|
                  std::to_string(CGM.getCodeGenOpts().WarnStackSize));
 | 
						|
 | 
						|
  if (RetTy->isVoidType()) {
 | 
						|
    // Void type; nothing to return.
 | 
						|
    ReturnValue = Address::invalid();
 | 
						|
 | 
						|
    // Count the implicit return.
 | 
						|
    if (!endsWithReturn(D))
 | 
						|
      ++NumReturnExprs;
 | 
						|
  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
 | 
						|
    // Indirect return; emit returned value directly into sret slot.
 | 
						|
    // This reduces code size, and affects correctness in C++.
 | 
						|
    auto AI = CurFn->arg_begin();
 | 
						|
    if (CurFnInfo->getReturnInfo().isSRetAfterThis())
 | 
						|
      ++AI;
 | 
						|
    ReturnValue = Address(&*AI, ConvertType(RetTy),
 | 
						|
                          CurFnInfo->getReturnInfo().getIndirectAlign());
 | 
						|
    if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
 | 
						|
      ReturnValuePointer =
 | 
						|
          CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
 | 
						|
      Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
 | 
						|
                              ReturnValue.getPointer(), Int8PtrTy),
 | 
						|
                          ReturnValuePointer);
 | 
						|
    }
 | 
						|
  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
 | 
						|
             !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
 | 
						|
    // Load the sret pointer from the argument struct and return into that.
 | 
						|
    unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
 | 
						|
    llvm::Function::arg_iterator EI = CurFn->arg_end();
 | 
						|
    --EI;
 | 
						|
    llvm::Value *Addr = Builder.CreateStructGEP(
 | 
						|
        CurFnInfo->getArgStruct(), &*EI, Idx);
 | 
						|
    llvm::Type *Ty =
 | 
						|
        cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
 | 
						|
    ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
 | 
						|
    Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
 | 
						|
    ReturnValue =
 | 
						|
        Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy));
 | 
						|
  } else {
 | 
						|
    ReturnValue = CreateIRTemp(RetTy, "retval");
 | 
						|
 | 
						|
    // Tell the epilog emitter to autorelease the result.  We do this
 | 
						|
    // now so that various specialized functions can suppress it
 | 
						|
    // during their IR-generation.
 | 
						|
    if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
        !CurFnInfo->isReturnsRetained() &&
 | 
						|
        RetTy->isObjCRetainableType())
 | 
						|
      AutoreleaseResult = true;
 | 
						|
  }
 | 
						|
 | 
						|
  EmitStartEHSpec(CurCodeDecl);
 | 
						|
 | 
						|
  PrologueCleanupDepth = EHStack.stable_begin();
 | 
						|
 | 
						|
  // Emit OpenMP specific initialization of the device functions.
 | 
						|
  if (getLangOpts().OpenMP && CurCodeDecl)
 | 
						|
    CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
 | 
						|
 | 
						|
  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
 | 
						|
 | 
						|
  if (isa_and_nonnull<CXXMethodDecl>(D) &&
 | 
						|
      cast<CXXMethodDecl>(D)->isInstance()) {
 | 
						|
    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
 | 
						|
    const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
 | 
						|
    if (MD->getParent()->isLambda() &&
 | 
						|
        MD->getOverloadedOperator() == OO_Call) {
 | 
						|
      // We're in a lambda; figure out the captures.
 | 
						|
      MD->getParent()->getCaptureFields(LambdaCaptureFields,
 | 
						|
                                        LambdaThisCaptureField);
 | 
						|
      if (LambdaThisCaptureField) {
 | 
						|
        // If the lambda captures the object referred to by '*this' - either by
 | 
						|
        // value or by reference, make sure CXXThisValue points to the correct
 | 
						|
        // object.
 | 
						|
 | 
						|
        // Get the lvalue for the field (which is a copy of the enclosing object
 | 
						|
        // or contains the address of the enclosing object).
 | 
						|
        LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
 | 
						|
        if (!LambdaThisCaptureField->getType()->isPointerType()) {
 | 
						|
          // If the enclosing object was captured by value, just use its address.
 | 
						|
          CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
 | 
						|
        } else {
 | 
						|
          // Load the lvalue pointed to by the field, since '*this' was captured
 | 
						|
          // by reference.
 | 
						|
          CXXThisValue =
 | 
						|
              EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
 | 
						|
        }
 | 
						|
      }
 | 
						|
      for (auto *FD : MD->getParent()->fields()) {
 | 
						|
        if (FD->hasCapturedVLAType()) {
 | 
						|
          auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
 | 
						|
                                           SourceLocation()).getScalarVal();
 | 
						|
          auto VAT = FD->getCapturedVLAType();
 | 
						|
          VLASizeMap[VAT->getSizeExpr()] = ExprArg;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Not in a lambda; just use 'this' from the method.
 | 
						|
      // FIXME: Should we generate a new load for each use of 'this'?  The
 | 
						|
      // fast register allocator would be happier...
 | 
						|
      CXXThisValue = CXXABIThisValue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check the 'this' pointer once per function, if it's available.
 | 
						|
    if (CXXABIThisValue) {
 | 
						|
      SanitizerSet SkippedChecks;
 | 
						|
      SkippedChecks.set(SanitizerKind::ObjectSize, true);
 | 
						|
      QualType ThisTy = MD->getThisType();
 | 
						|
 | 
						|
      // If this is the call operator of a lambda with no capture-default, it
 | 
						|
      // may have a static invoker function, which may call this operator with
 | 
						|
      // a null 'this' pointer.
 | 
						|
      if (isLambdaCallOperator(MD) &&
 | 
						|
          MD->getParent()->getLambdaCaptureDefault() == LCD_None)
 | 
						|
        SkippedChecks.set(SanitizerKind::Null, true);
 | 
						|
 | 
						|
      EmitTypeCheck(
 | 
						|
          isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
 | 
						|
          Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If any of the arguments have a variably modified type, make sure to
 | 
						|
  // emit the type size, but only if the function is not naked. Naked functions
 | 
						|
  // have no prolog to run this evaluation.
 | 
						|
  if (!FD || !FD->hasAttr<NakedAttr>()) {
 | 
						|
    for (const VarDecl *VD : Args) {
 | 
						|
      // Dig out the type as written from ParmVarDecls; it's unclear whether
 | 
						|
      // the standard (C99 6.9.1p10) requires this, but we're following the
 | 
						|
      // precedent set by gcc.
 | 
						|
      QualType Ty;
 | 
						|
      if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
 | 
						|
        Ty = PVD->getOriginalType();
 | 
						|
      else
 | 
						|
        Ty = VD->getType();
 | 
						|
 | 
						|
      if (Ty->isVariablyModifiedType())
 | 
						|
        EmitVariablyModifiedType(Ty);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Emit a location at the end of the prologue.
 | 
						|
  if (CGDebugInfo *DI = getDebugInfo())
 | 
						|
    DI->EmitLocation(Builder, StartLoc);
 | 
						|
  // TODO: Do we need to handle this in two places like we do with
 | 
						|
  // target-features/target-cpu?
 | 
						|
  if (CurFuncDecl)
 | 
						|
    if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
 | 
						|
      LargestVectorWidth = VecWidth->getVectorWidth();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
 | 
						|
  incrementProfileCounter(Body);
 | 
						|
  if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
 | 
						|
    EmitCompoundStmtWithoutScope(*S);
 | 
						|
  else
 | 
						|
    EmitStmt(Body);
 | 
						|
 | 
						|
  // This is checked after emitting the function body so we know if there
 | 
						|
  // are any permitted infinite loops.
 | 
						|
  if (checkIfFunctionMustProgress())
 | 
						|
    CurFn->addFnAttr(llvm::Attribute::MustProgress);
 | 
						|
}
 | 
						|
 | 
						|
/// When instrumenting to collect profile data, the counts for some blocks
 | 
						|
/// such as switch cases need to not include the fall-through counts, so
 | 
						|
/// emit a branch around the instrumentation code. When not instrumenting,
 | 
						|
/// this just calls EmitBlock().
 | 
						|
void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
 | 
						|
                                               const Stmt *S) {
 | 
						|
  llvm::BasicBlock *SkipCountBB = nullptr;
 | 
						|
  if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
 | 
						|
    // When instrumenting for profiling, the fallthrough to certain
 | 
						|
    // statements needs to skip over the instrumentation code so that we
 | 
						|
    // get an accurate count.
 | 
						|
    SkipCountBB = createBasicBlock("skipcount");
 | 
						|
    EmitBranch(SkipCountBB);
 | 
						|
  }
 | 
						|
  EmitBlock(BB);
 | 
						|
  uint64_t CurrentCount = getCurrentProfileCount();
 | 
						|
  incrementProfileCounter(S);
 | 
						|
  setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
 | 
						|
  if (SkipCountBB)
 | 
						|
    EmitBlock(SkipCountBB);
 | 
						|
}
 | 
						|
 | 
						|
/// Tries to mark the given function nounwind based on the
 | 
						|
/// non-existence of any throwing calls within it.  We believe this is
 | 
						|
/// lightweight enough to do at -O0.
 | 
						|
static void TryMarkNoThrow(llvm::Function *F) {
 | 
						|
  // LLVM treats 'nounwind' on a function as part of the type, so we
 | 
						|
  // can't do this on functions that can be overwritten.
 | 
						|
  if (F->isInterposable()) return;
 | 
						|
 | 
						|
  for (llvm::BasicBlock &BB : *F)
 | 
						|
    for (llvm::Instruction &I : BB)
 | 
						|
      if (I.mayThrow())
 | 
						|
        return;
 | 
						|
 | 
						|
  F->setDoesNotThrow();
 | 
						|
}
 | 
						|
 | 
						|
QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
 | 
						|
                                               FunctionArgList &Args) {
 | 
						|
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | 
						|
  QualType ResTy = FD->getReturnType();
 | 
						|
 | 
						|
  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
 | 
						|
  if (MD && MD->isInstance()) {
 | 
						|
    if (CGM.getCXXABI().HasThisReturn(GD))
 | 
						|
      ResTy = MD->getThisType();
 | 
						|
    else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
 | 
						|
      ResTy = CGM.getContext().VoidPtrTy;
 | 
						|
    CGM.getCXXABI().buildThisParam(*this, Args);
 | 
						|
  }
 | 
						|
 | 
						|
  // The base version of an inheriting constructor whose constructed base is a
 | 
						|
  // virtual base is not passed any arguments (because it doesn't actually call
 | 
						|
  // the inherited constructor).
 | 
						|
  bool PassedParams = true;
 | 
						|
  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
 | 
						|
    if (auto Inherited = CD->getInheritedConstructor())
 | 
						|
      PassedParams =
 | 
						|
          getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
 | 
						|
 | 
						|
  if (PassedParams) {
 | 
						|
    for (auto *Param : FD->parameters()) {
 | 
						|
      Args.push_back(Param);
 | 
						|
      if (!Param->hasAttr<PassObjectSizeAttr>())
 | 
						|
        continue;
 | 
						|
 | 
						|
      auto *Implicit = ImplicitParamDecl::Create(
 | 
						|
          getContext(), Param->getDeclContext(), Param->getLocation(),
 | 
						|
          /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
 | 
						|
      SizeArguments[Param] = Implicit;
 | 
						|
      Args.push_back(Implicit);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
 | 
						|
    CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
 | 
						|
 | 
						|
  return ResTy;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
 | 
						|
                                   const CGFunctionInfo &FnInfo) {
 | 
						|
  assert(Fn && "generating code for null Function");
 | 
						|
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | 
						|
  CurGD = GD;
 | 
						|
 | 
						|
  FunctionArgList Args;
 | 
						|
  QualType ResTy = BuildFunctionArgList(GD, Args);
 | 
						|
 | 
						|
  if (FD->isInlineBuiltinDeclaration()) {
 | 
						|
    // When generating code for a builtin with an inline declaration, use a
 | 
						|
    // mangled name to hold the actual body, while keeping an external
 | 
						|
    // definition in case the function pointer is referenced somewhere.
 | 
						|
    std::string FDInlineName = (Fn->getName() + ".inline").str();
 | 
						|
    llvm::Module *M = Fn->getParent();
 | 
						|
    llvm::Function *Clone = M->getFunction(FDInlineName);
 | 
						|
    if (!Clone) {
 | 
						|
      Clone = llvm::Function::Create(Fn->getFunctionType(),
 | 
						|
                                     llvm::GlobalValue::InternalLinkage,
 | 
						|
                                     Fn->getAddressSpace(), FDInlineName, M);
 | 
						|
      Clone->addFnAttr(llvm::Attribute::AlwaysInline);
 | 
						|
    }
 | 
						|
    Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
 | 
						|
    Fn = Clone;
 | 
						|
  } else {
 | 
						|
    // Detect the unusual situation where an inline version is shadowed by a
 | 
						|
    // non-inline version. In that case we should pick the external one
 | 
						|
    // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
 | 
						|
    // to detect that situation before we reach codegen, so do some late
 | 
						|
    // replacement.
 | 
						|
    for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
 | 
						|
         PD = PD->getPreviousDecl()) {
 | 
						|
      if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
 | 
						|
        std::string FDInlineName = (Fn->getName() + ".inline").str();
 | 
						|
        llvm::Module *M = Fn->getParent();
 | 
						|
        if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
 | 
						|
          Clone->replaceAllUsesWith(Fn);
 | 
						|
          Clone->eraseFromParent();
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we should generate debug info for this function.
 | 
						|
  if (FD->hasAttr<NoDebugAttr>()) {
 | 
						|
    // Clear non-distinct debug info that was possibly attached to the function
 | 
						|
    // due to an earlier declaration without the nodebug attribute
 | 
						|
    Fn->setSubprogram(nullptr);
 | 
						|
    // Disable debug info indefinitely for this function
 | 
						|
    DebugInfo = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // The function might not have a body if we're generating thunks for a
 | 
						|
  // function declaration.
 | 
						|
  SourceRange BodyRange;
 | 
						|
  if (Stmt *Body = FD->getBody())
 | 
						|
    BodyRange = Body->getSourceRange();
 | 
						|
  else
 | 
						|
    BodyRange = FD->getLocation();
 | 
						|
  CurEHLocation = BodyRange.getEnd();
 | 
						|
 | 
						|
  // Use the location of the start of the function to determine where
 | 
						|
  // the function definition is located. By default use the location
 | 
						|
  // of the declaration as the location for the subprogram. A function
 | 
						|
  // may lack a declaration in the source code if it is created by code
 | 
						|
  // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
 | 
						|
  SourceLocation Loc = FD->getLocation();
 | 
						|
 | 
						|
  // If this is a function specialization then use the pattern body
 | 
						|
  // as the location for the function.
 | 
						|
  if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
 | 
						|
    if (SpecDecl->hasBody(SpecDecl))
 | 
						|
      Loc = SpecDecl->getLocation();
 | 
						|
 | 
						|
  Stmt *Body = FD->getBody();
 | 
						|
 | 
						|
  if (Body) {
 | 
						|
    // Coroutines always emit lifetime markers.
 | 
						|
    if (isa<CoroutineBodyStmt>(Body))
 | 
						|
      ShouldEmitLifetimeMarkers = true;
 | 
						|
 | 
						|
    // Initialize helper which will detect jumps which can cause invalid
 | 
						|
    // lifetime markers.
 | 
						|
    if (ShouldEmitLifetimeMarkers)
 | 
						|
      Bypasses.Init(Body);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the standard function prologue.
 | 
						|
  StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
 | 
						|
 | 
						|
  // Save parameters for coroutine function.
 | 
						|
  if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
 | 
						|
    llvm::append_range(FnArgs, FD->parameters());
 | 
						|
 | 
						|
  // Generate the body of the function.
 | 
						|
  PGO.assignRegionCounters(GD, CurFn);
 | 
						|
  if (isa<CXXDestructorDecl>(FD))
 | 
						|
    EmitDestructorBody(Args);
 | 
						|
  else if (isa<CXXConstructorDecl>(FD))
 | 
						|
    EmitConstructorBody(Args);
 | 
						|
  else if (getLangOpts().CUDA &&
 | 
						|
           !getLangOpts().CUDAIsDevice &&
 | 
						|
           FD->hasAttr<CUDAGlobalAttr>())
 | 
						|
    CGM.getCUDARuntime().emitDeviceStub(*this, Args);
 | 
						|
  else if (isa<CXXMethodDecl>(FD) &&
 | 
						|
           cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
 | 
						|
    // The lambda static invoker function is special, because it forwards or
 | 
						|
    // clones the body of the function call operator (but is actually static).
 | 
						|
    EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
 | 
						|
  } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
 | 
						|
             (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
 | 
						|
              cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
 | 
						|
    // Implicit copy-assignment gets the same special treatment as implicit
 | 
						|
    // copy-constructors.
 | 
						|
    emitImplicitAssignmentOperatorBody(Args);
 | 
						|
  } else if (Body) {
 | 
						|
    EmitFunctionBody(Body);
 | 
						|
  } else
 | 
						|
    llvm_unreachable("no definition for emitted function");
 | 
						|
 | 
						|
  // C++11 [stmt.return]p2:
 | 
						|
  //   Flowing off the end of a function [...] results in undefined behavior in
 | 
						|
  //   a value-returning function.
 | 
						|
  // C11 6.9.1p12:
 | 
						|
  //   If the '}' that terminates a function is reached, and the value of the
 | 
						|
  //   function call is used by the caller, the behavior is undefined.
 | 
						|
  if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
 | 
						|
      !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
 | 
						|
    bool ShouldEmitUnreachable =
 | 
						|
        CGM.getCodeGenOpts().StrictReturn ||
 | 
						|
        !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
 | 
						|
    if (SanOpts.has(SanitizerKind::Return)) {
 | 
						|
      SanitizerScope SanScope(this);
 | 
						|
      llvm::Value *IsFalse = Builder.getFalse();
 | 
						|
      EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
 | 
						|
                SanitizerHandler::MissingReturn,
 | 
						|
                EmitCheckSourceLocation(FD->getLocation()), None);
 | 
						|
    } else if (ShouldEmitUnreachable) {
 | 
						|
      if (CGM.getCodeGenOpts().OptimizationLevel == 0)
 | 
						|
        EmitTrapCall(llvm::Intrinsic::trap);
 | 
						|
    }
 | 
						|
    if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
 | 
						|
      Builder.CreateUnreachable();
 | 
						|
      Builder.ClearInsertionPoint();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the standard function epilogue.
 | 
						|
  FinishFunction(BodyRange.getEnd());
 | 
						|
 | 
						|
  // If we haven't marked the function nothrow through other means, do
 | 
						|
  // a quick pass now to see if we can.
 | 
						|
  if (!CurFn->doesNotThrow())
 | 
						|
    TryMarkNoThrow(CurFn);
 | 
						|
}
 | 
						|
 | 
						|
/// ContainsLabel - Return true if the statement contains a label in it.  If
 | 
						|
/// this statement is not executed normally, it not containing a label means
 | 
						|
/// that we can just remove the code.
 | 
						|
bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
 | 
						|
  // Null statement, not a label!
 | 
						|
  if (!S) return false;
 | 
						|
 | 
						|
  // If this is a label, we have to emit the code, consider something like:
 | 
						|
  // if (0) {  ...  foo:  bar(); }  goto foo;
 | 
						|
  //
 | 
						|
  // TODO: If anyone cared, we could track __label__'s, since we know that you
 | 
						|
  // can't jump to one from outside their declared region.
 | 
						|
  if (isa<LabelStmt>(S))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If this is a case/default statement, and we haven't seen a switch, we have
 | 
						|
  // to emit the code.
 | 
						|
  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If this is a switch statement, we want to ignore cases below it.
 | 
						|
  if (isa<SwitchStmt>(S))
 | 
						|
    IgnoreCaseStmts = true;
 | 
						|
 | 
						|
  // Scan subexpressions for verboten labels.
 | 
						|
  for (const Stmt *SubStmt : S->children())
 | 
						|
    if (ContainsLabel(SubStmt, IgnoreCaseStmts))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// containsBreak - Return true if the statement contains a break out of it.
 | 
						|
/// If the statement (recursively) contains a switch or loop with a break
 | 
						|
/// inside of it, this is fine.
 | 
						|
bool CodeGenFunction::containsBreak(const Stmt *S) {
 | 
						|
  // Null statement, not a label!
 | 
						|
  if (!S) return false;
 | 
						|
 | 
						|
  // If this is a switch or loop that defines its own break scope, then we can
 | 
						|
  // include it and anything inside of it.
 | 
						|
  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
 | 
						|
      isa<ForStmt>(S))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isa<BreakStmt>(S))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Scan subexpressions for verboten breaks.
 | 
						|
  for (const Stmt *SubStmt : S->children())
 | 
						|
    if (containsBreak(SubStmt))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
 | 
						|
  if (!S) return false;
 | 
						|
 | 
						|
  // Some statement kinds add a scope and thus never add a decl to the current
 | 
						|
  // scope. Note, this list is longer than the list of statements that might
 | 
						|
  // have an unscoped decl nested within them, but this way is conservatively
 | 
						|
  // correct even if more statement kinds are added.
 | 
						|
  if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
 | 
						|
      isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
 | 
						|
      isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
 | 
						|
      isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isa<DeclStmt>(S))
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (const Stmt *SubStmt : S->children())
 | 
						|
    if (mightAddDeclToScope(SubStmt))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
 | 
						|
/// to a constant, or if it does but contains a label, return false.  If it
 | 
						|
/// constant folds return true and set the boolean result in Result.
 | 
						|
bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
 | 
						|
                                                   bool &ResultBool,
 | 
						|
                                                   bool AllowLabels) {
 | 
						|
  llvm::APSInt ResultInt;
 | 
						|
  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ResultBool = ResultInt.getBoolValue();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
 | 
						|
/// to a constant, or if it does but contains a label, return false.  If it
 | 
						|
/// constant folds return true and set the folded value.
 | 
						|
bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
 | 
						|
                                                   llvm::APSInt &ResultInt,
 | 
						|
                                                   bool AllowLabels) {
 | 
						|
  // FIXME: Rename and handle conversion of other evaluatable things
 | 
						|
  // to bool.
 | 
						|
  Expr::EvalResult Result;
 | 
						|
  if (!Cond->EvaluateAsInt(Result, getContext()))
 | 
						|
    return false;  // Not foldable, not integer or not fully evaluatable.
 | 
						|
 | 
						|
  llvm::APSInt Int = Result.Val.getInt();
 | 
						|
  if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
 | 
						|
    return false;  // Contains a label.
 | 
						|
 | 
						|
  ResultInt = Int;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether the given condition is an instrumentable condition
 | 
						|
/// (i.e. no "&&" or "||").
 | 
						|
bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
 | 
						|
  // Bypass simplistic logical-NOT operator before determining whether the
 | 
						|
  // condition contains any other logical operator.
 | 
						|
  if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
 | 
						|
    if (UnOp->getOpcode() == UO_LNot)
 | 
						|
      C = UnOp->getSubExpr();
 | 
						|
 | 
						|
  const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
 | 
						|
  return (!BOp || !BOp->isLogicalOp());
 | 
						|
}
 | 
						|
 | 
						|
/// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
 | 
						|
/// increments a profile counter based on the semantics of the given logical
 | 
						|
/// operator opcode.  This is used to instrument branch condition coverage for
 | 
						|
/// logical operators.
 | 
						|
void CodeGenFunction::EmitBranchToCounterBlock(
 | 
						|
    const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
 | 
						|
    llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
 | 
						|
    Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
 | 
						|
  // If not instrumenting, just emit a branch.
 | 
						|
  bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
 | 
						|
  if (!InstrumentRegions || !isInstrumentedCondition(Cond))
 | 
						|
    return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
 | 
						|
 | 
						|
  llvm::BasicBlock *ThenBlock = nullptr;
 | 
						|
  llvm::BasicBlock *ElseBlock = nullptr;
 | 
						|
  llvm::BasicBlock *NextBlock = nullptr;
 | 
						|
 | 
						|
  // Create the block we'll use to increment the appropriate counter.
 | 
						|
  llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
 | 
						|
 | 
						|
  // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
 | 
						|
  // means we need to evaluate the condition and increment the counter on TRUE:
 | 
						|
  //
 | 
						|
  // if (Cond)
 | 
						|
  //   goto CounterIncrBlock;
 | 
						|
  // else
 | 
						|
  //   goto FalseBlock;
 | 
						|
  //
 | 
						|
  // CounterIncrBlock:
 | 
						|
  //   Counter++;
 | 
						|
  //   goto TrueBlock;
 | 
						|
 | 
						|
  if (LOp == BO_LAnd) {
 | 
						|
    ThenBlock = CounterIncrBlock;
 | 
						|
    ElseBlock = FalseBlock;
 | 
						|
    NextBlock = TrueBlock;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
 | 
						|
  // we need to evaluate the condition and increment the counter on FALSE:
 | 
						|
  //
 | 
						|
  // if (Cond)
 | 
						|
  //   goto TrueBlock;
 | 
						|
  // else
 | 
						|
  //   goto CounterIncrBlock;
 | 
						|
  //
 | 
						|
  // CounterIncrBlock:
 | 
						|
  //   Counter++;
 | 
						|
  //   goto FalseBlock;
 | 
						|
 | 
						|
  else if (LOp == BO_LOr) {
 | 
						|
    ThenBlock = TrueBlock;
 | 
						|
    ElseBlock = CounterIncrBlock;
 | 
						|
    NextBlock = FalseBlock;
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Expected Opcode must be that of a Logical Operator");
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit Branch based on condition.
 | 
						|
  EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
 | 
						|
 | 
						|
  // Emit the block containing the counter increment(s).
 | 
						|
  EmitBlock(CounterIncrBlock);
 | 
						|
 | 
						|
  // Increment corresponding counter; if index not provided, use Cond as index.
 | 
						|
  incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
 | 
						|
 | 
						|
  // Go to the next block.
 | 
						|
  EmitBranch(NextBlock);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
 | 
						|
/// statement) to the specified blocks.  Based on the condition, this might try
 | 
						|
/// to simplify the codegen of the conditional based on the branch.
 | 
						|
/// \param LH The value of the likelihood attribute on the True branch.
 | 
						|
void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
 | 
						|
                                           llvm::BasicBlock *TrueBlock,
 | 
						|
                                           llvm::BasicBlock *FalseBlock,
 | 
						|
                                           uint64_t TrueCount,
 | 
						|
                                           Stmt::Likelihood LH) {
 | 
						|
  Cond = Cond->IgnoreParens();
 | 
						|
 | 
						|
  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
 | 
						|
 | 
						|
    // Handle X && Y in a condition.
 | 
						|
    if (CondBOp->getOpcode() == BO_LAnd) {
 | 
						|
      // If we have "1 && X", simplify the code.  "0 && X" would have constant
 | 
						|
      // folded if the case was simple enough.
 | 
						|
      bool ConstantBool = false;
 | 
						|
      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
 | 
						|
          ConstantBool) {
 | 
						|
        // br(1 && X) -> br(X).
 | 
						|
        incrementProfileCounter(CondBOp);
 | 
						|
        return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
 | 
						|
                                        FalseBlock, TrueCount, LH);
 | 
						|
      }
 | 
						|
 | 
						|
      // If we have "X && 1", simplify the code to use an uncond branch.
 | 
						|
      // "X && 0" would have been constant folded to 0.
 | 
						|
      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
 | 
						|
          ConstantBool) {
 | 
						|
        // br(X && 1) -> br(X).
 | 
						|
        return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
 | 
						|
                                        FalseBlock, TrueCount, LH, CondBOp);
 | 
						|
      }
 | 
						|
 | 
						|
      // Emit the LHS as a conditional.  If the LHS conditional is false, we
 | 
						|
      // want to jump to the FalseBlock.
 | 
						|
      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
 | 
						|
      // The counter tells us how often we evaluate RHS, and all of TrueCount
 | 
						|
      // can be propagated to that branch.
 | 
						|
      uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
 | 
						|
 | 
						|
      ConditionalEvaluation eval(*this);
 | 
						|
      {
 | 
						|
        ApplyDebugLocation DL(*this, Cond);
 | 
						|
        // Propagate the likelihood attribute like __builtin_expect
 | 
						|
        // __builtin_expect(X && Y, 1) -> X and Y are likely
 | 
						|
        // __builtin_expect(X && Y, 0) -> only Y is unlikely
 | 
						|
        EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
 | 
						|
                             LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
 | 
						|
        EmitBlock(LHSTrue);
 | 
						|
      }
 | 
						|
 | 
						|
      incrementProfileCounter(CondBOp);
 | 
						|
      setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
 | 
						|
 | 
						|
      // Any temporaries created here are conditional.
 | 
						|
      eval.begin(*this);
 | 
						|
      EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
 | 
						|
                               FalseBlock, TrueCount, LH);
 | 
						|
      eval.end(*this);
 | 
						|
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CondBOp->getOpcode() == BO_LOr) {
 | 
						|
      // If we have "0 || X", simplify the code.  "1 || X" would have constant
 | 
						|
      // folded if the case was simple enough.
 | 
						|
      bool ConstantBool = false;
 | 
						|
      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
 | 
						|
          !ConstantBool) {
 | 
						|
        // br(0 || X) -> br(X).
 | 
						|
        incrementProfileCounter(CondBOp);
 | 
						|
        return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
 | 
						|
                                        FalseBlock, TrueCount, LH);
 | 
						|
      }
 | 
						|
 | 
						|
      // If we have "X || 0", simplify the code to use an uncond branch.
 | 
						|
      // "X || 1" would have been constant folded to 1.
 | 
						|
      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
 | 
						|
          !ConstantBool) {
 | 
						|
        // br(X || 0) -> br(X).
 | 
						|
        return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
 | 
						|
                                        FalseBlock, TrueCount, LH, CondBOp);
 | 
						|
      }
 | 
						|
 | 
						|
      // Emit the LHS as a conditional.  If the LHS conditional is true, we
 | 
						|
      // want to jump to the TrueBlock.
 | 
						|
      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
 | 
						|
      // We have the count for entry to the RHS and for the whole expression
 | 
						|
      // being true, so we can divy up True count between the short circuit and
 | 
						|
      // the RHS.
 | 
						|
      uint64_t LHSCount =
 | 
						|
          getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
 | 
						|
      uint64_t RHSCount = TrueCount - LHSCount;
 | 
						|
 | 
						|
      ConditionalEvaluation eval(*this);
 | 
						|
      {
 | 
						|
        // Propagate the likelihood attribute like __builtin_expect
 | 
						|
        // __builtin_expect(X || Y, 1) -> only Y is likely
 | 
						|
        // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
 | 
						|
        ApplyDebugLocation DL(*this, Cond);
 | 
						|
        EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
 | 
						|
                             LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
 | 
						|
        EmitBlock(LHSFalse);
 | 
						|
      }
 | 
						|
 | 
						|
      incrementProfileCounter(CondBOp);
 | 
						|
      setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
 | 
						|
 | 
						|
      // Any temporaries created here are conditional.
 | 
						|
      eval.begin(*this);
 | 
						|
      EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
 | 
						|
                               RHSCount, LH);
 | 
						|
 | 
						|
      eval.end(*this);
 | 
						|
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
 | 
						|
    // br(!x, t, f) -> br(x, f, t)
 | 
						|
    if (CondUOp->getOpcode() == UO_LNot) {
 | 
						|
      // Negate the count.
 | 
						|
      uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
 | 
						|
      // The values of the enum are chosen to make this negation possible.
 | 
						|
      LH = static_cast<Stmt::Likelihood>(-LH);
 | 
						|
      // Negate the condition and swap the destination blocks.
 | 
						|
      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
 | 
						|
                                  FalseCount, LH);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
 | 
						|
    // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
 | 
						|
    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
 | 
						|
    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
 | 
						|
 | 
						|
    // The ConditionalOperator itself has no likelihood information for its
 | 
						|
    // true and false branches. This matches the behavior of __builtin_expect.
 | 
						|
    ConditionalEvaluation cond(*this);
 | 
						|
    EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
 | 
						|
                         getProfileCount(CondOp), Stmt::LH_None);
 | 
						|
 | 
						|
    // When computing PGO branch weights, we only know the overall count for
 | 
						|
    // the true block. This code is essentially doing tail duplication of the
 | 
						|
    // naive code-gen, introducing new edges for which counts are not
 | 
						|
    // available. Divide the counts proportionally between the LHS and RHS of
 | 
						|
    // the conditional operator.
 | 
						|
    uint64_t LHSScaledTrueCount = 0;
 | 
						|
    if (TrueCount) {
 | 
						|
      double LHSRatio =
 | 
						|
          getProfileCount(CondOp) / (double)getCurrentProfileCount();
 | 
						|
      LHSScaledTrueCount = TrueCount * LHSRatio;
 | 
						|
    }
 | 
						|
 | 
						|
    cond.begin(*this);
 | 
						|
    EmitBlock(LHSBlock);
 | 
						|
    incrementProfileCounter(CondOp);
 | 
						|
    {
 | 
						|
      ApplyDebugLocation DL(*this, Cond);
 | 
						|
      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
 | 
						|
                           LHSScaledTrueCount, LH);
 | 
						|
    }
 | 
						|
    cond.end(*this);
 | 
						|
 | 
						|
    cond.begin(*this);
 | 
						|
    EmitBlock(RHSBlock);
 | 
						|
    EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
 | 
						|
                         TrueCount - LHSScaledTrueCount, LH);
 | 
						|
    cond.end(*this);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
 | 
						|
    // Conditional operator handling can give us a throw expression as a
 | 
						|
    // condition for a case like:
 | 
						|
    //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
 | 
						|
    // Fold this to:
 | 
						|
    //   br(c, throw x, br(y, t, f))
 | 
						|
    EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the code with the fully general case.
 | 
						|
  llvm::Value *CondV;
 | 
						|
  {
 | 
						|
    ApplyDebugLocation DL(*this, Cond);
 | 
						|
    CondV = EvaluateExprAsBool(Cond);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::MDNode *Weights = nullptr;
 | 
						|
  llvm::MDNode *Unpredictable = nullptr;
 | 
						|
 | 
						|
  // If the branch has a condition wrapped by __builtin_unpredictable,
 | 
						|
  // create metadata that specifies that the branch is unpredictable.
 | 
						|
  // Don't bother if not optimizing because that metadata would not be used.
 | 
						|
  auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
 | 
						|
  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
 | 
						|
    auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
 | 
						|
    if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
 | 
						|
      llvm::MDBuilder MDHelper(getLLVMContext());
 | 
						|
      Unpredictable = MDHelper.createUnpredictable();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is a Likelihood knowledge for the cond, lower it.
 | 
						|
  // Note that if not optimizing this won't emit anything.
 | 
						|
  llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
 | 
						|
  if (CondV != NewCondV)
 | 
						|
    CondV = NewCondV;
 | 
						|
  else {
 | 
						|
    // Otherwise, lower profile counts. Note that we do this even at -O0.
 | 
						|
    uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
 | 
						|
    Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
 | 
						|
}
 | 
						|
 | 
						|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
 | 
						|
/// specified stmt yet.
 | 
						|
void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
 | 
						|
  CGM.ErrorUnsupported(S, Type);
 | 
						|
}
 | 
						|
 | 
						|
/// emitNonZeroVLAInit - Emit the "zero" initialization of a
 | 
						|
/// variable-length array whose elements have a non-zero bit-pattern.
 | 
						|
///
 | 
						|
/// \param baseType the inner-most element type of the array
 | 
						|
/// \param src - a char* pointing to the bit-pattern for a single
 | 
						|
/// base element of the array
 | 
						|
/// \param sizeInChars - the total size of the VLA, in chars
 | 
						|
static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
 | 
						|
                               Address dest, Address src,
 | 
						|
                               llvm::Value *sizeInChars) {
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
 | 
						|
  CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
 | 
						|
  llvm::Value *baseSizeInChars
 | 
						|
    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
 | 
						|
 | 
						|
  Address begin =
 | 
						|
    Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
 | 
						|
  llvm::Value *end = Builder.CreateInBoundsGEP(
 | 
						|
      begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
 | 
						|
 | 
						|
  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
 | 
						|
  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
 | 
						|
  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
 | 
						|
 | 
						|
  // Make a loop over the VLA.  C99 guarantees that the VLA element
 | 
						|
  // count must be nonzero.
 | 
						|
  CGF.EmitBlock(loopBB);
 | 
						|
 | 
						|
  llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
 | 
						|
  cur->addIncoming(begin.getPointer(), originBB);
 | 
						|
 | 
						|
  CharUnits curAlign =
 | 
						|
    dest.getAlignment().alignmentOfArrayElement(baseSize);
 | 
						|
 | 
						|
  // memcpy the individual element bit-pattern.
 | 
						|
  Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
 | 
						|
                       /*volatile*/ false);
 | 
						|
 | 
						|
  // Go to the next element.
 | 
						|
  llvm::Value *next =
 | 
						|
    Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
 | 
						|
 | 
						|
  // Leave if that's the end of the VLA.
 | 
						|
  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
 | 
						|
  Builder.CreateCondBr(done, contBB, loopBB);
 | 
						|
  cur->addIncoming(next, loopBB);
 | 
						|
 | 
						|
  CGF.EmitBlock(contBB);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
 | 
						|
  // Ignore empty classes in C++.
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Cast the dest ptr to the appropriate i8 pointer type.
 | 
						|
  if (DestPtr.getElementType() != Int8Ty)
 | 
						|
    DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
 | 
						|
 | 
						|
  // Get size and alignment info for this aggregate.
 | 
						|
  CharUnits size = getContext().getTypeSizeInChars(Ty);
 | 
						|
 | 
						|
  llvm::Value *SizeVal;
 | 
						|
  const VariableArrayType *vla;
 | 
						|
 | 
						|
  // Don't bother emitting a zero-byte memset.
 | 
						|
  if (size.isZero()) {
 | 
						|
    // But note that getTypeInfo returns 0 for a VLA.
 | 
						|
    if (const VariableArrayType *vlaType =
 | 
						|
          dyn_cast_or_null<VariableArrayType>(
 | 
						|
                                          getContext().getAsArrayType(Ty))) {
 | 
						|
      auto VlaSize = getVLASize(vlaType);
 | 
						|
      SizeVal = VlaSize.NumElts;
 | 
						|
      CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
 | 
						|
      if (!eltSize.isOne())
 | 
						|
        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
 | 
						|
      vla = vlaType;
 | 
						|
    } else {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    SizeVal = CGM.getSize(size);
 | 
						|
    vla = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the type contains a pointer to data member we can't memset it to zero.
 | 
						|
  // Instead, create a null constant and copy it to the destination.
 | 
						|
  // TODO: there are other patterns besides zero that we can usefully memset,
 | 
						|
  // like -1, which happens to be the pattern used by member-pointers.
 | 
						|
  if (!CGM.getTypes().isZeroInitializable(Ty)) {
 | 
						|
    // For a VLA, emit a single element, then splat that over the VLA.
 | 
						|
    if (vla) Ty = getContext().getBaseElementType(vla);
 | 
						|
 | 
						|
    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
 | 
						|
 | 
						|
    llvm::GlobalVariable *NullVariable =
 | 
						|
      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
 | 
						|
                               /*isConstant=*/true,
 | 
						|
                               llvm::GlobalVariable::PrivateLinkage,
 | 
						|
                               NullConstant, Twine());
 | 
						|
    CharUnits NullAlign = DestPtr.getAlignment();
 | 
						|
    NullVariable->setAlignment(NullAlign.getAsAlign());
 | 
						|
    Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
 | 
						|
                   Builder.getInt8Ty(), NullAlign);
 | 
						|
 | 
						|
    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
 | 
						|
 | 
						|
    // Get and call the appropriate llvm.memcpy overload.
 | 
						|
    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, just memset the whole thing to zero.  This is legal
 | 
						|
  // because in LLVM, all default initializers (other than the ones we just
 | 
						|
  // handled above) are guaranteed to have a bit pattern of all zeros.
 | 
						|
  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
 | 
						|
}
 | 
						|
 | 
						|
llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
 | 
						|
  // Make sure that there is a block for the indirect goto.
 | 
						|
  if (!IndirectBranch)
 | 
						|
    GetIndirectGotoBlock();
 | 
						|
 | 
						|
  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
 | 
						|
 | 
						|
  // Make sure the indirect branch includes all of the address-taken blocks.
 | 
						|
  IndirectBranch->addDestination(BB);
 | 
						|
  return llvm::BlockAddress::get(CurFn, BB);
 | 
						|
}
 | 
						|
 | 
						|
llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
 | 
						|
  // If we already made the indirect branch for indirect goto, return its block.
 | 
						|
  if (IndirectBranch) return IndirectBranch->getParent();
 | 
						|
 | 
						|
  CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
 | 
						|
 | 
						|
  // Create the PHI node that indirect gotos will add entries to.
 | 
						|
  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
 | 
						|
                                              "indirect.goto.dest");
 | 
						|
 | 
						|
  // Create the indirect branch instruction.
 | 
						|
  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
 | 
						|
  return IndirectBranch->getParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Computes the length of an array in elements, as well as the base
 | 
						|
/// element type and a properly-typed first element pointer.
 | 
						|
llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
 | 
						|
                                              QualType &baseType,
 | 
						|
                                              Address &addr) {
 | 
						|
  const ArrayType *arrayType = origArrayType;
 | 
						|
 | 
						|
  // If it's a VLA, we have to load the stored size.  Note that
 | 
						|
  // this is the size of the VLA in bytes, not its size in elements.
 | 
						|
  llvm::Value *numVLAElements = nullptr;
 | 
						|
  if (isa<VariableArrayType>(arrayType)) {
 | 
						|
    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
 | 
						|
 | 
						|
    // Walk into all VLAs.  This doesn't require changes to addr,
 | 
						|
    // which has type T* where T is the first non-VLA element type.
 | 
						|
    do {
 | 
						|
      QualType elementType = arrayType->getElementType();
 | 
						|
      arrayType = getContext().getAsArrayType(elementType);
 | 
						|
 | 
						|
      // If we only have VLA components, 'addr' requires no adjustment.
 | 
						|
      if (!arrayType) {
 | 
						|
        baseType = elementType;
 | 
						|
        return numVLAElements;
 | 
						|
      }
 | 
						|
    } while (isa<VariableArrayType>(arrayType));
 | 
						|
 | 
						|
    // We get out here only if we find a constant array type
 | 
						|
    // inside the VLA.
 | 
						|
  }
 | 
						|
 | 
						|
  // We have some number of constant-length arrays, so addr should
 | 
						|
  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
 | 
						|
  // down to the first element of addr.
 | 
						|
  SmallVector<llvm::Value*, 8> gepIndices;
 | 
						|
 | 
						|
  // GEP down to the array type.
 | 
						|
  llvm::ConstantInt *zero = Builder.getInt32(0);
 | 
						|
  gepIndices.push_back(zero);
 | 
						|
 | 
						|
  uint64_t countFromCLAs = 1;
 | 
						|
  QualType eltType;
 | 
						|
 | 
						|
  llvm::ArrayType *llvmArrayType =
 | 
						|
    dyn_cast<llvm::ArrayType>(addr.getElementType());
 | 
						|
  while (llvmArrayType) {
 | 
						|
    assert(isa<ConstantArrayType>(arrayType));
 | 
						|
    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
 | 
						|
             == llvmArrayType->getNumElements());
 | 
						|
 | 
						|
    gepIndices.push_back(zero);
 | 
						|
    countFromCLAs *= llvmArrayType->getNumElements();
 | 
						|
    eltType = arrayType->getElementType();
 | 
						|
 | 
						|
    llvmArrayType =
 | 
						|
      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
 | 
						|
    arrayType = getContext().getAsArrayType(arrayType->getElementType());
 | 
						|
    assert((!llvmArrayType || arrayType) &&
 | 
						|
           "LLVM and Clang types are out-of-synch");
 | 
						|
  }
 | 
						|
 | 
						|
  if (arrayType) {
 | 
						|
    // From this point onwards, the Clang array type has been emitted
 | 
						|
    // as some other type (probably a packed struct). Compute the array
 | 
						|
    // size, and just emit the 'begin' expression as a bitcast.
 | 
						|
    while (arrayType) {
 | 
						|
      countFromCLAs *=
 | 
						|
          cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
 | 
						|
      eltType = arrayType->getElementType();
 | 
						|
      arrayType = getContext().getAsArrayType(eltType);
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::Type *baseType = ConvertType(eltType);
 | 
						|
    addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
 | 
						|
  } else {
 | 
						|
    // Create the actual GEP.
 | 
						|
    addr = Address(Builder.CreateInBoundsGEP(
 | 
						|
        addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
 | 
						|
        ConvertTypeForMem(eltType),
 | 
						|
        addr.getAlignment());
 | 
						|
  }
 | 
						|
 | 
						|
  baseType = eltType;
 | 
						|
 | 
						|
  llvm::Value *numElements
 | 
						|
    = llvm::ConstantInt::get(SizeTy, countFromCLAs);
 | 
						|
 | 
						|
  // If we had any VLA dimensions, factor them in.
 | 
						|
  if (numVLAElements)
 | 
						|
    numElements = Builder.CreateNUWMul(numVLAElements, numElements);
 | 
						|
 | 
						|
  return numElements;
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
 | 
						|
  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
 | 
						|
  assert(vla && "type was not a variable array type!");
 | 
						|
  return getVLASize(vla);
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::VlaSizePair
 | 
						|
CodeGenFunction::getVLASize(const VariableArrayType *type) {
 | 
						|
  // The number of elements so far; always size_t.
 | 
						|
  llvm::Value *numElements = nullptr;
 | 
						|
 | 
						|
  QualType elementType;
 | 
						|
  do {
 | 
						|
    elementType = type->getElementType();
 | 
						|
    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
 | 
						|
    assert(vlaSize && "no size for VLA!");
 | 
						|
    assert(vlaSize->getType() == SizeTy);
 | 
						|
 | 
						|
    if (!numElements) {
 | 
						|
      numElements = vlaSize;
 | 
						|
    } else {
 | 
						|
      // It's undefined behavior if this wraps around, so mark it that way.
 | 
						|
      // FIXME: Teach -fsanitize=undefined to trap this.
 | 
						|
      numElements = Builder.CreateNUWMul(numElements, vlaSize);
 | 
						|
    }
 | 
						|
  } while ((type = getContext().getAsVariableArrayType(elementType)));
 | 
						|
 | 
						|
  return { numElements, elementType };
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::VlaSizePair
 | 
						|
CodeGenFunction::getVLAElements1D(QualType type) {
 | 
						|
  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
 | 
						|
  assert(vla && "type was not a variable array type!");
 | 
						|
  return getVLAElements1D(vla);
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::VlaSizePair
 | 
						|
CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
 | 
						|
  llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
 | 
						|
  assert(VlaSize && "no size for VLA!");
 | 
						|
  assert(VlaSize->getType() == SizeTy);
 | 
						|
  return { VlaSize, Vla->getElementType() };
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
 | 
						|
  assert(type->isVariablyModifiedType() &&
 | 
						|
         "Must pass variably modified type to EmitVLASizes!");
 | 
						|
 | 
						|
  EnsureInsertPoint();
 | 
						|
 | 
						|
  // We're going to walk down into the type and look for VLA
 | 
						|
  // expressions.
 | 
						|
  do {
 | 
						|
    assert(type->isVariablyModifiedType());
 | 
						|
 | 
						|
    const Type *ty = type.getTypePtr();
 | 
						|
    switch (ty->getTypeClass()) {
 | 
						|
 | 
						|
#define TYPE(Class, Base)
 | 
						|
#define ABSTRACT_TYPE(Class, Base)
 | 
						|
#define NON_CANONICAL_TYPE(Class, Base)
 | 
						|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | 
						|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
 | 
						|
#include "clang/AST/TypeNodes.inc"
 | 
						|
      llvm_unreachable("unexpected dependent type!");
 | 
						|
 | 
						|
    // These types are never variably-modified.
 | 
						|
    case Type::Builtin:
 | 
						|
    case Type::Complex:
 | 
						|
    case Type::Vector:
 | 
						|
    case Type::ExtVector:
 | 
						|
    case Type::ConstantMatrix:
 | 
						|
    case Type::Record:
 | 
						|
    case Type::Enum:
 | 
						|
    case Type::Elaborated:
 | 
						|
    case Type::Using:
 | 
						|
    case Type::TemplateSpecialization:
 | 
						|
    case Type::ObjCTypeParam:
 | 
						|
    case Type::ObjCObject:
 | 
						|
    case Type::ObjCInterface:
 | 
						|
    case Type::ObjCObjectPointer:
 | 
						|
    case Type::BitInt:
 | 
						|
      llvm_unreachable("type class is never variably-modified!");
 | 
						|
 | 
						|
    case Type::Adjusted:
 | 
						|
      type = cast<AdjustedType>(ty)->getAdjustedType();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Type::Decayed:
 | 
						|
      type = cast<DecayedType>(ty)->getPointeeType();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Type::Pointer:
 | 
						|
      type = cast<PointerType>(ty)->getPointeeType();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Type::BlockPointer:
 | 
						|
      type = cast<BlockPointerType>(ty)->getPointeeType();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Type::LValueReference:
 | 
						|
    case Type::RValueReference:
 | 
						|
      type = cast<ReferenceType>(ty)->getPointeeType();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Type::MemberPointer:
 | 
						|
      type = cast<MemberPointerType>(ty)->getPointeeType();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Type::ConstantArray:
 | 
						|
    case Type::IncompleteArray:
 | 
						|
      // Losing element qualification here is fine.
 | 
						|
      type = cast<ArrayType>(ty)->getElementType();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Type::VariableArray: {
 | 
						|
      // Losing element qualification here is fine.
 | 
						|
      const VariableArrayType *vat = cast<VariableArrayType>(ty);
 | 
						|
 | 
						|
      // Unknown size indication requires no size computation.
 | 
						|
      // Otherwise, evaluate and record it.
 | 
						|
      if (const Expr *sizeExpr = vat->getSizeExpr()) {
 | 
						|
        // It's possible that we might have emitted this already,
 | 
						|
        // e.g. with a typedef and a pointer to it.
 | 
						|
        llvm::Value *&entry = VLASizeMap[sizeExpr];
 | 
						|
        if (!entry) {
 | 
						|
          llvm::Value *size = EmitScalarExpr(sizeExpr);
 | 
						|
 | 
						|
          // C11 6.7.6.2p5:
 | 
						|
          //   If the size is an expression that is not an integer constant
 | 
						|
          //   expression [...] each time it is evaluated it shall have a value
 | 
						|
          //   greater than zero.
 | 
						|
          if (SanOpts.has(SanitizerKind::VLABound)) {
 | 
						|
            SanitizerScope SanScope(this);
 | 
						|
            llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
 | 
						|
            clang::QualType SEType = sizeExpr->getType();
 | 
						|
            llvm::Value *CheckCondition =
 | 
						|
                SEType->isSignedIntegerType()
 | 
						|
                    ? Builder.CreateICmpSGT(size, Zero)
 | 
						|
                    : Builder.CreateICmpUGT(size, Zero);
 | 
						|
            llvm::Constant *StaticArgs[] = {
 | 
						|
                EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
 | 
						|
                EmitCheckTypeDescriptor(SEType)};
 | 
						|
            EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
 | 
						|
                      SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
 | 
						|
          }
 | 
						|
 | 
						|
          // Always zexting here would be wrong if it weren't
 | 
						|
          // undefined behavior to have a negative bound.
 | 
						|
          // FIXME: What about when size's type is larger than size_t?
 | 
						|
          entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      type = vat->getElementType();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Type::FunctionProto:
 | 
						|
    case Type::FunctionNoProto:
 | 
						|
      type = cast<FunctionType>(ty)->getReturnType();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Type::Paren:
 | 
						|
    case Type::TypeOf:
 | 
						|
    case Type::UnaryTransform:
 | 
						|
    case Type::Attributed:
 | 
						|
    case Type::BTFTagAttributed:
 | 
						|
    case Type::SubstTemplateTypeParm:
 | 
						|
    case Type::MacroQualified:
 | 
						|
      // Keep walking after single level desugaring.
 | 
						|
      type = type.getSingleStepDesugaredType(getContext());
 | 
						|
      break;
 | 
						|
 | 
						|
    case Type::Typedef:
 | 
						|
    case Type::Decltype:
 | 
						|
    case Type::Auto:
 | 
						|
    case Type::DeducedTemplateSpecialization:
 | 
						|
      // Stop walking: nothing to do.
 | 
						|
      return;
 | 
						|
 | 
						|
    case Type::TypeOfExpr:
 | 
						|
      // Stop walking: emit typeof expression.
 | 
						|
      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
 | 
						|
      return;
 | 
						|
 | 
						|
    case Type::Atomic:
 | 
						|
      type = cast<AtomicType>(ty)->getValueType();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Type::Pipe:
 | 
						|
      type = cast<PipeType>(ty)->getElementType();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  } while (type->isVariablyModifiedType());
 | 
						|
}
 | 
						|
 | 
						|
Address CodeGenFunction::EmitVAListRef(const Expr* E) {
 | 
						|
  if (getContext().getBuiltinVaListType()->isArrayType())
 | 
						|
    return EmitPointerWithAlignment(E);
 | 
						|
  return EmitLValue(E).getAddress(*this);
 | 
						|
}
 | 
						|
 | 
						|
Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
 | 
						|
  return EmitLValue(E).getAddress(*this);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
 | 
						|
                                              const APValue &Init) {
 | 
						|
  assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
 | 
						|
  if (CGDebugInfo *Dbg = getDebugInfo())
 | 
						|
    if (CGM.getCodeGenOpts().hasReducedDebugInfo())
 | 
						|
      Dbg->EmitGlobalVariable(E->getDecl(), Init);
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::PeepholeProtection
 | 
						|
CodeGenFunction::protectFromPeepholes(RValue rvalue) {
 | 
						|
  // At the moment, the only aggressive peephole we do in IR gen
 | 
						|
  // is trunc(zext) folding, but if we add more, we can easily
 | 
						|
  // extend this protection.
 | 
						|
 | 
						|
  if (!rvalue.isScalar()) return PeepholeProtection();
 | 
						|
  llvm::Value *value = rvalue.getScalarVal();
 | 
						|
  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
 | 
						|
 | 
						|
  // Just make an extra bitcast.
 | 
						|
  assert(HaveInsertPoint());
 | 
						|
  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
 | 
						|
                                                  Builder.GetInsertBlock());
 | 
						|
 | 
						|
  PeepholeProtection protection;
 | 
						|
  protection.Inst = inst;
 | 
						|
  return protection;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
 | 
						|
  if (!protection.Inst) return;
 | 
						|
 | 
						|
  // In theory, we could try to duplicate the peepholes now, but whatever.
 | 
						|
  protection.Inst->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
 | 
						|
                                              QualType Ty, SourceLocation Loc,
 | 
						|
                                              SourceLocation AssumptionLoc,
 | 
						|
                                              llvm::Value *Alignment,
 | 
						|
                                              llvm::Value *OffsetValue) {
 | 
						|
  if (Alignment->getType() != IntPtrTy)
 | 
						|
    Alignment =
 | 
						|
        Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
 | 
						|
  if (OffsetValue && OffsetValue->getType() != IntPtrTy)
 | 
						|
    OffsetValue =
 | 
						|
        Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
 | 
						|
  llvm::Value *TheCheck = nullptr;
 | 
						|
  if (SanOpts.has(SanitizerKind::Alignment)) {
 | 
						|
    llvm::Value *PtrIntValue =
 | 
						|
        Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
 | 
						|
 | 
						|
    if (OffsetValue) {
 | 
						|
      bool IsOffsetZero = false;
 | 
						|
      if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
 | 
						|
        IsOffsetZero = CI->isZero();
 | 
						|
 | 
						|
      if (!IsOffsetZero)
 | 
						|
        PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
 | 
						|
    llvm::Value *Mask =
 | 
						|
        Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
 | 
						|
    llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
 | 
						|
    TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
 | 
						|
  }
 | 
						|
  llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
 | 
						|
      CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
 | 
						|
 | 
						|
  if (!SanOpts.has(SanitizerKind::Alignment))
 | 
						|
    return;
 | 
						|
  emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
 | 
						|
                               OffsetValue, TheCheck, Assumption);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
 | 
						|
                                              const Expr *E,
 | 
						|
                                              SourceLocation AssumptionLoc,
 | 
						|
                                              llvm::Value *Alignment,
 | 
						|
                                              llvm::Value *OffsetValue) {
 | 
						|
  if (auto *CE = dyn_cast<CastExpr>(E))
 | 
						|
    E = CE->getSubExprAsWritten();
 | 
						|
  QualType Ty = E->getType();
 | 
						|
  SourceLocation Loc = E->getExprLoc();
 | 
						|
 | 
						|
  emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
 | 
						|
                          OffsetValue);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
 | 
						|
                                                 llvm::Value *AnnotatedVal,
 | 
						|
                                                 StringRef AnnotationStr,
 | 
						|
                                                 SourceLocation Location,
 | 
						|
                                                 const AnnotateAttr *Attr) {
 | 
						|
  SmallVector<llvm::Value *, 5> Args = {
 | 
						|
      AnnotatedVal,
 | 
						|
      Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
 | 
						|
      Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
 | 
						|
      CGM.EmitAnnotationLineNo(Location),
 | 
						|
  };
 | 
						|
  if (Attr)
 | 
						|
    Args.push_back(CGM.EmitAnnotationArgs(Attr));
 | 
						|
  return Builder.CreateCall(AnnotationFn, Args);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
 | 
						|
  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
 | 
						|
  // FIXME We create a new bitcast for every annotation because that's what
 | 
						|
  // llvm-gcc was doing.
 | 
						|
  for (const auto *I : D->specific_attrs<AnnotateAttr>())
 | 
						|
    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
 | 
						|
                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
 | 
						|
                       I->getAnnotation(), D->getLocation(), I);
 | 
						|
}
 | 
						|
 | 
						|
Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
 | 
						|
                                              Address Addr) {
 | 
						|
  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
 | 
						|
  llvm::Value *V = Addr.getPointer();
 | 
						|
  llvm::Type *VTy = V->getType();
 | 
						|
  auto *PTy = dyn_cast<llvm::PointerType>(VTy);
 | 
						|
  unsigned AS = PTy ? PTy->getAddressSpace() : 0;
 | 
						|
  llvm::PointerType *IntrinTy =
 | 
						|
      llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
 | 
						|
  llvm::Function *F =
 | 
						|
      CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
 | 
						|
 | 
						|
  for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
 | 
						|
    // FIXME Always emit the cast inst so we can differentiate between
 | 
						|
    // annotation on the first field of a struct and annotation on the struct
 | 
						|
    // itself.
 | 
						|
    if (VTy != IntrinTy)
 | 
						|
      V = Builder.CreateBitCast(V, IntrinTy);
 | 
						|
    V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
 | 
						|
    V = Builder.CreateBitCast(V, VTy);
 | 
						|
  }
 | 
						|
 | 
						|
  return Address(V, Addr.getElementType(), Addr.getAlignment());
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
 | 
						|
 | 
						|
CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
 | 
						|
    : CGF(CGF) {
 | 
						|
  assert(!CGF->IsSanitizerScope);
 | 
						|
  CGF->IsSanitizerScope = true;
 | 
						|
}
 | 
						|
 | 
						|
CodeGenFunction::SanitizerScope::~SanitizerScope() {
 | 
						|
  CGF->IsSanitizerScope = false;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::InsertHelper(llvm::Instruction *I,
 | 
						|
                                   const llvm::Twine &Name,
 | 
						|
                                   llvm::BasicBlock *BB,
 | 
						|
                                   llvm::BasicBlock::iterator InsertPt) const {
 | 
						|
  LoopStack.InsertHelper(I);
 | 
						|
  if (IsSanitizerScope)
 | 
						|
    CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void CGBuilderInserter::InsertHelper(
 | 
						|
    llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
 | 
						|
    llvm::BasicBlock::iterator InsertPt) const {
 | 
						|
  llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
 | 
						|
  if (CGF)
 | 
						|
    CGF->InsertHelper(I, Name, BB, InsertPt);
 | 
						|
}
 | 
						|
 | 
						|
// Emits an error if we don't have a valid set of target features for the
 | 
						|
// called function.
 | 
						|
void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
 | 
						|
                                          const FunctionDecl *TargetDecl) {
 | 
						|
  return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
 | 
						|
}
 | 
						|
 | 
						|
// Emits an error if we don't have a valid set of target features for the
 | 
						|
// called function.
 | 
						|
void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
 | 
						|
                                          const FunctionDecl *TargetDecl) {
 | 
						|
  // Early exit if this is an indirect call.
 | 
						|
  if (!TargetDecl)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Get the current enclosing function if it exists. If it doesn't
 | 
						|
  // we can't check the target features anyhow.
 | 
						|
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
 | 
						|
  if (!FD)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Grab the required features for the call. For a builtin this is listed in
 | 
						|
  // the td file with the default cpu, for an always_inline function this is any
 | 
						|
  // listed cpu and any listed features.
 | 
						|
  unsigned BuiltinID = TargetDecl->getBuiltinID();
 | 
						|
  std::string MissingFeature;
 | 
						|
  llvm::StringMap<bool> CallerFeatureMap;
 | 
						|
  CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
 | 
						|
  if (BuiltinID) {
 | 
						|
    StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
 | 
						|
    if (!Builtin::evaluateRequiredTargetFeatures(
 | 
						|
        FeatureList, CallerFeatureMap)) {
 | 
						|
      CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
 | 
						|
          << TargetDecl->getDeclName()
 | 
						|
          << FeatureList;
 | 
						|
    }
 | 
						|
  } else if (!TargetDecl->isMultiVersion() &&
 | 
						|
             TargetDecl->hasAttr<TargetAttr>()) {
 | 
						|
    // Get the required features for the callee.
 | 
						|
 | 
						|
    const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
 | 
						|
    ParsedTargetAttr ParsedAttr =
 | 
						|
        CGM.getContext().filterFunctionTargetAttrs(TD);
 | 
						|
 | 
						|
    SmallVector<StringRef, 1> ReqFeatures;
 | 
						|
    llvm::StringMap<bool> CalleeFeatureMap;
 | 
						|
    CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
 | 
						|
 | 
						|
    for (const auto &F : ParsedAttr.Features) {
 | 
						|
      if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
 | 
						|
        ReqFeatures.push_back(StringRef(F).substr(1));
 | 
						|
    }
 | 
						|
 | 
						|
    for (const auto &F : CalleeFeatureMap) {
 | 
						|
      // Only positive features are "required".
 | 
						|
      if (F.getValue())
 | 
						|
        ReqFeatures.push_back(F.getKey());
 | 
						|
    }
 | 
						|
    if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
 | 
						|
      if (!CallerFeatureMap.lookup(Feature)) {
 | 
						|
        MissingFeature = Feature.str();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }))
 | 
						|
      CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
 | 
						|
          << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
 | 
						|
  if (!CGM.getCodeGenOpts().SanitizeStats)
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
 | 
						|
  IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
 | 
						|
  CGM.getSanStats().create(IRB, SSK);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *
 | 
						|
CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
 | 
						|
  llvm::Value *Condition = nullptr;
 | 
						|
 | 
						|
  if (!RO.Conditions.Architecture.empty())
 | 
						|
    Condition = EmitX86CpuIs(RO.Conditions.Architecture);
 | 
						|
 | 
						|
  if (!RO.Conditions.Features.empty()) {
 | 
						|
    llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
 | 
						|
    Condition =
 | 
						|
        Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
 | 
						|
  }
 | 
						|
  return Condition;
 | 
						|
}
 | 
						|
 | 
						|
static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
 | 
						|
                                             llvm::Function *Resolver,
 | 
						|
                                             CGBuilderTy &Builder,
 | 
						|
                                             llvm::Function *FuncToReturn,
 | 
						|
                                             bool SupportsIFunc) {
 | 
						|
  if (SupportsIFunc) {
 | 
						|
    Builder.CreateRet(FuncToReturn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::SmallVector<llvm::Value *, 10> Args(
 | 
						|
      llvm::make_pointer_range(Resolver->args()));
 | 
						|
 | 
						|
  llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
 | 
						|
  Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
 | 
						|
 | 
						|
  if (Resolver->getReturnType()->isVoidTy())
 | 
						|
    Builder.CreateRetVoid();
 | 
						|
  else
 | 
						|
    Builder.CreateRet(Result);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitMultiVersionResolver(
 | 
						|
    llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
 | 
						|
  assert(getContext().getTargetInfo().getTriple().isX86() &&
 | 
						|
         "Only implemented for x86 targets");
 | 
						|
 | 
						|
  bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
 | 
						|
 | 
						|
  // Main function's basic block.
 | 
						|
  llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
 | 
						|
  Builder.SetInsertPoint(CurBlock);
 | 
						|
  EmitX86CpuInit();
 | 
						|
 | 
						|
  for (const MultiVersionResolverOption &RO : Options) {
 | 
						|
    Builder.SetInsertPoint(CurBlock);
 | 
						|
    llvm::Value *Condition = FormResolverCondition(RO);
 | 
						|
 | 
						|
    // The 'default' or 'generic' case.
 | 
						|
    if (!Condition) {
 | 
						|
      assert(&RO == Options.end() - 1 &&
 | 
						|
             "Default or Generic case must be last");
 | 
						|
      CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
 | 
						|
                                       SupportsIFunc);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
 | 
						|
    CGBuilderTy RetBuilder(*this, RetBlock);
 | 
						|
    CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
 | 
						|
                                     SupportsIFunc);
 | 
						|
    CurBlock = createBasicBlock("resolver_else", Resolver);
 | 
						|
    Builder.CreateCondBr(Condition, RetBlock, CurBlock);
 | 
						|
  }
 | 
						|
 | 
						|
  // If no generic/default, emit an unreachable.
 | 
						|
  Builder.SetInsertPoint(CurBlock);
 | 
						|
  llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
 | 
						|
  TrapCall->setDoesNotReturn();
 | 
						|
  TrapCall->setDoesNotThrow();
 | 
						|
  Builder.CreateUnreachable();
 | 
						|
  Builder.ClearInsertionPoint();
 | 
						|
}
 | 
						|
 | 
						|
// Loc - where the diagnostic will point, where in the source code this
 | 
						|
//  alignment has failed.
 | 
						|
// SecondaryLoc - if present (will be present if sufficiently different from
 | 
						|
//  Loc), the diagnostic will additionally point a "Note:" to this location.
 | 
						|
//  It should be the location where the __attribute__((assume_aligned))
 | 
						|
//  was written e.g.
 | 
						|
void CodeGenFunction::emitAlignmentAssumptionCheck(
 | 
						|
    llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
 | 
						|
    SourceLocation SecondaryLoc, llvm::Value *Alignment,
 | 
						|
    llvm::Value *OffsetValue, llvm::Value *TheCheck,
 | 
						|
    llvm::Instruction *Assumption) {
 | 
						|
  assert(Assumption && isa<llvm::CallInst>(Assumption) &&
 | 
						|
         cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
 | 
						|
             llvm::Intrinsic::getDeclaration(
 | 
						|
                 Builder.GetInsertBlock()->getParent()->getParent(),
 | 
						|
                 llvm::Intrinsic::assume) &&
 | 
						|
         "Assumption should be a call to llvm.assume().");
 | 
						|
  assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
 | 
						|
         "Assumption should be the last instruction of the basic block, "
 | 
						|
         "since the basic block is still being generated.");
 | 
						|
 | 
						|
  if (!SanOpts.has(SanitizerKind::Alignment))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Don't check pointers to volatile data. The behavior here is implementation-
 | 
						|
  // defined.
 | 
						|
  if (Ty->getPointeeType().isVolatileQualified())
 | 
						|
    return;
 | 
						|
 | 
						|
  // We need to temorairly remove the assumption so we can insert the
 | 
						|
  // sanitizer check before it, else the check will be dropped by optimizations.
 | 
						|
  Assumption->removeFromParent();
 | 
						|
 | 
						|
  {
 | 
						|
    SanitizerScope SanScope(this);
 | 
						|
 | 
						|
    if (!OffsetValue)
 | 
						|
      OffsetValue = Builder.getInt1(false); // no offset.
 | 
						|
 | 
						|
    llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
 | 
						|
                                    EmitCheckSourceLocation(SecondaryLoc),
 | 
						|
                                    EmitCheckTypeDescriptor(Ty)};
 | 
						|
    llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
 | 
						|
                                  EmitCheckValue(Alignment),
 | 
						|
                                  EmitCheckValue(OffsetValue)};
 | 
						|
    EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
 | 
						|
              SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
 | 
						|
  }
 | 
						|
 | 
						|
  // We are now in the (new, empty) "cont" basic block.
 | 
						|
  // Reintroduce the assumption.
 | 
						|
  Builder.Insert(Assumption);
 | 
						|
  // FIXME: Assumption still has it's original basic block as it's Parent.
 | 
						|
}
 | 
						|
 | 
						|
llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
 | 
						|
  if (CGDebugInfo *DI = getDebugInfo())
 | 
						|
    return DI->SourceLocToDebugLoc(Location);
 | 
						|
 | 
						|
  return llvm::DebugLoc();
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *
 | 
						|
CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
 | 
						|
                                                      Stmt::Likelihood LH) {
 | 
						|
  switch (LH) {
 | 
						|
  case Stmt::LH_None:
 | 
						|
    return Cond;
 | 
						|
  case Stmt::LH_Likely:
 | 
						|
  case Stmt::LH_Unlikely:
 | 
						|
    // Don't generate llvm.expect on -O0 as the backend won't use it for
 | 
						|
    // anything.
 | 
						|
    if (CGM.getCodeGenOpts().OptimizationLevel == 0)
 | 
						|
      return Cond;
 | 
						|
    llvm::Type *CondTy = Cond->getType();
 | 
						|
    assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
 | 
						|
    llvm::Function *FnExpect =
 | 
						|
        CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
 | 
						|
    llvm::Value *ExpectedValueOfCond =
 | 
						|
        llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
 | 
						|
    return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
 | 
						|
                              Cond->getName() + ".expval");
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unknown Likelihood");
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
 | 
						|
                                                    unsigned NumElementsDst,
 | 
						|
                                                    const llvm::Twine &Name) {
 | 
						|
  auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
 | 
						|
  unsigned NumElementsSrc = SrcTy->getNumElements();
 | 
						|
  if (NumElementsSrc == NumElementsDst)
 | 
						|
    return SrcVec;
 | 
						|
 | 
						|
  std::vector<int> ShuffleMask(NumElementsDst, -1);
 | 
						|
  for (unsigned MaskIdx = 0;
 | 
						|
       MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
 | 
						|
    ShuffleMask[MaskIdx] = MaskIdx;
 | 
						|
 | 
						|
  return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
 | 
						|
}
 |