5361 lines
		
	
	
		
			211 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5361 lines
		
	
	
		
			211 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for Objective C declarations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "TypeLocBuilder.h"
 | 
						|
#include "clang/AST/ASTConsumer.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/ASTMutationListener.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/RecursiveASTVisitor.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
/// Check whether the given method, which must be in the 'init'
 | 
						|
/// family, is a valid member of that family.
 | 
						|
///
 | 
						|
/// \param receiverTypeIfCall - if null, check this as if declaring it;
 | 
						|
///   if non-null, check this as if making a call to it with the given
 | 
						|
///   receiver type
 | 
						|
///
 | 
						|
/// \return true to indicate that there was an error and appropriate
 | 
						|
///   actions were taken
 | 
						|
bool Sema::checkInitMethod(ObjCMethodDecl *method,
 | 
						|
                           QualType receiverTypeIfCall) {
 | 
						|
  if (method->isInvalidDecl()) return true;
 | 
						|
 | 
						|
  // This castAs is safe: methods that don't return an object
 | 
						|
  // pointer won't be inferred as inits and will reject an explicit
 | 
						|
  // objc_method_family(init).
 | 
						|
 | 
						|
  // We ignore protocols here.  Should we?  What about Class?
 | 
						|
 | 
						|
  const ObjCObjectType *result =
 | 
						|
      method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
 | 
						|
 | 
						|
  if (result->isObjCId()) {
 | 
						|
    return false;
 | 
						|
  } else if (result->isObjCClass()) {
 | 
						|
    // fall through: always an error
 | 
						|
  } else {
 | 
						|
    ObjCInterfaceDecl *resultClass = result->getInterface();
 | 
						|
    assert(resultClass && "unexpected object type!");
 | 
						|
 | 
						|
    // It's okay for the result type to still be a forward declaration
 | 
						|
    // if we're checking an interface declaration.
 | 
						|
    if (!resultClass->hasDefinition()) {
 | 
						|
      if (receiverTypeIfCall.isNull() &&
 | 
						|
          !isa<ObjCImplementationDecl>(method->getDeclContext()))
 | 
						|
        return false;
 | 
						|
 | 
						|
    // Otherwise, we try to compare class types.
 | 
						|
    } else {
 | 
						|
      // If this method was declared in a protocol, we can't check
 | 
						|
      // anything unless we have a receiver type that's an interface.
 | 
						|
      const ObjCInterfaceDecl *receiverClass = nullptr;
 | 
						|
      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
 | 
						|
        if (receiverTypeIfCall.isNull())
 | 
						|
          return false;
 | 
						|
 | 
						|
        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
 | 
						|
          ->getInterfaceDecl();
 | 
						|
 | 
						|
        // This can be null for calls to e.g. id<Foo>.
 | 
						|
        if (!receiverClass) return false;
 | 
						|
      } else {
 | 
						|
        receiverClass = method->getClassInterface();
 | 
						|
        assert(receiverClass && "method not associated with a class!");
 | 
						|
      }
 | 
						|
 | 
						|
      // If either class is a subclass of the other, it's fine.
 | 
						|
      if (receiverClass->isSuperClassOf(resultClass) ||
 | 
						|
          resultClass->isSuperClassOf(receiverClass))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation loc = method->getLocation();
 | 
						|
 | 
						|
  // If we're in a system header, and this is not a call, just make
 | 
						|
  // the method unusable.
 | 
						|
  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
 | 
						|
    method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
 | 
						|
                      UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, it's an error.
 | 
						|
  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
 | 
						|
  method->setInvalidDecl();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Issue a warning if the parameter of the overridden method is non-escaping
 | 
						|
/// but the parameter of the overriding method is not.
 | 
						|
static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
 | 
						|
                             Sema &S) {
 | 
						|
  if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
 | 
						|
    S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
 | 
						|
    S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Produce additional diagnostics if a category conforms to a protocol that
 | 
						|
/// defines a method taking a non-escaping parameter.
 | 
						|
static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
 | 
						|
                             const ObjCCategoryDecl *CD,
 | 
						|
                             const ObjCProtocolDecl *PD, Sema &S) {
 | 
						|
  if (!diagnoseNoescape(NewD, OldD, S))
 | 
						|
    S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
 | 
						|
        << CD->IsClassExtension() << PD
 | 
						|
        << cast<ObjCMethodDecl>(NewD->getDeclContext());
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
 | 
						|
                                   const ObjCMethodDecl *Overridden) {
 | 
						|
  if (Overridden->hasRelatedResultType() &&
 | 
						|
      !NewMethod->hasRelatedResultType()) {
 | 
						|
    // This can only happen when the method follows a naming convention that
 | 
						|
    // implies a related result type, and the original (overridden) method has
 | 
						|
    // a suitable return type, but the new (overriding) method does not have
 | 
						|
    // a suitable return type.
 | 
						|
    QualType ResultType = NewMethod->getReturnType();
 | 
						|
    SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
 | 
						|
 | 
						|
    // Figure out which class this method is part of, if any.
 | 
						|
    ObjCInterfaceDecl *CurrentClass
 | 
						|
      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
 | 
						|
    if (!CurrentClass) {
 | 
						|
      DeclContext *DC = NewMethod->getDeclContext();
 | 
						|
      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
 | 
						|
        CurrentClass = Cat->getClassInterface();
 | 
						|
      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
 | 
						|
        CurrentClass = Impl->getClassInterface();
 | 
						|
      else if (ObjCCategoryImplDecl *CatImpl
 | 
						|
               = dyn_cast<ObjCCategoryImplDecl>(DC))
 | 
						|
        CurrentClass = CatImpl->getClassInterface();
 | 
						|
    }
 | 
						|
 | 
						|
    if (CurrentClass) {
 | 
						|
      Diag(NewMethod->getLocation(),
 | 
						|
           diag::warn_related_result_type_compatibility_class)
 | 
						|
        << Context.getObjCInterfaceType(CurrentClass)
 | 
						|
        << ResultType
 | 
						|
        << ResultTypeRange;
 | 
						|
    } else {
 | 
						|
      Diag(NewMethod->getLocation(),
 | 
						|
           diag::warn_related_result_type_compatibility_protocol)
 | 
						|
        << ResultType
 | 
						|
        << ResultTypeRange;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
 | 
						|
      Diag(Overridden->getLocation(),
 | 
						|
           diag::note_related_result_type_family)
 | 
						|
        << /*overridden method*/ 0
 | 
						|
        << Family;
 | 
						|
    else
 | 
						|
      Diag(Overridden->getLocation(),
 | 
						|
           diag::note_related_result_type_overridden);
 | 
						|
  }
 | 
						|
 | 
						|
  if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
 | 
						|
       Overridden->hasAttr<NSReturnsRetainedAttr>())) {
 | 
						|
    Diag(NewMethod->getLocation(),
 | 
						|
         getLangOpts().ObjCAutoRefCount
 | 
						|
             ? diag::err_nsreturns_retained_attribute_mismatch
 | 
						|
             : diag::warn_nsreturns_retained_attribute_mismatch)
 | 
						|
        << 1;
 | 
						|
    Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
 | 
						|
  }
 | 
						|
  if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
 | 
						|
       Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
 | 
						|
    Diag(NewMethod->getLocation(),
 | 
						|
         getLangOpts().ObjCAutoRefCount
 | 
						|
             ? diag::err_nsreturns_retained_attribute_mismatch
 | 
						|
             : diag::warn_nsreturns_retained_attribute_mismatch)
 | 
						|
        << 0;
 | 
						|
    Diag(Overridden->getLocation(), diag::note_previous_decl)  << "method";
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
 | 
						|
                                       oe = Overridden->param_end();
 | 
						|
  for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
 | 
						|
                                      ne = NewMethod->param_end();
 | 
						|
       ni != ne && oi != oe; ++ni, ++oi) {
 | 
						|
    const ParmVarDecl *oldDecl = (*oi);
 | 
						|
    ParmVarDecl *newDecl = (*ni);
 | 
						|
    if (newDecl->hasAttr<NSConsumedAttr>() !=
 | 
						|
        oldDecl->hasAttr<NSConsumedAttr>()) {
 | 
						|
      Diag(newDecl->getLocation(),
 | 
						|
           getLangOpts().ObjCAutoRefCount
 | 
						|
               ? diag::err_nsconsumed_attribute_mismatch
 | 
						|
               : diag::warn_nsconsumed_attribute_mismatch);
 | 
						|
      Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
 | 
						|
    }
 | 
						|
 | 
						|
    diagnoseNoescape(newDecl, oldDecl, *this);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check a method declaration for compatibility with the Objective-C
 | 
						|
/// ARC conventions.
 | 
						|
bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
 | 
						|
  ObjCMethodFamily family = method->getMethodFamily();
 | 
						|
  switch (family) {
 | 
						|
  case OMF_None:
 | 
						|
  case OMF_finalize:
 | 
						|
  case OMF_retain:
 | 
						|
  case OMF_release:
 | 
						|
  case OMF_autorelease:
 | 
						|
  case OMF_retainCount:
 | 
						|
  case OMF_self:
 | 
						|
  case OMF_initialize:
 | 
						|
  case OMF_performSelector:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case OMF_dealloc:
 | 
						|
    if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
 | 
						|
      SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
 | 
						|
      if (ResultTypeRange.isInvalid())
 | 
						|
        Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
 | 
						|
            << method->getReturnType()
 | 
						|
            << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
 | 
						|
      else
 | 
						|
        Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
 | 
						|
            << method->getReturnType()
 | 
						|
            << FixItHint::CreateReplacement(ResultTypeRange, "void");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
 | 
						|
  case OMF_init:
 | 
						|
    // If the method doesn't obey the init rules, don't bother annotating it.
 | 
						|
    if (checkInitMethod(method, QualType()))
 | 
						|
      return true;
 | 
						|
 | 
						|
    method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
 | 
						|
 | 
						|
    // Don't add a second copy of this attribute, but otherwise don't
 | 
						|
    // let it be suppressed.
 | 
						|
    if (method->hasAttr<NSReturnsRetainedAttr>())
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
 | 
						|
  case OMF_alloc:
 | 
						|
  case OMF_copy:
 | 
						|
  case OMF_mutableCopy:
 | 
						|
  case OMF_new:
 | 
						|
    if (method->hasAttr<NSReturnsRetainedAttr>() ||
 | 
						|
        method->hasAttr<NSReturnsNotRetainedAttr>() ||
 | 
						|
        method->hasAttr<NSReturnsAutoreleasedAttr>())
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
 | 
						|
                                                SourceLocation ImplLoc) {
 | 
						|
  if (!ND)
 | 
						|
    return;
 | 
						|
  bool IsCategory = false;
 | 
						|
  StringRef RealizedPlatform;
 | 
						|
  AvailabilityResult Availability = ND->getAvailability(
 | 
						|
      /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
 | 
						|
      &RealizedPlatform);
 | 
						|
  if (Availability != AR_Deprecated) {
 | 
						|
    if (isa<ObjCMethodDecl>(ND)) {
 | 
						|
      if (Availability != AR_Unavailable)
 | 
						|
        return;
 | 
						|
      if (RealizedPlatform.empty())
 | 
						|
        RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
 | 
						|
      // Warn about implementing unavailable methods, unless the unavailable
 | 
						|
      // is for an app extension.
 | 
						|
      if (RealizedPlatform.endswith("_app_extension"))
 | 
						|
        return;
 | 
						|
      S.Diag(ImplLoc, diag::warn_unavailable_def);
 | 
						|
      S.Diag(ND->getLocation(), diag::note_method_declared_at)
 | 
						|
          << ND->getDeclName();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
 | 
						|
      if (!CD->getClassInterface()->isDeprecated())
 | 
						|
        return;
 | 
						|
      ND = CD->getClassInterface();
 | 
						|
      IsCategory = true;
 | 
						|
    } else
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  S.Diag(ImplLoc, diag::warn_deprecated_def)
 | 
						|
      << (isa<ObjCMethodDecl>(ND)
 | 
						|
              ? /*Method*/ 0
 | 
						|
              : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
 | 
						|
                                                        : /*Class*/ 1);
 | 
						|
  if (isa<ObjCMethodDecl>(ND))
 | 
						|
    S.Diag(ND->getLocation(), diag::note_method_declared_at)
 | 
						|
        << ND->getDeclName();
 | 
						|
  else
 | 
						|
    S.Diag(ND->getLocation(), diag::note_previous_decl)
 | 
						|
        << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
 | 
						|
}
 | 
						|
 | 
						|
/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
 | 
						|
/// pool.
 | 
						|
void Sema::AddAnyMethodToGlobalPool(Decl *D) {
 | 
						|
  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
 | 
						|
 | 
						|
  // If we don't have a valid method decl, simply return.
 | 
						|
  if (!MDecl)
 | 
						|
    return;
 | 
						|
  if (MDecl->isInstanceMethod())
 | 
						|
    AddInstanceMethodToGlobalPool(MDecl, true);
 | 
						|
  else
 | 
						|
    AddFactoryMethodToGlobalPool(MDecl, true);
 | 
						|
}
 | 
						|
 | 
						|
/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
 | 
						|
/// has explicit ownership attribute; false otherwise.
 | 
						|
static bool
 | 
						|
HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
 | 
						|
  QualType T = Param->getType();
 | 
						|
 | 
						|
  if (const PointerType *PT = T->getAs<PointerType>()) {
 | 
						|
    T = PT->getPointeeType();
 | 
						|
  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
 | 
						|
    T = RT->getPointeeType();
 | 
						|
  } else {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a lifetime qualifier, but it's local, we must have
 | 
						|
  // inferred it. So, it is implicit.
 | 
						|
  return !T.getLocalQualifiers().hasObjCLifetime();
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
 | 
						|
/// and user declared, in the method definition's AST.
 | 
						|
void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
 | 
						|
  ImplicitlyRetainedSelfLocs.clear();
 | 
						|
  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
 | 
						|
  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
 | 
						|
 | 
						|
  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
 | 
						|
 | 
						|
  // If we don't have a valid method decl, simply return.
 | 
						|
  if (!MDecl)
 | 
						|
    return;
 | 
						|
 | 
						|
  QualType ResultType = MDecl->getReturnType();
 | 
						|
  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
 | 
						|
      !MDecl->isInvalidDecl() &&
 | 
						|
      RequireCompleteType(MDecl->getLocation(), ResultType,
 | 
						|
                          diag::err_func_def_incomplete_result))
 | 
						|
    MDecl->setInvalidDecl();
 | 
						|
 | 
						|
  // Allow all of Sema to see that we are entering a method definition.
 | 
						|
  PushDeclContext(FnBodyScope, MDecl);
 | 
						|
  PushFunctionScope();
 | 
						|
 | 
						|
  // Create Decl objects for each parameter, entrring them in the scope for
 | 
						|
  // binding to their use.
 | 
						|
 | 
						|
  // Insert the invisible arguments, self and _cmd!
 | 
						|
  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
 | 
						|
 | 
						|
  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
 | 
						|
  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
 | 
						|
 | 
						|
  // The ObjC parser requires parameter names so there's no need to check.
 | 
						|
  CheckParmsForFunctionDef(MDecl->parameters(),
 | 
						|
                           /*CheckParameterNames=*/false);
 | 
						|
 | 
						|
  // Introduce all of the other parameters into this scope.
 | 
						|
  for (auto *Param : MDecl->parameters()) {
 | 
						|
    if (!Param->isInvalidDecl() &&
 | 
						|
        getLangOpts().ObjCAutoRefCount &&
 | 
						|
        !HasExplicitOwnershipAttr(*this, Param))
 | 
						|
      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
 | 
						|
            Param->getType();
 | 
						|
 | 
						|
    if (Param->getIdentifier())
 | 
						|
      PushOnScopeChains(Param, FnBodyScope);
 | 
						|
  }
 | 
						|
 | 
						|
  // In ARC, disallow definition of retain/release/autorelease/retainCount
 | 
						|
  if (getLangOpts().ObjCAutoRefCount) {
 | 
						|
    switch (MDecl->getMethodFamily()) {
 | 
						|
    case OMF_retain:
 | 
						|
    case OMF_retainCount:
 | 
						|
    case OMF_release:
 | 
						|
    case OMF_autorelease:
 | 
						|
      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
 | 
						|
        << 0 << MDecl->getSelector();
 | 
						|
      break;
 | 
						|
 | 
						|
    case OMF_None:
 | 
						|
    case OMF_dealloc:
 | 
						|
    case OMF_finalize:
 | 
						|
    case OMF_alloc:
 | 
						|
    case OMF_init:
 | 
						|
    case OMF_mutableCopy:
 | 
						|
    case OMF_copy:
 | 
						|
    case OMF_new:
 | 
						|
    case OMF_self:
 | 
						|
    case OMF_initialize:
 | 
						|
    case OMF_performSelector:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Warn on deprecated methods under -Wdeprecated-implementations,
 | 
						|
  // and prepare for warning on missing super calls.
 | 
						|
  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
 | 
						|
    ObjCMethodDecl *IMD =
 | 
						|
      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
 | 
						|
 | 
						|
    if (IMD) {
 | 
						|
      ObjCImplDecl *ImplDeclOfMethodDef =
 | 
						|
        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
 | 
						|
      ObjCContainerDecl *ContDeclOfMethodDecl =
 | 
						|
        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
 | 
						|
      ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
 | 
						|
      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
 | 
						|
        ImplDeclOfMethodDecl = OID->getImplementation();
 | 
						|
      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
 | 
						|
        if (CD->IsClassExtension()) {
 | 
						|
          if (ObjCInterfaceDecl *OID = CD->getClassInterface())
 | 
						|
            ImplDeclOfMethodDecl = OID->getImplementation();
 | 
						|
        } else
 | 
						|
            ImplDeclOfMethodDecl = CD->getImplementation();
 | 
						|
      }
 | 
						|
      // No need to issue deprecated warning if deprecated mehod in class/category
 | 
						|
      // is being implemented in its own implementation (no overriding is involved).
 | 
						|
      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
 | 
						|
        DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
 | 
						|
    }
 | 
						|
 | 
						|
    if (MDecl->getMethodFamily() == OMF_init) {
 | 
						|
      if (MDecl->isDesignatedInitializerForTheInterface()) {
 | 
						|
        getCurFunction()->ObjCIsDesignatedInit = true;
 | 
						|
        getCurFunction()->ObjCWarnForNoDesignatedInitChain =
 | 
						|
            IC->getSuperClass() != nullptr;
 | 
						|
      } else if (IC->hasDesignatedInitializers()) {
 | 
						|
        getCurFunction()->ObjCIsSecondaryInit = true;
 | 
						|
        getCurFunction()->ObjCWarnForNoInitDelegation = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is "dealloc" or "finalize", set some bit here.
 | 
						|
    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
 | 
						|
    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
 | 
						|
    // Only do this if the current class actually has a superclass.
 | 
						|
    if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
 | 
						|
      ObjCMethodFamily Family = MDecl->getMethodFamily();
 | 
						|
      if (Family == OMF_dealloc) {
 | 
						|
        if (!(getLangOpts().ObjCAutoRefCount ||
 | 
						|
              getLangOpts().getGC() == LangOptions::GCOnly))
 | 
						|
          getCurFunction()->ObjCShouldCallSuper = true;
 | 
						|
 | 
						|
      } else if (Family == OMF_finalize) {
 | 
						|
        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
 | 
						|
          getCurFunction()->ObjCShouldCallSuper = true;
 | 
						|
 | 
						|
      } else {
 | 
						|
        const ObjCMethodDecl *SuperMethod =
 | 
						|
          SuperClass->lookupMethod(MDecl->getSelector(),
 | 
						|
                                   MDecl->isInstanceMethod());
 | 
						|
        getCurFunction()->ObjCShouldCallSuper =
 | 
						|
          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Callback to only accept typo corrections that are Objective-C classes.
 | 
						|
// If an ObjCInterfaceDecl* is given to the constructor, then the validation
 | 
						|
// function will reject corrections to that class.
 | 
						|
class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
 | 
						|
 public:
 | 
						|
  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
 | 
						|
  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
 | 
						|
      : CurrentIDecl(IDecl) {}
 | 
						|
 | 
						|
  bool ValidateCandidate(const TypoCorrection &candidate) override {
 | 
						|
    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
 | 
						|
    return ID && !declaresSameEntity(ID, CurrentIDecl);
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<CorrectionCandidateCallback> clone() override {
 | 
						|
    return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  ObjCInterfaceDecl *CurrentIDecl;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static void diagnoseUseOfProtocols(Sema &TheSema,
 | 
						|
                                   ObjCContainerDecl *CD,
 | 
						|
                                   ObjCProtocolDecl *const *ProtoRefs,
 | 
						|
                                   unsigned NumProtoRefs,
 | 
						|
                                   const SourceLocation *ProtoLocs) {
 | 
						|
  assert(ProtoRefs);
 | 
						|
  // Diagnose availability in the context of the ObjC container.
 | 
						|
  Sema::ContextRAII SavedContext(TheSema, CD);
 | 
						|
  for (unsigned i = 0; i < NumProtoRefs; ++i) {
 | 
						|
    (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
 | 
						|
                                    /*UnknownObjCClass=*/nullptr,
 | 
						|
                                    /*ObjCPropertyAccess=*/false,
 | 
						|
                                    /*AvoidPartialAvailabilityChecks=*/true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::
 | 
						|
ActOnSuperClassOfClassInterface(Scope *S,
 | 
						|
                                SourceLocation AtInterfaceLoc,
 | 
						|
                                ObjCInterfaceDecl *IDecl,
 | 
						|
                                IdentifierInfo *ClassName,
 | 
						|
                                SourceLocation ClassLoc,
 | 
						|
                                IdentifierInfo *SuperName,
 | 
						|
                                SourceLocation SuperLoc,
 | 
						|
                                ArrayRef<ParsedType> SuperTypeArgs,
 | 
						|
                                SourceRange SuperTypeArgsRange) {
 | 
						|
  // Check if a different kind of symbol declared in this scope.
 | 
						|
  NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
 | 
						|
                                         LookupOrdinaryName);
 | 
						|
 | 
						|
  if (!PrevDecl) {
 | 
						|
    // Try to correct for a typo in the superclass name without correcting
 | 
						|
    // to the class we're defining.
 | 
						|
    ObjCInterfaceValidatorCCC CCC(IDecl);
 | 
						|
    if (TypoCorrection Corrected = CorrectTypo(
 | 
						|
            DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
 | 
						|
            TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
 | 
						|
      diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
 | 
						|
                   << SuperName << ClassName);
 | 
						|
      PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (declaresSameEntity(PrevDecl, IDecl)) {
 | 
						|
    Diag(SuperLoc, diag::err_recursive_superclass)
 | 
						|
      << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
 | 
						|
    IDecl->setEndOfDefinitionLoc(ClassLoc);
 | 
						|
  } else {
 | 
						|
    ObjCInterfaceDecl *SuperClassDecl =
 | 
						|
    dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | 
						|
    QualType SuperClassType;
 | 
						|
 | 
						|
    // Diagnose classes that inherit from deprecated classes.
 | 
						|
    if (SuperClassDecl) {
 | 
						|
      (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
 | 
						|
      SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
 | 
						|
    }
 | 
						|
 | 
						|
    if (PrevDecl && !SuperClassDecl) {
 | 
						|
      // The previous declaration was not a class decl. Check if we have a
 | 
						|
      // typedef. If we do, get the underlying class type.
 | 
						|
      if (const TypedefNameDecl *TDecl =
 | 
						|
          dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
 | 
						|
        QualType T = TDecl->getUnderlyingType();
 | 
						|
        if (T->isObjCObjectType()) {
 | 
						|
          if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
 | 
						|
            SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
 | 
						|
            SuperClassType = Context.getTypeDeclType(TDecl);
 | 
						|
 | 
						|
            // This handles the following case:
 | 
						|
            // @interface NewI @end
 | 
						|
            // typedef NewI DeprI __attribute__((deprecated("blah")))
 | 
						|
            // @interface SI : DeprI /* warn here */ @end
 | 
						|
            (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // This handles the following case:
 | 
						|
      //
 | 
						|
      // typedef int SuperClass;
 | 
						|
      // @interface MyClass : SuperClass {} @end
 | 
						|
      //
 | 
						|
      if (!SuperClassDecl) {
 | 
						|
        Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) {
 | 
						|
      if (!SuperClassDecl)
 | 
						|
        Diag(SuperLoc, diag::err_undef_superclass)
 | 
						|
          << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
 | 
						|
      else if (RequireCompleteType(SuperLoc,
 | 
						|
                                   SuperClassType,
 | 
						|
                                   diag::err_forward_superclass,
 | 
						|
                                   SuperClassDecl->getDeclName(),
 | 
						|
                                   ClassName,
 | 
						|
                                   SourceRange(AtInterfaceLoc, ClassLoc))) {
 | 
						|
        SuperClassDecl = nullptr;
 | 
						|
        SuperClassType = QualType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (SuperClassType.isNull()) {
 | 
						|
      assert(!SuperClassDecl && "Failed to set SuperClassType?");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle type arguments on the superclass.
 | 
						|
    TypeSourceInfo *SuperClassTInfo = nullptr;
 | 
						|
    if (!SuperTypeArgs.empty()) {
 | 
						|
      TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
 | 
						|
                                        S,
 | 
						|
                                        SuperLoc,
 | 
						|
                                        CreateParsedType(SuperClassType,
 | 
						|
                                                         nullptr),
 | 
						|
                                        SuperTypeArgsRange.getBegin(),
 | 
						|
                                        SuperTypeArgs,
 | 
						|
                                        SuperTypeArgsRange.getEnd(),
 | 
						|
                                        SourceLocation(),
 | 
						|
                                        { },
 | 
						|
                                        { },
 | 
						|
                                        SourceLocation());
 | 
						|
      if (!fullSuperClassType.isUsable())
 | 
						|
        return;
 | 
						|
 | 
						|
      SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
 | 
						|
                                         &SuperClassTInfo);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!SuperClassTInfo) {
 | 
						|
      SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
 | 
						|
                                                         SuperLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    IDecl->setSuperClass(SuperClassTInfo);
 | 
						|
    IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
DeclResult Sema::actOnObjCTypeParam(Scope *S,
 | 
						|
                                    ObjCTypeParamVariance variance,
 | 
						|
                                    SourceLocation varianceLoc,
 | 
						|
                                    unsigned index,
 | 
						|
                                    IdentifierInfo *paramName,
 | 
						|
                                    SourceLocation paramLoc,
 | 
						|
                                    SourceLocation colonLoc,
 | 
						|
                                    ParsedType parsedTypeBound) {
 | 
						|
  // If there was an explicitly-provided type bound, check it.
 | 
						|
  TypeSourceInfo *typeBoundInfo = nullptr;
 | 
						|
  if (parsedTypeBound) {
 | 
						|
    // The type bound can be any Objective-C pointer type.
 | 
						|
    QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
 | 
						|
    if (typeBound->isObjCObjectPointerType()) {
 | 
						|
      // okay
 | 
						|
    } else if (typeBound->isObjCObjectType()) {
 | 
						|
      // The user forgot the * on an Objective-C pointer type, e.g.,
 | 
						|
      // "T : NSView".
 | 
						|
      SourceLocation starLoc = getLocForEndOfToken(
 | 
						|
                                 typeBoundInfo->getTypeLoc().getEndLoc());
 | 
						|
      Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
 | 
						|
           diag::err_objc_type_param_bound_missing_pointer)
 | 
						|
        << typeBound << paramName
 | 
						|
        << FixItHint::CreateInsertion(starLoc, " *");
 | 
						|
 | 
						|
      // Create a new type location builder so we can update the type
 | 
						|
      // location information we have.
 | 
						|
      TypeLocBuilder builder;
 | 
						|
      builder.pushFullCopy(typeBoundInfo->getTypeLoc());
 | 
						|
 | 
						|
      // Create the Objective-C pointer type.
 | 
						|
      typeBound = Context.getObjCObjectPointerType(typeBound);
 | 
						|
      ObjCObjectPointerTypeLoc newT
 | 
						|
        = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
 | 
						|
      newT.setStarLoc(starLoc);
 | 
						|
 | 
						|
      // Form the new type source information.
 | 
						|
      typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
 | 
						|
    } else {
 | 
						|
      // Not a valid type bound.
 | 
						|
      Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
 | 
						|
           diag::err_objc_type_param_bound_nonobject)
 | 
						|
        << typeBound << paramName;
 | 
						|
 | 
						|
      // Forget the bound; we'll default to id later.
 | 
						|
      typeBoundInfo = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Type bounds cannot have qualifiers (even indirectly) or explicit
 | 
						|
    // nullability.
 | 
						|
    if (typeBoundInfo) {
 | 
						|
      QualType typeBound = typeBoundInfo->getType();
 | 
						|
      TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
 | 
						|
      if (qual || typeBound.hasQualifiers()) {
 | 
						|
        bool diagnosed = false;
 | 
						|
        SourceRange rangeToRemove;
 | 
						|
        if (qual) {
 | 
						|
          if (auto attr = qual.getAs<AttributedTypeLoc>()) {
 | 
						|
            rangeToRemove = attr.getLocalSourceRange();
 | 
						|
            if (attr.getTypePtr()->getImmediateNullability()) {
 | 
						|
              Diag(attr.getBeginLoc(),
 | 
						|
                   diag::err_objc_type_param_bound_explicit_nullability)
 | 
						|
                  << paramName << typeBound
 | 
						|
                  << FixItHint::CreateRemoval(rangeToRemove);
 | 
						|
              diagnosed = true;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (!diagnosed) {
 | 
						|
          Diag(qual ? qual.getBeginLoc()
 | 
						|
                    : typeBoundInfo->getTypeLoc().getBeginLoc(),
 | 
						|
               diag::err_objc_type_param_bound_qualified)
 | 
						|
              << paramName << typeBound
 | 
						|
              << typeBound.getQualifiers().getAsString()
 | 
						|
              << FixItHint::CreateRemoval(rangeToRemove);
 | 
						|
        }
 | 
						|
 | 
						|
        // If the type bound has qualifiers other than CVR, we need to strip
 | 
						|
        // them or we'll probably assert later when trying to apply new
 | 
						|
        // qualifiers.
 | 
						|
        Qualifiers quals = typeBound.getQualifiers();
 | 
						|
        quals.removeCVRQualifiers();
 | 
						|
        if (!quals.empty()) {
 | 
						|
          typeBoundInfo =
 | 
						|
             Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there was no explicit type bound (or we removed it due to an error),
 | 
						|
  // use 'id' instead.
 | 
						|
  if (!typeBoundInfo) {
 | 
						|
    colonLoc = SourceLocation();
 | 
						|
    typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the type parameter.
 | 
						|
  return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
 | 
						|
                                   index, paramLoc, paramName, colonLoc,
 | 
						|
                                   typeBoundInfo);
 | 
						|
}
 | 
						|
 | 
						|
ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
 | 
						|
                                                SourceLocation lAngleLoc,
 | 
						|
                                                ArrayRef<Decl *> typeParamsIn,
 | 
						|
                                                SourceLocation rAngleLoc) {
 | 
						|
  // We know that the array only contains Objective-C type parameters.
 | 
						|
  ArrayRef<ObjCTypeParamDecl *>
 | 
						|
    typeParams(
 | 
						|
      reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
 | 
						|
      typeParamsIn.size());
 | 
						|
 | 
						|
  // Diagnose redeclarations of type parameters.
 | 
						|
  // We do this now because Objective-C type parameters aren't pushed into
 | 
						|
  // scope until later (after the instance variable block), but we want the
 | 
						|
  // diagnostics to occur right after we parse the type parameter list.
 | 
						|
  llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
 | 
						|
  for (auto typeParam : typeParams) {
 | 
						|
    auto known = knownParams.find(typeParam->getIdentifier());
 | 
						|
    if (known != knownParams.end()) {
 | 
						|
      Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
 | 
						|
        << typeParam->getIdentifier()
 | 
						|
        << SourceRange(known->second->getLocation());
 | 
						|
 | 
						|
      typeParam->setInvalidDecl();
 | 
						|
    } else {
 | 
						|
      knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
 | 
						|
 | 
						|
      // Push the type parameter into scope.
 | 
						|
      PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the parameter list.
 | 
						|
  return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
 | 
						|
  for (auto typeParam : *typeParamList) {
 | 
						|
    if (!typeParam->isInvalidDecl()) {
 | 
						|
      S->RemoveDecl(typeParam);
 | 
						|
      IdResolver.RemoveDecl(typeParam);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// The context in which an Objective-C type parameter list occurs, for use
 | 
						|
  /// in diagnostics.
 | 
						|
  enum class TypeParamListContext {
 | 
						|
    ForwardDeclaration,
 | 
						|
    Definition,
 | 
						|
    Category,
 | 
						|
    Extension
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Check consistency between two Objective-C type parameter lists, e.g.,
 | 
						|
/// between a category/extension and an \@interface or between an \@class and an
 | 
						|
/// \@interface.
 | 
						|
static bool checkTypeParamListConsistency(Sema &S,
 | 
						|
                                          ObjCTypeParamList *prevTypeParams,
 | 
						|
                                          ObjCTypeParamList *newTypeParams,
 | 
						|
                                          TypeParamListContext newContext) {
 | 
						|
  // If the sizes don't match, complain about that.
 | 
						|
  if (prevTypeParams->size() != newTypeParams->size()) {
 | 
						|
    SourceLocation diagLoc;
 | 
						|
    if (newTypeParams->size() > prevTypeParams->size()) {
 | 
						|
      diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
 | 
						|
    } else {
 | 
						|
      diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
 | 
						|
      << static_cast<unsigned>(newContext)
 | 
						|
      << (newTypeParams->size() > prevTypeParams->size())
 | 
						|
      << prevTypeParams->size()
 | 
						|
      << newTypeParams->size();
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Match up the type parameters.
 | 
						|
  for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
 | 
						|
    ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
 | 
						|
    ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
 | 
						|
 | 
						|
    // Check for consistency of the variance.
 | 
						|
    if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
 | 
						|
      if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
 | 
						|
          newContext != TypeParamListContext::Definition) {
 | 
						|
        // When the new type parameter is invariant and is not part
 | 
						|
        // of the definition, just propagate the variance.
 | 
						|
        newTypeParam->setVariance(prevTypeParam->getVariance());
 | 
						|
      } else if (prevTypeParam->getVariance()
 | 
						|
                   == ObjCTypeParamVariance::Invariant &&
 | 
						|
                 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
 | 
						|
                   cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
 | 
						|
                     ->getDefinition() == prevTypeParam->getDeclContext())) {
 | 
						|
        // When the old parameter is invariant and was not part of the
 | 
						|
        // definition, just ignore the difference because it doesn't
 | 
						|
        // matter.
 | 
						|
      } else {
 | 
						|
        {
 | 
						|
          // Diagnose the conflict and update the second declaration.
 | 
						|
          SourceLocation diagLoc = newTypeParam->getVarianceLoc();
 | 
						|
          if (diagLoc.isInvalid())
 | 
						|
            diagLoc = newTypeParam->getBeginLoc();
 | 
						|
 | 
						|
          auto diag = S.Diag(diagLoc,
 | 
						|
                             diag::err_objc_type_param_variance_conflict)
 | 
						|
                        << static_cast<unsigned>(newTypeParam->getVariance())
 | 
						|
                        << newTypeParam->getDeclName()
 | 
						|
                        << static_cast<unsigned>(prevTypeParam->getVariance())
 | 
						|
                        << prevTypeParam->getDeclName();
 | 
						|
          switch (prevTypeParam->getVariance()) {
 | 
						|
          case ObjCTypeParamVariance::Invariant:
 | 
						|
            diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
 | 
						|
            break;
 | 
						|
 | 
						|
          case ObjCTypeParamVariance::Covariant:
 | 
						|
          case ObjCTypeParamVariance::Contravariant: {
 | 
						|
            StringRef newVarianceStr
 | 
						|
               = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
 | 
						|
                   ? "__covariant"
 | 
						|
                   : "__contravariant";
 | 
						|
            if (newTypeParam->getVariance()
 | 
						|
                  == ObjCTypeParamVariance::Invariant) {
 | 
						|
              diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
 | 
						|
                                                 (newVarianceStr + " ").str());
 | 
						|
            } else {
 | 
						|
              diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
 | 
						|
                                               newVarianceStr);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
 | 
						|
          << prevTypeParam->getDeclName();
 | 
						|
 | 
						|
        // Override the variance.
 | 
						|
        newTypeParam->setVariance(prevTypeParam->getVariance());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the bound types match, there's nothing to do.
 | 
						|
    if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
 | 
						|
                              newTypeParam->getUnderlyingType()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the new type parameter's bound was explicit, complain about it being
 | 
						|
    // different from the original.
 | 
						|
    if (newTypeParam->hasExplicitBound()) {
 | 
						|
      SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
 | 
						|
                                    ->getTypeLoc().getSourceRange();
 | 
						|
      S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
 | 
						|
        << newTypeParam->getUnderlyingType()
 | 
						|
        << newTypeParam->getDeclName()
 | 
						|
        << prevTypeParam->hasExplicitBound()
 | 
						|
        << prevTypeParam->getUnderlyingType()
 | 
						|
        << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
 | 
						|
        << prevTypeParam->getDeclName()
 | 
						|
        << FixItHint::CreateReplacement(
 | 
						|
             newBoundRange,
 | 
						|
             prevTypeParam->getUnderlyingType().getAsString(
 | 
						|
               S.Context.getPrintingPolicy()));
 | 
						|
 | 
						|
      S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
 | 
						|
        << prevTypeParam->getDeclName();
 | 
						|
 | 
						|
      // Override the new type parameter's bound type with the previous type,
 | 
						|
      // so that it's consistent.
 | 
						|
      S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // The new type parameter got the implicit bound of 'id'. That's okay for
 | 
						|
    // categories and extensions (overwrite it later), but not for forward
 | 
						|
    // declarations and @interfaces, because those must be standalone.
 | 
						|
    if (newContext == TypeParamListContext::ForwardDeclaration ||
 | 
						|
        newContext == TypeParamListContext::Definition) {
 | 
						|
      // Diagnose this problem for forward declarations and definitions.
 | 
						|
      SourceLocation insertionLoc
 | 
						|
        = S.getLocForEndOfToken(newTypeParam->getLocation());
 | 
						|
      std::string newCode
 | 
						|
        = " : " + prevTypeParam->getUnderlyingType().getAsString(
 | 
						|
                    S.Context.getPrintingPolicy());
 | 
						|
      S.Diag(newTypeParam->getLocation(),
 | 
						|
             diag::err_objc_type_param_bound_missing)
 | 
						|
        << prevTypeParam->getUnderlyingType()
 | 
						|
        << newTypeParam->getDeclName()
 | 
						|
        << (newContext == TypeParamListContext::ForwardDeclaration)
 | 
						|
        << FixItHint::CreateInsertion(insertionLoc, newCode);
 | 
						|
 | 
						|
      S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
 | 
						|
        << prevTypeParam->getDeclName();
 | 
						|
    }
 | 
						|
 | 
						|
    // Update the new type parameter's bound to match the previous one.
 | 
						|
    S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ObjCInterfaceDecl *Sema::ActOnStartClassInterface(
 | 
						|
    Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
 | 
						|
    SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
 | 
						|
    IdentifierInfo *SuperName, SourceLocation SuperLoc,
 | 
						|
    ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
 | 
						|
    Decl *const *ProtoRefs, unsigned NumProtoRefs,
 | 
						|
    const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
 | 
						|
    const ParsedAttributesView &AttrList) {
 | 
						|
  assert(ClassName && "Missing class identifier");
 | 
						|
 | 
						|
  // Check for another declaration kind with the same name.
 | 
						|
  NamedDecl *PrevDecl =
 | 
						|
      LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
 | 
						|
                       forRedeclarationInCurContext());
 | 
						|
 | 
						|
  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | 
						|
    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
 | 
						|
    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a declaration to describe this @interface.
 | 
						|
  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | 
						|
 | 
						|
  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
 | 
						|
    // A previous decl with a different name is because of
 | 
						|
    // @compatibility_alias, for example:
 | 
						|
    // \code
 | 
						|
    //   @class NewImage;
 | 
						|
    //   @compatibility_alias OldImage NewImage;
 | 
						|
    // \endcode
 | 
						|
    // A lookup for 'OldImage' will return the 'NewImage' decl.
 | 
						|
    //
 | 
						|
    // In such a case use the real declaration name, instead of the alias one,
 | 
						|
    // otherwise we will break IdentifierResolver and redecls-chain invariants.
 | 
						|
    // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
 | 
						|
    // has been aliased.
 | 
						|
    ClassName = PrevIDecl->getIdentifier();
 | 
						|
  }
 | 
						|
 | 
						|
  // If there was a forward declaration with type parameters, check
 | 
						|
  // for consistency.
 | 
						|
  if (PrevIDecl) {
 | 
						|
    if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
 | 
						|
      if (typeParamList) {
 | 
						|
        // Both have type parameter lists; check for consistency.
 | 
						|
        if (checkTypeParamListConsistency(*this, prevTypeParamList,
 | 
						|
                                          typeParamList,
 | 
						|
                                          TypeParamListContext::Definition)) {
 | 
						|
          typeParamList = nullptr;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
 | 
						|
          << ClassName;
 | 
						|
        Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
 | 
						|
          << ClassName;
 | 
						|
 | 
						|
        // Clone the type parameter list.
 | 
						|
        SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
 | 
						|
        for (auto typeParam : *prevTypeParamList) {
 | 
						|
          clonedTypeParams.push_back(
 | 
						|
            ObjCTypeParamDecl::Create(
 | 
						|
              Context,
 | 
						|
              CurContext,
 | 
						|
              typeParam->getVariance(),
 | 
						|
              SourceLocation(),
 | 
						|
              typeParam->getIndex(),
 | 
						|
              SourceLocation(),
 | 
						|
              typeParam->getIdentifier(),
 | 
						|
              SourceLocation(),
 | 
						|
              Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
 | 
						|
        }
 | 
						|
 | 
						|
        typeParamList = ObjCTypeParamList::create(Context,
 | 
						|
                                                  SourceLocation(),
 | 
						|
                                                  clonedTypeParams,
 | 
						|
                                                  SourceLocation());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCInterfaceDecl *IDecl
 | 
						|
    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
 | 
						|
                                typeParamList, PrevIDecl, ClassLoc);
 | 
						|
  if (PrevIDecl) {
 | 
						|
    // Class already seen. Was it a definition?
 | 
						|
    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
 | 
						|
      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
 | 
						|
        << PrevIDecl->getDeclName();
 | 
						|
      Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
      IDecl->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ProcessDeclAttributeList(TUScope, IDecl, AttrList);
 | 
						|
  AddPragmaAttributes(TUScope, IDecl);
 | 
						|
 | 
						|
  // Merge attributes from previous declarations.
 | 
						|
  if (PrevIDecl)
 | 
						|
    mergeDeclAttributes(IDecl, PrevIDecl);
 | 
						|
 | 
						|
  PushOnScopeChains(IDecl, TUScope);
 | 
						|
 | 
						|
  // Start the definition of this class. If we're in a redefinition case, there
 | 
						|
  // may already be a definition, so we'll end up adding to it.
 | 
						|
  if (!IDecl->hasDefinition())
 | 
						|
    IDecl->startDefinition();
 | 
						|
 | 
						|
  if (SuperName) {
 | 
						|
    // Diagnose availability in the context of the @interface.
 | 
						|
    ContextRAII SavedContext(*this, IDecl);
 | 
						|
 | 
						|
    ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
 | 
						|
                                    ClassName, ClassLoc,
 | 
						|
                                    SuperName, SuperLoc, SuperTypeArgs,
 | 
						|
                                    SuperTypeArgsRange);
 | 
						|
  } else { // we have a root class.
 | 
						|
    IDecl->setEndOfDefinitionLoc(ClassLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check then save referenced protocols.
 | 
						|
  if (NumProtoRefs) {
 | 
						|
    diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
 | 
						|
                           NumProtoRefs, ProtoLocs);
 | 
						|
    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
 | 
						|
                           ProtoLocs, Context);
 | 
						|
    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  CheckObjCDeclScope(IDecl);
 | 
						|
  ActOnObjCContainerStartDefinition(IDecl);
 | 
						|
  return IDecl;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTypedefedProtocols - this action finds protocol list as part of the
 | 
						|
/// typedef'ed use for a qualified super class and adds them to the list
 | 
						|
/// of the protocols.
 | 
						|
void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
 | 
						|
                                  SmallVectorImpl<SourceLocation> &ProtocolLocs,
 | 
						|
                                   IdentifierInfo *SuperName,
 | 
						|
                                   SourceLocation SuperLoc) {
 | 
						|
  if (!SuperName)
 | 
						|
    return;
 | 
						|
  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
 | 
						|
                                      LookupOrdinaryName);
 | 
						|
  if (!IDecl)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
 | 
						|
    QualType T = TDecl->getUnderlyingType();
 | 
						|
    if (T->isObjCObjectType())
 | 
						|
      if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
 | 
						|
        ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
 | 
						|
        // FIXME: Consider whether this should be an invalid loc since the loc
 | 
						|
        // is not actually pointing to a protocol name reference but to the
 | 
						|
        // typedef reference. Note that the base class name loc is also pointing
 | 
						|
        // at the typedef.
 | 
						|
        ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCompatibilityAlias - this action is called after complete parsing of
 | 
						|
/// a \@compatibility_alias declaration. It sets up the alias relationships.
 | 
						|
Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
 | 
						|
                                    IdentifierInfo *AliasName,
 | 
						|
                                    SourceLocation AliasLocation,
 | 
						|
                                    IdentifierInfo *ClassName,
 | 
						|
                                    SourceLocation ClassLocation) {
 | 
						|
  // Look for previous declaration of alias name
 | 
						|
  NamedDecl *ADecl =
 | 
						|
      LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
 | 
						|
                       forRedeclarationInCurContext());
 | 
						|
  if (ADecl) {
 | 
						|
    Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
 | 
						|
    Diag(ADecl->getLocation(), diag::note_previous_declaration);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  // Check for class declaration
 | 
						|
  NamedDecl *CDeclU =
 | 
						|
      LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
 | 
						|
                       forRedeclarationInCurContext());
 | 
						|
  if (const TypedefNameDecl *TDecl =
 | 
						|
        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
 | 
						|
    QualType T = TDecl->getUnderlyingType();
 | 
						|
    if (T->isObjCObjectType()) {
 | 
						|
      if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
 | 
						|
        ClassName = IDecl->getIdentifier();
 | 
						|
        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
 | 
						|
                                  LookupOrdinaryName,
 | 
						|
                                  forRedeclarationInCurContext());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
 | 
						|
  if (!CDecl) {
 | 
						|
    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
 | 
						|
    if (CDeclU)
 | 
						|
      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Everything checked out, instantiate a new alias declaration AST.
 | 
						|
  ObjCCompatibleAliasDecl *AliasDecl =
 | 
						|
    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
 | 
						|
 | 
						|
  if (!CheckObjCDeclScope(AliasDecl))
 | 
						|
    PushOnScopeChains(AliasDecl, TUScope);
 | 
						|
 | 
						|
  return AliasDecl;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
 | 
						|
  IdentifierInfo *PName,
 | 
						|
  SourceLocation &Ploc, SourceLocation PrevLoc,
 | 
						|
  const ObjCList<ObjCProtocolDecl> &PList) {
 | 
						|
 | 
						|
  bool res = false;
 | 
						|
  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
 | 
						|
       E = PList.end(); I != E; ++I) {
 | 
						|
    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
 | 
						|
                                                 Ploc)) {
 | 
						|
      if (PDecl->getIdentifier() == PName) {
 | 
						|
        Diag(Ploc, diag::err_protocol_has_circular_dependency);
 | 
						|
        Diag(PrevLoc, diag::note_previous_definition);
 | 
						|
        res = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!PDecl->hasDefinition())
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
 | 
						|
            PDecl->getLocation(), PDecl->getReferencedProtocols()))
 | 
						|
        res = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
ObjCProtocolDecl *Sema::ActOnStartProtocolInterface(
 | 
						|
    SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
 | 
						|
    SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
 | 
						|
    const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
 | 
						|
    const ParsedAttributesView &AttrList) {
 | 
						|
  bool err = false;
 | 
						|
  // FIXME: Deal with AttrList.
 | 
						|
  assert(ProtocolName && "Missing protocol identifier");
 | 
						|
  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
 | 
						|
                                              forRedeclarationInCurContext());
 | 
						|
  ObjCProtocolDecl *PDecl = nullptr;
 | 
						|
  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
 | 
						|
    // If we already have a definition, complain.
 | 
						|
    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
 | 
						|
    Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
 | 
						|
    // Create a new protocol that is completely distinct from previous
 | 
						|
    // declarations, and do not make this protocol available for name lookup.
 | 
						|
    // That way, we'll end up completely ignoring the duplicate.
 | 
						|
    // FIXME: Can we turn this into an error?
 | 
						|
    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
 | 
						|
                                     ProtocolLoc, AtProtoInterfaceLoc,
 | 
						|
                                     /*PrevDecl=*/nullptr);
 | 
						|
 | 
						|
    // If we are using modules, add the decl to the context in order to
 | 
						|
    // serialize something meaningful.
 | 
						|
    if (getLangOpts().Modules)
 | 
						|
      PushOnScopeChains(PDecl, TUScope);
 | 
						|
    PDecl->startDefinition();
 | 
						|
  } else {
 | 
						|
    if (PrevDecl) {
 | 
						|
      // Check for circular dependencies among protocol declarations. This can
 | 
						|
      // only happen if this protocol was forward-declared.
 | 
						|
      ObjCList<ObjCProtocolDecl> PList;
 | 
						|
      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
 | 
						|
      err = CheckForwardProtocolDeclarationForCircularDependency(
 | 
						|
              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the new declaration.
 | 
						|
    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
 | 
						|
                                     ProtocolLoc, AtProtoInterfaceLoc,
 | 
						|
                                     /*PrevDecl=*/PrevDecl);
 | 
						|
 | 
						|
    PushOnScopeChains(PDecl, TUScope);
 | 
						|
    PDecl->startDefinition();
 | 
						|
  }
 | 
						|
 | 
						|
  ProcessDeclAttributeList(TUScope, PDecl, AttrList);
 | 
						|
  AddPragmaAttributes(TUScope, PDecl);
 | 
						|
 | 
						|
  // Merge attributes from previous declarations.
 | 
						|
  if (PrevDecl)
 | 
						|
    mergeDeclAttributes(PDecl, PrevDecl);
 | 
						|
 | 
						|
  if (!err && NumProtoRefs ) {
 | 
						|
    /// Check then save referenced protocols.
 | 
						|
    diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
 | 
						|
                           NumProtoRefs, ProtoLocs);
 | 
						|
    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
 | 
						|
                           ProtoLocs, Context);
 | 
						|
  }
 | 
						|
 | 
						|
  CheckObjCDeclScope(PDecl);
 | 
						|
  ActOnObjCContainerStartDefinition(PDecl);
 | 
						|
  return PDecl;
 | 
						|
}
 | 
						|
 | 
						|
static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
 | 
						|
                                          ObjCProtocolDecl *&UndefinedProtocol) {
 | 
						|
  if (!PDecl->hasDefinition() ||
 | 
						|
      !PDecl->getDefinition()->isUnconditionallyVisible()) {
 | 
						|
    UndefinedProtocol = PDecl;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto *PI : PDecl->protocols())
 | 
						|
    if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
 | 
						|
      UndefinedProtocol = PI;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FindProtocolDeclaration - This routine looks up protocols and
 | 
						|
/// issues an error if they are not declared. It returns list of
 | 
						|
/// protocol declarations in its 'Protocols' argument.
 | 
						|
void
 | 
						|
Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
 | 
						|
                              ArrayRef<IdentifierLocPair> ProtocolId,
 | 
						|
                              SmallVectorImpl<Decl *> &Protocols) {
 | 
						|
  for (const IdentifierLocPair &Pair : ProtocolId) {
 | 
						|
    ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
 | 
						|
    if (!PDecl) {
 | 
						|
      DeclFilterCCC<ObjCProtocolDecl> CCC{};
 | 
						|
      TypoCorrection Corrected = CorrectTypo(
 | 
						|
          DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
 | 
						|
          TUScope, nullptr, CCC, CTK_ErrorRecovery);
 | 
						|
      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
 | 
						|
        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
 | 
						|
                                    << Pair.first);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PDecl) {
 | 
						|
      Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // If this is a forward protocol declaration, get its definition.
 | 
						|
    if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
 | 
						|
      PDecl = PDecl->getDefinition();
 | 
						|
 | 
						|
    // For an objc container, delay protocol reference checking until after we
 | 
						|
    // can set the objc decl as the availability context, otherwise check now.
 | 
						|
    if (!ForObjCContainer) {
 | 
						|
      (void)DiagnoseUseOfDecl(PDecl, Pair.second);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a forward declaration and we are supposed to warn in this
 | 
						|
    // case, do it.
 | 
						|
    // FIXME: Recover nicely in the hidden case.
 | 
						|
    ObjCProtocolDecl *UndefinedProtocol;
 | 
						|
 | 
						|
    if (WarnOnDeclarations &&
 | 
						|
        NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
 | 
						|
      Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
 | 
						|
      Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
 | 
						|
        << UndefinedProtocol;
 | 
						|
    }
 | 
						|
    Protocols.push_back(PDecl);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
// Callback to only accept typo corrections that are either
 | 
						|
// Objective-C protocols or valid Objective-C type arguments.
 | 
						|
class ObjCTypeArgOrProtocolValidatorCCC final
 | 
						|
    : public CorrectionCandidateCallback {
 | 
						|
  ASTContext &Context;
 | 
						|
  Sema::LookupNameKind LookupKind;
 | 
						|
 public:
 | 
						|
  ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
 | 
						|
                                    Sema::LookupNameKind lookupKind)
 | 
						|
    : Context(context), LookupKind(lookupKind) { }
 | 
						|
 | 
						|
  bool ValidateCandidate(const TypoCorrection &candidate) override {
 | 
						|
    // If we're allowed to find protocols and we have a protocol, accept it.
 | 
						|
    if (LookupKind != Sema::LookupOrdinaryName) {
 | 
						|
      if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we're allowed to find type names and we have one, accept it.
 | 
						|
    if (LookupKind != Sema::LookupObjCProtocolName) {
 | 
						|
      // If we have a type declaration, we might accept this result.
 | 
						|
      if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
 | 
						|
        // If we found a tag declaration outside of C++, skip it. This
 | 
						|
        // can happy because we look for any name when there is no
 | 
						|
        // bias to protocol or type names.
 | 
						|
        if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
 | 
						|
          return false;
 | 
						|
 | 
						|
        // Make sure the type is something we would accept as a type
 | 
						|
        // argument.
 | 
						|
        auto type = Context.getTypeDeclType(typeDecl);
 | 
						|
        if (type->isObjCObjectPointerType() ||
 | 
						|
            type->isBlockPointerType() ||
 | 
						|
            type->isDependentType() ||
 | 
						|
            type->isObjCObjectType())
 | 
						|
          return true;
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we have an Objective-C class type, accept it; there will
 | 
						|
      // be another fix to add the '*'.
 | 
						|
      if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
 | 
						|
        return true;
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<CorrectionCandidateCallback> clone() override {
 | 
						|
    return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
 | 
						|
                                        SourceLocation ProtocolLoc,
 | 
						|
                                        IdentifierInfo *TypeArgId,
 | 
						|
                                        SourceLocation TypeArgLoc,
 | 
						|
                                        bool SelectProtocolFirst) {
 | 
						|
  Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
 | 
						|
      << SelectProtocolFirst << TypeArgId << ProtocolId
 | 
						|
      << SourceRange(ProtocolLoc);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
 | 
						|
       Scope *S,
 | 
						|
       ParsedType baseType,
 | 
						|
       SourceLocation lAngleLoc,
 | 
						|
       ArrayRef<IdentifierInfo *> identifiers,
 | 
						|
       ArrayRef<SourceLocation> identifierLocs,
 | 
						|
       SourceLocation rAngleLoc,
 | 
						|
       SourceLocation &typeArgsLAngleLoc,
 | 
						|
       SmallVectorImpl<ParsedType> &typeArgs,
 | 
						|
       SourceLocation &typeArgsRAngleLoc,
 | 
						|
       SourceLocation &protocolLAngleLoc,
 | 
						|
       SmallVectorImpl<Decl *> &protocols,
 | 
						|
       SourceLocation &protocolRAngleLoc,
 | 
						|
       bool warnOnIncompleteProtocols) {
 | 
						|
  // Local function that updates the declaration specifiers with
 | 
						|
  // protocol information.
 | 
						|
  unsigned numProtocolsResolved = 0;
 | 
						|
  auto resolvedAsProtocols = [&] {
 | 
						|
    assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
 | 
						|
 | 
						|
    // Determine whether the base type is a parameterized class, in
 | 
						|
    // which case we want to warn about typos such as
 | 
						|
    // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
 | 
						|
    ObjCInterfaceDecl *baseClass = nullptr;
 | 
						|
    QualType base = GetTypeFromParser(baseType, nullptr);
 | 
						|
    bool allAreTypeNames = false;
 | 
						|
    SourceLocation firstClassNameLoc;
 | 
						|
    if (!base.isNull()) {
 | 
						|
      if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
 | 
						|
        baseClass = objcObjectType->getInterface();
 | 
						|
        if (baseClass) {
 | 
						|
          if (auto typeParams = baseClass->getTypeParamList()) {
 | 
						|
            if (typeParams->size() == numProtocolsResolved) {
 | 
						|
              // Note that we should be looking for type names, too.
 | 
						|
              allAreTypeNames = true;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
 | 
						|
      ObjCProtocolDecl *&proto
 | 
						|
        = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
 | 
						|
      // For an objc container, delay protocol reference checking until after we
 | 
						|
      // can set the objc decl as the availability context, otherwise check now.
 | 
						|
      if (!warnOnIncompleteProtocols) {
 | 
						|
        (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is a forward protocol declaration, get its definition.
 | 
						|
      if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
 | 
						|
        proto = proto->getDefinition();
 | 
						|
 | 
						|
      // If this is a forward declaration and we are supposed to warn in this
 | 
						|
      // case, do it.
 | 
						|
      // FIXME: Recover nicely in the hidden case.
 | 
						|
      ObjCProtocolDecl *forwardDecl = nullptr;
 | 
						|
      if (warnOnIncompleteProtocols &&
 | 
						|
          NestedProtocolHasNoDefinition(proto, forwardDecl)) {
 | 
						|
        Diag(identifierLocs[i], diag::warn_undef_protocolref)
 | 
						|
          << proto->getDeclName();
 | 
						|
        Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
 | 
						|
          << forwardDecl;
 | 
						|
      }
 | 
						|
 | 
						|
      // If everything this far has been a type name (and we care
 | 
						|
      // about such things), check whether this name refers to a type
 | 
						|
      // as well.
 | 
						|
      if (allAreTypeNames) {
 | 
						|
        if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
 | 
						|
                                          LookupOrdinaryName)) {
 | 
						|
          if (isa<ObjCInterfaceDecl>(decl)) {
 | 
						|
            if (firstClassNameLoc.isInvalid())
 | 
						|
              firstClassNameLoc = identifierLocs[i];
 | 
						|
          } else if (!isa<TypeDecl>(decl)) {
 | 
						|
            // Not a type.
 | 
						|
            allAreTypeNames = false;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          allAreTypeNames = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // All of the protocols listed also have type names, and at least
 | 
						|
    // one is an Objective-C class name. Check whether all of the
 | 
						|
    // protocol conformances are declared by the base class itself, in
 | 
						|
    // which case we warn.
 | 
						|
    if (allAreTypeNames && firstClassNameLoc.isValid()) {
 | 
						|
      llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
 | 
						|
      Context.CollectInheritedProtocols(baseClass, knownProtocols);
 | 
						|
      bool allProtocolsDeclared = true;
 | 
						|
      for (auto proto : protocols) {
 | 
						|
        if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
 | 
						|
          allProtocolsDeclared = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (allProtocolsDeclared) {
 | 
						|
        Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
 | 
						|
          << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
 | 
						|
          << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
 | 
						|
                                        " *");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    protocolLAngleLoc = lAngleLoc;
 | 
						|
    protocolRAngleLoc = rAngleLoc;
 | 
						|
    assert(protocols.size() == identifierLocs.size());
 | 
						|
  };
 | 
						|
 | 
						|
  // Attempt to resolve all of the identifiers as protocols.
 | 
						|
  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
 | 
						|
    ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
 | 
						|
    protocols.push_back(proto);
 | 
						|
    if (proto)
 | 
						|
      ++numProtocolsResolved;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all of the names were protocols, these were protocol qualifiers.
 | 
						|
  if (numProtocolsResolved == identifiers.size())
 | 
						|
    return resolvedAsProtocols();
 | 
						|
 | 
						|
  // Attempt to resolve all of the identifiers as type names or
 | 
						|
  // Objective-C class names. The latter is technically ill-formed,
 | 
						|
  // but is probably something like \c NSArray<NSView *> missing the
 | 
						|
  // \c*.
 | 
						|
  typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
 | 
						|
  SmallVector<TypeOrClassDecl, 4> typeDecls;
 | 
						|
  unsigned numTypeDeclsResolved = 0;
 | 
						|
  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
 | 
						|
    NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
 | 
						|
                                       LookupOrdinaryName);
 | 
						|
    if (!decl) {
 | 
						|
      typeDecls.push_back(TypeOrClassDecl());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
 | 
						|
      typeDecls.push_back(typeDecl);
 | 
						|
      ++numTypeDeclsResolved;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
 | 
						|
      typeDecls.push_back(objcClass);
 | 
						|
      ++numTypeDeclsResolved;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    typeDecls.push_back(TypeOrClassDecl());
 | 
						|
  }
 | 
						|
 | 
						|
  AttributeFactory attrFactory;
 | 
						|
 | 
						|
  // Local function that forms a reference to the given type or
 | 
						|
  // Objective-C class declaration.
 | 
						|
  auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
 | 
						|
                                -> TypeResult {
 | 
						|
    // Form declaration specifiers. They simply refer to the type.
 | 
						|
    DeclSpec DS(attrFactory);
 | 
						|
    const char* prevSpec; // unused
 | 
						|
    unsigned diagID; // unused
 | 
						|
    QualType type;
 | 
						|
    if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
 | 
						|
      type = Context.getTypeDeclType(actualTypeDecl);
 | 
						|
    else
 | 
						|
      type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
 | 
						|
    TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
 | 
						|
    ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
 | 
						|
    DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
 | 
						|
                       parsedType, Context.getPrintingPolicy());
 | 
						|
    // Use the identifier location for the type source range.
 | 
						|
    DS.SetRangeStart(loc);
 | 
						|
    DS.SetRangeEnd(loc);
 | 
						|
 | 
						|
    // Form the declarator.
 | 
						|
    Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
 | 
						|
 | 
						|
    // If we have a typedef of an Objective-C class type that is missing a '*',
 | 
						|
    // add the '*'.
 | 
						|
    if (type->getAs<ObjCInterfaceType>()) {
 | 
						|
      SourceLocation starLoc = getLocForEndOfToken(loc);
 | 
						|
      D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
 | 
						|
                                                SourceLocation(),
 | 
						|
                                                SourceLocation(),
 | 
						|
                                                SourceLocation(),
 | 
						|
                                                SourceLocation(),
 | 
						|
                                                SourceLocation()),
 | 
						|
                                                starLoc);
 | 
						|
 | 
						|
      // Diagnose the missing '*'.
 | 
						|
      Diag(loc, diag::err_objc_type_arg_missing_star)
 | 
						|
        << type
 | 
						|
        << FixItHint::CreateInsertion(starLoc, " *");
 | 
						|
    }
 | 
						|
 | 
						|
    // Convert this to a type.
 | 
						|
    return ActOnTypeName(S, D);
 | 
						|
  };
 | 
						|
 | 
						|
  // Local function that updates the declaration specifiers with
 | 
						|
  // type argument information.
 | 
						|
  auto resolvedAsTypeDecls = [&] {
 | 
						|
    // We did not resolve these as protocols.
 | 
						|
    protocols.clear();
 | 
						|
 | 
						|
    assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
 | 
						|
    // Map type declarations to type arguments.
 | 
						|
    for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
 | 
						|
      // Map type reference to a type.
 | 
						|
      TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
 | 
						|
      if (!type.isUsable()) {
 | 
						|
        typeArgs.clear();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      typeArgs.push_back(type.get());
 | 
						|
    }
 | 
						|
 | 
						|
    typeArgsLAngleLoc = lAngleLoc;
 | 
						|
    typeArgsRAngleLoc = rAngleLoc;
 | 
						|
  };
 | 
						|
 | 
						|
  // If all of the identifiers can be resolved as type names or
 | 
						|
  // Objective-C class names, we have type arguments.
 | 
						|
  if (numTypeDeclsResolved == identifiers.size())
 | 
						|
    return resolvedAsTypeDecls();
 | 
						|
 | 
						|
  // Error recovery: some names weren't found, or we have a mix of
 | 
						|
  // type and protocol names. Go resolve all of the unresolved names
 | 
						|
  // and complain if we can't find a consistent answer.
 | 
						|
  LookupNameKind lookupKind = LookupAnyName;
 | 
						|
  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
 | 
						|
    // If we already have a protocol or type. Check whether it is the
 | 
						|
    // right thing.
 | 
						|
    if (protocols[i] || typeDecls[i]) {
 | 
						|
      // If we haven't figured out whether we want types or protocols
 | 
						|
      // yet, try to figure it out from this name.
 | 
						|
      if (lookupKind == LookupAnyName) {
 | 
						|
        // If this name refers to both a protocol and a type (e.g., \c
 | 
						|
        // NSObject), don't conclude anything yet.
 | 
						|
        if (protocols[i] && typeDecls[i])
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Otherwise, let this name decide whether we'll be correcting
 | 
						|
        // toward types or protocols.
 | 
						|
        lookupKind = protocols[i] ? LookupObjCProtocolName
 | 
						|
                                  : LookupOrdinaryName;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we want protocols and we have a protocol, there's nothing
 | 
						|
      // more to do.
 | 
						|
      if (lookupKind == LookupObjCProtocolName && protocols[i])
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If we want types and we have a type declaration, there's
 | 
						|
      // nothing more to do.
 | 
						|
      if (lookupKind == LookupOrdinaryName && typeDecls[i])
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We have a conflict: some names refer to protocols and others
 | 
						|
      // refer to types.
 | 
						|
      DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
 | 
						|
                                   identifiers[i], identifierLocs[i],
 | 
						|
                                   protocols[i] != nullptr);
 | 
						|
 | 
						|
      protocols.clear();
 | 
						|
      typeArgs.clear();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Perform typo correction on the name.
 | 
						|
    ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
 | 
						|
    TypoCorrection corrected =
 | 
						|
        CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
 | 
						|
                    lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
 | 
						|
    if (corrected) {
 | 
						|
      // Did we find a protocol?
 | 
						|
      if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
 | 
						|
        diagnoseTypo(corrected,
 | 
						|
                     PDiag(diag::err_undeclared_protocol_suggest)
 | 
						|
                       << identifiers[i]);
 | 
						|
        lookupKind = LookupObjCProtocolName;
 | 
						|
        protocols[i] = proto;
 | 
						|
        ++numProtocolsResolved;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Did we find a type?
 | 
						|
      if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
 | 
						|
        diagnoseTypo(corrected,
 | 
						|
                     PDiag(diag::err_unknown_typename_suggest)
 | 
						|
                       << identifiers[i]);
 | 
						|
        lookupKind = LookupOrdinaryName;
 | 
						|
        typeDecls[i] = typeDecl;
 | 
						|
        ++numTypeDeclsResolved;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Did we find an Objective-C class?
 | 
						|
      if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
 | 
						|
        diagnoseTypo(corrected,
 | 
						|
                     PDiag(diag::err_unknown_type_or_class_name_suggest)
 | 
						|
                       << identifiers[i] << true);
 | 
						|
        lookupKind = LookupOrdinaryName;
 | 
						|
        typeDecls[i] = objcClass;
 | 
						|
        ++numTypeDeclsResolved;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // We couldn't find anything.
 | 
						|
    Diag(identifierLocs[i],
 | 
						|
         (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
 | 
						|
          : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
 | 
						|
          : diag::err_unknown_typename))
 | 
						|
      << identifiers[i];
 | 
						|
    protocols.clear();
 | 
						|
    typeArgs.clear();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all of the names were (corrected to) protocols, these were
 | 
						|
  // protocol qualifiers.
 | 
						|
  if (numProtocolsResolved == identifiers.size())
 | 
						|
    return resolvedAsProtocols();
 | 
						|
 | 
						|
  // Otherwise, all of the names were (corrected to) types.
 | 
						|
  assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
 | 
						|
  return resolvedAsTypeDecls();
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
 | 
						|
/// a class method in its extension.
 | 
						|
///
 | 
						|
void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
 | 
						|
                                            ObjCInterfaceDecl *ID) {
 | 
						|
  if (!ID)
 | 
						|
    return;  // Possibly due to previous error
 | 
						|
 | 
						|
  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
 | 
						|
  for (auto *MD : ID->methods())
 | 
						|
    MethodMap[MD->getSelector()] = MD;
 | 
						|
 | 
						|
  if (MethodMap.empty())
 | 
						|
    return;
 | 
						|
  for (const auto *Method : CAT->methods()) {
 | 
						|
    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
 | 
						|
    if (PrevMethod &&
 | 
						|
        (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
 | 
						|
        !MatchTwoMethodDeclarations(Method, PrevMethod)) {
 | 
						|
      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | 
						|
            << Method->getDeclName();
 | 
						|
      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
 | 
						|
Sema::DeclGroupPtrTy
 | 
						|
Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
 | 
						|
                                      ArrayRef<IdentifierLocPair> IdentList,
 | 
						|
                                      const ParsedAttributesView &attrList) {
 | 
						|
  SmallVector<Decl *, 8> DeclsInGroup;
 | 
						|
  for (const IdentifierLocPair &IdentPair : IdentList) {
 | 
						|
    IdentifierInfo *Ident = IdentPair.first;
 | 
						|
    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
 | 
						|
                                                forRedeclarationInCurContext());
 | 
						|
    ObjCProtocolDecl *PDecl
 | 
						|
      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
 | 
						|
                                 IdentPair.second, AtProtocolLoc,
 | 
						|
                                 PrevDecl);
 | 
						|
 | 
						|
    PushOnScopeChains(PDecl, TUScope);
 | 
						|
    CheckObjCDeclScope(PDecl);
 | 
						|
 | 
						|
    ProcessDeclAttributeList(TUScope, PDecl, attrList);
 | 
						|
    AddPragmaAttributes(TUScope, PDecl);
 | 
						|
 | 
						|
    if (PrevDecl)
 | 
						|
      mergeDeclAttributes(PDecl, PrevDecl);
 | 
						|
 | 
						|
    DeclsInGroup.push_back(PDecl);
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildDeclaratorGroup(DeclsInGroup);
 | 
						|
}
 | 
						|
 | 
						|
ObjCCategoryDecl *Sema::ActOnStartCategoryInterface(
 | 
						|
    SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
 | 
						|
    SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
 | 
						|
    IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
 | 
						|
    Decl *const *ProtoRefs, unsigned NumProtoRefs,
 | 
						|
    const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
 | 
						|
    const ParsedAttributesView &AttrList) {
 | 
						|
  ObjCCategoryDecl *CDecl;
 | 
						|
  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
 | 
						|
 | 
						|
  /// Check that class of this category is already completely declared.
 | 
						|
 | 
						|
  if (!IDecl
 | 
						|
      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
 | 
						|
                             diag::err_category_forward_interface,
 | 
						|
                             CategoryName == nullptr)) {
 | 
						|
    // Create an invalid ObjCCategoryDecl to serve as context for
 | 
						|
    // the enclosing method declarations.  We mark the decl invalid
 | 
						|
    // to make it clear that this isn't a valid AST.
 | 
						|
    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
 | 
						|
                                     ClassLoc, CategoryLoc, CategoryName,
 | 
						|
                                     IDecl, typeParamList);
 | 
						|
    CDecl->setInvalidDecl();
 | 
						|
    CurContext->addDecl(CDecl);
 | 
						|
 | 
						|
    if (!IDecl)
 | 
						|
      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
 | 
						|
    ActOnObjCContainerStartDefinition(CDecl);
 | 
						|
    return CDecl;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CategoryName && IDecl->getImplementation()) {
 | 
						|
    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
 | 
						|
    Diag(IDecl->getImplementation()->getLocation(),
 | 
						|
          diag::note_implementation_declared);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CategoryName) {
 | 
						|
    /// Check for duplicate interface declaration for this category
 | 
						|
    if (ObjCCategoryDecl *Previous
 | 
						|
          = IDecl->FindCategoryDeclaration(CategoryName)) {
 | 
						|
      // Class extensions can be declared multiple times, categories cannot.
 | 
						|
      Diag(CategoryLoc, diag::warn_dup_category_def)
 | 
						|
        << ClassName << CategoryName;
 | 
						|
      Diag(Previous->getLocation(), diag::note_previous_definition);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a type parameter list, check it.
 | 
						|
  if (typeParamList) {
 | 
						|
    if (auto prevTypeParamList = IDecl->getTypeParamList()) {
 | 
						|
      if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
 | 
						|
                                        CategoryName
 | 
						|
                                          ? TypeParamListContext::Category
 | 
						|
                                          : TypeParamListContext::Extension))
 | 
						|
        typeParamList = nullptr;
 | 
						|
    } else {
 | 
						|
      Diag(typeParamList->getLAngleLoc(),
 | 
						|
           diag::err_objc_parameterized_category_nonclass)
 | 
						|
        << (CategoryName != nullptr)
 | 
						|
        << ClassName
 | 
						|
        << typeParamList->getSourceRange();
 | 
						|
 | 
						|
      typeParamList = nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
 | 
						|
                                   ClassLoc, CategoryLoc, CategoryName, IDecl,
 | 
						|
                                   typeParamList);
 | 
						|
  // FIXME: PushOnScopeChains?
 | 
						|
  CurContext->addDecl(CDecl);
 | 
						|
 | 
						|
  // Process the attributes before looking at protocols to ensure that the
 | 
						|
  // availability attribute is attached to the category to provide availability
 | 
						|
  // checking for protocol uses.
 | 
						|
  ProcessDeclAttributeList(TUScope, CDecl, AttrList);
 | 
						|
  AddPragmaAttributes(TUScope, CDecl);
 | 
						|
 | 
						|
  if (NumProtoRefs) {
 | 
						|
    diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
 | 
						|
                           NumProtoRefs, ProtoLocs);
 | 
						|
    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
 | 
						|
                           ProtoLocs, Context);
 | 
						|
    // Protocols in the class extension belong to the class.
 | 
						|
    if (CDecl->IsClassExtension())
 | 
						|
     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
 | 
						|
                                            NumProtoRefs, Context);
 | 
						|
  }
 | 
						|
 | 
						|
  CheckObjCDeclScope(CDecl);
 | 
						|
  ActOnObjCContainerStartDefinition(CDecl);
 | 
						|
  return CDecl;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnStartCategoryImplementation - Perform semantic checks on the
 | 
						|
/// category implementation declaration and build an ObjCCategoryImplDecl
 | 
						|
/// object.
 | 
						|
ObjCCategoryImplDecl *Sema::ActOnStartCategoryImplementation(
 | 
						|
    SourceLocation AtCatImplLoc, IdentifierInfo *ClassName,
 | 
						|
    SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc,
 | 
						|
    const ParsedAttributesView &Attrs) {
 | 
						|
  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
 | 
						|
  ObjCCategoryDecl *CatIDecl = nullptr;
 | 
						|
  if (IDecl && IDecl->hasDefinition()) {
 | 
						|
    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
 | 
						|
    if (!CatIDecl) {
 | 
						|
      // Category @implementation with no corresponding @interface.
 | 
						|
      // Create and install one.
 | 
						|
      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
 | 
						|
                                          ClassLoc, CatLoc,
 | 
						|
                                          CatName, IDecl,
 | 
						|
                                          /*typeParamList=*/nullptr);
 | 
						|
      CatIDecl->setImplicit();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCCategoryImplDecl *CDecl =
 | 
						|
    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
 | 
						|
                                 ClassLoc, AtCatImplLoc, CatLoc);
 | 
						|
  /// Check that class of this category is already completely declared.
 | 
						|
  if (!IDecl) {
 | 
						|
    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
 | 
						|
    CDecl->setInvalidDecl();
 | 
						|
  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
 | 
						|
                                 diag::err_undef_interface)) {
 | 
						|
    CDecl->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  ProcessDeclAttributeList(TUScope, CDecl, Attrs);
 | 
						|
  AddPragmaAttributes(TUScope, CDecl);
 | 
						|
 | 
						|
  // FIXME: PushOnScopeChains?
 | 
						|
  CurContext->addDecl(CDecl);
 | 
						|
 | 
						|
  // If the interface has the objc_runtime_visible attribute, we
 | 
						|
  // cannot implement a category for it.
 | 
						|
  if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
 | 
						|
    Diag(ClassLoc, diag::err_objc_runtime_visible_category)
 | 
						|
      << IDecl->getDeclName();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Check that CatName, category name, is not used in another implementation.
 | 
						|
  if (CatIDecl) {
 | 
						|
    if (CatIDecl->getImplementation()) {
 | 
						|
      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
 | 
						|
        << CatName;
 | 
						|
      Diag(CatIDecl->getImplementation()->getLocation(),
 | 
						|
           diag::note_previous_definition);
 | 
						|
      CDecl->setInvalidDecl();
 | 
						|
    } else {
 | 
						|
      CatIDecl->setImplementation(CDecl);
 | 
						|
      // Warn on implementating category of deprecated class under
 | 
						|
      // -Wdeprecated-implementations flag.
 | 
						|
      DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
 | 
						|
                                          CDecl->getLocation());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CheckObjCDeclScope(CDecl);
 | 
						|
  ActOnObjCContainerStartDefinition(CDecl);
 | 
						|
  return CDecl;
 | 
						|
}
 | 
						|
 | 
						|
ObjCImplementationDecl *Sema::ActOnStartClassImplementation(
 | 
						|
    SourceLocation AtClassImplLoc, IdentifierInfo *ClassName,
 | 
						|
    SourceLocation ClassLoc, IdentifierInfo *SuperClassname,
 | 
						|
    SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
 | 
						|
  ObjCInterfaceDecl *IDecl = nullptr;
 | 
						|
  // Check for another declaration kind with the same name.
 | 
						|
  NamedDecl *PrevDecl
 | 
						|
    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
 | 
						|
                       forRedeclarationInCurContext());
 | 
						|
  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | 
						|
    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
 | 
						|
    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
 | 
						|
    // FIXME: This will produce an error if the definition of the interface has
 | 
						|
    // been imported from a module but is not visible.
 | 
						|
    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
 | 
						|
                        diag::warn_undef_interface);
 | 
						|
  } else {
 | 
						|
    // We did not find anything with the name ClassName; try to correct for
 | 
						|
    // typos in the class name.
 | 
						|
    ObjCInterfaceValidatorCCC CCC{};
 | 
						|
    TypoCorrection Corrected =
 | 
						|
        CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
 | 
						|
                    LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
 | 
						|
    if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
 | 
						|
      // Suggest the (potentially) correct interface name. Don't provide a
 | 
						|
      // code-modification hint or use the typo name for recovery, because
 | 
						|
      // this is just a warning. The program may actually be correct.
 | 
						|
      diagnoseTypo(Corrected,
 | 
						|
                   PDiag(diag::warn_undef_interface_suggest) << ClassName,
 | 
						|
                   /*ErrorRecovery*/false);
 | 
						|
    } else {
 | 
						|
      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that super class name is valid class name
 | 
						|
  ObjCInterfaceDecl *SDecl = nullptr;
 | 
						|
  if (SuperClassname) {
 | 
						|
    // Check if a different kind of symbol declared in this scope.
 | 
						|
    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
 | 
						|
                                LookupOrdinaryName);
 | 
						|
    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | 
						|
      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
 | 
						|
        << SuperClassname;
 | 
						|
      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
    } else {
 | 
						|
      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | 
						|
      if (SDecl && !SDecl->hasDefinition())
 | 
						|
        SDecl = nullptr;
 | 
						|
      if (!SDecl)
 | 
						|
        Diag(SuperClassLoc, diag::err_undef_superclass)
 | 
						|
          << SuperClassname << ClassName;
 | 
						|
      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
 | 
						|
        // This implementation and its interface do not have the same
 | 
						|
        // super class.
 | 
						|
        Diag(SuperClassLoc, diag::err_conflicting_super_class)
 | 
						|
          << SDecl->getDeclName();
 | 
						|
        Diag(SDecl->getLocation(), diag::note_previous_definition);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IDecl) {
 | 
						|
    // Legacy case of @implementation with no corresponding @interface.
 | 
						|
    // Build, chain & install the interface decl into the identifier.
 | 
						|
 | 
						|
    // FIXME: Do we support attributes on the @implementation? If so we should
 | 
						|
    // copy them over.
 | 
						|
    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
 | 
						|
                                      ClassName, /*typeParamList=*/nullptr,
 | 
						|
                                      /*PrevDecl=*/nullptr, ClassLoc,
 | 
						|
                                      true);
 | 
						|
    AddPragmaAttributes(TUScope, IDecl);
 | 
						|
    IDecl->startDefinition();
 | 
						|
    if (SDecl) {
 | 
						|
      IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
 | 
						|
                             Context.getObjCInterfaceType(SDecl),
 | 
						|
                             SuperClassLoc));
 | 
						|
      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
 | 
						|
    } else {
 | 
						|
      IDecl->setEndOfDefinitionLoc(ClassLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    PushOnScopeChains(IDecl, TUScope);
 | 
						|
  } else {
 | 
						|
    // Mark the interface as being completed, even if it was just as
 | 
						|
    //   @class ....;
 | 
						|
    // declaration; the user cannot reopen it.
 | 
						|
    if (!IDecl->hasDefinition())
 | 
						|
      IDecl->startDefinition();
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCImplementationDecl* IMPDecl =
 | 
						|
    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
 | 
						|
                                   ClassLoc, AtClassImplLoc, SuperClassLoc);
 | 
						|
 | 
						|
  ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
 | 
						|
  AddPragmaAttributes(TUScope, IMPDecl);
 | 
						|
 | 
						|
  if (CheckObjCDeclScope(IMPDecl)) {
 | 
						|
    ActOnObjCContainerStartDefinition(IMPDecl);
 | 
						|
    return IMPDecl;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that there is no duplicate implementation of this class.
 | 
						|
  if (IDecl->getImplementation()) {
 | 
						|
    // FIXME: Don't leak everything!
 | 
						|
    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
 | 
						|
    Diag(IDecl->getImplementation()->getLocation(),
 | 
						|
         diag::note_previous_definition);
 | 
						|
    IMPDecl->setInvalidDecl();
 | 
						|
  } else { // add it to the list.
 | 
						|
    IDecl->setImplementation(IMPDecl);
 | 
						|
    PushOnScopeChains(IMPDecl, TUScope);
 | 
						|
    // Warn on implementating deprecated class under
 | 
						|
    // -Wdeprecated-implementations flag.
 | 
						|
    DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
 | 
						|
  }
 | 
						|
 | 
						|
  // If the superclass has the objc_runtime_visible attribute, we
 | 
						|
  // cannot implement a subclass of it.
 | 
						|
  if (IDecl->getSuperClass() &&
 | 
						|
      IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
 | 
						|
    Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
 | 
						|
      << IDecl->getDeclName()
 | 
						|
      << IDecl->getSuperClass()->getDeclName();
 | 
						|
  }
 | 
						|
 | 
						|
  ActOnObjCContainerStartDefinition(IMPDecl);
 | 
						|
  return IMPDecl;
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclGroupPtrTy
 | 
						|
Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
 | 
						|
  SmallVector<Decl *, 64> DeclsInGroup;
 | 
						|
  DeclsInGroup.reserve(Decls.size() + 1);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
 | 
						|
    Decl *Dcl = Decls[i];
 | 
						|
    if (!Dcl)
 | 
						|
      continue;
 | 
						|
    if (Dcl->getDeclContext()->isFileContext())
 | 
						|
      Dcl->setTopLevelDeclInObjCContainer();
 | 
						|
    DeclsInGroup.push_back(Dcl);
 | 
						|
  }
 | 
						|
 | 
						|
  DeclsInGroup.push_back(ObjCImpDecl);
 | 
						|
 | 
						|
  return BuildDeclaratorGroup(DeclsInGroup);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
 | 
						|
                                    ObjCIvarDecl **ivars, unsigned numIvars,
 | 
						|
                                    SourceLocation RBrace) {
 | 
						|
  assert(ImpDecl && "missing implementation decl");
 | 
						|
  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
 | 
						|
  if (!IDecl)
 | 
						|
    return;
 | 
						|
  /// Check case of non-existing \@interface decl.
 | 
						|
  /// (legacy objective-c \@implementation decl without an \@interface decl).
 | 
						|
  /// Add implementations's ivar to the synthesize class's ivar list.
 | 
						|
  if (IDecl->isImplicitInterfaceDecl()) {
 | 
						|
    IDecl->setEndOfDefinitionLoc(RBrace);
 | 
						|
    // Add ivar's to class's DeclContext.
 | 
						|
    for (unsigned i = 0, e = numIvars; i != e; ++i) {
 | 
						|
      ivars[i]->setLexicalDeclContext(ImpDecl);
 | 
						|
      // In a 'fragile' runtime the ivar was added to the implicit
 | 
						|
      // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
 | 
						|
      // only in the ObjCImplementationDecl. In the non-fragile case the ivar
 | 
						|
      // therefore also needs to be propagated to the ObjCInterfaceDecl.
 | 
						|
      if (!LangOpts.ObjCRuntime.isFragile())
 | 
						|
        IDecl->makeDeclVisibleInContext(ivars[i]);
 | 
						|
      ImpDecl->addDecl(ivars[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // If implementation has empty ivar list, just return.
 | 
						|
  if (numIvars == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(ivars && "missing @implementation ivars");
 | 
						|
  if (LangOpts.ObjCRuntime.isNonFragile()) {
 | 
						|
    if (ImpDecl->getSuperClass())
 | 
						|
      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
 | 
						|
    for (unsigned i = 0; i < numIvars; i++) {
 | 
						|
      ObjCIvarDecl* ImplIvar = ivars[i];
 | 
						|
      if (const ObjCIvarDecl *ClsIvar =
 | 
						|
            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
 | 
						|
        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
 | 
						|
        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Check class extensions (unnamed categories) for duplicate ivars.
 | 
						|
      for (const auto *CDecl : IDecl->visible_extensions()) {
 | 
						|
        if (const ObjCIvarDecl *ClsExtIvar =
 | 
						|
            CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
 | 
						|
          Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
 | 
						|
          Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Instance ivar to Implementation's DeclContext.
 | 
						|
      ImplIvar->setLexicalDeclContext(ImpDecl);
 | 
						|
      IDecl->makeDeclVisibleInContext(ImplIvar);
 | 
						|
      ImpDecl->addDecl(ImplIvar);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Check interface's Ivar list against those in the implementation.
 | 
						|
  // names and types must match.
 | 
						|
  //
 | 
						|
  unsigned j = 0;
 | 
						|
  ObjCInterfaceDecl::ivar_iterator
 | 
						|
    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
 | 
						|
  for (; numIvars > 0 && IVI != IVE; ++IVI) {
 | 
						|
    ObjCIvarDecl* ImplIvar = ivars[j++];
 | 
						|
    ObjCIvarDecl* ClsIvar = *IVI;
 | 
						|
    assert (ImplIvar && "missing implementation ivar");
 | 
						|
    assert (ClsIvar && "missing class ivar");
 | 
						|
 | 
						|
    // First, make sure the types match.
 | 
						|
    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
 | 
						|
      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
 | 
						|
        << ImplIvar->getIdentifier()
 | 
						|
        << ImplIvar->getType() << ClsIvar->getType();
 | 
						|
      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | 
						|
    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
 | 
						|
               ImplIvar->getBitWidthValue(Context) !=
 | 
						|
               ClsIvar->getBitWidthValue(Context)) {
 | 
						|
      Diag(ImplIvar->getBitWidth()->getBeginLoc(),
 | 
						|
           diag::err_conflicting_ivar_bitwidth)
 | 
						|
          << ImplIvar->getIdentifier();
 | 
						|
      Diag(ClsIvar->getBitWidth()->getBeginLoc(),
 | 
						|
           diag::note_previous_definition);
 | 
						|
    }
 | 
						|
    // Make sure the names are identical.
 | 
						|
    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
 | 
						|
      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
 | 
						|
        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
 | 
						|
      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | 
						|
    }
 | 
						|
    --numIvars;
 | 
						|
  }
 | 
						|
 | 
						|
  if (numIvars > 0)
 | 
						|
    Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
 | 
						|
  else if (IVI != IVE)
 | 
						|
    Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
 | 
						|
}
 | 
						|
 | 
						|
static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl,
 | 
						|
                                ObjCMethodDecl *method, bool &IncompleteImpl,
 | 
						|
                                unsigned DiagID,
 | 
						|
                                NamedDecl *NeededFor = nullptr) {
 | 
						|
  // No point warning no definition of method which is 'unavailable'.
 | 
						|
  if (method->getAvailability() == AR_Unavailable)
 | 
						|
    return;
 | 
						|
 | 
						|
  // FIXME: For now ignore 'IncompleteImpl'.
 | 
						|
  // Previously we grouped all unimplemented methods under a single
 | 
						|
  // warning, but some users strongly voiced that they would prefer
 | 
						|
  // separate warnings.  We will give that approach a try, as that
 | 
						|
  // matches what we do with protocols.
 | 
						|
  {
 | 
						|
    const Sema::SemaDiagnosticBuilder &B = S.Diag(Impl->getLocation(), DiagID);
 | 
						|
    B << method;
 | 
						|
    if (NeededFor)
 | 
						|
      B << NeededFor;
 | 
						|
 | 
						|
    // Add an empty definition at the end of the @implementation.
 | 
						|
    std::string FixItStr;
 | 
						|
    llvm::raw_string_ostream Out(FixItStr);
 | 
						|
    method->print(Out, Impl->getASTContext().getPrintingPolicy());
 | 
						|
    Out << " {\n}\n\n";
 | 
						|
 | 
						|
    SourceLocation Loc = Impl->getAtEndRange().getBegin();
 | 
						|
    B << FixItHint::CreateInsertion(Loc, FixItStr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Issue a note to the original declaration.
 | 
						|
  SourceLocation MethodLoc = method->getBeginLoc();
 | 
						|
  if (MethodLoc.isValid())
 | 
						|
    S.Diag(MethodLoc, diag::note_method_declared_at) << method;
 | 
						|
}
 | 
						|
 | 
						|
/// Determines if type B can be substituted for type A.  Returns true if we can
 | 
						|
/// guarantee that anything that the user will do to an object of type A can
 | 
						|
/// also be done to an object of type B.  This is trivially true if the two
 | 
						|
/// types are the same, or if B is a subclass of A.  It becomes more complex
 | 
						|
/// in cases where protocols are involved.
 | 
						|
///
 | 
						|
/// Object types in Objective-C describe the minimum requirements for an
 | 
						|
/// object, rather than providing a complete description of a type.  For
 | 
						|
/// example, if A is a subclass of B, then B* may refer to an instance of A.
 | 
						|
/// The principle of substitutability means that we may use an instance of A
 | 
						|
/// anywhere that we may use an instance of B - it will implement all of the
 | 
						|
/// ivars of B and all of the methods of B.
 | 
						|
///
 | 
						|
/// This substitutability is important when type checking methods, because
 | 
						|
/// the implementation may have stricter type definitions than the interface.
 | 
						|
/// The interface specifies minimum requirements, but the implementation may
 | 
						|
/// have more accurate ones.  For example, a method may privately accept
 | 
						|
/// instances of B, but only publish that it accepts instances of A.  Any
 | 
						|
/// object passed to it will be type checked against B, and so will implicitly
 | 
						|
/// by a valid A*.  Similarly, a method may return a subclass of the class that
 | 
						|
/// it is declared as returning.
 | 
						|
///
 | 
						|
/// This is most important when considering subclassing.  A method in a
 | 
						|
/// subclass must accept any object as an argument that its superclass's
 | 
						|
/// implementation accepts.  It may, however, accept a more general type
 | 
						|
/// without breaking substitutability (i.e. you can still use the subclass
 | 
						|
/// anywhere that you can use the superclass, but not vice versa).  The
 | 
						|
/// converse requirement applies to return types: the return type for a
 | 
						|
/// subclass method must be a valid object of the kind that the superclass
 | 
						|
/// advertises, but it may be specified more accurately.  This avoids the need
 | 
						|
/// for explicit down-casting by callers.
 | 
						|
///
 | 
						|
/// Note: This is a stricter requirement than for assignment.
 | 
						|
static bool isObjCTypeSubstitutable(ASTContext &Context,
 | 
						|
                                    const ObjCObjectPointerType *A,
 | 
						|
                                    const ObjCObjectPointerType *B,
 | 
						|
                                    bool rejectId) {
 | 
						|
  // Reject a protocol-unqualified id.
 | 
						|
  if (rejectId && B->isObjCIdType()) return false;
 | 
						|
 | 
						|
  // If B is a qualified id, then A must also be a qualified id and it must
 | 
						|
  // implement all of the protocols in B.  It may not be a qualified class.
 | 
						|
  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
 | 
						|
  // stricter definition so it is not substitutable for id<A>.
 | 
						|
  if (B->isObjCQualifiedIdType()) {
 | 
						|
    return A->isObjCQualifiedIdType() &&
 | 
						|
           Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
  // id is a special type that bypasses type checking completely.  We want a
 | 
						|
  // warning when it is used in one place but not another.
 | 
						|
  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
 | 
						|
 | 
						|
 | 
						|
  // If B is a qualified id, then A must also be a qualified id (which it isn't
 | 
						|
  // if we've got this far)
 | 
						|
  if (B->isObjCQualifiedIdType()) return false;
 | 
						|
  */
 | 
						|
 | 
						|
  // Now we know that A and B are (potentially-qualified) class types.  The
 | 
						|
  // normal rules for assignment apply.
 | 
						|
  return Context.canAssignObjCInterfaces(A, B);
 | 
						|
}
 | 
						|
 | 
						|
static SourceRange getTypeRange(TypeSourceInfo *TSI) {
 | 
						|
  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether two set of Objective-C declaration qualifiers conflict.
 | 
						|
static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
 | 
						|
                                  Decl::ObjCDeclQualifier y) {
 | 
						|
  return (x & ~Decl::OBJC_TQ_CSNullability) !=
 | 
						|
         (y & ~Decl::OBJC_TQ_CSNullability);
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckMethodOverrideReturn(Sema &S,
 | 
						|
                                      ObjCMethodDecl *MethodImpl,
 | 
						|
                                      ObjCMethodDecl *MethodDecl,
 | 
						|
                                      bool IsProtocolMethodDecl,
 | 
						|
                                      bool IsOverridingMode,
 | 
						|
                                      bool Warn) {
 | 
						|
  if (IsProtocolMethodDecl &&
 | 
						|
      objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
 | 
						|
                            MethodImpl->getObjCDeclQualifier())) {
 | 
						|
    if (Warn) {
 | 
						|
      S.Diag(MethodImpl->getLocation(),
 | 
						|
             (IsOverridingMode
 | 
						|
                  ? diag::warn_conflicting_overriding_ret_type_modifiers
 | 
						|
                  : diag::warn_conflicting_ret_type_modifiers))
 | 
						|
          << MethodImpl->getDeclName()
 | 
						|
          << MethodImpl->getReturnTypeSourceRange();
 | 
						|
      S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
 | 
						|
          << MethodDecl->getReturnTypeSourceRange();
 | 
						|
    }
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  if (Warn && IsOverridingMode &&
 | 
						|
      !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
 | 
						|
      !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
 | 
						|
                                                 MethodDecl->getReturnType(),
 | 
						|
                                                 false)) {
 | 
						|
    auto nullabilityMethodImpl =
 | 
						|
      *MethodImpl->getReturnType()->getNullability(S.Context);
 | 
						|
    auto nullabilityMethodDecl =
 | 
						|
      *MethodDecl->getReturnType()->getNullability(S.Context);
 | 
						|
      S.Diag(MethodImpl->getLocation(),
 | 
						|
             diag::warn_conflicting_nullability_attr_overriding_ret_types)
 | 
						|
        << DiagNullabilityKind(
 | 
						|
             nullabilityMethodImpl,
 | 
						|
             ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
 | 
						|
              != 0))
 | 
						|
        << DiagNullabilityKind(
 | 
						|
             nullabilityMethodDecl,
 | 
						|
             ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
 | 
						|
                != 0));
 | 
						|
      S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
 | 
						|
                                       MethodDecl->getReturnType()))
 | 
						|
    return true;
 | 
						|
  if (!Warn)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned DiagID =
 | 
						|
    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
 | 
						|
                     : diag::warn_conflicting_ret_types;
 | 
						|
 | 
						|
  // Mismatches between ObjC pointers go into a different warning
 | 
						|
  // category, and sometimes they're even completely explicitly allowed.
 | 
						|
  if (const ObjCObjectPointerType *ImplPtrTy =
 | 
						|
          MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
 | 
						|
    if (const ObjCObjectPointerType *IfacePtrTy =
 | 
						|
            MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
 | 
						|
      // Allow non-matching return types as long as they don't violate
 | 
						|
      // the principle of substitutability.  Specifically, we permit
 | 
						|
      // return types that are subclasses of the declared return type,
 | 
						|
      // or that are more-qualified versions of the declared type.
 | 
						|
      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
 | 
						|
        return false;
 | 
						|
 | 
						|
      DiagID =
 | 
						|
        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
 | 
						|
                         : diag::warn_non_covariant_ret_types;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(MethodImpl->getLocation(), DiagID)
 | 
						|
      << MethodImpl->getDeclName() << MethodDecl->getReturnType()
 | 
						|
      << MethodImpl->getReturnType()
 | 
						|
      << MethodImpl->getReturnTypeSourceRange();
 | 
						|
  S.Diag(MethodDecl->getLocation(), IsOverridingMode
 | 
						|
                                        ? diag::note_previous_declaration
 | 
						|
                                        : diag::note_previous_definition)
 | 
						|
      << MethodDecl->getReturnTypeSourceRange();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckMethodOverrideParam(Sema &S,
 | 
						|
                                     ObjCMethodDecl *MethodImpl,
 | 
						|
                                     ObjCMethodDecl *MethodDecl,
 | 
						|
                                     ParmVarDecl *ImplVar,
 | 
						|
                                     ParmVarDecl *IfaceVar,
 | 
						|
                                     bool IsProtocolMethodDecl,
 | 
						|
                                     bool IsOverridingMode,
 | 
						|
                                     bool Warn) {
 | 
						|
  if (IsProtocolMethodDecl &&
 | 
						|
      objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
 | 
						|
                            IfaceVar->getObjCDeclQualifier())) {
 | 
						|
    if (Warn) {
 | 
						|
      if (IsOverridingMode)
 | 
						|
        S.Diag(ImplVar->getLocation(),
 | 
						|
               diag::warn_conflicting_overriding_param_modifiers)
 | 
						|
            << getTypeRange(ImplVar->getTypeSourceInfo())
 | 
						|
            << MethodImpl->getDeclName();
 | 
						|
      else S.Diag(ImplVar->getLocation(),
 | 
						|
             diag::warn_conflicting_param_modifiers)
 | 
						|
          << getTypeRange(ImplVar->getTypeSourceInfo())
 | 
						|
          << MethodImpl->getDeclName();
 | 
						|
      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
 | 
						|
          << getTypeRange(IfaceVar->getTypeSourceInfo());
 | 
						|
    }
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ImplTy = ImplVar->getType();
 | 
						|
  QualType IfaceTy = IfaceVar->getType();
 | 
						|
  if (Warn && IsOverridingMode &&
 | 
						|
      !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
 | 
						|
      !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
 | 
						|
    S.Diag(ImplVar->getLocation(),
 | 
						|
           diag::warn_conflicting_nullability_attr_overriding_param_types)
 | 
						|
      << DiagNullabilityKind(
 | 
						|
           *ImplTy->getNullability(S.Context),
 | 
						|
           ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
 | 
						|
            != 0))
 | 
						|
      << DiagNullabilityKind(
 | 
						|
           *IfaceTy->getNullability(S.Context),
 | 
						|
           ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
 | 
						|
            != 0));
 | 
						|
    S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
 | 
						|
  }
 | 
						|
  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!Warn)
 | 
						|
    return false;
 | 
						|
  unsigned DiagID =
 | 
						|
    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
 | 
						|
                     : diag::warn_conflicting_param_types;
 | 
						|
 | 
						|
  // Mismatches between ObjC pointers go into a different warning
 | 
						|
  // category, and sometimes they're even completely explicitly allowed..
 | 
						|
  if (const ObjCObjectPointerType *ImplPtrTy =
 | 
						|
        ImplTy->getAs<ObjCObjectPointerType>()) {
 | 
						|
    if (const ObjCObjectPointerType *IfacePtrTy =
 | 
						|
          IfaceTy->getAs<ObjCObjectPointerType>()) {
 | 
						|
      // Allow non-matching argument types as long as they don't
 | 
						|
      // violate the principle of substitutability.  Specifically, the
 | 
						|
      // implementation must accept any objects that the superclass
 | 
						|
      // accepts, however it may also accept others.
 | 
						|
      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
 | 
						|
        return false;
 | 
						|
 | 
						|
      DiagID =
 | 
						|
      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
 | 
						|
                       : diag::warn_non_contravariant_param_types;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(ImplVar->getLocation(), DiagID)
 | 
						|
    << getTypeRange(ImplVar->getTypeSourceInfo())
 | 
						|
    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
 | 
						|
  S.Diag(IfaceVar->getLocation(),
 | 
						|
         (IsOverridingMode ? diag::note_previous_declaration
 | 
						|
                           : diag::note_previous_definition))
 | 
						|
    << getTypeRange(IfaceVar->getTypeSourceInfo());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// In ARC, check whether the conventional meanings of the two methods
 | 
						|
/// match.  If they don't, it's a hard error.
 | 
						|
static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
 | 
						|
                                      ObjCMethodDecl *decl) {
 | 
						|
  ObjCMethodFamily implFamily = impl->getMethodFamily();
 | 
						|
  ObjCMethodFamily declFamily = decl->getMethodFamily();
 | 
						|
  if (implFamily == declFamily) return false;
 | 
						|
 | 
						|
  // Since conventions are sorted by selector, the only possibility is
 | 
						|
  // that the types differ enough to cause one selector or the other
 | 
						|
  // to fall out of the family.
 | 
						|
  assert(implFamily == OMF_None || declFamily == OMF_None);
 | 
						|
 | 
						|
  // No further diagnostics required on invalid declarations.
 | 
						|
  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
 | 
						|
 | 
						|
  const ObjCMethodDecl *unmatched = impl;
 | 
						|
  ObjCMethodFamily family = declFamily;
 | 
						|
  unsigned errorID = diag::err_arc_lost_method_convention;
 | 
						|
  unsigned noteID = diag::note_arc_lost_method_convention;
 | 
						|
  if (declFamily == OMF_None) {
 | 
						|
    unmatched = decl;
 | 
						|
    family = implFamily;
 | 
						|
    errorID = diag::err_arc_gained_method_convention;
 | 
						|
    noteID = diag::note_arc_gained_method_convention;
 | 
						|
  }
 | 
						|
 | 
						|
  // Indexes into a %select clause in the diagnostic.
 | 
						|
  enum FamilySelector {
 | 
						|
    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
 | 
						|
  };
 | 
						|
  FamilySelector familySelector = FamilySelector();
 | 
						|
 | 
						|
  switch (family) {
 | 
						|
  case OMF_None: llvm_unreachable("logic error, no method convention");
 | 
						|
  case OMF_retain:
 | 
						|
  case OMF_release:
 | 
						|
  case OMF_autorelease:
 | 
						|
  case OMF_dealloc:
 | 
						|
  case OMF_finalize:
 | 
						|
  case OMF_retainCount:
 | 
						|
  case OMF_self:
 | 
						|
  case OMF_initialize:
 | 
						|
  case OMF_performSelector:
 | 
						|
    // Mismatches for these methods don't change ownership
 | 
						|
    // conventions, so we don't care.
 | 
						|
    return false;
 | 
						|
 | 
						|
  case OMF_init: familySelector = F_init; break;
 | 
						|
  case OMF_alloc: familySelector = F_alloc; break;
 | 
						|
  case OMF_copy: familySelector = F_copy; break;
 | 
						|
  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
 | 
						|
  case OMF_new: familySelector = F_new; break;
 | 
						|
  }
 | 
						|
 | 
						|
  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
 | 
						|
  ReasonSelector reasonSelector;
 | 
						|
 | 
						|
  // The only reason these methods don't fall within their families is
 | 
						|
  // due to unusual result types.
 | 
						|
  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
 | 
						|
    reasonSelector = R_UnrelatedReturn;
 | 
						|
  } else {
 | 
						|
    reasonSelector = R_NonObjectReturn;
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
 | 
						|
  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
 | 
						|
                                       ObjCMethodDecl *MethodDecl,
 | 
						|
                                       bool IsProtocolMethodDecl) {
 | 
						|
  if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
 | 
						|
    return;
 | 
						|
 | 
						|
  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
 | 
						|
                            IsProtocolMethodDecl, false,
 | 
						|
                            true);
 | 
						|
 | 
						|
  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
 | 
						|
       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
 | 
						|
       EF = MethodDecl->param_end();
 | 
						|
       IM != EM && IF != EF; ++IM, ++IF) {
 | 
						|
    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
 | 
						|
                             IsProtocolMethodDecl, false, true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
 | 
						|
    Diag(ImpMethodDecl->getLocation(),
 | 
						|
         diag::warn_conflicting_variadic);
 | 
						|
    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
 | 
						|
                                       ObjCMethodDecl *Overridden,
 | 
						|
                                       bool IsProtocolMethodDecl) {
 | 
						|
 | 
						|
  CheckMethodOverrideReturn(*this, Method, Overridden,
 | 
						|
                            IsProtocolMethodDecl, true,
 | 
						|
                            true);
 | 
						|
 | 
						|
  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
 | 
						|
       IF = Overridden->param_begin(), EM = Method->param_end(),
 | 
						|
       EF = Overridden->param_end();
 | 
						|
       IM != EM && IF != EF; ++IM, ++IF) {
 | 
						|
    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
 | 
						|
                             IsProtocolMethodDecl, true, true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Method->isVariadic() != Overridden->isVariadic()) {
 | 
						|
    Diag(Method->getLocation(),
 | 
						|
         diag::warn_conflicting_overriding_variadic);
 | 
						|
    Diag(Overridden->getLocation(), diag::note_previous_declaration);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// WarnExactTypedMethods - This routine issues a warning if method
 | 
						|
/// implementation declaration matches exactly that of its declaration.
 | 
						|
void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
 | 
						|
                                 ObjCMethodDecl *MethodDecl,
 | 
						|
                                 bool IsProtocolMethodDecl) {
 | 
						|
  // don't issue warning when protocol method is optional because primary
 | 
						|
  // class is not required to implement it and it is safe for protocol
 | 
						|
  // to implement it.
 | 
						|
  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
 | 
						|
    return;
 | 
						|
  // don't issue warning when primary class's method is
 | 
						|
  // deprecated/unavailable.
 | 
						|
  if (MethodDecl->hasAttr<UnavailableAttr>() ||
 | 
						|
      MethodDecl->hasAttr<DeprecatedAttr>())
 | 
						|
    return;
 | 
						|
 | 
						|
  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
 | 
						|
                                      IsProtocolMethodDecl, false, false);
 | 
						|
  if (match)
 | 
						|
    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
 | 
						|
         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
 | 
						|
         EF = MethodDecl->param_end();
 | 
						|
         IM != EM && IF != EF; ++IM, ++IF) {
 | 
						|
      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
 | 
						|
                                       *IM, *IF,
 | 
						|
                                       IsProtocolMethodDecl, false, false);
 | 
						|
      if (!match)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  if (match)
 | 
						|
    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
 | 
						|
  if (match)
 | 
						|
    match = !(MethodDecl->isClassMethod() &&
 | 
						|
              MethodDecl->getSelector() == GetNullarySelector("load", Context));
 | 
						|
 | 
						|
  if (match) {
 | 
						|
    Diag(ImpMethodDecl->getLocation(),
 | 
						|
         diag::warn_category_method_impl_match);
 | 
						|
    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
 | 
						|
      << MethodDecl->getDeclName();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
 | 
						|
/// improve the efficiency of selector lookups and type checking by associating
 | 
						|
/// with each protocol / interface / category the flattened instance tables. If
 | 
						|
/// we used an immutable set to keep the table then it wouldn't add significant
 | 
						|
/// memory cost and it would be handy for lookups.
 | 
						|
 | 
						|
typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
 | 
						|
typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
 | 
						|
 | 
						|
static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
 | 
						|
                                           ProtocolNameSet &PNS) {
 | 
						|
  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
 | 
						|
    PNS.insert(PDecl->getIdentifier());
 | 
						|
  for (const auto *PI : PDecl->protocols())
 | 
						|
    findProtocolsWithExplicitImpls(PI, PNS);
 | 
						|
}
 | 
						|
 | 
						|
/// Recursively populates a set with all conformed protocols in a class
 | 
						|
/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
 | 
						|
/// attribute.
 | 
						|
static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
 | 
						|
                                           ProtocolNameSet &PNS) {
 | 
						|
  if (!Super)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (const auto *I : Super->all_referenced_protocols())
 | 
						|
    findProtocolsWithExplicitImpls(I, PNS);
 | 
						|
 | 
						|
  findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckProtocolMethodDefs - This routine checks unimplemented methods
 | 
						|
/// Declared in protocol, and those referenced by it.
 | 
						|
static void CheckProtocolMethodDefs(
 | 
						|
    Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
 | 
						|
    const Sema::SelectorSet &InsMap, const Sema::SelectorSet &ClsMap,
 | 
						|
    ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
 | 
						|
  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
 | 
						|
  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
 | 
						|
                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
 | 
						|
  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
 | 
						|
 | 
						|
  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
 | 
						|
  ObjCInterfaceDecl *NSIDecl = nullptr;
 | 
						|
 | 
						|
  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
 | 
						|
  // then we should check if any class in the super class hierarchy also
 | 
						|
  // conforms to this protocol, either directly or via protocol inheritance.
 | 
						|
  // If so, we can skip checking this protocol completely because we
 | 
						|
  // know that a parent class already satisfies this protocol.
 | 
						|
  //
 | 
						|
  // Note: we could generalize this logic for all protocols, and merely
 | 
						|
  // add the limit on looking at the super class chain for just
 | 
						|
  // specially marked protocols.  This may be a good optimization.  This
 | 
						|
  // change is restricted to 'objc_protocol_requires_explicit_implementation'
 | 
						|
  // protocols for now for controlled evaluation.
 | 
						|
  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
 | 
						|
    if (!ProtocolsExplictImpl) {
 | 
						|
      ProtocolsExplictImpl.reset(new ProtocolNameSet);
 | 
						|
      findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
 | 
						|
    }
 | 
						|
    if (ProtocolsExplictImpl->contains(PDecl->getIdentifier()))
 | 
						|
      return;
 | 
						|
 | 
						|
    // If no super class conforms to the protocol, we should not search
 | 
						|
    // for methods in the super class to implicitly satisfy the protocol.
 | 
						|
    Super = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
 | 
						|
    // check to see if class implements forwardInvocation method and objects
 | 
						|
    // of this class are derived from 'NSProxy' so that to forward requests
 | 
						|
    // from one object to another.
 | 
						|
    // Under such conditions, which means that every method possible is
 | 
						|
    // implemented in the class, we should not issue "Method definition not
 | 
						|
    // found" warnings.
 | 
						|
    // FIXME: Use a general GetUnarySelector method for this.
 | 
						|
    IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
 | 
						|
    Selector fISelector = S.Context.Selectors.getSelector(1, &II);
 | 
						|
    if (InsMap.count(fISelector))
 | 
						|
      // Is IDecl derived from 'NSProxy'? If so, no instance methods
 | 
						|
      // need be implemented in the implementation.
 | 
						|
      NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a forward protocol declaration, get its definition.
 | 
						|
  if (!PDecl->isThisDeclarationADefinition() &&
 | 
						|
      PDecl->getDefinition())
 | 
						|
    PDecl = PDecl->getDefinition();
 | 
						|
 | 
						|
  // If a method lookup fails locally we still need to look and see if
 | 
						|
  // the method was implemented by a base class or an inherited
 | 
						|
  // protocol. This lookup is slow, but occurs rarely in correct code
 | 
						|
  // and otherwise would terminate in a warning.
 | 
						|
 | 
						|
  // check unimplemented instance methods.
 | 
						|
  if (!NSIDecl)
 | 
						|
    for (auto *method : PDecl->instance_methods()) {
 | 
						|
      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
 | 
						|
          !method->isPropertyAccessor() &&
 | 
						|
          !InsMap.count(method->getSelector()) &&
 | 
						|
          (!Super || !Super->lookupMethod(method->getSelector(),
 | 
						|
                                          true /* instance */,
 | 
						|
                                          false /* shallowCategory */,
 | 
						|
                                          true /* followsSuper */,
 | 
						|
                                          nullptr /* category */))) {
 | 
						|
            // If a method is not implemented in the category implementation but
 | 
						|
            // has been declared in its primary class, superclass,
 | 
						|
            // or in one of their protocols, no need to issue the warning.
 | 
						|
            // This is because method will be implemented in the primary class
 | 
						|
            // or one of its super class implementation.
 | 
						|
 | 
						|
            // Ugly, but necessary. Method declared in protocol might have
 | 
						|
            // have been synthesized due to a property declared in the class which
 | 
						|
            // uses the protocol.
 | 
						|
            if (ObjCMethodDecl *MethodInClass =
 | 
						|
                  IDecl->lookupMethod(method->getSelector(),
 | 
						|
                                      true /* instance */,
 | 
						|
                                      true /* shallowCategoryLookup */,
 | 
						|
                                      false /* followSuper */))
 | 
						|
              if (C || MethodInClass->isPropertyAccessor())
 | 
						|
                continue;
 | 
						|
            unsigned DIAG = diag::warn_unimplemented_protocol_method;
 | 
						|
            if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
 | 
						|
              WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
 | 
						|
            }
 | 
						|
          }
 | 
						|
    }
 | 
						|
  // check unimplemented class methods
 | 
						|
  for (auto *method : PDecl->class_methods()) {
 | 
						|
    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
 | 
						|
        !ClsMap.count(method->getSelector()) &&
 | 
						|
        (!Super || !Super->lookupMethod(method->getSelector(),
 | 
						|
                                        false /* class method */,
 | 
						|
                                        false /* shallowCategoryLookup */,
 | 
						|
                                        true  /* followSuper */,
 | 
						|
                                        nullptr /* category */))) {
 | 
						|
      // See above comment for instance method lookups.
 | 
						|
      if (C && IDecl->lookupMethod(method->getSelector(),
 | 
						|
                                   false /* class */,
 | 
						|
                                   true /* shallowCategoryLookup */,
 | 
						|
                                   false /* followSuper */))
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned DIAG = diag::warn_unimplemented_protocol_method;
 | 
						|
      if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
 | 
						|
        WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Check on this protocols's referenced protocols, recursively.
 | 
						|
  for (auto *PI : PDecl->protocols())
 | 
						|
    CheckProtocolMethodDefs(S, Impl, PI, IncompleteImpl, InsMap, ClsMap, CDecl,
 | 
						|
                            ProtocolsExplictImpl);
 | 
						|
}
 | 
						|
 | 
						|
/// MatchAllMethodDeclarations - Check methods declared in interface
 | 
						|
/// or protocol against those declared in their implementations.
 | 
						|
///
 | 
						|
void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
 | 
						|
                                      const SelectorSet &ClsMap,
 | 
						|
                                      SelectorSet &InsMapSeen,
 | 
						|
                                      SelectorSet &ClsMapSeen,
 | 
						|
                                      ObjCImplDecl* IMPDecl,
 | 
						|
                                      ObjCContainerDecl* CDecl,
 | 
						|
                                      bool &IncompleteImpl,
 | 
						|
                                      bool ImmediateClass,
 | 
						|
                                      bool WarnCategoryMethodImpl) {
 | 
						|
  // Check and see if instance methods in class interface have been
 | 
						|
  // implemented in the implementation class. If so, their types match.
 | 
						|
  for (auto *I : CDecl->instance_methods()) {
 | 
						|
    if (!InsMapSeen.insert(I->getSelector()).second)
 | 
						|
      continue;
 | 
						|
    if (!I->isPropertyAccessor() &&
 | 
						|
        !InsMap.count(I->getSelector())) {
 | 
						|
      if (ImmediateClass)
 | 
						|
        WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl,
 | 
						|
                            diag::warn_undef_method_impl);
 | 
						|
      continue;
 | 
						|
    } else {
 | 
						|
      ObjCMethodDecl *ImpMethodDecl =
 | 
						|
        IMPDecl->getInstanceMethod(I->getSelector());
 | 
						|
      assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
 | 
						|
             "Expected to find the method through lookup as well");
 | 
						|
      // ImpMethodDecl may be null as in a @dynamic property.
 | 
						|
      if (ImpMethodDecl) {
 | 
						|
        // Skip property accessor function stubs.
 | 
						|
        if (ImpMethodDecl->isSynthesizedAccessorStub())
 | 
						|
          continue;
 | 
						|
        if (!WarnCategoryMethodImpl)
 | 
						|
          WarnConflictingTypedMethods(ImpMethodDecl, I,
 | 
						|
                                      isa<ObjCProtocolDecl>(CDecl));
 | 
						|
        else if (!I->isPropertyAccessor())
 | 
						|
          WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check and see if class methods in class interface have been
 | 
						|
  // implemented in the implementation class. If so, their types match.
 | 
						|
  for (auto *I : CDecl->class_methods()) {
 | 
						|
    if (!ClsMapSeen.insert(I->getSelector()).second)
 | 
						|
      continue;
 | 
						|
    if (!I->isPropertyAccessor() &&
 | 
						|
        !ClsMap.count(I->getSelector())) {
 | 
						|
      if (ImmediateClass)
 | 
						|
        WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl,
 | 
						|
                            diag::warn_undef_method_impl);
 | 
						|
    } else {
 | 
						|
      ObjCMethodDecl *ImpMethodDecl =
 | 
						|
        IMPDecl->getClassMethod(I->getSelector());
 | 
						|
      assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
 | 
						|
             "Expected to find the method through lookup as well");
 | 
						|
      // ImpMethodDecl may be null as in a @dynamic property.
 | 
						|
      if (ImpMethodDecl) {
 | 
						|
        // Skip property accessor function stubs.
 | 
						|
        if (ImpMethodDecl->isSynthesizedAccessorStub())
 | 
						|
          continue;
 | 
						|
        if (!WarnCategoryMethodImpl)
 | 
						|
          WarnConflictingTypedMethods(ImpMethodDecl, I,
 | 
						|
                                      isa<ObjCProtocolDecl>(CDecl));
 | 
						|
        else if (!I->isPropertyAccessor())
 | 
						|
          WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
 | 
						|
    // Also, check for methods declared in protocols inherited by
 | 
						|
    // this protocol.
 | 
						|
    for (auto *PI : PD->protocols())
 | 
						|
      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                                 IMPDecl, PI, IncompleteImpl, false,
 | 
						|
                                 WarnCategoryMethodImpl);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
 | 
						|
    // when checking that methods in implementation match their declaration,
 | 
						|
    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
 | 
						|
    // extension; as well as those in categories.
 | 
						|
    if (!WarnCategoryMethodImpl) {
 | 
						|
      for (auto *Cat : I->visible_categories())
 | 
						|
        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                                   IMPDecl, Cat, IncompleteImpl,
 | 
						|
                                   ImmediateClass && Cat->IsClassExtension(),
 | 
						|
                                   WarnCategoryMethodImpl);
 | 
						|
    } else {
 | 
						|
      // Also methods in class extensions need be looked at next.
 | 
						|
      for (auto *Ext : I->visible_extensions())
 | 
						|
        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                                   IMPDecl, Ext, IncompleteImpl, false,
 | 
						|
                                   WarnCategoryMethodImpl);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for any implementation of a methods declared in protocol.
 | 
						|
    for (auto *PI : I->all_referenced_protocols())
 | 
						|
      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                                 IMPDecl, PI, IncompleteImpl, false,
 | 
						|
                                 WarnCategoryMethodImpl);
 | 
						|
 | 
						|
    // FIXME. For now, we are not checking for exact match of methods
 | 
						|
    // in category implementation and its primary class's super class.
 | 
						|
    if (!WarnCategoryMethodImpl && I->getSuperClass())
 | 
						|
      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                                 IMPDecl,
 | 
						|
                                 I->getSuperClass(), IncompleteImpl, false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
 | 
						|
/// category matches with those implemented in its primary class and
 | 
						|
/// warns each time an exact match is found.
 | 
						|
void Sema::CheckCategoryVsClassMethodMatches(
 | 
						|
                                  ObjCCategoryImplDecl *CatIMPDecl) {
 | 
						|
  // Get category's primary class.
 | 
						|
  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
 | 
						|
  if (!CatDecl)
 | 
						|
    return;
 | 
						|
  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
 | 
						|
  if (!IDecl)
 | 
						|
    return;
 | 
						|
  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
 | 
						|
  SelectorSet InsMap, ClsMap;
 | 
						|
 | 
						|
  for (const auto *I : CatIMPDecl->instance_methods()) {
 | 
						|
    Selector Sel = I->getSelector();
 | 
						|
    // When checking for methods implemented in the category, skip over
 | 
						|
    // those declared in category class's super class. This is because
 | 
						|
    // the super class must implement the method.
 | 
						|
    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
 | 
						|
      continue;
 | 
						|
    InsMap.insert(Sel);
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto *I : CatIMPDecl->class_methods()) {
 | 
						|
    Selector Sel = I->getSelector();
 | 
						|
    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
 | 
						|
      continue;
 | 
						|
    ClsMap.insert(Sel);
 | 
						|
  }
 | 
						|
  if (InsMap.empty() && ClsMap.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  SelectorSet InsMapSeen, ClsMapSeen;
 | 
						|
  bool IncompleteImpl = false;
 | 
						|
  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                             CatIMPDecl, IDecl,
 | 
						|
                             IncompleteImpl, false,
 | 
						|
                             true /*WarnCategoryMethodImpl*/);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
 | 
						|
                                     ObjCContainerDecl* CDecl,
 | 
						|
                                     bool IncompleteImpl) {
 | 
						|
  SelectorSet InsMap;
 | 
						|
  // Check and see if instance methods in class interface have been
 | 
						|
  // implemented in the implementation class.
 | 
						|
  for (const auto *I : IMPDecl->instance_methods())
 | 
						|
    InsMap.insert(I->getSelector());
 | 
						|
 | 
						|
  // Add the selectors for getters/setters of @dynamic properties.
 | 
						|
  for (const auto *PImpl : IMPDecl->property_impls()) {
 | 
						|
    // We only care about @dynamic implementations.
 | 
						|
    if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
 | 
						|
      continue;
 | 
						|
 | 
						|
    const auto *P = PImpl->getPropertyDecl();
 | 
						|
    if (!P) continue;
 | 
						|
 | 
						|
    InsMap.insert(P->getGetterName());
 | 
						|
    if (!P->getSetterName().isNull())
 | 
						|
      InsMap.insert(P->getSetterName());
 | 
						|
  }
 | 
						|
 | 
						|
  // Check and see if properties declared in the interface have either 1)
 | 
						|
  // an implementation or 2) there is a @synthesize/@dynamic implementation
 | 
						|
  // of the property in the @implementation.
 | 
						|
  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
 | 
						|
    bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
 | 
						|
                                LangOpts.ObjCRuntime.isNonFragile() &&
 | 
						|
                                !IDecl->isObjCRequiresPropertyDefs();
 | 
						|
    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
 | 
						|
  }
 | 
						|
 | 
						|
  // Diagnose null-resettable synthesized setters.
 | 
						|
  diagnoseNullResettableSynthesizedSetters(IMPDecl);
 | 
						|
 | 
						|
  SelectorSet ClsMap;
 | 
						|
  for (const auto *I : IMPDecl->class_methods())
 | 
						|
    ClsMap.insert(I->getSelector());
 | 
						|
 | 
						|
  // Check for type conflict of methods declared in a class/protocol and
 | 
						|
  // its implementation; if any.
 | 
						|
  SelectorSet InsMapSeen, ClsMapSeen;
 | 
						|
  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                             IMPDecl, CDecl,
 | 
						|
                             IncompleteImpl, true);
 | 
						|
 | 
						|
  // check all methods implemented in category against those declared
 | 
						|
  // in its primary class.
 | 
						|
  if (ObjCCategoryImplDecl *CatDecl =
 | 
						|
        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
 | 
						|
    CheckCategoryVsClassMethodMatches(CatDecl);
 | 
						|
 | 
						|
  // Check the protocol list for unimplemented methods in the @implementation
 | 
						|
  // class.
 | 
						|
  // Check and see if class methods in class interface have been
 | 
						|
  // implemented in the implementation class.
 | 
						|
 | 
						|
  LazyProtocolNameSet ExplicitImplProtocols;
 | 
						|
 | 
						|
  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
 | 
						|
    for (auto *PI : I->all_referenced_protocols())
 | 
						|
      CheckProtocolMethodDefs(*this, IMPDecl, PI, IncompleteImpl, InsMap,
 | 
						|
                              ClsMap, I, ExplicitImplProtocols);
 | 
						|
  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
 | 
						|
    // For extended class, unimplemented methods in its protocols will
 | 
						|
    // be reported in the primary class.
 | 
						|
    if (!C->IsClassExtension()) {
 | 
						|
      for (auto *P : C->protocols())
 | 
						|
        CheckProtocolMethodDefs(*this, IMPDecl, P, IncompleteImpl, InsMap,
 | 
						|
                                ClsMap, CDecl, ExplicitImplProtocols);
 | 
						|
      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
 | 
						|
                                      /*SynthesizeProperties=*/false);
 | 
						|
    }
 | 
						|
  } else
 | 
						|
    llvm_unreachable("invalid ObjCContainerDecl type.");
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclGroupPtrTy
 | 
						|
Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
 | 
						|
                                   IdentifierInfo **IdentList,
 | 
						|
                                   SourceLocation *IdentLocs,
 | 
						|
                                   ArrayRef<ObjCTypeParamList *> TypeParamLists,
 | 
						|
                                   unsigned NumElts) {
 | 
						|
  SmallVector<Decl *, 8> DeclsInGroup;
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    // Check for another declaration kind with the same name.
 | 
						|
    NamedDecl *PrevDecl
 | 
						|
      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
 | 
						|
                         LookupOrdinaryName, forRedeclarationInCurContext());
 | 
						|
    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | 
						|
      // GCC apparently allows the following idiom:
 | 
						|
      //
 | 
						|
      // typedef NSObject < XCElementTogglerP > XCElementToggler;
 | 
						|
      // @class XCElementToggler;
 | 
						|
      //
 | 
						|
      // Here we have chosen to ignore the forward class declaration
 | 
						|
      // with a warning. Since this is the implied behavior.
 | 
						|
      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
 | 
						|
      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
 | 
						|
        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
      } else {
 | 
						|
        // a forward class declaration matching a typedef name of a class refers
 | 
						|
        // to the underlying class. Just ignore the forward class with a warning
 | 
						|
        // as this will force the intended behavior which is to lookup the
 | 
						|
        // typedef name.
 | 
						|
        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
 | 
						|
          Diag(AtClassLoc, diag::warn_forward_class_redefinition)
 | 
						|
              << IdentList[i];
 | 
						|
          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Create a declaration to describe this forward declaration.
 | 
						|
    ObjCInterfaceDecl *PrevIDecl
 | 
						|
      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | 
						|
 | 
						|
    IdentifierInfo *ClassName = IdentList[i];
 | 
						|
    if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
 | 
						|
      // A previous decl with a different name is because of
 | 
						|
      // @compatibility_alias, for example:
 | 
						|
      // \code
 | 
						|
      //   @class NewImage;
 | 
						|
      //   @compatibility_alias OldImage NewImage;
 | 
						|
      // \endcode
 | 
						|
      // A lookup for 'OldImage' will return the 'NewImage' decl.
 | 
						|
      //
 | 
						|
      // In such a case use the real declaration name, instead of the alias one,
 | 
						|
      // otherwise we will break IdentifierResolver and redecls-chain invariants.
 | 
						|
      // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
 | 
						|
      // has been aliased.
 | 
						|
      ClassName = PrevIDecl->getIdentifier();
 | 
						|
    }
 | 
						|
 | 
						|
    // If this forward declaration has type parameters, compare them with the
 | 
						|
    // type parameters of the previous declaration.
 | 
						|
    ObjCTypeParamList *TypeParams = TypeParamLists[i];
 | 
						|
    if (PrevIDecl && TypeParams) {
 | 
						|
      if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
 | 
						|
        // Check for consistency with the previous declaration.
 | 
						|
        if (checkTypeParamListConsistency(
 | 
						|
              *this, PrevTypeParams, TypeParams,
 | 
						|
              TypeParamListContext::ForwardDeclaration)) {
 | 
						|
          TypeParams = nullptr;
 | 
						|
        }
 | 
						|
      } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
 | 
						|
        // The @interface does not have type parameters. Complain.
 | 
						|
        Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
 | 
						|
          << ClassName
 | 
						|
          << TypeParams->getSourceRange();
 | 
						|
        Diag(Def->getLocation(), diag::note_defined_here)
 | 
						|
          << ClassName;
 | 
						|
 | 
						|
        TypeParams = nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ObjCInterfaceDecl *IDecl
 | 
						|
      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
 | 
						|
                                  ClassName, TypeParams, PrevIDecl,
 | 
						|
                                  IdentLocs[i]);
 | 
						|
    IDecl->setAtEndRange(IdentLocs[i]);
 | 
						|
 | 
						|
    if (PrevIDecl)
 | 
						|
      mergeDeclAttributes(IDecl, PrevIDecl);
 | 
						|
 | 
						|
    PushOnScopeChains(IDecl, TUScope);
 | 
						|
    CheckObjCDeclScope(IDecl);
 | 
						|
    DeclsInGroup.push_back(IDecl);
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildDeclaratorGroup(DeclsInGroup);
 | 
						|
}
 | 
						|
 | 
						|
static bool tryMatchRecordTypes(ASTContext &Context,
 | 
						|
                                Sema::MethodMatchStrategy strategy,
 | 
						|
                                const Type *left, const Type *right);
 | 
						|
 | 
						|
static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
 | 
						|
                       QualType leftQT, QualType rightQT) {
 | 
						|
  const Type *left =
 | 
						|
    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
 | 
						|
  const Type *right =
 | 
						|
    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
 | 
						|
 | 
						|
  if (left == right) return true;
 | 
						|
 | 
						|
  // If we're doing a strict match, the types have to match exactly.
 | 
						|
  if (strategy == Sema::MMS_strict) return false;
 | 
						|
 | 
						|
  if (left->isIncompleteType() || right->isIncompleteType()) return false;
 | 
						|
 | 
						|
  // Otherwise, use this absurdly complicated algorithm to try to
 | 
						|
  // validate the basic, low-level compatibility of the two types.
 | 
						|
 | 
						|
  // As a minimum, require the sizes and alignments to match.
 | 
						|
  TypeInfo LeftTI = Context.getTypeInfo(left);
 | 
						|
  TypeInfo RightTI = Context.getTypeInfo(right);
 | 
						|
  if (LeftTI.Width != RightTI.Width)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (LeftTI.Align != RightTI.Align)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Consider all the kinds of non-dependent canonical types:
 | 
						|
  // - functions and arrays aren't possible as return and parameter types
 | 
						|
 | 
						|
  // - vector types of equal size can be arbitrarily mixed
 | 
						|
  if (isa<VectorType>(left)) return isa<VectorType>(right);
 | 
						|
  if (isa<VectorType>(right)) return false;
 | 
						|
 | 
						|
  // - references should only match references of identical type
 | 
						|
  // - structs, unions, and Objective-C objects must match more-or-less
 | 
						|
  //   exactly
 | 
						|
  // - everything else should be a scalar
 | 
						|
  if (!left->isScalarType() || !right->isScalarType())
 | 
						|
    return tryMatchRecordTypes(Context, strategy, left, right);
 | 
						|
 | 
						|
  // Make scalars agree in kind, except count bools as chars, and group
 | 
						|
  // all non-member pointers together.
 | 
						|
  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
 | 
						|
  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
 | 
						|
  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
 | 
						|
  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
 | 
						|
  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
 | 
						|
    leftSK = Type::STK_ObjCObjectPointer;
 | 
						|
  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
 | 
						|
    rightSK = Type::STK_ObjCObjectPointer;
 | 
						|
 | 
						|
  // Note that data member pointers and function member pointers don't
 | 
						|
  // intermix because of the size differences.
 | 
						|
 | 
						|
  return (leftSK == rightSK);
 | 
						|
}
 | 
						|
 | 
						|
static bool tryMatchRecordTypes(ASTContext &Context,
 | 
						|
                                Sema::MethodMatchStrategy strategy,
 | 
						|
                                const Type *lt, const Type *rt) {
 | 
						|
  assert(lt && rt && lt != rt);
 | 
						|
 | 
						|
  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
 | 
						|
  RecordDecl *left = cast<RecordType>(lt)->getDecl();
 | 
						|
  RecordDecl *right = cast<RecordType>(rt)->getDecl();
 | 
						|
 | 
						|
  // Require union-hood to match.
 | 
						|
  if (left->isUnion() != right->isUnion()) return false;
 | 
						|
 | 
						|
  // Require an exact match if either is non-POD.
 | 
						|
  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
 | 
						|
      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Require size and alignment to match.
 | 
						|
  TypeInfo LeftTI = Context.getTypeInfo(lt);
 | 
						|
  TypeInfo RightTI = Context.getTypeInfo(rt);
 | 
						|
  if (LeftTI.Width != RightTI.Width)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (LeftTI.Align != RightTI.Align)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Require fields to match.
 | 
						|
  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
 | 
						|
  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
 | 
						|
  for (; li != le && ri != re; ++li, ++ri) {
 | 
						|
    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return (li == le && ri == re);
 | 
						|
}
 | 
						|
 | 
						|
/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
 | 
						|
/// returns true, or false, accordingly.
 | 
						|
/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
 | 
						|
bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
 | 
						|
                                      const ObjCMethodDecl *right,
 | 
						|
                                      MethodMatchStrategy strategy) {
 | 
						|
  if (!matchTypes(Context, strategy, left->getReturnType(),
 | 
						|
                  right->getReturnType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If either is hidden, it is not considered to match.
 | 
						|
  if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (left->isDirectMethod() != right->isDirectMethod())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
      (left->hasAttr<NSReturnsRetainedAttr>()
 | 
						|
         != right->hasAttr<NSReturnsRetainedAttr>() ||
 | 
						|
       left->hasAttr<NSConsumesSelfAttr>()
 | 
						|
         != right->hasAttr<NSConsumesSelfAttr>()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ObjCMethodDecl::param_const_iterator
 | 
						|
    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
 | 
						|
    re = right->param_end();
 | 
						|
 | 
						|
  for (; li != le && ri != re; ++li, ++ri) {
 | 
						|
    assert(ri != right->param_end() && "Param mismatch");
 | 
						|
    const ParmVarDecl *lparm = *li, *rparm = *ri;
 | 
						|
 | 
						|
    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
 | 
						|
                                               ObjCMethodDecl *MethodInList) {
 | 
						|
  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
 | 
						|
  auto *MethodInListProtocol =
 | 
						|
      dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
 | 
						|
  // If this method belongs to a protocol but the method in list does not, or
 | 
						|
  // vice versa, we say the context is not the same.
 | 
						|
  if ((MethodProtocol && !MethodInListProtocol) ||
 | 
						|
      (!MethodProtocol && MethodInListProtocol))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (MethodProtocol && MethodInListProtocol)
 | 
						|
    return true;
 | 
						|
 | 
						|
  ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
 | 
						|
  ObjCInterfaceDecl *MethodInListInterface =
 | 
						|
      MethodInList->getClassInterface();
 | 
						|
  return MethodInterface == MethodInListInterface;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::addMethodToGlobalList(ObjCMethodList *List,
 | 
						|
                                 ObjCMethodDecl *Method) {
 | 
						|
  // Record at the head of the list whether there were 0, 1, or >= 2 methods
 | 
						|
  // inside categories.
 | 
						|
  if (ObjCCategoryDecl *CD =
 | 
						|
          dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
 | 
						|
    if (!CD->IsClassExtension() && List->getBits() < 2)
 | 
						|
      List->setBits(List->getBits() + 1);
 | 
						|
 | 
						|
  // If the list is empty, make it a singleton list.
 | 
						|
  if (List->getMethod() == nullptr) {
 | 
						|
    List->setMethod(Method);
 | 
						|
    List->setNext(nullptr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We've seen a method with this name, see if we have already seen this type
 | 
						|
  // signature.
 | 
						|
  ObjCMethodList *Previous = List;
 | 
						|
  ObjCMethodList *ListWithSameDeclaration = nullptr;
 | 
						|
  for (; List; Previous = List, List = List->getNext()) {
 | 
						|
    // If we are building a module, keep all of the methods.
 | 
						|
    if (getLangOpts().isCompilingModule())
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool SameDeclaration = MatchTwoMethodDeclarations(Method,
 | 
						|
                                                      List->getMethod());
 | 
						|
    // Looking for method with a type bound requires the correct context exists.
 | 
						|
    // We need to insert a method into the list if the context is different.
 | 
						|
    // If the method's declaration matches the list
 | 
						|
    // a> the method belongs to a different context: we need to insert it, in
 | 
						|
    //    order to emit the availability message, we need to prioritize over
 | 
						|
    //    availability among the methods with the same declaration.
 | 
						|
    // b> the method belongs to the same context: there is no need to insert a
 | 
						|
    //    new entry.
 | 
						|
    // If the method's declaration does not match the list, we insert it to the
 | 
						|
    // end.
 | 
						|
    if (!SameDeclaration ||
 | 
						|
        !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
 | 
						|
      // Even if two method types do not match, we would like to say
 | 
						|
      // there is more than one declaration so unavailability/deprecated
 | 
						|
      // warning is not too noisy.
 | 
						|
      if (!Method->isDefined())
 | 
						|
        List->setHasMoreThanOneDecl(true);
 | 
						|
 | 
						|
      // For methods with the same declaration, the one that is deprecated
 | 
						|
      // should be put in the front for better diagnostics.
 | 
						|
      if (Method->isDeprecated() && SameDeclaration &&
 | 
						|
          !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
 | 
						|
        ListWithSameDeclaration = List;
 | 
						|
 | 
						|
      if (Method->isUnavailable() && SameDeclaration &&
 | 
						|
          !ListWithSameDeclaration &&
 | 
						|
          List->getMethod()->getAvailability() < AR_Deprecated)
 | 
						|
        ListWithSameDeclaration = List;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ObjCMethodDecl *PrevObjCMethod = List->getMethod();
 | 
						|
 | 
						|
    // Propagate the 'defined' bit.
 | 
						|
    if (Method->isDefined())
 | 
						|
      PrevObjCMethod->setDefined(true);
 | 
						|
    else {
 | 
						|
      // Objective-C doesn't allow an @interface for a class after its
 | 
						|
      // @implementation. So if Method is not defined and there already is
 | 
						|
      // an entry for this type signature, Method has to be for a different
 | 
						|
      // class than PrevObjCMethod.
 | 
						|
      List->setHasMoreThanOneDecl(true);
 | 
						|
    }
 | 
						|
 | 
						|
    // If a method is deprecated, push it in the global pool.
 | 
						|
    // This is used for better diagnostics.
 | 
						|
    if (Method->isDeprecated()) {
 | 
						|
      if (!PrevObjCMethod->isDeprecated())
 | 
						|
        List->setMethod(Method);
 | 
						|
    }
 | 
						|
    // If the new method is unavailable, push it into global pool
 | 
						|
    // unless previous one is deprecated.
 | 
						|
    if (Method->isUnavailable()) {
 | 
						|
      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
 | 
						|
        List->setMethod(Method);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We have a new signature for an existing method - add it.
 | 
						|
  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
 | 
						|
  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
 | 
						|
 | 
						|
  // We insert it right before ListWithSameDeclaration.
 | 
						|
  if (ListWithSameDeclaration) {
 | 
						|
    auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
 | 
						|
    // FIXME: should we clear the other bits in ListWithSameDeclaration?
 | 
						|
    ListWithSameDeclaration->setMethod(Method);
 | 
						|
    ListWithSameDeclaration->setNext(List);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Previous->setNext(new (Mem) ObjCMethodList(Method));
 | 
						|
}
 | 
						|
 | 
						|
/// Read the contents of the method pool for a given selector from
 | 
						|
/// external storage.
 | 
						|
void Sema::ReadMethodPool(Selector Sel) {
 | 
						|
  assert(ExternalSource && "We need an external AST source");
 | 
						|
  ExternalSource->ReadMethodPool(Sel);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::updateOutOfDateSelector(Selector Sel) {
 | 
						|
  if (!ExternalSource)
 | 
						|
    return;
 | 
						|
  ExternalSource->updateOutOfDateSelector(Sel);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
 | 
						|
                                 bool instance) {
 | 
						|
  // Ignore methods of invalid containers.
 | 
						|
  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (ExternalSource)
 | 
						|
    ReadMethodPool(Method->getSelector());
 | 
						|
 | 
						|
  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
 | 
						|
  if (Pos == MethodPool.end())
 | 
						|
    Pos = MethodPool
 | 
						|
              .insert(std::make_pair(Method->getSelector(),
 | 
						|
                                     GlobalMethodPool::Lists()))
 | 
						|
              .first;
 | 
						|
 | 
						|
  Method->setDefined(impl);
 | 
						|
 | 
						|
  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
 | 
						|
  addMethodToGlobalList(&Entry, Method);
 | 
						|
}
 | 
						|
 | 
						|
/// Determines if this is an "acceptable" loose mismatch in the global
 | 
						|
/// method pool.  This exists mostly as a hack to get around certain
 | 
						|
/// global mismatches which we can't afford to make warnings / errors.
 | 
						|
/// Really, what we want is a way to take a method out of the global
 | 
						|
/// method pool.
 | 
						|
static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
 | 
						|
                                       ObjCMethodDecl *other) {
 | 
						|
  if (!chosen->isInstanceMethod())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (chosen->isDirectMethod() != other->isDirectMethod())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Selector sel = chosen->getSelector();
 | 
						|
  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't complain about mismatches for -length if the method we
 | 
						|
  // chose has an integral result type.
 | 
						|
  return (chosen->getReturnType()->isIntegerType());
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the given method is wthin the type bound.
 | 
						|
static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
 | 
						|
                                     const ObjCObjectType *TypeBound) {
 | 
						|
  if (!TypeBound)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (TypeBound->isObjCId())
 | 
						|
    // FIXME: should we handle the case of bounding to id<A, B> differently?
 | 
						|
    return true;
 | 
						|
 | 
						|
  auto *BoundInterface = TypeBound->getInterface();
 | 
						|
  assert(BoundInterface && "unexpected object type!");
 | 
						|
 | 
						|
  // Check if the Method belongs to a protocol. We should allow any method
 | 
						|
  // defined in any protocol, because any subclass could adopt the protocol.
 | 
						|
  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
 | 
						|
  if (MethodProtocol) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the Method belongs to a class, check if it belongs to the class
 | 
						|
  // hierarchy of the class bound.
 | 
						|
  if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
 | 
						|
    // We allow methods declared within classes that are part of the hierarchy
 | 
						|
    // of the class bound (superclass of, subclass of, or the same as the class
 | 
						|
    // bound).
 | 
						|
    return MethodInterface == BoundInterface ||
 | 
						|
           MethodInterface->isSuperClassOf(BoundInterface) ||
 | 
						|
           BoundInterface->isSuperClassOf(MethodInterface);
 | 
						|
  }
 | 
						|
  llvm_unreachable("unknown method context");
 | 
						|
}
 | 
						|
 | 
						|
/// We first select the type of the method: Instance or Factory, then collect
 | 
						|
/// all methods with that type.
 | 
						|
bool Sema::CollectMultipleMethodsInGlobalPool(
 | 
						|
    Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
 | 
						|
    bool InstanceFirst, bool CheckTheOther,
 | 
						|
    const ObjCObjectType *TypeBound) {
 | 
						|
  if (ExternalSource)
 | 
						|
    ReadMethodPool(Sel);
 | 
						|
 | 
						|
  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | 
						|
  if (Pos == MethodPool.end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Gather the non-hidden methods.
 | 
						|
  ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
 | 
						|
                             Pos->second.second;
 | 
						|
  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
 | 
						|
    if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
 | 
						|
      if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
 | 
						|
        Methods.push_back(M->getMethod());
 | 
						|
    }
 | 
						|
 | 
						|
  // Return if we find any method with the desired kind.
 | 
						|
  if (!Methods.empty())
 | 
						|
    return Methods.size() > 1;
 | 
						|
 | 
						|
  if (!CheckTheOther)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Gather the other kind.
 | 
						|
  ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
 | 
						|
                              Pos->second.first;
 | 
						|
  for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
 | 
						|
    if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
 | 
						|
      if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
 | 
						|
        Methods.push_back(M->getMethod());
 | 
						|
    }
 | 
						|
 | 
						|
  return Methods.size() > 1;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::AreMultipleMethodsInGlobalPool(
 | 
						|
    Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
 | 
						|
    bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
 | 
						|
  // Diagnose finding more than one method in global pool.
 | 
						|
  SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
 | 
						|
  FilteredMethods.push_back(BestMethod);
 | 
						|
 | 
						|
  for (auto *M : Methods)
 | 
						|
    if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
 | 
						|
      FilteredMethods.push_back(M);
 | 
						|
 | 
						|
  if (FilteredMethods.size() > 1)
 | 
						|
    DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
 | 
						|
                                       receiverIdOrClass);
 | 
						|
 | 
						|
  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | 
						|
  // Test for no method in the pool which should not trigger any warning by
 | 
						|
  // caller.
 | 
						|
  if (Pos == MethodPool.end())
 | 
						|
    return true;
 | 
						|
  ObjCMethodList &MethList =
 | 
						|
    BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
 | 
						|
  return MethList.hasMoreThanOneDecl();
 | 
						|
}
 | 
						|
 | 
						|
ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
 | 
						|
                                               bool receiverIdOrClass,
 | 
						|
                                               bool instance) {
 | 
						|
  if (ExternalSource)
 | 
						|
    ReadMethodPool(Sel);
 | 
						|
 | 
						|
  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | 
						|
  if (Pos == MethodPool.end())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Gather the non-hidden methods.
 | 
						|
  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
 | 
						|
  SmallVector<ObjCMethodDecl *, 4> Methods;
 | 
						|
  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
 | 
						|
    if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
 | 
						|
      return M->getMethod();
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
 | 
						|
                                              Selector Sel, SourceRange R,
 | 
						|
                                              bool receiverIdOrClass) {
 | 
						|
  // We found multiple methods, so we may have to complain.
 | 
						|
  bool issueDiagnostic = false, issueError = false;
 | 
						|
 | 
						|
  // We support a warning which complains about *any* difference in
 | 
						|
  // method signature.
 | 
						|
  bool strictSelectorMatch =
 | 
						|
  receiverIdOrClass &&
 | 
						|
  !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
 | 
						|
  if (strictSelectorMatch) {
 | 
						|
    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
 | 
						|
      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
 | 
						|
        issueDiagnostic = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't see any strict differences, we won't see any loose
 | 
						|
  // differences.  In ARC, however, we also need to check for loose
 | 
						|
  // mismatches, because most of them are errors.
 | 
						|
  if (!strictSelectorMatch ||
 | 
						|
      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
 | 
						|
    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
 | 
						|
      // This checks if the methods differ in type mismatch.
 | 
						|
      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
 | 
						|
          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
 | 
						|
        issueDiagnostic = true;
 | 
						|
        if (getLangOpts().ObjCAutoRefCount)
 | 
						|
          issueError = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  if (issueDiagnostic) {
 | 
						|
    if (issueError)
 | 
						|
      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
 | 
						|
    else if (strictSelectorMatch)
 | 
						|
      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
 | 
						|
    else
 | 
						|
      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
 | 
						|
 | 
						|
    Diag(Methods[0]->getBeginLoc(),
 | 
						|
         issueError ? diag::note_possibility : diag::note_using)
 | 
						|
        << Methods[0]->getSourceRange();
 | 
						|
    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
 | 
						|
      Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
 | 
						|
          << Methods[I]->getSourceRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
 | 
						|
  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | 
						|
  if (Pos == MethodPool.end())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  GlobalMethodPool::Lists &Methods = Pos->second;
 | 
						|
  for (const ObjCMethodList *Method = &Methods.first; Method;
 | 
						|
       Method = Method->getNext())
 | 
						|
    if (Method->getMethod() &&
 | 
						|
        (Method->getMethod()->isDefined() ||
 | 
						|
         Method->getMethod()->isPropertyAccessor()))
 | 
						|
      return Method->getMethod();
 | 
						|
 | 
						|
  for (const ObjCMethodList *Method = &Methods.second; Method;
 | 
						|
       Method = Method->getNext())
 | 
						|
    if (Method->getMethod() &&
 | 
						|
        (Method->getMethod()->isDefined() ||
 | 
						|
         Method->getMethod()->isPropertyAccessor()))
 | 
						|
      return Method->getMethod();
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
HelperSelectorsForTypoCorrection(
 | 
						|
                      SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
 | 
						|
                      StringRef Typo, const ObjCMethodDecl * Method) {
 | 
						|
  const unsigned MaxEditDistance = 1;
 | 
						|
  unsigned BestEditDistance = MaxEditDistance + 1;
 | 
						|
  std::string MethodName = Method->getSelector().getAsString();
 | 
						|
 | 
						|
  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
 | 
						|
  if (MinPossibleEditDistance > 0 &&
 | 
						|
      Typo.size() / MinPossibleEditDistance < 1)
 | 
						|
    return;
 | 
						|
  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
 | 
						|
  if (EditDistance > MaxEditDistance)
 | 
						|
    return;
 | 
						|
  if (EditDistance == BestEditDistance)
 | 
						|
    BestMethod.push_back(Method);
 | 
						|
  else if (EditDistance < BestEditDistance) {
 | 
						|
    BestMethod.clear();
 | 
						|
    BestMethod.push_back(Method);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
 | 
						|
                                     QualType ObjectType) {
 | 
						|
  if (ObjectType.isNull())
 | 
						|
    return true;
 | 
						|
  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
 | 
						|
    return true;
 | 
						|
  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
 | 
						|
         nullptr;
 | 
						|
}
 | 
						|
 | 
						|
const ObjCMethodDecl *
 | 
						|
Sema::SelectorsForTypoCorrection(Selector Sel,
 | 
						|
                                 QualType ObjectType) {
 | 
						|
  unsigned NumArgs = Sel.getNumArgs();
 | 
						|
  SmallVector<const ObjCMethodDecl *, 8> Methods;
 | 
						|
  bool ObjectIsId = true, ObjectIsClass = true;
 | 
						|
  if (ObjectType.isNull())
 | 
						|
    ObjectIsId = ObjectIsClass = false;
 | 
						|
  else if (!ObjectType->isObjCObjectPointerType())
 | 
						|
    return nullptr;
 | 
						|
  else if (const ObjCObjectPointerType *ObjCPtr =
 | 
						|
           ObjectType->getAsObjCInterfacePointerType()) {
 | 
						|
    ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
 | 
						|
    ObjectIsId = ObjectIsClass = false;
 | 
						|
  }
 | 
						|
  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
 | 
						|
    ObjectIsClass = false;
 | 
						|
  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
 | 
						|
    ObjectIsId = false;
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  for (GlobalMethodPool::iterator b = MethodPool.begin(),
 | 
						|
       e = MethodPool.end(); b != e; b++) {
 | 
						|
    // instance methods
 | 
						|
    for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
 | 
						|
      if (M->getMethod() &&
 | 
						|
          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
 | 
						|
          (M->getMethod()->getSelector() != Sel)) {
 | 
						|
        if (ObjectIsId)
 | 
						|
          Methods.push_back(M->getMethod());
 | 
						|
        else if (!ObjectIsClass &&
 | 
						|
                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
 | 
						|
                                          ObjectType))
 | 
						|
          Methods.push_back(M->getMethod());
 | 
						|
      }
 | 
						|
    // class methods
 | 
						|
    for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
 | 
						|
      if (M->getMethod() &&
 | 
						|
          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
 | 
						|
          (M->getMethod()->getSelector() != Sel)) {
 | 
						|
        if (ObjectIsClass)
 | 
						|
          Methods.push_back(M->getMethod());
 | 
						|
        else if (!ObjectIsId &&
 | 
						|
                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
 | 
						|
                                          ObjectType))
 | 
						|
          Methods.push_back(M->getMethod());
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
 | 
						|
  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
 | 
						|
    HelperSelectorsForTypoCorrection(SelectedMethods,
 | 
						|
                                     Sel.getAsString(), Methods[i]);
 | 
						|
  }
 | 
						|
  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseDuplicateIvars -
 | 
						|
/// Check for duplicate ivars in the entire class at the start of
 | 
						|
/// \@implementation. This becomes necesssary because class extension can
 | 
						|
/// add ivars to a class in random order which will not be known until
 | 
						|
/// class's \@implementation is seen.
 | 
						|
void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
 | 
						|
                                  ObjCInterfaceDecl *SID) {
 | 
						|
  for (auto *Ivar : ID->ivars()) {
 | 
						|
    if (Ivar->isInvalidDecl())
 | 
						|
      continue;
 | 
						|
    if (IdentifierInfo *II = Ivar->getIdentifier()) {
 | 
						|
      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
 | 
						|
      if (prevIvar) {
 | 
						|
        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
 | 
						|
        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
 | 
						|
        Ivar->setInvalidDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
 | 
						|
static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
 | 
						|
  if (S.getLangOpts().ObjCWeak) return;
 | 
						|
 | 
						|
  for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
 | 
						|
         ivar; ivar = ivar->getNextIvar()) {
 | 
						|
    if (ivar->isInvalidDecl()) continue;
 | 
						|
    if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
 | 
						|
      if (S.getLangOpts().ObjCWeakRuntime) {
 | 
						|
        S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
 | 
						|
      } else {
 | 
						|
        S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose attempts to use flexible array member with retainable object type.
 | 
						|
static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
 | 
						|
                                                  ObjCInterfaceDecl *ID) {
 | 
						|
  if (!S.getLangOpts().ObjCAutoRefCount)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (auto ivar = ID->all_declared_ivar_begin(); ivar;
 | 
						|
       ivar = ivar->getNextIvar()) {
 | 
						|
    if (ivar->isInvalidDecl())
 | 
						|
      continue;
 | 
						|
    QualType IvarTy = ivar->getType();
 | 
						|
    if (IvarTy->isIncompleteArrayType() &&
 | 
						|
        (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
 | 
						|
        IvarTy->isObjCLifetimeType()) {
 | 
						|
      S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
 | 
						|
      ivar->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
 | 
						|
  switch (CurContext->getDeclKind()) {
 | 
						|
    case Decl::ObjCInterface:
 | 
						|
      return Sema::OCK_Interface;
 | 
						|
    case Decl::ObjCProtocol:
 | 
						|
      return Sema::OCK_Protocol;
 | 
						|
    case Decl::ObjCCategory:
 | 
						|
      if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
 | 
						|
        return Sema::OCK_ClassExtension;
 | 
						|
      return Sema::OCK_Category;
 | 
						|
    case Decl::ObjCImplementation:
 | 
						|
      return Sema::OCK_Implementation;
 | 
						|
    case Decl::ObjCCategoryImpl:
 | 
						|
      return Sema::OCK_CategoryImplementation;
 | 
						|
 | 
						|
    default:
 | 
						|
      return Sema::OCK_None;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool IsVariableSizedType(QualType T) {
 | 
						|
  if (T->isIncompleteArrayType())
 | 
						|
    return true;
 | 
						|
  const auto *RecordTy = T->getAs<RecordType>();
 | 
						|
  return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
 | 
						|
  ObjCInterfaceDecl *IntfDecl = nullptr;
 | 
						|
  ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
 | 
						|
      ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
 | 
						|
  if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
 | 
						|
    Ivars = IntfDecl->ivars();
 | 
						|
  } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
 | 
						|
    IntfDecl = ImplDecl->getClassInterface();
 | 
						|
    Ivars = ImplDecl->ivars();
 | 
						|
  } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
 | 
						|
    if (CategoryDecl->IsClassExtension()) {
 | 
						|
      IntfDecl = CategoryDecl->getClassInterface();
 | 
						|
      Ivars = CategoryDecl->ivars();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if variable sized ivar is in interface and visible to subclasses.
 | 
						|
  if (!isa<ObjCInterfaceDecl>(OCD)) {
 | 
						|
    for (auto ivar : Ivars) {
 | 
						|
      if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
 | 
						|
        S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
 | 
						|
            << ivar->getDeclName() << ivar->getType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Subsequent checks require interface decl.
 | 
						|
  if (!IntfDecl)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if variable sized ivar is followed by another ivar.
 | 
						|
  for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
 | 
						|
       ivar = ivar->getNextIvar()) {
 | 
						|
    if (ivar->isInvalidDecl() || !ivar->getNextIvar())
 | 
						|
      continue;
 | 
						|
    QualType IvarTy = ivar->getType();
 | 
						|
    bool IsInvalidIvar = false;
 | 
						|
    if (IvarTy->isIncompleteArrayType()) {
 | 
						|
      S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
 | 
						|
          << ivar->getDeclName() << IvarTy
 | 
						|
          << TTK_Class; // Use "class" for Obj-C.
 | 
						|
      IsInvalidIvar = true;
 | 
						|
    } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
 | 
						|
      if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
 | 
						|
        S.Diag(ivar->getLocation(),
 | 
						|
               diag::err_objc_variable_sized_type_not_at_end)
 | 
						|
            << ivar->getDeclName() << IvarTy;
 | 
						|
        IsInvalidIvar = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (IsInvalidIvar) {
 | 
						|
      S.Diag(ivar->getNextIvar()->getLocation(),
 | 
						|
             diag::note_next_ivar_declaration)
 | 
						|
          << ivar->getNextIvar()->getSynthesize();
 | 
						|
      ivar->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if ObjC container adds ivars after variable sized ivar in superclass.
 | 
						|
  // Perform the check only if OCD is the first container to declare ivars to
 | 
						|
  // avoid multiple warnings for the same ivar.
 | 
						|
  ObjCIvarDecl *FirstIvar =
 | 
						|
      (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
 | 
						|
  if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
 | 
						|
    const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
 | 
						|
    while (SuperClass && SuperClass->ivar_empty())
 | 
						|
      SuperClass = SuperClass->getSuperClass();
 | 
						|
    if (SuperClass) {
 | 
						|
      auto IvarIter = SuperClass->ivar_begin();
 | 
						|
      std::advance(IvarIter, SuperClass->ivar_size() - 1);
 | 
						|
      const ObjCIvarDecl *LastIvar = *IvarIter;
 | 
						|
      if (IsVariableSizedType(LastIvar->getType())) {
 | 
						|
        S.Diag(FirstIvar->getLocation(),
 | 
						|
               diag::warn_superclass_variable_sized_type_not_at_end)
 | 
						|
            << FirstIvar->getDeclName() << LastIvar->getDeclName()
 | 
						|
            << LastIvar->getType() << SuperClass->getDeclName();
 | 
						|
        S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
 | 
						|
            << LastIvar->getDeclName();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseCategoryDirectMembersProtocolConformance(
 | 
						|
    Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
 | 
						|
 | 
						|
static void DiagnoseCategoryDirectMembersProtocolConformance(
 | 
						|
    Sema &S, ObjCCategoryDecl *CDecl,
 | 
						|
    const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
 | 
						|
  for (auto *PI : Protocols)
 | 
						|
    DiagnoseCategoryDirectMembersProtocolConformance(S, PI, CDecl);
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseCategoryDirectMembersProtocolConformance(
 | 
						|
    Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
 | 
						|
  if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
 | 
						|
    PDecl = PDecl->getDefinition();
 | 
						|
 | 
						|
  llvm::SmallVector<const Decl *, 4> DirectMembers;
 | 
						|
  const auto *IDecl = CDecl->getClassInterface();
 | 
						|
  for (auto *MD : PDecl->methods()) {
 | 
						|
    if (!MD->isPropertyAccessor()) {
 | 
						|
      if (const auto *CMD =
 | 
						|
              IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
 | 
						|
        if (CMD->isDirectMethod())
 | 
						|
          DirectMembers.push_back(CMD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (auto *PD : PDecl->properties()) {
 | 
						|
    if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
 | 
						|
            PD->getIdentifier(),
 | 
						|
            PD->isClassProperty()
 | 
						|
                ? ObjCPropertyQueryKind::OBJC_PR_query_class
 | 
						|
                : ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
 | 
						|
      if (CPD->isDirectProperty())
 | 
						|
        DirectMembers.push_back(CPD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!DirectMembers.empty()) {
 | 
						|
    S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
 | 
						|
        << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
 | 
						|
    for (const auto *MD : DirectMembers)
 | 
						|
      S.Diag(MD->getLocation(), diag::note_direct_member_here);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check on this protocols's referenced protocols, recursively.
 | 
						|
  DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl,
 | 
						|
                                                   PDecl->protocols());
 | 
						|
}
 | 
						|
 | 
						|
// Note: For class/category implementations, allMethods is always null.
 | 
						|
Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
 | 
						|
                       ArrayRef<DeclGroupPtrTy> allTUVars) {
 | 
						|
  if (getObjCContainerKind() == Sema::OCK_None)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert(AtEnd.isValid() && "Invalid location for '@end'");
 | 
						|
 | 
						|
  auto *OCD = cast<ObjCContainerDecl>(CurContext);
 | 
						|
  Decl *ClassDecl = OCD;
 | 
						|
 | 
						|
  bool isInterfaceDeclKind =
 | 
						|
        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
 | 
						|
         || isa<ObjCProtocolDecl>(ClassDecl);
 | 
						|
  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
 | 
						|
 | 
						|
  // Make synthesized accessor stub functions visible.
 | 
						|
  // ActOnPropertyImplDecl() creates them as not visible in case
 | 
						|
  // they are overridden by an explicit method that is encountered
 | 
						|
  // later.
 | 
						|
  if (auto *OID = dyn_cast<ObjCImplementationDecl>(CurContext)) {
 | 
						|
    for (auto PropImpl : OID->property_impls()) {
 | 
						|
      if (auto *Getter = PropImpl->getGetterMethodDecl())
 | 
						|
        if (Getter->isSynthesizedAccessorStub())
 | 
						|
          OID->addDecl(Getter);
 | 
						|
      if (auto *Setter = PropImpl->getSetterMethodDecl())
 | 
						|
        if (Setter->isSynthesizedAccessorStub())
 | 
						|
          OID->addDecl(Setter);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
 | 
						|
  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
 | 
						|
  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
 | 
						|
    ObjCMethodDecl *Method =
 | 
						|
      cast_or_null<ObjCMethodDecl>(allMethods[i]);
 | 
						|
 | 
						|
    if (!Method) continue;  // Already issued a diagnostic.
 | 
						|
    if (Method->isInstanceMethod()) {
 | 
						|
      /// Check for instance method of the same name with incompatible types
 | 
						|
      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
 | 
						|
      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
 | 
						|
                              : false;
 | 
						|
      if ((isInterfaceDeclKind && PrevMethod && !match)
 | 
						|
          || (checkIdenticalMethods && match)) {
 | 
						|
          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | 
						|
            << Method->getDeclName();
 | 
						|
          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
        Method->setInvalidDecl();
 | 
						|
      } else {
 | 
						|
        if (PrevMethod) {
 | 
						|
          Method->setAsRedeclaration(PrevMethod);
 | 
						|
          if (!Context.getSourceManager().isInSystemHeader(
 | 
						|
                 Method->getLocation()))
 | 
						|
            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
 | 
						|
              << Method->getDeclName();
 | 
						|
          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
        }
 | 
						|
        InsMap[Method->getSelector()] = Method;
 | 
						|
        /// The following allows us to typecheck messages to "id".
 | 
						|
        AddInstanceMethodToGlobalPool(Method);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      /// Check for class method of the same name with incompatible types
 | 
						|
      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
 | 
						|
      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
 | 
						|
                              : false;
 | 
						|
      if ((isInterfaceDeclKind && PrevMethod && !match)
 | 
						|
          || (checkIdenticalMethods && match)) {
 | 
						|
        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | 
						|
          << Method->getDeclName();
 | 
						|
        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
        Method->setInvalidDecl();
 | 
						|
      } else {
 | 
						|
        if (PrevMethod) {
 | 
						|
          Method->setAsRedeclaration(PrevMethod);
 | 
						|
          if (!Context.getSourceManager().isInSystemHeader(
 | 
						|
                 Method->getLocation()))
 | 
						|
            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
 | 
						|
              << Method->getDeclName();
 | 
						|
          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
        }
 | 
						|
        ClsMap[Method->getSelector()] = Method;
 | 
						|
        AddFactoryMethodToGlobalPool(Method);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
 | 
						|
    // Nothing to do here.
 | 
						|
  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
 | 
						|
    // Categories are used to extend the class by declaring new methods.
 | 
						|
    // By the same token, they are also used to add new properties. No
 | 
						|
    // need to compare the added property to those in the class.
 | 
						|
 | 
						|
    if (C->IsClassExtension()) {
 | 
						|
      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
 | 
						|
      DiagnoseClassExtensionDupMethods(C, CCPrimary);
 | 
						|
    }
 | 
						|
 | 
						|
    DiagnoseCategoryDirectMembersProtocolConformance(*this, C, C->protocols());
 | 
						|
  }
 | 
						|
  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
 | 
						|
    if (CDecl->getIdentifier())
 | 
						|
      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
 | 
						|
      // user-defined setter/getter. It also synthesizes setter/getter methods
 | 
						|
      // and adds them to the DeclContext and global method pools.
 | 
						|
      for (auto *I : CDecl->properties())
 | 
						|
        ProcessPropertyDecl(I);
 | 
						|
    CDecl->setAtEndRange(AtEnd);
 | 
						|
  }
 | 
						|
  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
 | 
						|
    IC->setAtEndRange(AtEnd);
 | 
						|
    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
 | 
						|
      // Any property declared in a class extension might have user
 | 
						|
      // declared setter or getter in current class extension or one
 | 
						|
      // of the other class extensions. Mark them as synthesized as
 | 
						|
      // property will be synthesized when property with same name is
 | 
						|
      // seen in the @implementation.
 | 
						|
      for (const auto *Ext : IDecl->visible_extensions()) {
 | 
						|
        for (const auto *Property : Ext->instance_properties()) {
 | 
						|
          // Skip over properties declared @dynamic
 | 
						|
          if (const ObjCPropertyImplDecl *PIDecl
 | 
						|
              = IC->FindPropertyImplDecl(Property->getIdentifier(),
 | 
						|
                                         Property->getQueryKind()))
 | 
						|
            if (PIDecl->getPropertyImplementation()
 | 
						|
                  == ObjCPropertyImplDecl::Dynamic)
 | 
						|
              continue;
 | 
						|
 | 
						|
          for (const auto *Ext : IDecl->visible_extensions()) {
 | 
						|
            if (ObjCMethodDecl *GetterMethod =
 | 
						|
                    Ext->getInstanceMethod(Property->getGetterName()))
 | 
						|
              GetterMethod->setPropertyAccessor(true);
 | 
						|
            if (!Property->isReadOnly())
 | 
						|
              if (ObjCMethodDecl *SetterMethod
 | 
						|
                    = Ext->getInstanceMethod(Property->getSetterName()))
 | 
						|
                SetterMethod->setPropertyAccessor(true);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ImplMethodsVsClassMethods(S, IC, IDecl);
 | 
						|
      AtomicPropertySetterGetterRules(IC, IDecl);
 | 
						|
      DiagnoseOwningPropertyGetterSynthesis(IC);
 | 
						|
      DiagnoseUnusedBackingIvarInAccessor(S, IC);
 | 
						|
      if (IDecl->hasDesignatedInitializers())
 | 
						|
        DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
 | 
						|
      DiagnoseWeakIvars(*this, IC);
 | 
						|
      DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
 | 
						|
 | 
						|
      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
 | 
						|
      if (IDecl->getSuperClass() == nullptr) {
 | 
						|
        // This class has no superclass, so check that it has been marked with
 | 
						|
        // __attribute((objc_root_class)).
 | 
						|
        if (!HasRootClassAttr) {
 | 
						|
          SourceLocation DeclLoc(IDecl->getLocation());
 | 
						|
          SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
 | 
						|
          Diag(DeclLoc, diag::warn_objc_root_class_missing)
 | 
						|
            << IDecl->getIdentifier();
 | 
						|
          // See if NSObject is in the current scope, and if it is, suggest
 | 
						|
          // adding " : NSObject " to the class declaration.
 | 
						|
          NamedDecl *IF = LookupSingleName(TUScope,
 | 
						|
                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
 | 
						|
                                           DeclLoc, LookupOrdinaryName);
 | 
						|
          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
 | 
						|
          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
 | 
						|
            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
 | 
						|
              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
 | 
						|
          } else {
 | 
						|
            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (HasRootClassAttr) {
 | 
						|
        // Complain that only root classes may have this attribute.
 | 
						|
        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
 | 
						|
      }
 | 
						|
 | 
						|
      if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
 | 
						|
        // An interface can subclass another interface with a
 | 
						|
        // objc_subclassing_restricted attribute when it has that attribute as
 | 
						|
        // well (because of interfaces imported from Swift). Therefore we have
 | 
						|
        // to check if we can subclass in the implementation as well.
 | 
						|
        if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
 | 
						|
            Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
 | 
						|
          Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
 | 
						|
          Diag(Super->getLocation(), diag::note_class_declared);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (IDecl->hasAttr<ObjCClassStubAttr>())
 | 
						|
        Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
 | 
						|
 | 
						|
      if (LangOpts.ObjCRuntime.isNonFragile()) {
 | 
						|
        while (IDecl->getSuperClass()) {
 | 
						|
          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
 | 
						|
          IDecl = IDecl->getSuperClass();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    SetIvarInitializers(IC);
 | 
						|
  } else if (ObjCCategoryImplDecl* CatImplClass =
 | 
						|
                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
 | 
						|
    CatImplClass->setAtEndRange(AtEnd);
 | 
						|
 | 
						|
    // Find category interface decl and then check that all methods declared
 | 
						|
    // in this interface are implemented in the category @implementation.
 | 
						|
    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
 | 
						|
      if (ObjCCategoryDecl *Cat
 | 
						|
            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
 | 
						|
        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
 | 
						|
    if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
 | 
						|
      if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
 | 
						|
          Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
 | 
						|
        Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
 | 
						|
        Diag(Super->getLocation(), diag::note_class_declared);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
 | 
						|
        !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
 | 
						|
      Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
 | 
						|
  }
 | 
						|
  DiagnoseVariableSizedIvars(*this, OCD);
 | 
						|
  if (isInterfaceDeclKind) {
 | 
						|
    // Reject invalid vardecls.
 | 
						|
    for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
 | 
						|
      DeclGroupRef DG = allTUVars[i].get();
 | 
						|
      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
 | 
						|
        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
 | 
						|
          if (!VDecl->hasExternalStorage())
 | 
						|
            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ActOnObjCContainerFinishDefinition();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
 | 
						|
    DeclGroupRef DG = allTUVars[i].get();
 | 
						|
    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
 | 
						|
      (*I)->setTopLevelDeclInObjCContainer();
 | 
						|
    Consumer.HandleTopLevelDeclInObjCContainer(DG);
 | 
						|
  }
 | 
						|
 | 
						|
  ActOnDocumentableDecl(ClassDecl);
 | 
						|
  return ClassDecl;
 | 
						|
}
 | 
						|
 | 
						|
/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
 | 
						|
/// objective-c's type qualifier from the parser version of the same info.
 | 
						|
static Decl::ObjCDeclQualifier
 | 
						|
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
 | 
						|
  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the declared result type of the given Objective-C
 | 
						|
/// method declaration is compatible with the method's class.
 | 
						|
///
 | 
						|
static Sema::ResultTypeCompatibilityKind
 | 
						|
CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
 | 
						|
                                    ObjCInterfaceDecl *CurrentClass) {
 | 
						|
  QualType ResultType = Method->getReturnType();
 | 
						|
 | 
						|
  // If an Objective-C method inherits its related result type, then its
 | 
						|
  // declared result type must be compatible with its own class type. The
 | 
						|
  // declared result type is compatible if:
 | 
						|
  if (const ObjCObjectPointerType *ResultObjectType
 | 
						|
                                = ResultType->getAs<ObjCObjectPointerType>()) {
 | 
						|
    //   - it is id or qualified id, or
 | 
						|
    if (ResultObjectType->isObjCIdType() ||
 | 
						|
        ResultObjectType->isObjCQualifiedIdType())
 | 
						|
      return Sema::RTC_Compatible;
 | 
						|
 | 
						|
    if (CurrentClass) {
 | 
						|
      if (ObjCInterfaceDecl *ResultClass
 | 
						|
                                      = ResultObjectType->getInterfaceDecl()) {
 | 
						|
        //   - it is the same as the method's class type, or
 | 
						|
        if (declaresSameEntity(CurrentClass, ResultClass))
 | 
						|
          return Sema::RTC_Compatible;
 | 
						|
 | 
						|
        //   - it is a superclass of the method's class type
 | 
						|
        if (ResultClass->isSuperClassOf(CurrentClass))
 | 
						|
          return Sema::RTC_Compatible;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Any Objective-C pointer type might be acceptable for a protocol
 | 
						|
      // method; we just don't know.
 | 
						|
      return Sema::RTC_Unknown;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Sema::RTC_Incompatible;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// A helper class for searching for methods which a particular method
 | 
						|
/// overrides.
 | 
						|
class OverrideSearch {
 | 
						|
public:
 | 
						|
  const ObjCMethodDecl *Method;
 | 
						|
  llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
 | 
						|
  bool Recursive;
 | 
						|
 | 
						|
public:
 | 
						|
  OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
 | 
						|
    Selector selector = method->getSelector();
 | 
						|
 | 
						|
    // Bypass this search if we've never seen an instance/class method
 | 
						|
    // with this selector before.
 | 
						|
    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
 | 
						|
    if (it == S.MethodPool.end()) {
 | 
						|
      if (!S.getExternalSource()) return;
 | 
						|
      S.ReadMethodPool(selector);
 | 
						|
 | 
						|
      it = S.MethodPool.find(selector);
 | 
						|
      if (it == S.MethodPool.end())
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    const ObjCMethodList &list =
 | 
						|
      method->isInstanceMethod() ? it->second.first : it->second.second;
 | 
						|
    if (!list.getMethod()) return;
 | 
						|
 | 
						|
    const ObjCContainerDecl *container
 | 
						|
      = cast<ObjCContainerDecl>(method->getDeclContext());
 | 
						|
 | 
						|
    // Prevent the search from reaching this container again.  This is
 | 
						|
    // important with categories, which override methods from the
 | 
						|
    // interface and each other.
 | 
						|
    if (const ObjCCategoryDecl *Category =
 | 
						|
            dyn_cast<ObjCCategoryDecl>(container)) {
 | 
						|
      searchFromContainer(container);
 | 
						|
      if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
 | 
						|
        searchFromContainer(Interface);
 | 
						|
    } else {
 | 
						|
      searchFromContainer(container);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  typedef decltype(Overridden)::iterator iterator;
 | 
						|
  iterator begin() const { return Overridden.begin(); }
 | 
						|
  iterator end() const { return Overridden.end(); }
 | 
						|
 | 
						|
private:
 | 
						|
  void searchFromContainer(const ObjCContainerDecl *container) {
 | 
						|
    if (container->isInvalidDecl()) return;
 | 
						|
 | 
						|
    switch (container->getDeclKind()) {
 | 
						|
#define OBJCCONTAINER(type, base) \
 | 
						|
    case Decl::type: \
 | 
						|
      searchFrom(cast<type##Decl>(container)); \
 | 
						|
      break;
 | 
						|
#define ABSTRACT_DECL(expansion)
 | 
						|
#define DECL(type, base) \
 | 
						|
    case Decl::type:
 | 
						|
#include "clang/AST/DeclNodes.inc"
 | 
						|
      llvm_unreachable("not an ObjC container!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void searchFrom(const ObjCProtocolDecl *protocol) {
 | 
						|
    if (!protocol->hasDefinition())
 | 
						|
      return;
 | 
						|
 | 
						|
    // A method in a protocol declaration overrides declarations from
 | 
						|
    // referenced ("parent") protocols.
 | 
						|
    search(protocol->getReferencedProtocols());
 | 
						|
  }
 | 
						|
 | 
						|
  void searchFrom(const ObjCCategoryDecl *category) {
 | 
						|
    // A method in a category declaration overrides declarations from
 | 
						|
    // the main class and from protocols the category references.
 | 
						|
    // The main class is handled in the constructor.
 | 
						|
    search(category->getReferencedProtocols());
 | 
						|
  }
 | 
						|
 | 
						|
  void searchFrom(const ObjCCategoryImplDecl *impl) {
 | 
						|
    // A method in a category definition that has a category
 | 
						|
    // declaration overrides declarations from the category
 | 
						|
    // declaration.
 | 
						|
    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
 | 
						|
      search(category);
 | 
						|
      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
 | 
						|
        search(Interface);
 | 
						|
 | 
						|
    // Otherwise it overrides declarations from the class.
 | 
						|
    } else if (const auto *Interface = impl->getClassInterface()) {
 | 
						|
      search(Interface);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void searchFrom(const ObjCInterfaceDecl *iface) {
 | 
						|
    // A method in a class declaration overrides declarations from
 | 
						|
    if (!iface->hasDefinition())
 | 
						|
      return;
 | 
						|
 | 
						|
    //   - categories,
 | 
						|
    for (auto *Cat : iface->known_categories())
 | 
						|
      search(Cat);
 | 
						|
 | 
						|
    //   - the super class, and
 | 
						|
    if (ObjCInterfaceDecl *super = iface->getSuperClass())
 | 
						|
      search(super);
 | 
						|
 | 
						|
    //   - any referenced protocols.
 | 
						|
    search(iface->getReferencedProtocols());
 | 
						|
  }
 | 
						|
 | 
						|
  void searchFrom(const ObjCImplementationDecl *impl) {
 | 
						|
    // A method in a class implementation overrides declarations from
 | 
						|
    // the class interface.
 | 
						|
    if (const auto *Interface = impl->getClassInterface())
 | 
						|
      search(Interface);
 | 
						|
  }
 | 
						|
 | 
						|
  void search(const ObjCProtocolList &protocols) {
 | 
						|
    for (const auto *Proto : protocols)
 | 
						|
      search(Proto);
 | 
						|
  }
 | 
						|
 | 
						|
  void search(const ObjCContainerDecl *container) {
 | 
						|
    // Check for a method in this container which matches this selector.
 | 
						|
    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
 | 
						|
                                                Method->isInstanceMethod(),
 | 
						|
                                                /*AllowHidden=*/true);
 | 
						|
 | 
						|
    // If we find one, record it and bail out.
 | 
						|
    if (meth) {
 | 
						|
      Overridden.insert(meth);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, search for methods that a hypothetical method here
 | 
						|
    // would have overridden.
 | 
						|
 | 
						|
    // Note that we're now in a recursive case.
 | 
						|
    Recursive = true;
 | 
						|
 | 
						|
    searchFromContainer(container);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
 | 
						|
                                          ObjCMethodDecl *overridden) {
 | 
						|
  if (overridden->isDirectMethod()) {
 | 
						|
    const auto *attr = overridden->getAttr<ObjCDirectAttr>();
 | 
						|
    Diag(method->getLocation(), diag::err_objc_override_direct_method);
 | 
						|
    Diag(attr->getLocation(), diag::note_previous_declaration);
 | 
						|
  } else if (method->isDirectMethod()) {
 | 
						|
    const auto *attr = method->getAttr<ObjCDirectAttr>();
 | 
						|
    Diag(attr->getLocation(), diag::err_objc_direct_on_override)
 | 
						|
        << isa<ObjCProtocolDecl>(overridden->getDeclContext());
 | 
						|
    Diag(overridden->getLocation(), diag::note_previous_declaration);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
 | 
						|
                                    ObjCInterfaceDecl *CurrentClass,
 | 
						|
                                    ResultTypeCompatibilityKind RTC) {
 | 
						|
  if (!ObjCMethod)
 | 
						|
    return;
 | 
						|
  // Search for overridden methods and merge information down from them.
 | 
						|
  OverrideSearch overrides(*this, ObjCMethod);
 | 
						|
  // Keep track if the method overrides any method in the class's base classes,
 | 
						|
  // its protocols, or its categories' protocols; we will keep that info
 | 
						|
  // in the ObjCMethodDecl.
 | 
						|
  // For this info, a method in an implementation is not considered as
 | 
						|
  // overriding the same method in the interface or its categories.
 | 
						|
  bool hasOverriddenMethodsInBaseOrProtocol = false;
 | 
						|
  for (ObjCMethodDecl *overridden : overrides) {
 | 
						|
    if (!hasOverriddenMethodsInBaseOrProtocol) {
 | 
						|
      if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
 | 
						|
          CurrentClass != overridden->getClassInterface() ||
 | 
						|
          overridden->isOverriding()) {
 | 
						|
        CheckObjCMethodDirectOverrides(ObjCMethod, overridden);
 | 
						|
        hasOverriddenMethodsInBaseOrProtocol = true;
 | 
						|
      } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
 | 
						|
        // OverrideSearch will return as "overridden" the same method in the
 | 
						|
        // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
 | 
						|
        // check whether a category of a base class introduced a method with the
 | 
						|
        // same selector, after the interface method declaration.
 | 
						|
        // To avoid unnecessary lookups in the majority of cases, we use the
 | 
						|
        // extra info bits in GlobalMethodPool to check whether there were any
 | 
						|
        // category methods with this selector.
 | 
						|
        GlobalMethodPool::iterator It =
 | 
						|
            MethodPool.find(ObjCMethod->getSelector());
 | 
						|
        if (It != MethodPool.end()) {
 | 
						|
          ObjCMethodList &List =
 | 
						|
            ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
 | 
						|
          unsigned CategCount = List.getBits();
 | 
						|
          if (CategCount > 0) {
 | 
						|
            // If the method is in a category we'll do lookup if there were at
 | 
						|
            // least 2 category methods recorded, otherwise only one will do.
 | 
						|
            if (CategCount > 1 ||
 | 
						|
                !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
 | 
						|
              OverrideSearch overrides(*this, overridden);
 | 
						|
              for (ObjCMethodDecl *SuperOverridden : overrides) {
 | 
						|
                if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
 | 
						|
                    CurrentClass != SuperOverridden->getClassInterface()) {
 | 
						|
                  CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden);
 | 
						|
                  hasOverriddenMethodsInBaseOrProtocol = true;
 | 
						|
                  overridden->setOverriding(true);
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Propagate down the 'related result type' bit from overridden methods.
 | 
						|
    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
 | 
						|
      ObjCMethod->setRelatedResultType();
 | 
						|
 | 
						|
    // Then merge the declarations.
 | 
						|
    mergeObjCMethodDecls(ObjCMethod, overridden);
 | 
						|
 | 
						|
    if (ObjCMethod->isImplicit() && overridden->isImplicit())
 | 
						|
      continue; // Conflicting properties are detected elsewhere.
 | 
						|
 | 
						|
    // Check for overriding methods
 | 
						|
    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
 | 
						|
        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
 | 
						|
      CheckConflictingOverridingMethod(ObjCMethod, overridden,
 | 
						|
              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
 | 
						|
 | 
						|
    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
 | 
						|
        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
 | 
						|
        !overridden->isImplicit() /* not meant for properties */) {
 | 
						|
      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
 | 
						|
                                          E = ObjCMethod->param_end();
 | 
						|
      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
 | 
						|
                                     PrevE = overridden->param_end();
 | 
						|
      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
 | 
						|
        assert(PrevI != overridden->param_end() && "Param mismatch");
 | 
						|
        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
 | 
						|
        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
 | 
						|
        // If type of argument of method in this class does not match its
 | 
						|
        // respective argument type in the super class method, issue warning;
 | 
						|
        if (!Context.typesAreCompatible(T1, T2)) {
 | 
						|
          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
 | 
						|
            << T1 << T2;
 | 
						|
          Diag(overridden->getLocation(), diag::note_previous_declaration);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
 | 
						|
}
 | 
						|
 | 
						|
/// Merge type nullability from for a redeclaration of the same entity,
 | 
						|
/// producing the updated type of the redeclared entity.
 | 
						|
static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
 | 
						|
                                              QualType type,
 | 
						|
                                              bool usesCSKeyword,
 | 
						|
                                              SourceLocation prevLoc,
 | 
						|
                                              QualType prevType,
 | 
						|
                                              bool prevUsesCSKeyword) {
 | 
						|
  // Determine the nullability of both types.
 | 
						|
  auto nullability = type->getNullability(S.Context);
 | 
						|
  auto prevNullability = prevType->getNullability(S.Context);
 | 
						|
 | 
						|
  // Easy case: both have nullability.
 | 
						|
  if (nullability.has_value() == prevNullability.has_value()) {
 | 
						|
    // Neither has nullability; continue.
 | 
						|
    if (!nullability)
 | 
						|
      return type;
 | 
						|
 | 
						|
    // The nullabilities are equivalent; do nothing.
 | 
						|
    if (*nullability == *prevNullability)
 | 
						|
      return type;
 | 
						|
 | 
						|
    // Complain about mismatched nullability.
 | 
						|
    S.Diag(loc, diag::err_nullability_conflicting)
 | 
						|
      << DiagNullabilityKind(*nullability, usesCSKeyword)
 | 
						|
      << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
 | 
						|
    return type;
 | 
						|
  }
 | 
						|
 | 
						|
  // If it's the redeclaration that has nullability, don't change anything.
 | 
						|
  if (nullability)
 | 
						|
    return type;
 | 
						|
 | 
						|
  // Otherwise, provide the result with the same nullability.
 | 
						|
  return S.Context.getAttributedType(
 | 
						|
           AttributedType::getNullabilityAttrKind(*prevNullability),
 | 
						|
           type, type);
 | 
						|
}
 | 
						|
 | 
						|
/// Merge information from the declaration of a method in the \@interface
 | 
						|
/// (or a category/extension) into the corresponding method in the
 | 
						|
/// @implementation (for a class or category).
 | 
						|
static void mergeInterfaceMethodToImpl(Sema &S,
 | 
						|
                                       ObjCMethodDecl *method,
 | 
						|
                                       ObjCMethodDecl *prevMethod) {
 | 
						|
  // Merge the objc_requires_super attribute.
 | 
						|
  if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
 | 
						|
      !method->hasAttr<ObjCRequiresSuperAttr>()) {
 | 
						|
    // merge the attribute into implementation.
 | 
						|
    method->addAttr(
 | 
						|
      ObjCRequiresSuperAttr::CreateImplicit(S.Context,
 | 
						|
                                            method->getLocation()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge nullability of the result type.
 | 
						|
  QualType newReturnType
 | 
						|
    = mergeTypeNullabilityForRedecl(
 | 
						|
        S, method->getReturnTypeSourceRange().getBegin(),
 | 
						|
        method->getReturnType(),
 | 
						|
        method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
 | 
						|
        prevMethod->getReturnTypeSourceRange().getBegin(),
 | 
						|
        prevMethod->getReturnType(),
 | 
						|
        prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
 | 
						|
  method->setReturnType(newReturnType);
 | 
						|
 | 
						|
  // Handle each of the parameters.
 | 
						|
  unsigned numParams = method->param_size();
 | 
						|
  unsigned numPrevParams = prevMethod->param_size();
 | 
						|
  for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
 | 
						|
    ParmVarDecl *param = method->param_begin()[i];
 | 
						|
    ParmVarDecl *prevParam = prevMethod->param_begin()[i];
 | 
						|
 | 
						|
    // Merge nullability.
 | 
						|
    QualType newParamType
 | 
						|
      = mergeTypeNullabilityForRedecl(
 | 
						|
          S, param->getLocation(), param->getType(),
 | 
						|
          param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
 | 
						|
          prevParam->getLocation(), prevParam->getType(),
 | 
						|
          prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
 | 
						|
    param->setType(newParamType);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Verify that the method parameters/return value have types that are supported
 | 
						|
/// by the x86 target.
 | 
						|
static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
 | 
						|
                                          const ObjCMethodDecl *Method) {
 | 
						|
  assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
 | 
						|
             llvm::Triple::x86 &&
 | 
						|
         "x86-specific check invoked for a different target");
 | 
						|
  SourceLocation Loc;
 | 
						|
  QualType T;
 | 
						|
  for (const ParmVarDecl *P : Method->parameters()) {
 | 
						|
    if (P->getType()->isVectorType()) {
 | 
						|
      Loc = P->getBeginLoc();
 | 
						|
      T = P->getType();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Loc.isInvalid()) {
 | 
						|
    if (Method->getReturnType()->isVectorType()) {
 | 
						|
      Loc = Method->getReturnTypeSourceRange().getBegin();
 | 
						|
      T = Method->getReturnType();
 | 
						|
    } else
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Vector parameters/return values are not supported by objc_msgSend on x86 in
 | 
						|
  // iOS < 9 and macOS < 10.11.
 | 
						|
  const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
 | 
						|
  VersionTuple AcceptedInVersion;
 | 
						|
  if (Triple.getOS() == llvm::Triple::IOS)
 | 
						|
    AcceptedInVersion = VersionTuple(/*Major=*/9);
 | 
						|
  else if (Triple.isMacOSX())
 | 
						|
    AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
 | 
						|
  else
 | 
						|
    return;
 | 
						|
  if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
 | 
						|
      AcceptedInVersion)
 | 
						|
    return;
 | 
						|
  SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
 | 
						|
      << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
 | 
						|
                                                       : /*parameter*/ 0)
 | 
						|
      << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
 | 
						|
}
 | 
						|
 | 
						|
static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
 | 
						|
  if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
 | 
						|
      CD->hasAttr<ObjCDirectMembersAttr>()) {
 | 
						|
    Method->addAttr(
 | 
						|
        ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
 | 
						|
                                         ObjCMethodDecl *Method,
 | 
						|
                                         ObjCImplDecl *ImpDecl = nullptr) {
 | 
						|
  auto Sel = Method->getSelector();
 | 
						|
  bool isInstance = Method->isInstanceMethod();
 | 
						|
  bool diagnosed = false;
 | 
						|
 | 
						|
  auto diagClash = [&](const ObjCMethodDecl *IMD) {
 | 
						|
    if (diagnosed || IMD->isImplicit())
 | 
						|
      return;
 | 
						|
    if (Method->isDirectMethod() || IMD->isDirectMethod()) {
 | 
						|
      S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
 | 
						|
          << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
 | 
						|
          << Method->getDeclName();
 | 
						|
      S.Diag(IMD->getLocation(), diag::note_previous_declaration);
 | 
						|
      diagnosed = true;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // Look for any other declaration of this method anywhere we can see in this
 | 
						|
  // compilation unit.
 | 
						|
  //
 | 
						|
  // We do not use IDecl->lookupMethod() because we have specific needs:
 | 
						|
  //
 | 
						|
  // - we absolutely do not need to walk protocols, because
 | 
						|
  //   diag::err_objc_direct_on_protocol has already been emitted
 | 
						|
  //   during parsing if there's a conflict,
 | 
						|
  //
 | 
						|
  // - when we do not find a match in a given @interface container,
 | 
						|
  //   we need to attempt looking it up in the @implementation block if the
 | 
						|
  //   translation unit sees it to find more clashes.
 | 
						|
 | 
						|
  if (auto *IMD = IDecl->getMethod(Sel, isInstance))
 | 
						|
    diagClash(IMD);
 | 
						|
  else if (auto *Impl = IDecl->getImplementation())
 | 
						|
    if (Impl != ImpDecl)
 | 
						|
      if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
 | 
						|
        diagClash(IMD);
 | 
						|
 | 
						|
  for (const auto *Cat : IDecl->visible_categories())
 | 
						|
    if (auto *IMD = Cat->getMethod(Sel, isInstance))
 | 
						|
      diagClash(IMD);
 | 
						|
    else if (auto CatImpl = Cat->getImplementation())
 | 
						|
      if (CatImpl != ImpDecl)
 | 
						|
        if (auto *IMD = Cat->getMethod(Sel, isInstance))
 | 
						|
          diagClash(IMD);
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnMethodDeclaration(
 | 
						|
    Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
 | 
						|
    tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
 | 
						|
    ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
 | 
						|
    // optional arguments. The number of types/arguments is obtained
 | 
						|
    // from the Sel.getNumArgs().
 | 
						|
    ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
 | 
						|
    unsigned CNumArgs, // c-style args
 | 
						|
    const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
 | 
						|
    bool isVariadic, bool MethodDefinition) {
 | 
						|
  // Make sure we can establish a context for the method.
 | 
						|
  if (!CurContext->isObjCContainer()) {
 | 
						|
    Diag(MethodLoc, diag::err_missing_method_context);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
 | 
						|
  QualType resultDeclType;
 | 
						|
 | 
						|
  bool HasRelatedResultType = false;
 | 
						|
  TypeSourceInfo *ReturnTInfo = nullptr;
 | 
						|
  if (ReturnType) {
 | 
						|
    resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
 | 
						|
 | 
						|
    if (CheckFunctionReturnType(resultDeclType, MethodLoc))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    QualType bareResultType = resultDeclType;
 | 
						|
    (void)AttributedType::stripOuterNullability(bareResultType);
 | 
						|
    HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
 | 
						|
  } else { // get the type for "id".
 | 
						|
    resultDeclType = Context.getObjCIdType();
 | 
						|
    Diag(MethodLoc, diag::warn_missing_method_return_type)
 | 
						|
      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
 | 
						|
      Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
 | 
						|
      MethodType == tok::minus, isVariadic,
 | 
						|
      /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
 | 
						|
      /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
 | 
						|
      MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
 | 
						|
                                           : ObjCMethodDecl::Required,
 | 
						|
      HasRelatedResultType);
 | 
						|
 | 
						|
  SmallVector<ParmVarDecl*, 16> Params;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
 | 
						|
    QualType ArgType;
 | 
						|
    TypeSourceInfo *DI;
 | 
						|
 | 
						|
    if (!ArgInfo[i].Type) {
 | 
						|
      ArgType = Context.getObjCIdType();
 | 
						|
      DI = nullptr;
 | 
						|
    } else {
 | 
						|
      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
 | 
						|
    }
 | 
						|
 | 
						|
    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
 | 
						|
                   LookupOrdinaryName, forRedeclarationInCurContext());
 | 
						|
    LookupName(R, S);
 | 
						|
    if (R.isSingleResult()) {
 | 
						|
      NamedDecl *PrevDecl = R.getFoundDecl();
 | 
						|
      if (S->isDeclScope(PrevDecl)) {
 | 
						|
        Diag(ArgInfo[i].NameLoc,
 | 
						|
             (MethodDefinition ? diag::warn_method_param_redefinition
 | 
						|
                               : diag::warn_method_param_declaration))
 | 
						|
          << ArgInfo[i].Name;
 | 
						|
        Diag(PrevDecl->getLocation(),
 | 
						|
             diag::note_previous_declaration);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SourceLocation StartLoc = DI
 | 
						|
      ? DI->getTypeLoc().getBeginLoc()
 | 
						|
      : ArgInfo[i].NameLoc;
 | 
						|
 | 
						|
    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
 | 
						|
                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
 | 
						|
                                        ArgType, DI, SC_None);
 | 
						|
 | 
						|
    Param->setObjCMethodScopeInfo(i);
 | 
						|
 | 
						|
    Param->setObjCDeclQualifier(
 | 
						|
      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
 | 
						|
 | 
						|
    // Apply the attributes to the parameter.
 | 
						|
    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
 | 
						|
    AddPragmaAttributes(TUScope, Param);
 | 
						|
 | 
						|
    if (Param->hasAttr<BlocksAttr>()) {
 | 
						|
      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
 | 
						|
      Param->setInvalidDecl();
 | 
						|
    }
 | 
						|
    S->AddDecl(Param);
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
 | 
						|
    Params.push_back(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
 | 
						|
    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
 | 
						|
    QualType ArgType = Param->getType();
 | 
						|
    if (ArgType.isNull())
 | 
						|
      ArgType = Context.getObjCIdType();
 | 
						|
    else
 | 
						|
      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
 | 
						|
      ArgType = Context.getAdjustedParameterType(ArgType);
 | 
						|
 | 
						|
    Param->setDeclContext(ObjCMethod);
 | 
						|
    Params.push_back(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
 | 
						|
  ObjCMethod->setObjCDeclQualifier(
 | 
						|
    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
 | 
						|
 | 
						|
  ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
 | 
						|
  AddPragmaAttributes(TUScope, ObjCMethod);
 | 
						|
 | 
						|
  // Add the method now.
 | 
						|
  const ObjCMethodDecl *PrevMethod = nullptr;
 | 
						|
  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
 | 
						|
    if (MethodType == tok::minus) {
 | 
						|
      PrevMethod = ImpDecl->getInstanceMethod(Sel);
 | 
						|
      ImpDecl->addInstanceMethod(ObjCMethod);
 | 
						|
    } else {
 | 
						|
      PrevMethod = ImpDecl->getClassMethod(Sel);
 | 
						|
      ImpDecl->addClassMethod(ObjCMethod);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this method overrides a previous @synthesize declaration,
 | 
						|
    // register it with the property.  Linear search through all
 | 
						|
    // properties here, because the autosynthesized stub hasn't been
 | 
						|
    // made visible yet, so it can be overridden by a later
 | 
						|
    // user-specified implementation.
 | 
						|
    for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
 | 
						|
      if (auto *Setter = PropertyImpl->getSetterMethodDecl())
 | 
						|
        if (Setter->getSelector() == Sel &&
 | 
						|
            Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
 | 
						|
          assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
 | 
						|
          PropertyImpl->setSetterMethodDecl(ObjCMethod);
 | 
						|
        }
 | 
						|
      if (auto *Getter = PropertyImpl->getGetterMethodDecl())
 | 
						|
        if (Getter->getSelector() == Sel &&
 | 
						|
            Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
 | 
						|
          assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
 | 
						|
          PropertyImpl->setGetterMethodDecl(ObjCMethod);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // A method is either tagged direct explicitly, or inherits it from its
 | 
						|
    // canonical declaration.
 | 
						|
    //
 | 
						|
    // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
 | 
						|
    // because IDecl->lookupMethod() returns more possible matches than just
 | 
						|
    // the canonical declaration.
 | 
						|
    if (!ObjCMethod->isDirectMethod()) {
 | 
						|
      const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
 | 
						|
      if (CanonicalMD->isDirectMethod()) {
 | 
						|
        const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
 | 
						|
        ObjCMethod->addAttr(
 | 
						|
            ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Merge information from the @interface declaration into the
 | 
						|
    // @implementation.
 | 
						|
    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
 | 
						|
      if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
 | 
						|
                                          ObjCMethod->isInstanceMethod())) {
 | 
						|
        mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
 | 
						|
 | 
						|
        // The Idecl->lookupMethod() above will find declarations for ObjCMethod
 | 
						|
        // in one of these places:
 | 
						|
        //
 | 
						|
        // (1) the canonical declaration in an @interface container paired
 | 
						|
        //     with the ImplDecl,
 | 
						|
        // (2) non canonical declarations in @interface not paired with the
 | 
						|
        //     ImplDecl for the same Class,
 | 
						|
        // (3) any superclass container.
 | 
						|
        //
 | 
						|
        // Direct methods only allow for canonical declarations in the matching
 | 
						|
        // container (case 1).
 | 
						|
        //
 | 
						|
        // Direct methods overriding a superclass declaration (case 3) is
 | 
						|
        // handled during overrides checks in CheckObjCMethodOverrides().
 | 
						|
        //
 | 
						|
        // We deal with same-class container mismatches (Case 2) here.
 | 
						|
        if (IDecl == IMD->getClassInterface()) {
 | 
						|
          auto diagContainerMismatch = [&] {
 | 
						|
            int decl = 0, impl = 0;
 | 
						|
 | 
						|
            if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
 | 
						|
              decl = Cat->IsClassExtension() ? 1 : 2;
 | 
						|
 | 
						|
            if (isa<ObjCCategoryImplDecl>(ImpDecl))
 | 
						|
              impl = 1 + (decl != 0);
 | 
						|
 | 
						|
            Diag(ObjCMethod->getLocation(),
 | 
						|
                 diag::err_objc_direct_impl_decl_mismatch)
 | 
						|
                << decl << impl;
 | 
						|
            Diag(IMD->getLocation(), diag::note_previous_declaration);
 | 
						|
          };
 | 
						|
 | 
						|
          if (ObjCMethod->isDirectMethod()) {
 | 
						|
            const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
 | 
						|
            if (ObjCMethod->getCanonicalDecl() != IMD) {
 | 
						|
              diagContainerMismatch();
 | 
						|
            } else if (!IMD->isDirectMethod()) {
 | 
						|
              Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
 | 
						|
              Diag(IMD->getLocation(), diag::note_previous_declaration);
 | 
						|
            }
 | 
						|
          } else if (IMD->isDirectMethod()) {
 | 
						|
            const auto *attr = IMD->getAttr<ObjCDirectAttr>();
 | 
						|
            if (ObjCMethod->getCanonicalDecl() != IMD) {
 | 
						|
              diagContainerMismatch();
 | 
						|
            } else {
 | 
						|
              ObjCMethod->addAttr(
 | 
						|
                  ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Warn about defining -dealloc in a category.
 | 
						|
        if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
 | 
						|
            ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
 | 
						|
          Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
 | 
						|
            << ObjCMethod->getDeclName();
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
 | 
						|
        checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod, ImpDecl);
 | 
						|
      }
 | 
						|
 | 
						|
      // Warn if a method declared in a protocol to which a category or
 | 
						|
      // extension conforms is non-escaping and the implementation's method is
 | 
						|
      // escaping.
 | 
						|
      for (auto *C : IDecl->visible_categories())
 | 
						|
        for (auto &P : C->protocols())
 | 
						|
          if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
 | 
						|
                                          ObjCMethod->isInstanceMethod())) {
 | 
						|
            assert(ObjCMethod->parameters().size() ==
 | 
						|
                       IMD->parameters().size() &&
 | 
						|
                   "Methods have different number of parameters");
 | 
						|
            auto OI = IMD->param_begin(), OE = IMD->param_end();
 | 
						|
            auto NI = ObjCMethod->param_begin();
 | 
						|
            for (; OI != OE; ++OI, ++NI)
 | 
						|
              diagnoseNoescape(*NI, *OI, C, P, *this);
 | 
						|
          }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (!isa<ObjCProtocolDecl>(ClassDecl)) {
 | 
						|
      mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
 | 
						|
 | 
						|
      ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
 | 
						|
      if (!IDecl)
 | 
						|
        IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface();
 | 
						|
      // For valid code, we should always know the primary interface
 | 
						|
      // declaration by now, however for invalid code we'll keep parsing
 | 
						|
      // but we won't find the primary interface and IDecl will be nil.
 | 
						|
      if (IDecl)
 | 
						|
        checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod);
 | 
						|
    }
 | 
						|
 | 
						|
    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PrevMethod) {
 | 
						|
    // You can never have two method definitions with the same name.
 | 
						|
    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
 | 
						|
      << ObjCMethod->getDeclName();
 | 
						|
    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
    ObjCMethod->setInvalidDecl();
 | 
						|
    return ObjCMethod;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this Objective-C method does not have a related result type, but we
 | 
						|
  // are allowed to infer related result types, try to do so based on the
 | 
						|
  // method family.
 | 
						|
  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
 | 
						|
  if (!CurrentClass) {
 | 
						|
    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
 | 
						|
      CurrentClass = Cat->getClassInterface();
 | 
						|
    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
 | 
						|
      CurrentClass = Impl->getClassInterface();
 | 
						|
    else if (ObjCCategoryImplDecl *CatImpl
 | 
						|
                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
 | 
						|
      CurrentClass = CatImpl->getClassInterface();
 | 
						|
  }
 | 
						|
 | 
						|
  ResultTypeCompatibilityKind RTC
 | 
						|
    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
 | 
						|
 | 
						|
  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
 | 
						|
 | 
						|
  bool ARCError = false;
 | 
						|
  if (getLangOpts().ObjCAutoRefCount)
 | 
						|
    ARCError = CheckARCMethodDecl(ObjCMethod);
 | 
						|
 | 
						|
  // Infer the related result type when possible.
 | 
						|
  if (!ARCError && RTC == Sema::RTC_Compatible &&
 | 
						|
      !ObjCMethod->hasRelatedResultType() &&
 | 
						|
      LangOpts.ObjCInferRelatedResultType) {
 | 
						|
    bool InferRelatedResultType = false;
 | 
						|
    switch (ObjCMethod->getMethodFamily()) {
 | 
						|
    case OMF_None:
 | 
						|
    case OMF_copy:
 | 
						|
    case OMF_dealloc:
 | 
						|
    case OMF_finalize:
 | 
						|
    case OMF_mutableCopy:
 | 
						|
    case OMF_release:
 | 
						|
    case OMF_retainCount:
 | 
						|
    case OMF_initialize:
 | 
						|
    case OMF_performSelector:
 | 
						|
      break;
 | 
						|
 | 
						|
    case OMF_alloc:
 | 
						|
    case OMF_new:
 | 
						|
        InferRelatedResultType = ObjCMethod->isClassMethod();
 | 
						|
      break;
 | 
						|
 | 
						|
    case OMF_init:
 | 
						|
    case OMF_autorelease:
 | 
						|
    case OMF_retain:
 | 
						|
    case OMF_self:
 | 
						|
      InferRelatedResultType = ObjCMethod->isInstanceMethod();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (InferRelatedResultType &&
 | 
						|
        !ObjCMethod->getReturnType()->isObjCIndependentClassType())
 | 
						|
      ObjCMethod->setRelatedResultType();
 | 
						|
  }
 | 
						|
 | 
						|
  if (MethodDefinition &&
 | 
						|
      Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
 | 
						|
    checkObjCMethodX86VectorTypes(*this, ObjCMethod);
 | 
						|
 | 
						|
  // + load method cannot have availability attributes. It get called on
 | 
						|
  // startup, so it has to have the availability of the deployment target.
 | 
						|
  if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
 | 
						|
    if (ObjCMethod->isClassMethod() &&
 | 
						|
        ObjCMethod->getSelector().getAsString() == "load") {
 | 
						|
      Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
 | 
						|
          << 0;
 | 
						|
      ObjCMethod->dropAttr<AvailabilityAttr>();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert the invisible arguments, self and _cmd!
 | 
						|
  ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface());
 | 
						|
 | 
						|
  ActOnDocumentableDecl(ObjCMethod);
 | 
						|
 | 
						|
  return ObjCMethod;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckObjCDeclScope(Decl *D) {
 | 
						|
  // Following is also an error. But it is caused by a missing @end
 | 
						|
  // and diagnostic is issued elsewhere.
 | 
						|
  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we switched context to translation unit while we are still lexically in
 | 
						|
  // an objc container, it means the parser missed emitting an error.
 | 
						|
  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
 | 
						|
  D->setInvalidDecl();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
 | 
						|
/// instance variables of ClassName into Decls.
 | 
						|
void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
 | 
						|
                     IdentifierInfo *ClassName,
 | 
						|
                     SmallVectorImpl<Decl*> &Decls) {
 | 
						|
  // Check that ClassName is a valid class
 | 
						|
  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
 | 
						|
  if (!Class) {
 | 
						|
    Diag(DeclStart, diag::err_undef_interface) << ClassName;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (LangOpts.ObjCRuntime.isNonFragile()) {
 | 
						|
    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect the instance variables
 | 
						|
  SmallVector<const ObjCIvarDecl*, 32> Ivars;
 | 
						|
  Context.DeepCollectObjCIvars(Class, true, Ivars);
 | 
						|
  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
 | 
						|
  for (unsigned i = 0; i < Ivars.size(); i++) {
 | 
						|
    const FieldDecl* ID = Ivars[i];
 | 
						|
    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
 | 
						|
    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
 | 
						|
                                           /*FIXME: StartL=*/ID->getLocation(),
 | 
						|
                                           ID->getLocation(),
 | 
						|
                                           ID->getIdentifier(), ID->getType(),
 | 
						|
                                           ID->getBitWidth());
 | 
						|
    Decls.push_back(FD);
 | 
						|
  }
 | 
						|
 | 
						|
  // Introduce all of these fields into the appropriate scope.
 | 
						|
  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
 | 
						|
       D != Decls.end(); ++D) {
 | 
						|
    FieldDecl *FD = cast<FieldDecl>(*D);
 | 
						|
    if (getLangOpts().CPlusPlus)
 | 
						|
      PushOnScopeChains(FD, S);
 | 
						|
    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
 | 
						|
      Record->addDecl(FD);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Build a type-check a new Objective-C exception variable declaration.
 | 
						|
VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
 | 
						|
                                      SourceLocation StartLoc,
 | 
						|
                                      SourceLocation IdLoc,
 | 
						|
                                      IdentifierInfo *Id,
 | 
						|
                                      bool Invalid) {
 | 
						|
  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
 | 
						|
  // duration shall not be qualified by an address-space qualifier."
 | 
						|
  // Since all parameters have automatic store duration, they can not have
 | 
						|
  // an address space.
 | 
						|
  if (T.getAddressSpace() != LangAS::Default) {
 | 
						|
    Diag(IdLoc, diag::err_arg_with_address_space);
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // An @catch parameter must be an unqualified object pointer type;
 | 
						|
  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
 | 
						|
  if (Invalid) {
 | 
						|
    // Don't do any further checking.
 | 
						|
  } else if (T->isDependentType()) {
 | 
						|
    // Okay: we don't know what this type will instantiate to.
 | 
						|
  } else if (T->isObjCQualifiedIdType()) {
 | 
						|
    Invalid = true;
 | 
						|
    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
 | 
						|
  } else if (T->isObjCIdType()) {
 | 
						|
    // Okay: we don't know what this type will instantiate to.
 | 
						|
  } else if (!T->isObjCObjectPointerType()) {
 | 
						|
    Invalid = true;
 | 
						|
    Diag(IdLoc, diag::err_catch_param_not_objc_type);
 | 
						|
  } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
 | 
						|
    Invalid = true;
 | 
						|
    Diag(IdLoc, diag::err_catch_param_not_objc_type);
 | 
						|
  }
 | 
						|
 | 
						|
  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
 | 
						|
                                 T, TInfo, SC_None);
 | 
						|
  New->setExceptionVariable(true);
 | 
						|
 | 
						|
  // In ARC, infer 'retaining' for variables of retainable type.
 | 
						|
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
 | 
						|
    Invalid = true;
 | 
						|
 | 
						|
  if (Invalid)
 | 
						|
    New->setInvalidDecl();
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
 | 
						|
  const DeclSpec &DS = D.getDeclSpec();
 | 
						|
 | 
						|
  // We allow the "register" storage class on exception variables because
 | 
						|
  // GCC did, but we drop it completely. Any other storage class is an error.
 | 
						|
  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
 | 
						|
    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
 | 
						|
      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
 | 
						|
  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
 | 
						|
    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
 | 
						|
      << DeclSpec::getSpecifierName(SCS);
 | 
						|
  }
 | 
						|
  if (DS.isInlineSpecified())
 | 
						|
    Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
 | 
						|
        << getLangOpts().CPlusPlus17;
 | 
						|
  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
 | 
						|
    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | 
						|
         diag::err_invalid_thread)
 | 
						|
     << DeclSpec::getSpecifierName(TSCS);
 | 
						|
  D.getMutableDeclSpec().ClearStorageClassSpecs();
 | 
						|
 | 
						|
  DiagnoseFunctionSpecifiers(D.getDeclSpec());
 | 
						|
 | 
						|
  // Check that there are no default arguments inside the type of this
 | 
						|
  // exception object (C++ only).
 | 
						|
  if (getLangOpts().CPlusPlus)
 | 
						|
    CheckExtraCXXDefaultArguments(D);
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
  QualType ExceptionType = TInfo->getType();
 | 
						|
 | 
						|
  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
 | 
						|
                                        D.getSourceRange().getBegin(),
 | 
						|
                                        D.getIdentifierLoc(),
 | 
						|
                                        D.getIdentifier(),
 | 
						|
                                        D.isInvalidType());
 | 
						|
 | 
						|
  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
 | 
						|
  if (D.getCXXScopeSpec().isSet()) {
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
 | 
						|
      << D.getCXXScopeSpec().getRange();
 | 
						|
    New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the parameter declaration into this scope.
 | 
						|
  S->AddDecl(New);
 | 
						|
  if (D.getIdentifier())
 | 
						|
    IdResolver.AddDecl(New);
 | 
						|
 | 
						|
  ProcessDeclAttributes(S, New, D);
 | 
						|
 | 
						|
  if (New->hasAttr<BlocksAttr>())
 | 
						|
    Diag(New->getLocation(), diag::err_block_on_nonlocal);
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
 | 
						|
/// initialization.
 | 
						|
void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
 | 
						|
                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
 | 
						|
  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
 | 
						|
       Iv= Iv->getNextIvar()) {
 | 
						|
    QualType QT = Context.getBaseElementType(Iv->getType());
 | 
						|
    if (QT->isRecordType())
 | 
						|
      Ivars.push_back(Iv);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseUseOfUnimplementedSelectors() {
 | 
						|
  // Load referenced selectors from the external source.
 | 
						|
  if (ExternalSource) {
 | 
						|
    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
 | 
						|
    ExternalSource->ReadReferencedSelectors(Sels);
 | 
						|
    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
 | 
						|
      ReferencedSelectors[Sels[I].first] = Sels[I].second;
 | 
						|
  }
 | 
						|
 | 
						|
  // Warning will be issued only when selector table is
 | 
						|
  // generated (which means there is at lease one implementation
 | 
						|
  // in the TU). This is to match gcc's behavior.
 | 
						|
  if (ReferencedSelectors.empty() ||
 | 
						|
      !Context.AnyObjCImplementation())
 | 
						|
    return;
 | 
						|
  for (auto &SelectorAndLocation : ReferencedSelectors) {
 | 
						|
    Selector Sel = SelectorAndLocation.first;
 | 
						|
    SourceLocation Loc = SelectorAndLocation.second;
 | 
						|
    if (!LookupImplementedMethodInGlobalPool(Sel))
 | 
						|
      Diag(Loc, diag::warn_unimplemented_selector) << Sel;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ObjCIvarDecl *
 | 
						|
Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
 | 
						|
                                     const ObjCPropertyDecl *&PDecl) const {
 | 
						|
  if (Method->isClassMethod())
 | 
						|
    return nullptr;
 | 
						|
  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
 | 
						|
  if (!IDecl)
 | 
						|
    return nullptr;
 | 
						|
  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
 | 
						|
                               /*shallowCategoryLookup=*/false,
 | 
						|
                               /*followSuper=*/false);
 | 
						|
  if (!Method || !Method->isPropertyAccessor())
 | 
						|
    return nullptr;
 | 
						|
  if ((PDecl = Method->findPropertyDecl()))
 | 
						|
    if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
 | 
						|
      // property backing ivar must belong to property's class
 | 
						|
      // or be a private ivar in class's implementation.
 | 
						|
      // FIXME. fix the const-ness issue.
 | 
						|
      IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
 | 
						|
                                                        IV->getIdentifier());
 | 
						|
      return IV;
 | 
						|
    }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
 | 
						|
  /// accessor references the backing ivar.
 | 
						|
  class UnusedBackingIvarChecker :
 | 
						|
      public RecursiveASTVisitor<UnusedBackingIvarChecker> {
 | 
						|
  public:
 | 
						|
    Sema &S;
 | 
						|
    const ObjCMethodDecl *Method;
 | 
						|
    const ObjCIvarDecl *IvarD;
 | 
						|
    bool AccessedIvar;
 | 
						|
    bool InvokedSelfMethod;
 | 
						|
 | 
						|
    UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
 | 
						|
                             const ObjCIvarDecl *IvarD)
 | 
						|
      : S(S), Method(Method), IvarD(IvarD),
 | 
						|
        AccessedIvar(false), InvokedSelfMethod(false) {
 | 
						|
      assert(IvarD);
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
 | 
						|
      if (E->getDecl() == IvarD) {
 | 
						|
        AccessedIvar = true;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
 | 
						|
      if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
 | 
						|
          S.isSelfExpr(E->getInstanceReceiver(), Method)) {
 | 
						|
        InvokedSelfMethod = true;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
 | 
						|
                                          const ObjCImplementationDecl *ImplD) {
 | 
						|
  if (S->hasUnrecoverableErrorOccurred())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (const auto *CurMethod : ImplD->instance_methods()) {
 | 
						|
    unsigned DIAG = diag::warn_unused_property_backing_ivar;
 | 
						|
    SourceLocation Loc = CurMethod->getLocation();
 | 
						|
    if (Diags.isIgnored(DIAG, Loc))
 | 
						|
      continue;
 | 
						|
 | 
						|
    const ObjCPropertyDecl *PDecl;
 | 
						|
    const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
 | 
						|
    if (!IV)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (CurMethod->isSynthesizedAccessorStub())
 | 
						|
      continue;
 | 
						|
 | 
						|
    UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
 | 
						|
    Checker.TraverseStmt(CurMethod->getBody());
 | 
						|
    if (Checker.AccessedIvar)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Do not issue this warning if backing ivar is used somewhere and accessor
 | 
						|
    // implementation makes a self call. This is to prevent false positive in
 | 
						|
    // cases where the ivar is accessed by another method that the accessor
 | 
						|
    // delegates to.
 | 
						|
    if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
 | 
						|
      Diag(Loc, DIAG) << IV;
 | 
						|
      Diag(PDecl->getLocation(), diag::note_property_declare);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |