10299 lines
		
	
	
		
			404 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			10299 lines
		
	
	
		
			404 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements semantic analysis for initializers.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/ExprOpenMP.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/Basic/CharInfo.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Sema/Designator.h"
 | 
						|
#include "clang/Sema/Initialization.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/PointerIntPair.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Sema Initialization Checking
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Check whether T is compatible with a wide character type (wchar_t,
 | 
						|
/// char16_t or char32_t).
 | 
						|
static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
 | 
						|
  if (Context.typesAreCompatible(Context.getWideCharType(), T))
 | 
						|
    return true;
 | 
						|
  if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
 | 
						|
    return Context.typesAreCompatible(Context.Char16Ty, T) ||
 | 
						|
           Context.typesAreCompatible(Context.Char32Ty, T);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
enum StringInitFailureKind {
 | 
						|
  SIF_None,
 | 
						|
  SIF_NarrowStringIntoWideChar,
 | 
						|
  SIF_WideStringIntoChar,
 | 
						|
  SIF_IncompatWideStringIntoWideChar,
 | 
						|
  SIF_UTF8StringIntoPlainChar,
 | 
						|
  SIF_PlainStringIntoUTF8Char,
 | 
						|
  SIF_Other
 | 
						|
};
 | 
						|
 | 
						|
/// Check whether the array of type AT can be initialized by the Init
 | 
						|
/// expression by means of string initialization. Returns SIF_None if so,
 | 
						|
/// otherwise returns a StringInitFailureKind that describes why the
 | 
						|
/// initialization would not work.
 | 
						|
static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
 | 
						|
                                          ASTContext &Context) {
 | 
						|
  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
 | 
						|
    return SIF_Other;
 | 
						|
 | 
						|
  // See if this is a string literal or @encode.
 | 
						|
  Init = Init->IgnoreParens();
 | 
						|
 | 
						|
  // Handle @encode, which is a narrow string.
 | 
						|
  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
 | 
						|
    return SIF_None;
 | 
						|
 | 
						|
  // Otherwise we can only handle string literals.
 | 
						|
  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
 | 
						|
  if (!SL)
 | 
						|
    return SIF_Other;
 | 
						|
 | 
						|
  const QualType ElemTy =
 | 
						|
      Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
 | 
						|
 | 
						|
  switch (SL->getKind()) {
 | 
						|
  case StringLiteral::UTF8:
 | 
						|
    // char8_t array can be initialized with a UTF-8 string.
 | 
						|
    if (ElemTy->isChar8Type())
 | 
						|
      return SIF_None;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case StringLiteral::Ascii:
 | 
						|
    // char array can be initialized with a narrow string.
 | 
						|
    // Only allow char x[] = "foo";  not char x[] = L"foo";
 | 
						|
    if (ElemTy->isCharType())
 | 
						|
      return (SL->getKind() == StringLiteral::UTF8 &&
 | 
						|
              Context.getLangOpts().Char8)
 | 
						|
                 ? SIF_UTF8StringIntoPlainChar
 | 
						|
                 : SIF_None;
 | 
						|
    if (ElemTy->isChar8Type())
 | 
						|
      return SIF_PlainStringIntoUTF8Char;
 | 
						|
    if (IsWideCharCompatible(ElemTy, Context))
 | 
						|
      return SIF_NarrowStringIntoWideChar;
 | 
						|
    return SIF_Other;
 | 
						|
  // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
 | 
						|
  // "An array with element type compatible with a qualified or unqualified
 | 
						|
  // version of wchar_t, char16_t, or char32_t may be initialized by a wide
 | 
						|
  // string literal with the corresponding encoding prefix (L, u, or U,
 | 
						|
  // respectively), optionally enclosed in braces.
 | 
						|
  case StringLiteral::UTF16:
 | 
						|
    if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
 | 
						|
      return SIF_None;
 | 
						|
    if (ElemTy->isCharType() || ElemTy->isChar8Type())
 | 
						|
      return SIF_WideStringIntoChar;
 | 
						|
    if (IsWideCharCompatible(ElemTy, Context))
 | 
						|
      return SIF_IncompatWideStringIntoWideChar;
 | 
						|
    return SIF_Other;
 | 
						|
  case StringLiteral::UTF32:
 | 
						|
    if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
 | 
						|
      return SIF_None;
 | 
						|
    if (ElemTy->isCharType() || ElemTy->isChar8Type())
 | 
						|
      return SIF_WideStringIntoChar;
 | 
						|
    if (IsWideCharCompatible(ElemTy, Context))
 | 
						|
      return SIF_IncompatWideStringIntoWideChar;
 | 
						|
    return SIF_Other;
 | 
						|
  case StringLiteral::Wide:
 | 
						|
    if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
 | 
						|
      return SIF_None;
 | 
						|
    if (ElemTy->isCharType() || ElemTy->isChar8Type())
 | 
						|
      return SIF_WideStringIntoChar;
 | 
						|
    if (IsWideCharCompatible(ElemTy, Context))
 | 
						|
      return SIF_IncompatWideStringIntoWideChar;
 | 
						|
    return SIF_Other;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("missed a StringLiteral kind?");
 | 
						|
}
 | 
						|
 | 
						|
static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
 | 
						|
                                          ASTContext &Context) {
 | 
						|
  const ArrayType *arrayType = Context.getAsArrayType(declType);
 | 
						|
  if (!arrayType)
 | 
						|
    return SIF_Other;
 | 
						|
  return IsStringInit(init, arrayType, Context);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
 | 
						|
  return ::IsStringInit(Init, AT, Context) == SIF_None;
 | 
						|
}
 | 
						|
 | 
						|
/// Update the type of a string literal, including any surrounding parentheses,
 | 
						|
/// to match the type of the object which it is initializing.
 | 
						|
static void updateStringLiteralType(Expr *E, QualType Ty) {
 | 
						|
  while (true) {
 | 
						|
    E->setType(Ty);
 | 
						|
    E->setValueKind(VK_PRValue);
 | 
						|
    if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
 | 
						|
      break;
 | 
						|
    } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
 | 
						|
      E = PE->getSubExpr();
 | 
						|
    } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | 
						|
      assert(UO->getOpcode() == UO_Extension);
 | 
						|
      E = UO->getSubExpr();
 | 
						|
    } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
 | 
						|
      E = GSE->getResultExpr();
 | 
						|
    } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
 | 
						|
      E = CE->getChosenSubExpr();
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("unexpected expr in string literal init");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Fix a compound literal initializing an array so it's correctly marked
 | 
						|
/// as an rvalue.
 | 
						|
static void updateGNUCompoundLiteralRValue(Expr *E) {
 | 
						|
  while (true) {
 | 
						|
    E->setValueKind(VK_PRValue);
 | 
						|
    if (isa<CompoundLiteralExpr>(E)) {
 | 
						|
      break;
 | 
						|
    } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
 | 
						|
      E = PE->getSubExpr();
 | 
						|
    } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | 
						|
      assert(UO->getOpcode() == UO_Extension);
 | 
						|
      E = UO->getSubExpr();
 | 
						|
    } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
 | 
						|
      E = GSE->getResultExpr();
 | 
						|
    } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
 | 
						|
      E = CE->getChosenSubExpr();
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("unexpected expr in array compound literal init");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
 | 
						|
                            Sema &S) {
 | 
						|
  // Get the length of the string as parsed.
 | 
						|
  auto *ConstantArrayTy =
 | 
						|
      cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
 | 
						|
  uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
 | 
						|
 | 
						|
  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
 | 
						|
    // C99 6.7.8p14. We have an array of character type with unknown size
 | 
						|
    // being initialized to a string literal.
 | 
						|
    llvm::APInt ConstVal(32, StrLength);
 | 
						|
    // Return a new array type (C99 6.7.8p22).
 | 
						|
    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
 | 
						|
                                           ConstVal, nullptr,
 | 
						|
                                           ArrayType::Normal, 0);
 | 
						|
    updateStringLiteralType(Str, DeclT);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
 | 
						|
 | 
						|
  // We have an array of character type with known size.  However,
 | 
						|
  // the size may be smaller or larger than the string we are initializing.
 | 
						|
  // FIXME: Avoid truncation for 64-bit length strings.
 | 
						|
  if (S.getLangOpts().CPlusPlus) {
 | 
						|
    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
 | 
						|
      // For Pascal strings it's OK to strip off the terminating null character,
 | 
						|
      // so the example below is valid:
 | 
						|
      //
 | 
						|
      // unsigned char a[2] = "\pa";
 | 
						|
      if (SL->isPascal())
 | 
						|
        StrLength--;
 | 
						|
    }
 | 
						|
 | 
						|
    // [dcl.init.string]p2
 | 
						|
    if (StrLength > CAT->getSize().getZExtValue())
 | 
						|
      S.Diag(Str->getBeginLoc(),
 | 
						|
             diag::err_initializer_string_for_char_array_too_long)
 | 
						|
          << Str->getSourceRange();
 | 
						|
  } else {
 | 
						|
    // C99 6.7.8p14.
 | 
						|
    if (StrLength-1 > CAT->getSize().getZExtValue())
 | 
						|
      S.Diag(Str->getBeginLoc(),
 | 
						|
             diag::ext_initializer_string_for_char_array_too_long)
 | 
						|
          << Str->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the type to the actual size that we are initializing.  If we have
 | 
						|
  // something like:
 | 
						|
  //   char x[1] = "foo";
 | 
						|
  // then this will set the string literal's type to char[1].
 | 
						|
  updateStringLiteralType(Str, DeclT);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Semantic checking for initializer lists.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Semantic checking for initializer lists.
 | 
						|
///
 | 
						|
/// The InitListChecker class contains a set of routines that each
 | 
						|
/// handle the initialization of a certain kind of entity, e.g.,
 | 
						|
/// arrays, vectors, struct/union types, scalars, etc. The
 | 
						|
/// InitListChecker itself performs a recursive walk of the subobject
 | 
						|
/// structure of the type to be initialized, while stepping through
 | 
						|
/// the initializer list one element at a time. The IList and Index
 | 
						|
/// parameters to each of the Check* routines contain the active
 | 
						|
/// (syntactic) initializer list and the index into that initializer
 | 
						|
/// list that represents the current initializer. Each routine is
 | 
						|
/// responsible for moving that Index forward as it consumes elements.
 | 
						|
///
 | 
						|
/// Each Check* routine also has a StructuredList/StructuredIndex
 | 
						|
/// arguments, which contains the current "structured" (semantic)
 | 
						|
/// initializer list and the index into that initializer list where we
 | 
						|
/// are copying initializers as we map them over to the semantic
 | 
						|
/// list. Once we have completed our recursive walk of the subobject
 | 
						|
/// structure, we will have constructed a full semantic initializer
 | 
						|
/// list.
 | 
						|
///
 | 
						|
/// C99 designators cause changes in the initializer list traversal,
 | 
						|
/// because they make the initialization "jump" into a specific
 | 
						|
/// subobject and then continue the initialization from that
 | 
						|
/// point. CheckDesignatedInitializer() recursively steps into the
 | 
						|
/// designated subobject and manages backing out the recursion to
 | 
						|
/// initialize the subobjects after the one designated.
 | 
						|
///
 | 
						|
/// If an initializer list contains any designators, we build a placeholder
 | 
						|
/// structured list even in 'verify only' mode, so that we can track which
 | 
						|
/// elements need 'empty' initializtion.
 | 
						|
class InitListChecker {
 | 
						|
  Sema &SemaRef;
 | 
						|
  bool hadError = false;
 | 
						|
  bool VerifyOnly; // No diagnostics.
 | 
						|
  bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
 | 
						|
  bool InOverloadResolution;
 | 
						|
  InitListExpr *FullyStructuredList = nullptr;
 | 
						|
  NoInitExpr *DummyExpr = nullptr;
 | 
						|
 | 
						|
  NoInitExpr *getDummyInit() {
 | 
						|
    if (!DummyExpr)
 | 
						|
      DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
 | 
						|
    return DummyExpr;
 | 
						|
  }
 | 
						|
 | 
						|
  void CheckImplicitInitList(const InitializedEntity &Entity,
 | 
						|
                             InitListExpr *ParentIList, QualType T,
 | 
						|
                             unsigned &Index, InitListExpr *StructuredList,
 | 
						|
                             unsigned &StructuredIndex);
 | 
						|
  void CheckExplicitInitList(const InitializedEntity &Entity,
 | 
						|
                             InitListExpr *IList, QualType &T,
 | 
						|
                             InitListExpr *StructuredList,
 | 
						|
                             bool TopLevelObject = false);
 | 
						|
  void CheckListElementTypes(const InitializedEntity &Entity,
 | 
						|
                             InitListExpr *IList, QualType &DeclType,
 | 
						|
                             bool SubobjectIsDesignatorContext,
 | 
						|
                             unsigned &Index,
 | 
						|
                             InitListExpr *StructuredList,
 | 
						|
                             unsigned &StructuredIndex,
 | 
						|
                             bool TopLevelObject = false);
 | 
						|
  void CheckSubElementType(const InitializedEntity &Entity,
 | 
						|
                           InitListExpr *IList, QualType ElemType,
 | 
						|
                           unsigned &Index,
 | 
						|
                           InitListExpr *StructuredList,
 | 
						|
                           unsigned &StructuredIndex,
 | 
						|
                           bool DirectlyDesignated = false);
 | 
						|
  void CheckComplexType(const InitializedEntity &Entity,
 | 
						|
                        InitListExpr *IList, QualType DeclType,
 | 
						|
                        unsigned &Index,
 | 
						|
                        InitListExpr *StructuredList,
 | 
						|
                        unsigned &StructuredIndex);
 | 
						|
  void CheckScalarType(const InitializedEntity &Entity,
 | 
						|
                       InitListExpr *IList, QualType DeclType,
 | 
						|
                       unsigned &Index,
 | 
						|
                       InitListExpr *StructuredList,
 | 
						|
                       unsigned &StructuredIndex);
 | 
						|
  void CheckReferenceType(const InitializedEntity &Entity,
 | 
						|
                          InitListExpr *IList, QualType DeclType,
 | 
						|
                          unsigned &Index,
 | 
						|
                          InitListExpr *StructuredList,
 | 
						|
                          unsigned &StructuredIndex);
 | 
						|
  void CheckVectorType(const InitializedEntity &Entity,
 | 
						|
                       InitListExpr *IList, QualType DeclType, unsigned &Index,
 | 
						|
                       InitListExpr *StructuredList,
 | 
						|
                       unsigned &StructuredIndex);
 | 
						|
  void CheckStructUnionTypes(const InitializedEntity &Entity,
 | 
						|
                             InitListExpr *IList, QualType DeclType,
 | 
						|
                             CXXRecordDecl::base_class_range Bases,
 | 
						|
                             RecordDecl::field_iterator Field,
 | 
						|
                             bool SubobjectIsDesignatorContext, unsigned &Index,
 | 
						|
                             InitListExpr *StructuredList,
 | 
						|
                             unsigned &StructuredIndex,
 | 
						|
                             bool TopLevelObject = false);
 | 
						|
  void CheckArrayType(const InitializedEntity &Entity,
 | 
						|
                      InitListExpr *IList, QualType &DeclType,
 | 
						|
                      llvm::APSInt elementIndex,
 | 
						|
                      bool SubobjectIsDesignatorContext, unsigned &Index,
 | 
						|
                      InitListExpr *StructuredList,
 | 
						|
                      unsigned &StructuredIndex);
 | 
						|
  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
 | 
						|
                                  InitListExpr *IList, DesignatedInitExpr *DIE,
 | 
						|
                                  unsigned DesigIdx,
 | 
						|
                                  QualType &CurrentObjectType,
 | 
						|
                                  RecordDecl::field_iterator *NextField,
 | 
						|
                                  llvm::APSInt *NextElementIndex,
 | 
						|
                                  unsigned &Index,
 | 
						|
                                  InitListExpr *StructuredList,
 | 
						|
                                  unsigned &StructuredIndex,
 | 
						|
                                  bool FinishSubobjectInit,
 | 
						|
                                  bool TopLevelObject);
 | 
						|
  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
 | 
						|
                                           QualType CurrentObjectType,
 | 
						|
                                           InitListExpr *StructuredList,
 | 
						|
                                           unsigned StructuredIndex,
 | 
						|
                                           SourceRange InitRange,
 | 
						|
                                           bool IsFullyOverwritten = false);
 | 
						|
  void UpdateStructuredListElement(InitListExpr *StructuredList,
 | 
						|
                                   unsigned &StructuredIndex,
 | 
						|
                                   Expr *expr);
 | 
						|
  InitListExpr *createInitListExpr(QualType CurrentObjectType,
 | 
						|
                                   SourceRange InitRange,
 | 
						|
                                   unsigned ExpectedNumInits);
 | 
						|
  int numArrayElements(QualType DeclType);
 | 
						|
  int numStructUnionElements(QualType DeclType);
 | 
						|
 | 
						|
  ExprResult PerformEmptyInit(SourceLocation Loc,
 | 
						|
                              const InitializedEntity &Entity);
 | 
						|
 | 
						|
  /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
 | 
						|
  void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
 | 
						|
                            bool FullyOverwritten = true) {
 | 
						|
    // Overriding an initializer via a designator is valid with C99 designated
 | 
						|
    // initializers, but ill-formed with C++20 designated initializers.
 | 
						|
    unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
 | 
						|
                          ? diag::ext_initializer_overrides
 | 
						|
                          : diag::warn_initializer_overrides;
 | 
						|
 | 
						|
    if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
 | 
						|
      // In overload resolution, we have to strictly enforce the rules, and so
 | 
						|
      // don't allow any overriding of prior initializers. This matters for a
 | 
						|
      // case such as:
 | 
						|
      //
 | 
						|
      //   union U { int a, b; };
 | 
						|
      //   struct S { int a, b; };
 | 
						|
      //   void f(U), f(S);
 | 
						|
      //
 | 
						|
      // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
 | 
						|
      // consistency, we disallow all overriding of prior initializers in
 | 
						|
      // overload resolution, not only overriding of union members.
 | 
						|
      hadError = true;
 | 
						|
    } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
 | 
						|
      // If we'll be keeping around the old initializer but overwriting part of
 | 
						|
      // the object it initialized, and that object is not trivially
 | 
						|
      // destructible, this can leak. Don't allow that, not even as an
 | 
						|
      // extension.
 | 
						|
      //
 | 
						|
      // FIXME: It might be reasonable to allow this in cases where the part of
 | 
						|
      // the initializer that we're overriding has trivial destruction.
 | 
						|
      DiagID = diag::err_initializer_overrides_destructed;
 | 
						|
    } else if (!OldInit->getSourceRange().isValid()) {
 | 
						|
      // We need to check on source range validity because the previous
 | 
						|
      // initializer does not have to be an explicit initializer. e.g.,
 | 
						|
      //
 | 
						|
      // struct P { int a, b; };
 | 
						|
      // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
 | 
						|
      //
 | 
						|
      // There is an overwrite taking place because the first braced initializer
 | 
						|
      // list "{ .a = 2 }" already provides value for .p.b (which is zero).
 | 
						|
      //
 | 
						|
      // Such overwrites are harmless, so we don't diagnose them. (Note that in
 | 
						|
      // C++, this cannot be reached unless we've already seen and diagnosed a
 | 
						|
      // different conformance issue, such as a mixture of designated and
 | 
						|
      // non-designated initializers or a multi-level designator.)
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!VerifyOnly) {
 | 
						|
      SemaRef.Diag(NewInitRange.getBegin(), DiagID)
 | 
						|
          << NewInitRange << FullyOverwritten << OldInit->getType();
 | 
						|
      SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
 | 
						|
          << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
 | 
						|
          << OldInit->getSourceRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Explanation on the "FillWithNoInit" mode:
 | 
						|
  //
 | 
						|
  // Assume we have the following definitions (Case#1):
 | 
						|
  // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
 | 
						|
  // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
 | 
						|
  //
 | 
						|
  // l.lp.x[1][0..1] should not be filled with implicit initializers because the
 | 
						|
  // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
 | 
						|
  //
 | 
						|
  // But if we have (Case#2):
 | 
						|
  // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
 | 
						|
  //
 | 
						|
  // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
 | 
						|
  // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
 | 
						|
  //
 | 
						|
  // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
 | 
						|
  // in the InitListExpr, the "holes" in Case#1 are filled not with empty
 | 
						|
  // initializers but with special "NoInitExpr" place holders, which tells the
 | 
						|
  // CodeGen not to generate any initializers for these parts.
 | 
						|
  void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
 | 
						|
                              const InitializedEntity &ParentEntity,
 | 
						|
                              InitListExpr *ILE, bool &RequiresSecondPass,
 | 
						|
                              bool FillWithNoInit);
 | 
						|
  void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
 | 
						|
                               const InitializedEntity &ParentEntity,
 | 
						|
                               InitListExpr *ILE, bool &RequiresSecondPass,
 | 
						|
                               bool FillWithNoInit = false);
 | 
						|
  void FillInEmptyInitializations(const InitializedEntity &Entity,
 | 
						|
                                  InitListExpr *ILE, bool &RequiresSecondPass,
 | 
						|
                                  InitListExpr *OuterILE, unsigned OuterIndex,
 | 
						|
                                  bool FillWithNoInit = false);
 | 
						|
  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
 | 
						|
                              Expr *InitExpr, FieldDecl *Field,
 | 
						|
                              bool TopLevelObject);
 | 
						|
  void CheckEmptyInitializable(const InitializedEntity &Entity,
 | 
						|
                               SourceLocation Loc);
 | 
						|
 | 
						|
public:
 | 
						|
  InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
 | 
						|
                  QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
 | 
						|
                  bool InOverloadResolution = false);
 | 
						|
  bool HadError() { return hadError; }
 | 
						|
 | 
						|
  // Retrieves the fully-structured initializer list used for
 | 
						|
  // semantic analysis and code generation.
 | 
						|
  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
 | 
						|
                                             const InitializedEntity &Entity) {
 | 
						|
  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
 | 
						|
                                                            true);
 | 
						|
  MultiExprArg SubInit;
 | 
						|
  Expr *InitExpr;
 | 
						|
  InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
 | 
						|
 | 
						|
  // C++ [dcl.init.aggr]p7:
 | 
						|
  //   If there are fewer initializer-clauses in the list than there are
 | 
						|
  //   members in the aggregate, then each member not explicitly initialized
 | 
						|
  //   ...
 | 
						|
  bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
 | 
						|
      Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
 | 
						|
  if (EmptyInitList) {
 | 
						|
    // C++1y / DR1070:
 | 
						|
    //   shall be initialized [...] from an empty initializer list.
 | 
						|
    //
 | 
						|
    // We apply the resolution of this DR to C++11 but not C++98, since C++98
 | 
						|
    // does not have useful semantics for initialization from an init list.
 | 
						|
    // We treat this as copy-initialization, because aggregate initialization
 | 
						|
    // always performs copy-initialization on its elements.
 | 
						|
    //
 | 
						|
    // Only do this if we're initializing a class type, to avoid filling in
 | 
						|
    // the initializer list where possible.
 | 
						|
    InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
 | 
						|
                   InitListExpr(SemaRef.Context, Loc, None, Loc);
 | 
						|
    InitExpr->setType(SemaRef.Context.VoidTy);
 | 
						|
    SubInit = InitExpr;
 | 
						|
    Kind = InitializationKind::CreateCopy(Loc, Loc);
 | 
						|
  } else {
 | 
						|
    // C++03:
 | 
						|
    //   shall be value-initialized.
 | 
						|
  }
 | 
						|
 | 
						|
  InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
 | 
						|
  // libstdc++4.6 marks the vector default constructor as explicit in
 | 
						|
  // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
 | 
						|
  // stlport does so too. Look for std::__debug for libstdc++, and for
 | 
						|
  // std:: for stlport.  This is effectively a compiler-side implementation of
 | 
						|
  // LWG2193.
 | 
						|
  if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
 | 
						|
          InitializationSequence::FK_ExplicitConstructor) {
 | 
						|
    OverloadCandidateSet::iterator Best;
 | 
						|
    OverloadingResult O =
 | 
						|
        InitSeq.getFailedCandidateSet()
 | 
						|
            .BestViableFunction(SemaRef, Kind.getLocation(), Best);
 | 
						|
    (void)O;
 | 
						|
    assert(O == OR_Success && "Inconsistent overload resolution");
 | 
						|
    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
 | 
						|
    CXXRecordDecl *R = CtorDecl->getParent();
 | 
						|
 | 
						|
    if (CtorDecl->getMinRequiredArguments() == 0 &&
 | 
						|
        CtorDecl->isExplicit() && R->getDeclName() &&
 | 
						|
        SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
 | 
						|
      bool IsInStd = false;
 | 
						|
      for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
 | 
						|
           ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
 | 
						|
        if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
 | 
						|
          IsInStd = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (IsInStd && llvm::StringSwitch<bool>(R->getName())
 | 
						|
              .Cases("basic_string", "deque", "forward_list", true)
 | 
						|
              .Cases("list", "map", "multimap", "multiset", true)
 | 
						|
              .Cases("priority_queue", "queue", "set", "stack", true)
 | 
						|
              .Cases("unordered_map", "unordered_set", "vector", true)
 | 
						|
              .Default(false)) {
 | 
						|
        InitSeq.InitializeFrom(
 | 
						|
            SemaRef, Entity,
 | 
						|
            InitializationKind::CreateValue(Loc, Loc, Loc, true),
 | 
						|
            MultiExprArg(), /*TopLevelOfInitList=*/false,
 | 
						|
            TreatUnavailableAsInvalid);
 | 
						|
        // Emit a warning for this.  System header warnings aren't shown
 | 
						|
        // by default, but people working on system headers should see it.
 | 
						|
        if (!VerifyOnly) {
 | 
						|
          SemaRef.Diag(CtorDecl->getLocation(),
 | 
						|
                       diag::warn_invalid_initializer_from_system_header);
 | 
						|
          if (Entity.getKind() == InitializedEntity::EK_Member)
 | 
						|
            SemaRef.Diag(Entity.getDecl()->getLocation(),
 | 
						|
                         diag::note_used_in_initialization_here);
 | 
						|
          else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
 | 
						|
            SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!InitSeq) {
 | 
						|
    if (!VerifyOnly) {
 | 
						|
      InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
 | 
						|
      if (Entity.getKind() == InitializedEntity::EK_Member)
 | 
						|
        SemaRef.Diag(Entity.getDecl()->getLocation(),
 | 
						|
                     diag::note_in_omitted_aggregate_initializer)
 | 
						|
          << /*field*/1 << Entity.getDecl();
 | 
						|
      else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
 | 
						|
        bool IsTrailingArrayNewMember =
 | 
						|
            Entity.getParent() &&
 | 
						|
            Entity.getParent()->isVariableLengthArrayNew();
 | 
						|
        SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
 | 
						|
          << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
 | 
						|
          << Entity.getElementIndex();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    hadError = true;
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  return VerifyOnly ? ExprResult()
 | 
						|
                    : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
 | 
						|
                                              SourceLocation Loc) {
 | 
						|
  // If we're building a fully-structured list, we'll check this at the end
 | 
						|
  // once we know which elements are actually initialized. Otherwise, we know
 | 
						|
  // that there are no designators so we can just check now.
 | 
						|
  if (FullyStructuredList)
 | 
						|
    return;
 | 
						|
  PerformEmptyInit(Loc, Entity);
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::FillInEmptyInitForBase(
 | 
						|
    unsigned Init, const CXXBaseSpecifier &Base,
 | 
						|
    const InitializedEntity &ParentEntity, InitListExpr *ILE,
 | 
						|
    bool &RequiresSecondPass, bool FillWithNoInit) {
 | 
						|
  InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
 | 
						|
      SemaRef.Context, &Base, false, &ParentEntity);
 | 
						|
 | 
						|
  if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
 | 
						|
    ExprResult BaseInit = FillWithNoInit
 | 
						|
                              ? new (SemaRef.Context) NoInitExpr(Base.getType())
 | 
						|
                              : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
 | 
						|
    if (BaseInit.isInvalid()) {
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!VerifyOnly) {
 | 
						|
      assert(Init < ILE->getNumInits() && "should have been expanded");
 | 
						|
      ILE->setInit(Init, BaseInit.getAs<Expr>());
 | 
						|
    }
 | 
						|
  } else if (InitListExpr *InnerILE =
 | 
						|
                 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
 | 
						|
    FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
 | 
						|
                               ILE, Init, FillWithNoInit);
 | 
						|
  } else if (DesignatedInitUpdateExpr *InnerDIUE =
 | 
						|
               dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
 | 
						|
    FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
 | 
						|
                               RequiresSecondPass, ILE, Init,
 | 
						|
                               /*FillWithNoInit =*/true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
 | 
						|
                                        const InitializedEntity &ParentEntity,
 | 
						|
                                              InitListExpr *ILE,
 | 
						|
                                              bool &RequiresSecondPass,
 | 
						|
                                              bool FillWithNoInit) {
 | 
						|
  SourceLocation Loc = ILE->getEndLoc();
 | 
						|
  unsigned NumInits = ILE->getNumInits();
 | 
						|
  InitializedEntity MemberEntity
 | 
						|
    = InitializedEntity::InitializeMember(Field, &ParentEntity);
 | 
						|
 | 
						|
  if (Init >= NumInits || !ILE->getInit(Init)) {
 | 
						|
    if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
 | 
						|
      if (!RType->getDecl()->isUnion())
 | 
						|
        assert((Init < NumInits || VerifyOnly) &&
 | 
						|
               "This ILE should have been expanded");
 | 
						|
 | 
						|
    if (FillWithNoInit) {
 | 
						|
      assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
 | 
						|
      Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
 | 
						|
      if (Init < NumInits)
 | 
						|
        ILE->setInit(Init, Filler);
 | 
						|
      else
 | 
						|
        ILE->updateInit(SemaRef.Context, Init, Filler);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // C++1y [dcl.init.aggr]p7:
 | 
						|
    //   If there are fewer initializer-clauses in the list than there are
 | 
						|
    //   members in the aggregate, then each member not explicitly initialized
 | 
						|
    //   shall be initialized from its brace-or-equal-initializer [...]
 | 
						|
    if (Field->hasInClassInitializer()) {
 | 
						|
      if (VerifyOnly)
 | 
						|
        return;
 | 
						|
 | 
						|
      ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
 | 
						|
      if (DIE.isInvalid()) {
 | 
						|
        hadError = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
 | 
						|
      if (Init < NumInits)
 | 
						|
        ILE->setInit(Init, DIE.get());
 | 
						|
      else {
 | 
						|
        ILE->updateInit(SemaRef.Context, Init, DIE.get());
 | 
						|
        RequiresSecondPass = true;
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Field->getType()->isReferenceType()) {
 | 
						|
      if (!VerifyOnly) {
 | 
						|
        // C++ [dcl.init.aggr]p9:
 | 
						|
        //   If an incomplete or empty initializer-list leaves a
 | 
						|
        //   member of reference type uninitialized, the program is
 | 
						|
        //   ill-formed.
 | 
						|
        SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
 | 
						|
          << Field->getType()
 | 
						|
          << ILE->getSyntacticForm()->getSourceRange();
 | 
						|
        SemaRef.Diag(Field->getLocation(),
 | 
						|
                     diag::note_uninit_reference_member);
 | 
						|
      }
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
 | 
						|
    if (MemberInit.isInvalid()) {
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (hadError || VerifyOnly) {
 | 
						|
      // Do nothing
 | 
						|
    } else if (Init < NumInits) {
 | 
						|
      ILE->setInit(Init, MemberInit.getAs<Expr>());
 | 
						|
    } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
 | 
						|
      // Empty initialization requires a constructor call, so
 | 
						|
      // extend the initializer list to include the constructor
 | 
						|
      // call and make a note that we'll need to take another pass
 | 
						|
      // through the initializer list.
 | 
						|
      ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
 | 
						|
      RequiresSecondPass = true;
 | 
						|
    }
 | 
						|
  } else if (InitListExpr *InnerILE
 | 
						|
               = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
 | 
						|
    FillInEmptyInitializations(MemberEntity, InnerILE,
 | 
						|
                               RequiresSecondPass, ILE, Init, FillWithNoInit);
 | 
						|
  } else if (DesignatedInitUpdateExpr *InnerDIUE =
 | 
						|
                 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
 | 
						|
    FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
 | 
						|
                               RequiresSecondPass, ILE, Init,
 | 
						|
                               /*FillWithNoInit =*/true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Recursively replaces NULL values within the given initializer list
 | 
						|
/// with expressions that perform value-initialization of the
 | 
						|
/// appropriate type, and finish off the InitListExpr formation.
 | 
						|
void
 | 
						|
InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
 | 
						|
                                            InitListExpr *ILE,
 | 
						|
                                            bool &RequiresSecondPass,
 | 
						|
                                            InitListExpr *OuterILE,
 | 
						|
                                            unsigned OuterIndex,
 | 
						|
                                            bool FillWithNoInit) {
 | 
						|
  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
 | 
						|
         "Should not have void type");
 | 
						|
 | 
						|
  // We don't need to do any checks when just filling NoInitExprs; that can't
 | 
						|
  // fail.
 | 
						|
  if (FillWithNoInit && VerifyOnly)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this is a nested initializer list, we might have changed its contents
 | 
						|
  // (and therefore some of its properties, such as instantiation-dependence)
 | 
						|
  // while filling it in. Inform the outer initializer list so that its state
 | 
						|
  // can be updated to match.
 | 
						|
  // FIXME: We should fully build the inner initializers before constructing
 | 
						|
  // the outer InitListExpr instead of mutating AST nodes after they have
 | 
						|
  // been used as subexpressions of other nodes.
 | 
						|
  struct UpdateOuterILEWithUpdatedInit {
 | 
						|
    InitListExpr *Outer;
 | 
						|
    unsigned OuterIndex;
 | 
						|
    ~UpdateOuterILEWithUpdatedInit() {
 | 
						|
      if (Outer)
 | 
						|
        Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
 | 
						|
    }
 | 
						|
  } UpdateOuterRAII = {OuterILE, OuterIndex};
 | 
						|
 | 
						|
  // A transparent ILE is not performing aggregate initialization and should
 | 
						|
  // not be filled in.
 | 
						|
  if (ILE->isTransparent())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
 | 
						|
    const RecordDecl *RDecl = RType->getDecl();
 | 
						|
    if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
 | 
						|
      FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
 | 
						|
                              Entity, ILE, RequiresSecondPass, FillWithNoInit);
 | 
						|
    else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
 | 
						|
             cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
 | 
						|
      for (auto *Field : RDecl->fields()) {
 | 
						|
        if (Field->hasInClassInitializer()) {
 | 
						|
          FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
 | 
						|
                                  FillWithNoInit);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // The fields beyond ILE->getNumInits() are default initialized, so in
 | 
						|
      // order to leave them uninitialized, the ILE is expanded and the extra
 | 
						|
      // fields are then filled with NoInitExpr.
 | 
						|
      unsigned NumElems = numStructUnionElements(ILE->getType());
 | 
						|
      if (RDecl->hasFlexibleArrayMember())
 | 
						|
        ++NumElems;
 | 
						|
      if (!VerifyOnly && ILE->getNumInits() < NumElems)
 | 
						|
        ILE->resizeInits(SemaRef.Context, NumElems);
 | 
						|
 | 
						|
      unsigned Init = 0;
 | 
						|
 | 
						|
      if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
 | 
						|
        for (auto &Base : CXXRD->bases()) {
 | 
						|
          if (hadError)
 | 
						|
            return;
 | 
						|
 | 
						|
          FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
 | 
						|
                                 FillWithNoInit);
 | 
						|
          ++Init;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      for (auto *Field : RDecl->fields()) {
 | 
						|
        if (Field->isUnnamedBitfield())
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (hadError)
 | 
						|
          return;
 | 
						|
 | 
						|
        FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
 | 
						|
                                FillWithNoInit);
 | 
						|
        if (hadError)
 | 
						|
          return;
 | 
						|
 | 
						|
        ++Init;
 | 
						|
 | 
						|
        // Only look at the first initialization of a union.
 | 
						|
        if (RDecl->isUnion())
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ElementType;
 | 
						|
 | 
						|
  InitializedEntity ElementEntity = Entity;
 | 
						|
  unsigned NumInits = ILE->getNumInits();
 | 
						|
  unsigned NumElements = NumInits;
 | 
						|
  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
 | 
						|
    ElementType = AType->getElementType();
 | 
						|
    if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
 | 
						|
      NumElements = CAType->getSize().getZExtValue();
 | 
						|
    // For an array new with an unknown bound, ask for one additional element
 | 
						|
    // in order to populate the array filler.
 | 
						|
    if (Entity.isVariableLengthArrayNew())
 | 
						|
      ++NumElements;
 | 
						|
    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
 | 
						|
                                                         0, Entity);
 | 
						|
  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
 | 
						|
    ElementType = VType->getElementType();
 | 
						|
    NumElements = VType->getNumElements();
 | 
						|
    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
 | 
						|
                                                         0, Entity);
 | 
						|
  } else
 | 
						|
    ElementType = ILE->getType();
 | 
						|
 | 
						|
  bool SkipEmptyInitChecks = false;
 | 
						|
  for (unsigned Init = 0; Init != NumElements; ++Init) {
 | 
						|
    if (hadError)
 | 
						|
      return;
 | 
						|
 | 
						|
    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
 | 
						|
        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
 | 
						|
      ElementEntity.setElementIndex(Init);
 | 
						|
 | 
						|
    if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
 | 
						|
      return;
 | 
						|
 | 
						|
    Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
 | 
						|
    if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
 | 
						|
      ILE->setInit(Init, ILE->getArrayFiller());
 | 
						|
    else if (!InitExpr && !ILE->hasArrayFiller()) {
 | 
						|
      // In VerifyOnly mode, there's no point performing empty initialization
 | 
						|
      // more than once.
 | 
						|
      if (SkipEmptyInitChecks)
 | 
						|
        continue;
 | 
						|
 | 
						|
      Expr *Filler = nullptr;
 | 
						|
 | 
						|
      if (FillWithNoInit)
 | 
						|
        Filler = new (SemaRef.Context) NoInitExpr(ElementType);
 | 
						|
      else {
 | 
						|
        ExprResult ElementInit =
 | 
						|
            PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
 | 
						|
        if (ElementInit.isInvalid()) {
 | 
						|
          hadError = true;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        Filler = ElementInit.getAs<Expr>();
 | 
						|
      }
 | 
						|
 | 
						|
      if (hadError) {
 | 
						|
        // Do nothing
 | 
						|
      } else if (VerifyOnly) {
 | 
						|
        SkipEmptyInitChecks = true;
 | 
						|
      } else if (Init < NumInits) {
 | 
						|
        // For arrays, just set the expression used for value-initialization
 | 
						|
        // of the "holes" in the array.
 | 
						|
        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
 | 
						|
          ILE->setArrayFiller(Filler);
 | 
						|
        else
 | 
						|
          ILE->setInit(Init, Filler);
 | 
						|
      } else {
 | 
						|
        // For arrays, just set the expression used for value-initialization
 | 
						|
        // of the rest of elements and exit.
 | 
						|
        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
 | 
						|
          ILE->setArrayFiller(Filler);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
 | 
						|
          // Empty initialization requires a constructor call, so
 | 
						|
          // extend the initializer list to include the constructor
 | 
						|
          // call and make a note that we'll need to take another pass
 | 
						|
          // through the initializer list.
 | 
						|
          ILE->updateInit(SemaRef.Context, Init, Filler);
 | 
						|
          RequiresSecondPass = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (InitListExpr *InnerILE
 | 
						|
                 = dyn_cast_or_null<InitListExpr>(InitExpr)) {
 | 
						|
      FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
 | 
						|
                                 ILE, Init, FillWithNoInit);
 | 
						|
    } else if (DesignatedInitUpdateExpr *InnerDIUE =
 | 
						|
                   dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
 | 
						|
      FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
 | 
						|
                                 RequiresSecondPass, ILE, Init,
 | 
						|
                                 /*FillWithNoInit =*/true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool hasAnyDesignatedInits(const InitListExpr *IL) {
 | 
						|
  for (const Stmt *Init : *IL)
 | 
						|
    if (Init && isa<DesignatedInitExpr>(Init))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
 | 
						|
                                 InitListExpr *IL, QualType &T, bool VerifyOnly,
 | 
						|
                                 bool TreatUnavailableAsInvalid,
 | 
						|
                                 bool InOverloadResolution)
 | 
						|
    : SemaRef(S), VerifyOnly(VerifyOnly),
 | 
						|
      TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
 | 
						|
      InOverloadResolution(InOverloadResolution) {
 | 
						|
  if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
 | 
						|
    FullyStructuredList =
 | 
						|
        createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
 | 
						|
 | 
						|
    // FIXME: Check that IL isn't already the semantic form of some other
 | 
						|
    // InitListExpr. If it is, we'd create a broken AST.
 | 
						|
    if (!VerifyOnly)
 | 
						|
      FullyStructuredList->setSyntacticForm(IL);
 | 
						|
  }
 | 
						|
 | 
						|
  CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
 | 
						|
                        /*TopLevelObject=*/true);
 | 
						|
 | 
						|
  if (!hadError && FullyStructuredList) {
 | 
						|
    bool RequiresSecondPass = false;
 | 
						|
    FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
 | 
						|
                               /*OuterILE=*/nullptr, /*OuterIndex=*/0);
 | 
						|
    if (RequiresSecondPass && !hadError)
 | 
						|
      FillInEmptyInitializations(Entity, FullyStructuredList,
 | 
						|
                                 RequiresSecondPass, nullptr, 0);
 | 
						|
  }
 | 
						|
  if (hadError && FullyStructuredList)
 | 
						|
    FullyStructuredList->markError();
 | 
						|
}
 | 
						|
 | 
						|
int InitListChecker::numArrayElements(QualType DeclType) {
 | 
						|
  // FIXME: use a proper constant
 | 
						|
  int maxElements = 0x7FFFFFFF;
 | 
						|
  if (const ConstantArrayType *CAT =
 | 
						|
        SemaRef.Context.getAsConstantArrayType(DeclType)) {
 | 
						|
    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
 | 
						|
  }
 | 
						|
  return maxElements;
 | 
						|
}
 | 
						|
 | 
						|
int InitListChecker::numStructUnionElements(QualType DeclType) {
 | 
						|
  RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
 | 
						|
  int InitializableMembers = 0;
 | 
						|
  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
 | 
						|
    InitializableMembers += CXXRD->getNumBases();
 | 
						|
  for (const auto *Field : structDecl->fields())
 | 
						|
    if (!Field->isUnnamedBitfield())
 | 
						|
      ++InitializableMembers;
 | 
						|
 | 
						|
  if (structDecl->isUnion())
 | 
						|
    return std::min(InitializableMembers, 1);
 | 
						|
  return InitializableMembers - structDecl->hasFlexibleArrayMember();
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether Entity is an entity for which it is idiomatic to elide
 | 
						|
/// the braces in aggregate initialization.
 | 
						|
static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
 | 
						|
  // Recursive initialization of the one and only field within an aggregate
 | 
						|
  // class is considered idiomatic. This case arises in particular for
 | 
						|
  // initialization of std::array, where the C++ standard suggests the idiom of
 | 
						|
  //
 | 
						|
  //   std::array<T, N> arr = {1, 2, 3};
 | 
						|
  //
 | 
						|
  // (where std::array is an aggregate struct containing a single array field.
 | 
						|
 | 
						|
  if (!Entity.getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Allows elide brace initialization for aggregates with empty base.
 | 
						|
  if (Entity.getKind() == InitializedEntity::EK_Base) {
 | 
						|
    auto *ParentRD =
 | 
						|
        Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
 | 
						|
    CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD);
 | 
						|
    return CXXRD->getNumBases() == 1 && CXXRD->field_empty();
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow brace elision if the only subobject is a field.
 | 
						|
  if (Entity.getKind() == InitializedEntity::EK_Member) {
 | 
						|
    auto *ParentRD =
 | 
						|
        Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
 | 
						|
    if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) {
 | 
						|
      if (CXXRD->getNumBases()) {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    auto FieldIt = ParentRD->field_begin();
 | 
						|
    assert(FieldIt != ParentRD->field_end() &&
 | 
						|
           "no fields but have initializer for member?");
 | 
						|
    return ++FieldIt == ParentRD->field_end();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the range of the initializer \p ParentIList from element
 | 
						|
/// \p Index onwards can be used to initialize an object of type \p T. Update
 | 
						|
/// \p Index to indicate how many elements of the list were consumed.
 | 
						|
///
 | 
						|
/// This also fills in \p StructuredList, from element \p StructuredIndex
 | 
						|
/// onwards, with the fully-braced, desugared form of the initialization.
 | 
						|
void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
 | 
						|
                                            InitListExpr *ParentIList,
 | 
						|
                                            QualType T, unsigned &Index,
 | 
						|
                                            InitListExpr *StructuredList,
 | 
						|
                                            unsigned &StructuredIndex) {
 | 
						|
  int maxElements = 0;
 | 
						|
 | 
						|
  if (T->isArrayType())
 | 
						|
    maxElements = numArrayElements(T);
 | 
						|
  else if (T->isRecordType())
 | 
						|
    maxElements = numStructUnionElements(T);
 | 
						|
  else if (T->isVectorType())
 | 
						|
    maxElements = T->castAs<VectorType>()->getNumElements();
 | 
						|
  else
 | 
						|
    llvm_unreachable("CheckImplicitInitList(): Illegal type");
 | 
						|
 | 
						|
  if (maxElements == 0) {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
 | 
						|
                   diag::err_implicit_empty_initializer);
 | 
						|
    ++Index;
 | 
						|
    hadError = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a structured initializer list corresponding to this subobject.
 | 
						|
  InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
 | 
						|
      ParentIList, Index, T, StructuredList, StructuredIndex,
 | 
						|
      SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
 | 
						|
                  ParentIList->getSourceRange().getEnd()));
 | 
						|
  unsigned StructuredSubobjectInitIndex = 0;
 | 
						|
 | 
						|
  // Check the element types and build the structural subobject.
 | 
						|
  unsigned StartIndex = Index;
 | 
						|
  CheckListElementTypes(Entity, ParentIList, T,
 | 
						|
                        /*SubobjectIsDesignatorContext=*/false, Index,
 | 
						|
                        StructuredSubobjectInitList,
 | 
						|
                        StructuredSubobjectInitIndex);
 | 
						|
 | 
						|
  if (StructuredSubobjectInitList) {
 | 
						|
    StructuredSubobjectInitList->setType(T);
 | 
						|
 | 
						|
    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
 | 
						|
    // Update the structured sub-object initializer so that it's ending
 | 
						|
    // range corresponds with the end of the last initializer it used.
 | 
						|
    if (EndIndex < ParentIList->getNumInits() &&
 | 
						|
        ParentIList->getInit(EndIndex)) {
 | 
						|
      SourceLocation EndLoc
 | 
						|
        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
 | 
						|
      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    // Complain about missing braces.
 | 
						|
    if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
 | 
						|
        !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
 | 
						|
        !isIdiomaticBraceElisionEntity(Entity)) {
 | 
						|
      SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
 | 
						|
                   diag::warn_missing_braces)
 | 
						|
          << StructuredSubobjectInitList->getSourceRange()
 | 
						|
          << FixItHint::CreateInsertion(
 | 
						|
                 StructuredSubobjectInitList->getBeginLoc(), "{")
 | 
						|
          << FixItHint::CreateInsertion(
 | 
						|
                 SemaRef.getLocForEndOfToken(
 | 
						|
                     StructuredSubobjectInitList->getEndLoc()),
 | 
						|
                 "}");
 | 
						|
    }
 | 
						|
 | 
						|
    // Warn if this type won't be an aggregate in future versions of C++.
 | 
						|
    auto *CXXRD = T->getAsCXXRecordDecl();
 | 
						|
    if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
 | 
						|
      SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
 | 
						|
                   diag::warn_cxx20_compat_aggregate_init_with_ctors)
 | 
						|
          << StructuredSubobjectInitList->getSourceRange() << T;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Warn that \p Entity was of scalar type and was initialized by a
 | 
						|
/// single-element braced initializer list.
 | 
						|
static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
 | 
						|
                                 SourceRange Braces) {
 | 
						|
  // Don't warn during template instantiation. If the initialization was
 | 
						|
  // non-dependent, we warned during the initial parse; otherwise, the
 | 
						|
  // type might not be scalar in some uses of the template.
 | 
						|
  if (S.inTemplateInstantiation())
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned DiagID = 0;
 | 
						|
 | 
						|
  switch (Entity.getKind()) {
 | 
						|
  case InitializedEntity::EK_VectorElement:
 | 
						|
  case InitializedEntity::EK_ComplexElement:
 | 
						|
  case InitializedEntity::EK_ArrayElement:
 | 
						|
  case InitializedEntity::EK_Parameter:
 | 
						|
  case InitializedEntity::EK_Parameter_CF_Audited:
 | 
						|
  case InitializedEntity::EK_TemplateParameter:
 | 
						|
  case InitializedEntity::EK_Result:
 | 
						|
    // Extra braces here are suspicious.
 | 
						|
    DiagID = diag::warn_braces_around_init;
 | 
						|
    break;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Member:
 | 
						|
    // Warn on aggregate initialization but not on ctor init list or
 | 
						|
    // default member initializer.
 | 
						|
    if (Entity.getParent())
 | 
						|
      DiagID = diag::warn_braces_around_init;
 | 
						|
    break;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Variable:
 | 
						|
  case InitializedEntity::EK_LambdaCapture:
 | 
						|
    // No warning, might be direct-list-initialization.
 | 
						|
    // FIXME: Should we warn for copy-list-initialization in these cases?
 | 
						|
    break;
 | 
						|
 | 
						|
  case InitializedEntity::EK_New:
 | 
						|
  case InitializedEntity::EK_Temporary:
 | 
						|
  case InitializedEntity::EK_CompoundLiteralInit:
 | 
						|
    // No warning, braces are part of the syntax of the underlying construct.
 | 
						|
    break;
 | 
						|
 | 
						|
  case InitializedEntity::EK_RelatedResult:
 | 
						|
    // No warning, we already warned when initializing the result.
 | 
						|
    break;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Exception:
 | 
						|
  case InitializedEntity::EK_Base:
 | 
						|
  case InitializedEntity::EK_Delegating:
 | 
						|
  case InitializedEntity::EK_BlockElement:
 | 
						|
  case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
 | 
						|
  case InitializedEntity::EK_Binding:
 | 
						|
  case InitializedEntity::EK_StmtExprResult:
 | 
						|
    llvm_unreachable("unexpected braced scalar init");
 | 
						|
  }
 | 
						|
 | 
						|
  if (DiagID) {
 | 
						|
    S.Diag(Braces.getBegin(), DiagID)
 | 
						|
        << Entity.getType()->isSizelessBuiltinType() << Braces
 | 
						|
        << FixItHint::CreateRemoval(Braces.getBegin())
 | 
						|
        << FixItHint::CreateRemoval(Braces.getEnd());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the initializer \p IList (that was written with explicit
 | 
						|
/// braces) can be used to initialize an object of type \p T.
 | 
						|
///
 | 
						|
/// This also fills in \p StructuredList with the fully-braced, desugared
 | 
						|
/// form of the initialization.
 | 
						|
void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
 | 
						|
                                            InitListExpr *IList, QualType &T,
 | 
						|
                                            InitListExpr *StructuredList,
 | 
						|
                                            bool TopLevelObject) {
 | 
						|
  unsigned Index = 0, StructuredIndex = 0;
 | 
						|
  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
 | 
						|
                        Index, StructuredList, StructuredIndex, TopLevelObject);
 | 
						|
  if (StructuredList) {
 | 
						|
    QualType ExprTy = T;
 | 
						|
    if (!ExprTy->isArrayType())
 | 
						|
      ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
 | 
						|
    if (!VerifyOnly)
 | 
						|
      IList->setType(ExprTy);
 | 
						|
    StructuredList->setType(ExprTy);
 | 
						|
  }
 | 
						|
  if (hadError)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Don't complain for incomplete types, since we'll get an error elsewhere.
 | 
						|
  if (Index < IList->getNumInits() && !T->isIncompleteType()) {
 | 
						|
    // We have leftover initializers
 | 
						|
    bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
 | 
						|
          (SemaRef.getLangOpts().OpenCL && T->isVectorType());
 | 
						|
    hadError = ExtraInitsIsError;
 | 
						|
    if (VerifyOnly) {
 | 
						|
      return;
 | 
						|
    } else if (StructuredIndex == 1 &&
 | 
						|
               IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
 | 
						|
                   SIF_None) {
 | 
						|
      unsigned DK =
 | 
						|
          ExtraInitsIsError
 | 
						|
              ? diag::err_excess_initializers_in_char_array_initializer
 | 
						|
              : diag::ext_excess_initializers_in_char_array_initializer;
 | 
						|
      SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
 | 
						|
          << IList->getInit(Index)->getSourceRange();
 | 
						|
    } else if (T->isSizelessBuiltinType()) {
 | 
						|
      unsigned DK = ExtraInitsIsError
 | 
						|
                        ? diag::err_excess_initializers_for_sizeless_type
 | 
						|
                        : diag::ext_excess_initializers_for_sizeless_type;
 | 
						|
      SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
 | 
						|
          << T << IList->getInit(Index)->getSourceRange();
 | 
						|
    } else {
 | 
						|
      int initKind = T->isArrayType() ? 0 :
 | 
						|
                     T->isVectorType() ? 1 :
 | 
						|
                     T->isScalarType() ? 2 :
 | 
						|
                     T->isUnionType() ? 3 :
 | 
						|
                     4;
 | 
						|
 | 
						|
      unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
 | 
						|
                                      : diag::ext_excess_initializers;
 | 
						|
      SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
 | 
						|
          << initKind << IList->getInit(Index)->getSourceRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!VerifyOnly) {
 | 
						|
    if (T->isScalarType() && IList->getNumInits() == 1 &&
 | 
						|
        !isa<InitListExpr>(IList->getInit(0)))
 | 
						|
      warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
 | 
						|
 | 
						|
    // Warn if this is a class type that won't be an aggregate in future
 | 
						|
    // versions of C++.
 | 
						|
    auto *CXXRD = T->getAsCXXRecordDecl();
 | 
						|
    if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
 | 
						|
      // Don't warn if there's an equivalent default constructor that would be
 | 
						|
      // used instead.
 | 
						|
      bool HasEquivCtor = false;
 | 
						|
      if (IList->getNumInits() == 0) {
 | 
						|
        auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
 | 
						|
        HasEquivCtor = CD && !CD->isDeleted();
 | 
						|
      }
 | 
						|
 | 
						|
      if (!HasEquivCtor) {
 | 
						|
        SemaRef.Diag(IList->getBeginLoc(),
 | 
						|
                     diag::warn_cxx20_compat_aggregate_init_with_ctors)
 | 
						|
            << IList->getSourceRange() << T;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
 | 
						|
                                            InitListExpr *IList,
 | 
						|
                                            QualType &DeclType,
 | 
						|
                                            bool SubobjectIsDesignatorContext,
 | 
						|
                                            unsigned &Index,
 | 
						|
                                            InitListExpr *StructuredList,
 | 
						|
                                            unsigned &StructuredIndex,
 | 
						|
                                            bool TopLevelObject) {
 | 
						|
  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
 | 
						|
    // Explicitly braced initializer for complex type can be real+imaginary
 | 
						|
    // parts.
 | 
						|
    CheckComplexType(Entity, IList, DeclType, Index,
 | 
						|
                     StructuredList, StructuredIndex);
 | 
						|
  } else if (DeclType->isScalarType()) {
 | 
						|
    CheckScalarType(Entity, IList, DeclType, Index,
 | 
						|
                    StructuredList, StructuredIndex);
 | 
						|
  } else if (DeclType->isVectorType()) {
 | 
						|
    CheckVectorType(Entity, IList, DeclType, Index,
 | 
						|
                    StructuredList, StructuredIndex);
 | 
						|
  } else if (DeclType->isRecordType()) {
 | 
						|
    assert(DeclType->isAggregateType() &&
 | 
						|
           "non-aggregate records should be handed in CheckSubElementType");
 | 
						|
    RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
 | 
						|
    auto Bases =
 | 
						|
        CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
 | 
						|
                                        CXXRecordDecl::base_class_iterator());
 | 
						|
    if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | 
						|
      Bases = CXXRD->bases();
 | 
						|
    CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
 | 
						|
                          SubobjectIsDesignatorContext, Index, StructuredList,
 | 
						|
                          StructuredIndex, TopLevelObject);
 | 
						|
  } else if (DeclType->isArrayType()) {
 | 
						|
    llvm::APSInt Zero(
 | 
						|
                    SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
 | 
						|
                    false);
 | 
						|
    CheckArrayType(Entity, IList, DeclType, Zero,
 | 
						|
                   SubobjectIsDesignatorContext, Index,
 | 
						|
                   StructuredList, StructuredIndex);
 | 
						|
  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
 | 
						|
    // This type is invalid, issue a diagnostic.
 | 
						|
    ++Index;
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
 | 
						|
          << DeclType;
 | 
						|
    hadError = true;
 | 
						|
  } else if (DeclType->isReferenceType()) {
 | 
						|
    CheckReferenceType(Entity, IList, DeclType, Index,
 | 
						|
                       StructuredList, StructuredIndex);
 | 
						|
  } else if (DeclType->isObjCObjectType()) {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
 | 
						|
    hadError = true;
 | 
						|
  } else if (DeclType->isOCLIntelSubgroupAVCType() ||
 | 
						|
             DeclType->isSizelessBuiltinType()) {
 | 
						|
    // Checks for scalar type are sufficient for these types too.
 | 
						|
    CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
 | 
						|
                    StructuredIndex);
 | 
						|
  } else {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
 | 
						|
          << DeclType;
 | 
						|
    hadError = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
 | 
						|
                                          InitListExpr *IList,
 | 
						|
                                          QualType ElemType,
 | 
						|
                                          unsigned &Index,
 | 
						|
                                          InitListExpr *StructuredList,
 | 
						|
                                          unsigned &StructuredIndex,
 | 
						|
                                          bool DirectlyDesignated) {
 | 
						|
  Expr *expr = IList->getInit(Index);
 | 
						|
 | 
						|
  if (ElemType->isReferenceType())
 | 
						|
    return CheckReferenceType(Entity, IList, ElemType, Index,
 | 
						|
                              StructuredList, StructuredIndex);
 | 
						|
 | 
						|
  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
 | 
						|
    if (SubInitList->getNumInits() == 1 &&
 | 
						|
        IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
 | 
						|
        SIF_None) {
 | 
						|
      // FIXME: It would be more faithful and no less correct to include an
 | 
						|
      // InitListExpr in the semantic form of the initializer list in this case.
 | 
						|
      expr = SubInitList->getInit(0);
 | 
						|
    }
 | 
						|
    // Nested aggregate initialization and C++ initialization are handled later.
 | 
						|
  } else if (isa<ImplicitValueInitExpr>(expr)) {
 | 
						|
    // This happens during template instantiation when we see an InitListExpr
 | 
						|
    // that we've already checked once.
 | 
						|
    assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
 | 
						|
           "found implicit initialization for the wrong type");
 | 
						|
    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
 | 
						|
    ++Index;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
 | 
						|
    // C++ [dcl.init.aggr]p2:
 | 
						|
    //   Each member is copy-initialized from the corresponding
 | 
						|
    //   initializer-clause.
 | 
						|
 | 
						|
    // FIXME: Better EqualLoc?
 | 
						|
    InitializationKind Kind =
 | 
						|
        InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
 | 
						|
 | 
						|
    // Vector elements can be initialized from other vectors in which case
 | 
						|
    // we need initialization entity with a type of a vector (and not a vector
 | 
						|
    // element!) initializing multiple vector elements.
 | 
						|
    auto TmpEntity =
 | 
						|
        (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
 | 
						|
            ? InitializedEntity::InitializeTemporary(ElemType)
 | 
						|
            : Entity;
 | 
						|
 | 
						|
    InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
 | 
						|
                               /*TopLevelOfInitList*/ true);
 | 
						|
 | 
						|
    // C++14 [dcl.init.aggr]p13:
 | 
						|
    //   If the assignment-expression can initialize a member, the member is
 | 
						|
    //   initialized. Otherwise [...] brace elision is assumed
 | 
						|
    //
 | 
						|
    // Brace elision is never performed if the element is not an
 | 
						|
    // assignment-expression.
 | 
						|
    if (Seq || isa<InitListExpr>(expr)) {
 | 
						|
      if (!VerifyOnly) {
 | 
						|
        ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
 | 
						|
        if (Result.isInvalid())
 | 
						|
          hadError = true;
 | 
						|
 | 
						|
        UpdateStructuredListElement(StructuredList, StructuredIndex,
 | 
						|
                                    Result.getAs<Expr>());
 | 
						|
      } else if (!Seq) {
 | 
						|
        hadError = true;
 | 
						|
      } else if (StructuredList) {
 | 
						|
        UpdateStructuredListElement(StructuredList, StructuredIndex,
 | 
						|
                                    getDummyInit());
 | 
						|
      }
 | 
						|
      ++Index;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through for subaggregate initialization
 | 
						|
  } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
 | 
						|
    // FIXME: Need to handle atomic aggregate types with implicit init lists.
 | 
						|
    return CheckScalarType(Entity, IList, ElemType, Index,
 | 
						|
                           StructuredList, StructuredIndex);
 | 
						|
  } else if (const ArrayType *arrayType =
 | 
						|
                 SemaRef.Context.getAsArrayType(ElemType)) {
 | 
						|
    // arrayType can be incomplete if we're initializing a flexible
 | 
						|
    // array member.  There's nothing we can do with the completed
 | 
						|
    // type here, though.
 | 
						|
 | 
						|
    if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
 | 
						|
      // FIXME: Should we do this checking in verify-only mode?
 | 
						|
      if (!VerifyOnly)
 | 
						|
        CheckStringInit(expr, ElemType, arrayType, SemaRef);
 | 
						|
      if (StructuredList)
 | 
						|
        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
 | 
						|
      ++Index;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through for subaggregate initialization.
 | 
						|
 | 
						|
  } else {
 | 
						|
    assert((ElemType->isRecordType() || ElemType->isVectorType() ||
 | 
						|
            ElemType->isOpenCLSpecificType()) && "Unexpected type");
 | 
						|
 | 
						|
    // C99 6.7.8p13:
 | 
						|
    //
 | 
						|
    //   The initializer for a structure or union object that has
 | 
						|
    //   automatic storage duration shall be either an initializer
 | 
						|
    //   list as described below, or a single expression that has
 | 
						|
    //   compatible structure or union type. In the latter case, the
 | 
						|
    //   initial value of the object, including unnamed members, is
 | 
						|
    //   that of the expression.
 | 
						|
    ExprResult ExprRes = expr;
 | 
						|
    if (SemaRef.CheckSingleAssignmentConstraints(
 | 
						|
            ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
 | 
						|
      if (ExprRes.isInvalid())
 | 
						|
        hadError = true;
 | 
						|
      else {
 | 
						|
        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
 | 
						|
        if (ExprRes.isInvalid())
 | 
						|
          hadError = true;
 | 
						|
      }
 | 
						|
      UpdateStructuredListElement(StructuredList, StructuredIndex,
 | 
						|
                                  ExprRes.getAs<Expr>());
 | 
						|
      ++Index;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    ExprRes.get();
 | 
						|
    // Fall through for subaggregate initialization
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [dcl.init.aggr]p12:
 | 
						|
  //
 | 
						|
  //   [...] Otherwise, if the member is itself a non-empty
 | 
						|
  //   subaggregate, brace elision is assumed and the initializer is
 | 
						|
  //   considered for the initialization of the first member of
 | 
						|
  //   the subaggregate.
 | 
						|
  // OpenCL vector initializer is handled elsewhere.
 | 
						|
  if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
 | 
						|
      ElemType->isAggregateType()) {
 | 
						|
    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
 | 
						|
                          StructuredIndex);
 | 
						|
    ++StructuredIndex;
 | 
						|
 | 
						|
    // In C++20, brace elision is not permitted for a designated initializer.
 | 
						|
    if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
 | 
						|
      if (InOverloadResolution)
 | 
						|
        hadError = true;
 | 
						|
      if (!VerifyOnly) {
 | 
						|
        SemaRef.Diag(expr->getBeginLoc(),
 | 
						|
                     diag::ext_designated_init_brace_elision)
 | 
						|
            << expr->getSourceRange()
 | 
						|
            << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
 | 
						|
            << FixItHint::CreateInsertion(
 | 
						|
                   SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (!VerifyOnly) {
 | 
						|
      // We cannot initialize this element, so let PerformCopyInitialization
 | 
						|
      // produce the appropriate diagnostic. We already checked that this
 | 
						|
      // initialization will fail.
 | 
						|
      ExprResult Copy =
 | 
						|
          SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
 | 
						|
                                            /*TopLevelOfInitList=*/true);
 | 
						|
      (void)Copy;
 | 
						|
      assert(Copy.isInvalid() &&
 | 
						|
             "expected non-aggregate initialization to fail");
 | 
						|
    }
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
 | 
						|
                                       InitListExpr *IList, QualType DeclType,
 | 
						|
                                       unsigned &Index,
 | 
						|
                                       InitListExpr *StructuredList,
 | 
						|
                                       unsigned &StructuredIndex) {
 | 
						|
  assert(Index == 0 && "Index in explicit init list must be zero");
 | 
						|
 | 
						|
  // As an extension, clang supports complex initializers, which initialize
 | 
						|
  // a complex number component-wise.  When an explicit initializer list for
 | 
						|
  // a complex number contains two two initializers, this extension kicks in:
 | 
						|
  // it exepcts the initializer list to contain two elements convertible to
 | 
						|
  // the element type of the complex type. The first element initializes
 | 
						|
  // the real part, and the second element intitializes the imaginary part.
 | 
						|
 | 
						|
  if (IList->getNumInits() != 2)
 | 
						|
    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
 | 
						|
                           StructuredIndex);
 | 
						|
 | 
						|
  // This is an extension in C.  (The builtin _Complex type does not exist
 | 
						|
  // in the C++ standard.)
 | 
						|
  if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
 | 
						|
    SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
 | 
						|
        << IList->getSourceRange();
 | 
						|
 | 
						|
  // Initialize the complex number.
 | 
						|
  QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
 | 
						|
  InitializedEntity ElementEntity =
 | 
						|
    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < 2; ++i) {
 | 
						|
    ElementEntity.setElementIndex(Index);
 | 
						|
    CheckSubElementType(ElementEntity, IList, elementType, Index,
 | 
						|
                        StructuredList, StructuredIndex);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
 | 
						|
                                      InitListExpr *IList, QualType DeclType,
 | 
						|
                                      unsigned &Index,
 | 
						|
                                      InitListExpr *StructuredList,
 | 
						|
                                      unsigned &StructuredIndex) {
 | 
						|
  if (Index >= IList->getNumInits()) {
 | 
						|
    if (!VerifyOnly) {
 | 
						|
      if (DeclType->isSizelessBuiltinType())
 | 
						|
        SemaRef.Diag(IList->getBeginLoc(),
 | 
						|
                     SemaRef.getLangOpts().CPlusPlus11
 | 
						|
                         ? diag::warn_cxx98_compat_empty_sizeless_initializer
 | 
						|
                         : diag::err_empty_sizeless_initializer)
 | 
						|
            << DeclType << IList->getSourceRange();
 | 
						|
      else
 | 
						|
        SemaRef.Diag(IList->getBeginLoc(),
 | 
						|
                     SemaRef.getLangOpts().CPlusPlus11
 | 
						|
                         ? diag::warn_cxx98_compat_empty_scalar_initializer
 | 
						|
                         : diag::err_empty_scalar_initializer)
 | 
						|
            << IList->getSourceRange();
 | 
						|
    }
 | 
						|
    hadError = !SemaRef.getLangOpts().CPlusPlus11;
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *expr = IList->getInit(Index);
 | 
						|
  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
 | 
						|
    // FIXME: This is invalid, and accepting it causes overload resolution
 | 
						|
    // to pick the wrong overload in some corner cases.
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
 | 
						|
          << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
 | 
						|
 | 
						|
    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
 | 
						|
                    StructuredIndex);
 | 
						|
    return;
 | 
						|
  } else if (isa<DesignatedInitExpr>(expr)) {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(expr->getBeginLoc(),
 | 
						|
                   diag::err_designator_for_scalar_or_sizeless_init)
 | 
						|
          << DeclType->isSizelessBuiltinType() << DeclType
 | 
						|
          << expr->getSourceRange();
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult Result;
 | 
						|
  if (VerifyOnly) {
 | 
						|
    if (SemaRef.CanPerformCopyInitialization(Entity, expr))
 | 
						|
      Result = getDummyInit();
 | 
						|
    else
 | 
						|
      Result = ExprError();
 | 
						|
  } else {
 | 
						|
    Result =
 | 
						|
        SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
 | 
						|
                                          /*TopLevelOfInitList=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *ResultExpr = nullptr;
 | 
						|
 | 
						|
  if (Result.isInvalid())
 | 
						|
    hadError = true; // types weren't compatible.
 | 
						|
  else {
 | 
						|
    ResultExpr = Result.getAs<Expr>();
 | 
						|
 | 
						|
    if (ResultExpr != expr && !VerifyOnly) {
 | 
						|
      // The type was promoted, update initializer list.
 | 
						|
      // FIXME: Why are we updating the syntactic init list?
 | 
						|
      IList->setInit(Index, ResultExpr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
 | 
						|
  ++Index;
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
 | 
						|
                                         InitListExpr *IList, QualType DeclType,
 | 
						|
                                         unsigned &Index,
 | 
						|
                                         InitListExpr *StructuredList,
 | 
						|
                                         unsigned &StructuredIndex) {
 | 
						|
  if (Index >= IList->getNumInits()) {
 | 
						|
    // FIXME: It would be wonderful if we could point at the actual member. In
 | 
						|
    // general, it would be useful to pass location information down the stack,
 | 
						|
    // so that we know the location (or decl) of the "current object" being
 | 
						|
    // initialized.
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getBeginLoc(),
 | 
						|
                   diag::err_init_reference_member_uninitialized)
 | 
						|
          << DeclType << IList->getSourceRange();
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *expr = IList->getInit(Index);
 | 
						|
  if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
 | 
						|
          << DeclType << IList->getSourceRange();
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult Result;
 | 
						|
  if (VerifyOnly) {
 | 
						|
    if (SemaRef.CanPerformCopyInitialization(Entity,expr))
 | 
						|
      Result = getDummyInit();
 | 
						|
    else
 | 
						|
      Result = ExprError();
 | 
						|
  } else {
 | 
						|
    Result =
 | 
						|
        SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
 | 
						|
                                          /*TopLevelOfInitList=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Result.isInvalid())
 | 
						|
    hadError = true;
 | 
						|
 | 
						|
  expr = Result.getAs<Expr>();
 | 
						|
  // FIXME: Why are we updating the syntactic init list?
 | 
						|
  if (!VerifyOnly && expr)
 | 
						|
    IList->setInit(Index, expr);
 | 
						|
 | 
						|
  UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
 | 
						|
  ++Index;
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
 | 
						|
                                      InitListExpr *IList, QualType DeclType,
 | 
						|
                                      unsigned &Index,
 | 
						|
                                      InitListExpr *StructuredList,
 | 
						|
                                      unsigned &StructuredIndex) {
 | 
						|
  const VectorType *VT = DeclType->castAs<VectorType>();
 | 
						|
  unsigned maxElements = VT->getNumElements();
 | 
						|
  unsigned numEltsInit = 0;
 | 
						|
  QualType elementType = VT->getElementType();
 | 
						|
 | 
						|
  if (Index >= IList->getNumInits()) {
 | 
						|
    // Make sure the element type can be value-initialized.
 | 
						|
    CheckEmptyInitializable(
 | 
						|
        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
 | 
						|
        IList->getEndLoc());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) {
 | 
						|
    // If the initializing element is a vector, try to copy-initialize
 | 
						|
    // instead of breaking it apart (which is doomed to failure anyway).
 | 
						|
    Expr *Init = IList->getInit(Index);
 | 
						|
    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
 | 
						|
      ExprResult Result;
 | 
						|
      if (VerifyOnly) {
 | 
						|
        if (SemaRef.CanPerformCopyInitialization(Entity, Init))
 | 
						|
          Result = getDummyInit();
 | 
						|
        else
 | 
						|
          Result = ExprError();
 | 
						|
      } else {
 | 
						|
        Result =
 | 
						|
            SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
 | 
						|
                                              /*TopLevelOfInitList=*/true);
 | 
						|
      }
 | 
						|
 | 
						|
      Expr *ResultExpr = nullptr;
 | 
						|
      if (Result.isInvalid())
 | 
						|
        hadError = true; // types weren't compatible.
 | 
						|
      else {
 | 
						|
        ResultExpr = Result.getAs<Expr>();
 | 
						|
 | 
						|
        if (ResultExpr != Init && !VerifyOnly) {
 | 
						|
          // The type was promoted, update initializer list.
 | 
						|
          // FIXME: Why are we updating the syntactic init list?
 | 
						|
          IList->setInit(Index, ResultExpr);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
 | 
						|
      ++Index;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    InitializedEntity ElementEntity =
 | 
						|
      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | 
						|
 | 
						|
    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
 | 
						|
      // Don't attempt to go past the end of the init list
 | 
						|
      if (Index >= IList->getNumInits()) {
 | 
						|
        CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      ElementEntity.setElementIndex(Index);
 | 
						|
      CheckSubElementType(ElementEntity, IList, elementType, Index,
 | 
						|
                          StructuredList, StructuredIndex);
 | 
						|
    }
 | 
						|
 | 
						|
    if (VerifyOnly)
 | 
						|
      return;
 | 
						|
 | 
						|
    bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
 | 
						|
    const VectorType *T = Entity.getType()->castAs<VectorType>();
 | 
						|
    if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
 | 
						|
                        T->getVectorKind() == VectorType::NeonPolyVector)) {
 | 
						|
      // The ability to use vector initializer lists is a GNU vector extension
 | 
						|
      // and is unrelated to the NEON intrinsics in arm_neon.h. On little
 | 
						|
      // endian machines it works fine, however on big endian machines it
 | 
						|
      // exhibits surprising behaviour:
 | 
						|
      //
 | 
						|
      //   uint32x2_t x = {42, 64};
 | 
						|
      //   return vget_lane_u32(x, 0); // Will return 64.
 | 
						|
      //
 | 
						|
      // Because of this, explicitly call out that it is non-portable.
 | 
						|
      //
 | 
						|
      SemaRef.Diag(IList->getBeginLoc(),
 | 
						|
                   diag::warn_neon_vector_initializer_non_portable);
 | 
						|
 | 
						|
      const char *typeCode;
 | 
						|
      unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
 | 
						|
 | 
						|
      if (elementType->isFloatingType())
 | 
						|
        typeCode = "f";
 | 
						|
      else if (elementType->isSignedIntegerType())
 | 
						|
        typeCode = "s";
 | 
						|
      else if (elementType->isUnsignedIntegerType())
 | 
						|
        typeCode = "u";
 | 
						|
      else
 | 
						|
        llvm_unreachable("Invalid element type!");
 | 
						|
 | 
						|
      SemaRef.Diag(IList->getBeginLoc(),
 | 
						|
                   SemaRef.Context.getTypeSize(VT) > 64
 | 
						|
                       ? diag::note_neon_vector_initializer_non_portable_q
 | 
						|
                       : diag::note_neon_vector_initializer_non_portable)
 | 
						|
          << typeCode << typeSize;
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  InitializedEntity ElementEntity =
 | 
						|
    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | 
						|
 | 
						|
  // OpenCL and HLSL initializers allow vectors to be constructed from vectors.
 | 
						|
  for (unsigned i = 0; i < maxElements; ++i) {
 | 
						|
    // Don't attempt to go past the end of the init list
 | 
						|
    if (Index >= IList->getNumInits())
 | 
						|
      break;
 | 
						|
 | 
						|
    ElementEntity.setElementIndex(Index);
 | 
						|
 | 
						|
    QualType IType = IList->getInit(Index)->getType();
 | 
						|
    if (!IType->isVectorType()) {
 | 
						|
      CheckSubElementType(ElementEntity, IList, elementType, Index,
 | 
						|
                          StructuredList, StructuredIndex);
 | 
						|
      ++numEltsInit;
 | 
						|
    } else {
 | 
						|
      QualType VecType;
 | 
						|
      const VectorType *IVT = IType->castAs<VectorType>();
 | 
						|
      unsigned numIElts = IVT->getNumElements();
 | 
						|
 | 
						|
      if (IType->isExtVectorType())
 | 
						|
        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
 | 
						|
      else
 | 
						|
        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
 | 
						|
                                                IVT->getVectorKind());
 | 
						|
      CheckSubElementType(ElementEntity, IList, VecType, Index,
 | 
						|
                          StructuredList, StructuredIndex);
 | 
						|
      numEltsInit += numIElts;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // OpenCL and HLSL require all elements to be initialized.
 | 
						|
  if (numEltsInit != maxElements) {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(IList->getBeginLoc(),
 | 
						|
                   diag::err_vector_incorrect_num_initializers)
 | 
						|
          << (numEltsInit < maxElements) << maxElements << numEltsInit;
 | 
						|
    hadError = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the type of a class element has an accessible destructor, and marks
 | 
						|
/// it referenced. Returns true if we shouldn't form a reference to the
 | 
						|
/// destructor.
 | 
						|
///
 | 
						|
/// Aggregate initialization requires a class element's destructor be
 | 
						|
/// accessible per 11.6.1 [dcl.init.aggr]:
 | 
						|
///
 | 
						|
/// The destructor for each element of class type is potentially invoked
 | 
						|
/// (15.4 [class.dtor]) from the context where the aggregate initialization
 | 
						|
/// occurs.
 | 
						|
static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
 | 
						|
                                     Sema &SemaRef) {
 | 
						|
  auto *CXXRD = ElementType->getAsCXXRecordDecl();
 | 
						|
  if (!CXXRD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
 | 
						|
  SemaRef.CheckDestructorAccess(Loc, Destructor,
 | 
						|
                                SemaRef.PDiag(diag::err_access_dtor_temp)
 | 
						|
                                << ElementType);
 | 
						|
  SemaRef.MarkFunctionReferenced(Loc, Destructor);
 | 
						|
  return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
 | 
						|
                                     InitListExpr *IList, QualType &DeclType,
 | 
						|
                                     llvm::APSInt elementIndex,
 | 
						|
                                     bool SubobjectIsDesignatorContext,
 | 
						|
                                     unsigned &Index,
 | 
						|
                                     InitListExpr *StructuredList,
 | 
						|
                                     unsigned &StructuredIndex) {
 | 
						|
  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
 | 
						|
 | 
						|
  if (!VerifyOnly) {
 | 
						|
    if (checkDestructorReference(arrayType->getElementType(),
 | 
						|
                                 IList->getEndLoc(), SemaRef)) {
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for the special-case of initializing an array with a string.
 | 
						|
  if (Index < IList->getNumInits()) {
 | 
						|
    if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
 | 
						|
        SIF_None) {
 | 
						|
      // We place the string literal directly into the resulting
 | 
						|
      // initializer list. This is the only place where the structure
 | 
						|
      // of the structured initializer list doesn't match exactly,
 | 
						|
      // because doing so would involve allocating one character
 | 
						|
      // constant for each string.
 | 
						|
      // FIXME: Should we do these checks in verify-only mode too?
 | 
						|
      if (!VerifyOnly)
 | 
						|
        CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
 | 
						|
      if (StructuredList) {
 | 
						|
        UpdateStructuredListElement(StructuredList, StructuredIndex,
 | 
						|
                                    IList->getInit(Index));
 | 
						|
        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
 | 
						|
      }
 | 
						|
      ++Index;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
 | 
						|
    // Check for VLAs; in standard C it would be possible to check this
 | 
						|
    // earlier, but I don't know where clang accepts VLAs (gcc accepts
 | 
						|
    // them in all sorts of strange places).
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
 | 
						|
                   diag::err_variable_object_no_init)
 | 
						|
          << VAT->getSizeExpr()->getSourceRange();
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    ++StructuredIndex;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We might know the maximum number of elements in advance.
 | 
						|
  llvm::APSInt maxElements(elementIndex.getBitWidth(),
 | 
						|
                           elementIndex.isUnsigned());
 | 
						|
  bool maxElementsKnown = false;
 | 
						|
  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
 | 
						|
    maxElements = CAT->getSize();
 | 
						|
    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
 | 
						|
    elementIndex.setIsUnsigned(maxElements.isUnsigned());
 | 
						|
    maxElementsKnown = true;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType elementType = arrayType->getElementType();
 | 
						|
  while (Index < IList->getNumInits()) {
 | 
						|
    Expr *Init = IList->getInit(Index);
 | 
						|
    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
 | 
						|
      // If we're not the subobject that matches up with the '{' for
 | 
						|
      // the designator, we shouldn't be handling the
 | 
						|
      // designator. Return immediately.
 | 
						|
      if (!SubobjectIsDesignatorContext)
 | 
						|
        return;
 | 
						|
 | 
						|
      // Handle this designated initializer. elementIndex will be
 | 
						|
      // updated to be the next array element we'll initialize.
 | 
						|
      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
 | 
						|
                                     DeclType, nullptr, &elementIndex, Index,
 | 
						|
                                     StructuredList, StructuredIndex, true,
 | 
						|
                                     false)) {
 | 
						|
        hadError = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
 | 
						|
        maxElements = maxElements.extend(elementIndex.getBitWidth());
 | 
						|
      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
 | 
						|
        elementIndex = elementIndex.extend(maxElements.getBitWidth());
 | 
						|
      elementIndex.setIsUnsigned(maxElements.isUnsigned());
 | 
						|
 | 
						|
      // If the array is of incomplete type, keep track of the number of
 | 
						|
      // elements in the initializer.
 | 
						|
      if (!maxElementsKnown && elementIndex > maxElements)
 | 
						|
        maxElements = elementIndex;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we know the maximum number of elements, and we've already
 | 
						|
    // hit it, stop consuming elements in the initializer list.
 | 
						|
    if (maxElementsKnown && elementIndex == maxElements)
 | 
						|
      break;
 | 
						|
 | 
						|
    InitializedEntity ElementEntity =
 | 
						|
      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
 | 
						|
                                           Entity);
 | 
						|
    // Check this element.
 | 
						|
    CheckSubElementType(ElementEntity, IList, elementType, Index,
 | 
						|
                        StructuredList, StructuredIndex);
 | 
						|
    ++elementIndex;
 | 
						|
 | 
						|
    // If the array is of incomplete type, keep track of the number of
 | 
						|
    // elements in the initializer.
 | 
						|
    if (!maxElementsKnown && elementIndex > maxElements)
 | 
						|
      maxElements = elementIndex;
 | 
						|
  }
 | 
						|
  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
 | 
						|
    // If this is an incomplete array type, the actual type needs to
 | 
						|
    // be calculated here.
 | 
						|
    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
 | 
						|
    if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
 | 
						|
      // Sizing an array implicitly to zero is not allowed by ISO C,
 | 
						|
      // but is supported by GNU.
 | 
						|
      SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
 | 
						|
    }
 | 
						|
 | 
						|
    DeclType = SemaRef.Context.getConstantArrayType(
 | 
						|
        elementType, maxElements, nullptr, ArrayType::Normal, 0);
 | 
						|
  }
 | 
						|
  if (!hadError) {
 | 
						|
    // If there are any members of the array that get value-initialized, check
 | 
						|
    // that is possible. That happens if we know the bound and don't have
 | 
						|
    // enough elements, or if we're performing an array new with an unknown
 | 
						|
    // bound.
 | 
						|
    if ((maxElementsKnown && elementIndex < maxElements) ||
 | 
						|
        Entity.isVariableLengthArrayNew())
 | 
						|
      CheckEmptyInitializable(
 | 
						|
          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
 | 
						|
          IList->getEndLoc());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
 | 
						|
                                             Expr *InitExpr,
 | 
						|
                                             FieldDecl *Field,
 | 
						|
                                             bool TopLevelObject) {
 | 
						|
  // Handle GNU flexible array initializers.
 | 
						|
  unsigned FlexArrayDiag;
 | 
						|
  if (isa<InitListExpr>(InitExpr) &&
 | 
						|
      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
 | 
						|
    // Empty flexible array init always allowed as an extension
 | 
						|
    FlexArrayDiag = diag::ext_flexible_array_init;
 | 
						|
  } else if (!TopLevelObject) {
 | 
						|
    // Disallow flexible array init on non-top-level object
 | 
						|
    FlexArrayDiag = diag::err_flexible_array_init;
 | 
						|
  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
 | 
						|
    // Disallow flexible array init on anything which is not a variable.
 | 
						|
    FlexArrayDiag = diag::err_flexible_array_init;
 | 
						|
  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
 | 
						|
    // Disallow flexible array init on local variables.
 | 
						|
    FlexArrayDiag = diag::err_flexible_array_init;
 | 
						|
  } else {
 | 
						|
    // Allow other cases.
 | 
						|
    FlexArrayDiag = diag::ext_flexible_array_init;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!VerifyOnly) {
 | 
						|
    SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
 | 
						|
        << InitExpr->getBeginLoc();
 | 
						|
    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
 | 
						|
      << Field;
 | 
						|
  }
 | 
						|
 | 
						|
  return FlexArrayDiag != diag::ext_flexible_array_init;
 | 
						|
}
 | 
						|
 | 
						|
void InitListChecker::CheckStructUnionTypes(
 | 
						|
    const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
 | 
						|
    CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
 | 
						|
    bool SubobjectIsDesignatorContext, unsigned &Index,
 | 
						|
    InitListExpr *StructuredList, unsigned &StructuredIndex,
 | 
						|
    bool TopLevelObject) {
 | 
						|
  RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
 | 
						|
 | 
						|
  // If the record is invalid, some of it's members are invalid. To avoid
 | 
						|
  // confusion, we forgo checking the initializer for the entire record.
 | 
						|
  if (structDecl->isInvalidDecl()) {
 | 
						|
    // Assume it was supposed to consume a single initializer.
 | 
						|
    ++Index;
 | 
						|
    hadError = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
 | 
						|
    RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
 | 
						|
 | 
						|
    if (!VerifyOnly)
 | 
						|
      for (FieldDecl *FD : RD->fields()) {
 | 
						|
        QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
 | 
						|
        if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
 | 
						|
          hadError = true;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // If there's a default initializer, use it.
 | 
						|
    if (isa<CXXRecordDecl>(RD) &&
 | 
						|
        cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
 | 
						|
      if (!StructuredList)
 | 
						|
        return;
 | 
						|
      for (RecordDecl::field_iterator FieldEnd = RD->field_end();
 | 
						|
           Field != FieldEnd; ++Field) {
 | 
						|
        if (Field->hasInClassInitializer()) {
 | 
						|
          StructuredList->setInitializedFieldInUnion(*Field);
 | 
						|
          // FIXME: Actually build a CXXDefaultInitExpr?
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Value-initialize the first member of the union that isn't an unnamed
 | 
						|
    // bitfield.
 | 
						|
    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
 | 
						|
         Field != FieldEnd; ++Field) {
 | 
						|
      if (!Field->isUnnamedBitfield()) {
 | 
						|
        CheckEmptyInitializable(
 | 
						|
            InitializedEntity::InitializeMember(*Field, &Entity),
 | 
						|
            IList->getEndLoc());
 | 
						|
        if (StructuredList)
 | 
						|
          StructuredList->setInitializedFieldInUnion(*Field);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool InitializedSomething = false;
 | 
						|
 | 
						|
  // If we have any base classes, they are initialized prior to the fields.
 | 
						|
  for (auto &Base : Bases) {
 | 
						|
    Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
 | 
						|
 | 
						|
    // Designated inits always initialize fields, so if we see one, all
 | 
						|
    // remaining base classes have no explicit initializer.
 | 
						|
    if (Init && isa<DesignatedInitExpr>(Init))
 | 
						|
      Init = nullptr;
 | 
						|
 | 
						|
    SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
 | 
						|
    InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
 | 
						|
        SemaRef.Context, &Base, false, &Entity);
 | 
						|
    if (Init) {
 | 
						|
      CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
 | 
						|
                          StructuredList, StructuredIndex);
 | 
						|
      InitializedSomething = true;
 | 
						|
    } else {
 | 
						|
      CheckEmptyInitializable(BaseEntity, InitLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!VerifyOnly)
 | 
						|
      if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
 | 
						|
        hadError = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // If structDecl is a forward declaration, this loop won't do
 | 
						|
  // anything except look at designated initializers; That's okay,
 | 
						|
  // because an error should get printed out elsewhere. It might be
 | 
						|
  // worthwhile to skip over the rest of the initializer, though.
 | 
						|
  RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
 | 
						|
  RecordDecl::field_iterator FieldEnd = RD->field_end();
 | 
						|
  size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) {
 | 
						|
    return isa<FieldDecl>(D) || isa<RecordDecl>(D);
 | 
						|
  });
 | 
						|
  bool CheckForMissingFields =
 | 
						|
    !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
 | 
						|
  bool HasDesignatedInit = false;
 | 
						|
 | 
						|
  while (Index < IList->getNumInits()) {
 | 
						|
    Expr *Init = IList->getInit(Index);
 | 
						|
    SourceLocation InitLoc = Init->getBeginLoc();
 | 
						|
 | 
						|
    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
 | 
						|
      // If we're not the subobject that matches up with the '{' for
 | 
						|
      // the designator, we shouldn't be handling the
 | 
						|
      // designator. Return immediately.
 | 
						|
      if (!SubobjectIsDesignatorContext)
 | 
						|
        return;
 | 
						|
 | 
						|
      HasDesignatedInit = true;
 | 
						|
 | 
						|
      // Handle this designated initializer. Field will be updated to
 | 
						|
      // the next field that we'll be initializing.
 | 
						|
      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
 | 
						|
                                     DeclType, &Field, nullptr, Index,
 | 
						|
                                     StructuredList, StructuredIndex,
 | 
						|
                                     true, TopLevelObject))
 | 
						|
        hadError = true;
 | 
						|
      else if (!VerifyOnly) {
 | 
						|
        // Find the field named by the designated initializer.
 | 
						|
        RecordDecl::field_iterator F = RD->field_begin();
 | 
						|
        while (std::next(F) != Field)
 | 
						|
          ++F;
 | 
						|
        QualType ET = SemaRef.Context.getBaseElementType(F->getType());
 | 
						|
        if (checkDestructorReference(ET, InitLoc, SemaRef)) {
 | 
						|
          hadError = true;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      InitializedSomething = true;
 | 
						|
 | 
						|
      // Disable check for missing fields when designators are used.
 | 
						|
      // This matches gcc behaviour.
 | 
						|
      CheckForMissingFields = false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if this is an initializer of forms:
 | 
						|
    //
 | 
						|
    //   struct foo f = {};
 | 
						|
    //   struct foo g = {0};
 | 
						|
    //
 | 
						|
    // These are okay for randomized structures. [C99 6.7.8p19]
 | 
						|
    //
 | 
						|
    // Also, if there is only one element in the structure, we allow something
 | 
						|
    // like this, because it's really not randomized in the tranditional sense.
 | 
						|
    //
 | 
						|
    //   struct foo h = {bar};
 | 
						|
    auto IsZeroInitializer = [&](const Expr *I) {
 | 
						|
      if (IList->getNumInits() == 1) {
 | 
						|
        if (NumRecordDecls == 1)
 | 
						|
          return true;
 | 
						|
        if (const auto *IL = dyn_cast<IntegerLiteral>(I))
 | 
						|
          return IL->getValue().isZero();
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    };
 | 
						|
 | 
						|
    // Don't allow non-designated initializers on randomized structures.
 | 
						|
    if (RD->isRandomized() && !IsZeroInitializer(Init)) {
 | 
						|
      if (!VerifyOnly)
 | 
						|
        SemaRef.Diag(InitLoc, diag::err_non_designated_init_used);
 | 
						|
      hadError = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Field == FieldEnd) {
 | 
						|
      // We've run out of fields. We're done.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // We've already initialized a member of a union. We're done.
 | 
						|
    if (InitializedSomething && DeclType->isUnionType())
 | 
						|
      break;
 | 
						|
 | 
						|
    // If we've hit the flexible array member at the end, we're done.
 | 
						|
    if (Field->getType()->isIncompleteArrayType())
 | 
						|
      break;
 | 
						|
 | 
						|
    if (Field->isUnnamedBitfield()) {
 | 
						|
      // Don't initialize unnamed bitfields, e.g. "int : 20;"
 | 
						|
      ++Field;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure we can use this declaration.
 | 
						|
    bool InvalidUse;
 | 
						|
    if (VerifyOnly)
 | 
						|
      InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
 | 
						|
    else
 | 
						|
      InvalidUse = SemaRef.DiagnoseUseOfDecl(
 | 
						|
          *Field, IList->getInit(Index)->getBeginLoc());
 | 
						|
    if (InvalidUse) {
 | 
						|
      ++Index;
 | 
						|
      ++Field;
 | 
						|
      hadError = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!VerifyOnly) {
 | 
						|
      QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
 | 
						|
      if (checkDestructorReference(ET, InitLoc, SemaRef)) {
 | 
						|
        hadError = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    InitializedEntity MemberEntity =
 | 
						|
      InitializedEntity::InitializeMember(*Field, &Entity);
 | 
						|
    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
 | 
						|
                        StructuredList, StructuredIndex);
 | 
						|
    InitializedSomething = true;
 | 
						|
 | 
						|
    if (DeclType->isUnionType() && StructuredList) {
 | 
						|
      // Initialize the first field within the union.
 | 
						|
      StructuredList->setInitializedFieldInUnion(*Field);
 | 
						|
    }
 | 
						|
 | 
						|
    ++Field;
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit warnings for missing struct field initializers.
 | 
						|
  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
 | 
						|
      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
 | 
						|
      !DeclType->isUnionType()) {
 | 
						|
    // It is possible we have one or more unnamed bitfields remaining.
 | 
						|
    // Find first (if any) named field and emit warning.
 | 
						|
    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
 | 
						|
         it != end; ++it) {
 | 
						|
      if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
 | 
						|
        SemaRef.Diag(IList->getSourceRange().getEnd(),
 | 
						|
                     diag::warn_missing_field_initializers) << *it;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that any remaining fields can be value-initialized if we're not
 | 
						|
  // building a structured list. (If we are, we'll check this later.)
 | 
						|
  if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
 | 
						|
      !Field->getType()->isIncompleteArrayType()) {
 | 
						|
    for (; Field != FieldEnd && !hadError; ++Field) {
 | 
						|
      if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
 | 
						|
        CheckEmptyInitializable(
 | 
						|
            InitializedEntity::InitializeMember(*Field, &Entity),
 | 
						|
            IList->getEndLoc());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the types of the remaining fields have accessible destructors.
 | 
						|
  if (!VerifyOnly) {
 | 
						|
    // If the initializer expression has a designated initializer, check the
 | 
						|
    // elements for which a designated initializer is not provided too.
 | 
						|
    RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
 | 
						|
                                                     : Field;
 | 
						|
    for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
 | 
						|
      QualType ET = SemaRef.Context.getBaseElementType(I->getType());
 | 
						|
      if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
 | 
						|
        hadError = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
 | 
						|
      Index >= IList->getNumInits())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
 | 
						|
                             TopLevelObject)) {
 | 
						|
    hadError = true;
 | 
						|
    ++Index;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  InitializedEntity MemberEntity =
 | 
						|
    InitializedEntity::InitializeMember(*Field, &Entity);
 | 
						|
 | 
						|
  if (isa<InitListExpr>(IList->getInit(Index)))
 | 
						|
    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
 | 
						|
                        StructuredList, StructuredIndex);
 | 
						|
  else
 | 
						|
    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
 | 
						|
                          StructuredList, StructuredIndex);
 | 
						|
}
 | 
						|
 | 
						|
/// Expand a field designator that refers to a member of an
 | 
						|
/// anonymous struct or union into a series of field designators that
 | 
						|
/// refers to the field within the appropriate subobject.
 | 
						|
///
 | 
						|
static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
 | 
						|
                                           DesignatedInitExpr *DIE,
 | 
						|
                                           unsigned DesigIdx,
 | 
						|
                                           IndirectFieldDecl *IndirectField) {
 | 
						|
  typedef DesignatedInitExpr::Designator Designator;
 | 
						|
 | 
						|
  // Build the replacement designators.
 | 
						|
  SmallVector<Designator, 4> Replacements;
 | 
						|
  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
 | 
						|
       PE = IndirectField->chain_end(); PI != PE; ++PI) {
 | 
						|
    if (PI + 1 == PE)
 | 
						|
      Replacements.push_back(Designator((IdentifierInfo *)nullptr,
 | 
						|
                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
 | 
						|
                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
 | 
						|
    else
 | 
						|
      Replacements.push_back(Designator((IdentifierInfo *)nullptr,
 | 
						|
                                        SourceLocation(), SourceLocation()));
 | 
						|
    assert(isa<FieldDecl>(*PI));
 | 
						|
    Replacements.back().setField(cast<FieldDecl>(*PI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand the current designator into the set of replacement
 | 
						|
  // designators, so we have a full subobject path down to where the
 | 
						|
  // member of the anonymous struct/union is actually stored.
 | 
						|
  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
 | 
						|
                        &Replacements[0] + Replacements.size());
 | 
						|
}
 | 
						|
 | 
						|
static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
 | 
						|
                                                   DesignatedInitExpr *DIE) {
 | 
						|
  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
 | 
						|
  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
 | 
						|
  for (unsigned I = 0; I < NumIndexExprs; ++I)
 | 
						|
    IndexExprs[I] = DIE->getSubExpr(I + 1);
 | 
						|
  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
 | 
						|
                                    IndexExprs,
 | 
						|
                                    DIE->getEqualOrColonLoc(),
 | 
						|
                                    DIE->usesGNUSyntax(), DIE->getInit());
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Callback to only accept typo corrections that are for field members of
 | 
						|
// the given struct or union.
 | 
						|
class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
 | 
						|
 public:
 | 
						|
  explicit FieldInitializerValidatorCCC(RecordDecl *RD)
 | 
						|
      : Record(RD) {}
 | 
						|
 | 
						|
  bool ValidateCandidate(const TypoCorrection &candidate) override {
 | 
						|
    FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
 | 
						|
    return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<CorrectionCandidateCallback> clone() override {
 | 
						|
    return std::make_unique<FieldInitializerValidatorCCC>(*this);
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  RecordDecl *Record;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Check the well-formedness of a C99 designated initializer.
 | 
						|
///
 | 
						|
/// Determines whether the designated initializer @p DIE, which
 | 
						|
/// resides at the given @p Index within the initializer list @p
 | 
						|
/// IList, is well-formed for a current object of type @p DeclType
 | 
						|
/// (C99 6.7.8). The actual subobject that this designator refers to
 | 
						|
/// within the current subobject is returned in either
 | 
						|
/// @p NextField or @p NextElementIndex (whichever is appropriate).
 | 
						|
///
 | 
						|
/// @param IList  The initializer list in which this designated
 | 
						|
/// initializer occurs.
 | 
						|
///
 | 
						|
/// @param DIE The designated initializer expression.
 | 
						|
///
 | 
						|
/// @param DesigIdx  The index of the current designator.
 | 
						|
///
 | 
						|
/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
 | 
						|
/// into which the designation in @p DIE should refer.
 | 
						|
///
 | 
						|
/// @param NextField  If non-NULL and the first designator in @p DIE is
 | 
						|
/// a field, this will be set to the field declaration corresponding
 | 
						|
/// to the field named by the designator. On input, this is expected to be
 | 
						|
/// the next field that would be initialized in the absence of designation,
 | 
						|
/// if the complete object being initialized is a struct.
 | 
						|
///
 | 
						|
/// @param NextElementIndex  If non-NULL and the first designator in @p
 | 
						|
/// DIE is an array designator or GNU array-range designator, this
 | 
						|
/// will be set to the last index initialized by this designator.
 | 
						|
///
 | 
						|
/// @param Index  Index into @p IList where the designated initializer
 | 
						|
/// @p DIE occurs.
 | 
						|
///
 | 
						|
/// @param StructuredList  The initializer list expression that
 | 
						|
/// describes all of the subobject initializers in the order they'll
 | 
						|
/// actually be initialized.
 | 
						|
///
 | 
						|
/// @returns true if there was an error, false otherwise.
 | 
						|
bool
 | 
						|
InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
 | 
						|
                                            InitListExpr *IList,
 | 
						|
                                            DesignatedInitExpr *DIE,
 | 
						|
                                            unsigned DesigIdx,
 | 
						|
                                            QualType &CurrentObjectType,
 | 
						|
                                          RecordDecl::field_iterator *NextField,
 | 
						|
                                            llvm::APSInt *NextElementIndex,
 | 
						|
                                            unsigned &Index,
 | 
						|
                                            InitListExpr *StructuredList,
 | 
						|
                                            unsigned &StructuredIndex,
 | 
						|
                                            bool FinishSubobjectInit,
 | 
						|
                                            bool TopLevelObject) {
 | 
						|
  if (DesigIdx == DIE->size()) {
 | 
						|
    // C++20 designated initialization can result in direct-list-initialization
 | 
						|
    // of the designated subobject. This is the only way that we can end up
 | 
						|
    // performing direct initialization as part of aggregate initialization, so
 | 
						|
    // it needs special handling.
 | 
						|
    if (DIE->isDirectInit()) {
 | 
						|
      Expr *Init = DIE->getInit();
 | 
						|
      assert(isa<InitListExpr>(Init) &&
 | 
						|
             "designator result in direct non-list initialization?");
 | 
						|
      InitializationKind Kind = InitializationKind::CreateDirectList(
 | 
						|
          DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
 | 
						|
      InitializationSequence Seq(SemaRef, Entity, Kind, Init,
 | 
						|
                                 /*TopLevelOfInitList*/ true);
 | 
						|
      if (StructuredList) {
 | 
						|
        ExprResult Result = VerifyOnly
 | 
						|
                                ? getDummyInit()
 | 
						|
                                : Seq.Perform(SemaRef, Entity, Kind, Init);
 | 
						|
        UpdateStructuredListElement(StructuredList, StructuredIndex,
 | 
						|
                                    Result.get());
 | 
						|
      }
 | 
						|
      ++Index;
 | 
						|
      return !Seq;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check the actual initialization for the designated object type.
 | 
						|
    bool prevHadError = hadError;
 | 
						|
 | 
						|
    // Temporarily remove the designator expression from the
 | 
						|
    // initializer list that the child calls see, so that we don't try
 | 
						|
    // to re-process the designator.
 | 
						|
    unsigned OldIndex = Index;
 | 
						|
    IList->setInit(OldIndex, DIE->getInit());
 | 
						|
 | 
						|
    CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
 | 
						|
                        StructuredIndex, /*DirectlyDesignated=*/true);
 | 
						|
 | 
						|
    // Restore the designated initializer expression in the syntactic
 | 
						|
    // form of the initializer list.
 | 
						|
    if (IList->getInit(OldIndex) != DIE->getInit())
 | 
						|
      DIE->setInit(IList->getInit(OldIndex));
 | 
						|
    IList->setInit(OldIndex, DIE);
 | 
						|
 | 
						|
    return hadError && !prevHadError;
 | 
						|
  }
 | 
						|
 | 
						|
  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
 | 
						|
  bool IsFirstDesignator = (DesigIdx == 0);
 | 
						|
  if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
 | 
						|
    // Determine the structural initializer list that corresponds to the
 | 
						|
    // current subobject.
 | 
						|
    if (IsFirstDesignator)
 | 
						|
      StructuredList = FullyStructuredList;
 | 
						|
    else {
 | 
						|
      Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
 | 
						|
          StructuredList->getInit(StructuredIndex) : nullptr;
 | 
						|
      if (!ExistingInit && StructuredList->hasArrayFiller())
 | 
						|
        ExistingInit = StructuredList->getArrayFiller();
 | 
						|
 | 
						|
      if (!ExistingInit)
 | 
						|
        StructuredList = getStructuredSubobjectInit(
 | 
						|
            IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
 | 
						|
            SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
 | 
						|
      else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
 | 
						|
        StructuredList = Result;
 | 
						|
      else {
 | 
						|
        // We are creating an initializer list that initializes the
 | 
						|
        // subobjects of the current object, but there was already an
 | 
						|
        // initialization that completely initialized the current
 | 
						|
        // subobject, e.g., by a compound literal:
 | 
						|
        //
 | 
						|
        // struct X { int a, b; };
 | 
						|
        // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
 | 
						|
        //
 | 
						|
        // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
 | 
						|
        // designated initializer re-initializes only its current object
 | 
						|
        // subobject [0].b.
 | 
						|
        diagnoseInitOverride(ExistingInit,
 | 
						|
                             SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
 | 
						|
                             /*FullyOverwritten=*/false);
 | 
						|
 | 
						|
        if (!VerifyOnly) {
 | 
						|
          if (DesignatedInitUpdateExpr *E =
 | 
						|
                  dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
 | 
						|
            StructuredList = E->getUpdater();
 | 
						|
          else {
 | 
						|
            DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
 | 
						|
                DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
 | 
						|
                                         ExistingInit, DIE->getEndLoc());
 | 
						|
            StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
 | 
						|
            StructuredList = DIUE->getUpdater();
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // We don't need to track the structured representation of a
 | 
						|
          // designated init update of an already-fully-initialized object in
 | 
						|
          // verify-only mode. The only reason we would need the structure is
 | 
						|
          // to determine where the uninitialized "holes" are, and in this
 | 
						|
          // case, we know there aren't any and we can't introduce any.
 | 
						|
          StructuredList = nullptr;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (D->isFieldDesignator()) {
 | 
						|
    // C99 6.7.8p7:
 | 
						|
    //
 | 
						|
    //   If a designator has the form
 | 
						|
    //
 | 
						|
    //      . identifier
 | 
						|
    //
 | 
						|
    //   then the current object (defined below) shall have
 | 
						|
    //   structure or union type and the identifier shall be the
 | 
						|
    //   name of a member of that type.
 | 
						|
    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
 | 
						|
    if (!RT) {
 | 
						|
      SourceLocation Loc = D->getDotLoc();
 | 
						|
      if (Loc.isInvalid())
 | 
						|
        Loc = D->getFieldLoc();
 | 
						|
      if (!VerifyOnly)
 | 
						|
        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
 | 
						|
          << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
 | 
						|
      ++Index;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    FieldDecl *KnownField = D->getField();
 | 
						|
    if (!KnownField) {
 | 
						|
      IdentifierInfo *FieldName = D->getFieldName();
 | 
						|
      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
 | 
						|
      for (NamedDecl *ND : Lookup) {
 | 
						|
        if (auto *FD = dyn_cast<FieldDecl>(ND)) {
 | 
						|
          KnownField = FD;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
 | 
						|
          // In verify mode, don't modify the original.
 | 
						|
          if (VerifyOnly)
 | 
						|
            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
 | 
						|
          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
 | 
						|
          D = DIE->getDesignator(DesigIdx);
 | 
						|
          KnownField = cast<FieldDecl>(*IFD->chain_begin());
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!KnownField) {
 | 
						|
        if (VerifyOnly) {
 | 
						|
          ++Index;
 | 
						|
          return true;  // No typo correction when just trying this out.
 | 
						|
        }
 | 
						|
 | 
						|
        // Name lookup found something, but it wasn't a field.
 | 
						|
        if (!Lookup.empty()) {
 | 
						|
          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
 | 
						|
            << FieldName;
 | 
						|
          SemaRef.Diag(Lookup.front()->getLocation(),
 | 
						|
                       diag::note_field_designator_found);
 | 
						|
          ++Index;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        // Name lookup didn't find anything.
 | 
						|
        // Determine whether this was a typo for another field name.
 | 
						|
        FieldInitializerValidatorCCC CCC(RT->getDecl());
 | 
						|
        if (TypoCorrection Corrected = SemaRef.CorrectTypo(
 | 
						|
                DeclarationNameInfo(FieldName, D->getFieldLoc()),
 | 
						|
                Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
 | 
						|
                Sema::CTK_ErrorRecovery, RT->getDecl())) {
 | 
						|
          SemaRef.diagnoseTypo(
 | 
						|
              Corrected,
 | 
						|
              SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
 | 
						|
                << FieldName << CurrentObjectType);
 | 
						|
          KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
 | 
						|
          hadError = true;
 | 
						|
        } else {
 | 
						|
          // Typo correction didn't find anything.
 | 
						|
          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
 | 
						|
            << FieldName << CurrentObjectType;
 | 
						|
          ++Index;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned NumBases = 0;
 | 
						|
    if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
 | 
						|
      NumBases = CXXRD->getNumBases();
 | 
						|
 | 
						|
    unsigned FieldIndex = NumBases;
 | 
						|
 | 
						|
    for (auto *FI : RT->getDecl()->fields()) {
 | 
						|
      if (FI->isUnnamedBitfield())
 | 
						|
        continue;
 | 
						|
      if (declaresSameEntity(KnownField, FI)) {
 | 
						|
        KnownField = FI;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      ++FieldIndex;
 | 
						|
    }
 | 
						|
 | 
						|
    RecordDecl::field_iterator Field =
 | 
						|
        RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
 | 
						|
 | 
						|
    // All of the fields of a union are located at the same place in
 | 
						|
    // the initializer list.
 | 
						|
    if (RT->getDecl()->isUnion()) {
 | 
						|
      FieldIndex = 0;
 | 
						|
      if (StructuredList) {
 | 
						|
        FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
 | 
						|
        if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
 | 
						|
          assert(StructuredList->getNumInits() == 1
 | 
						|
                 && "A union should never have more than one initializer!");
 | 
						|
 | 
						|
          Expr *ExistingInit = StructuredList->getInit(0);
 | 
						|
          if (ExistingInit) {
 | 
						|
            // We're about to throw away an initializer, emit warning.
 | 
						|
            diagnoseInitOverride(
 | 
						|
                ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
 | 
						|
          }
 | 
						|
 | 
						|
          // remove existing initializer
 | 
						|
          StructuredList->resizeInits(SemaRef.Context, 0);
 | 
						|
          StructuredList->setInitializedFieldInUnion(nullptr);
 | 
						|
        }
 | 
						|
 | 
						|
        StructuredList->setInitializedFieldInUnion(*Field);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure we can use this declaration.
 | 
						|
    bool InvalidUse;
 | 
						|
    if (VerifyOnly)
 | 
						|
      InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
 | 
						|
    else
 | 
						|
      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
 | 
						|
    if (InvalidUse) {
 | 
						|
      ++Index;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++20 [dcl.init.list]p3:
 | 
						|
    //   The ordered identifiers in the designators of the designated-
 | 
						|
    //   initializer-list shall form a subsequence of the ordered identifiers
 | 
						|
    //   in the direct non-static data members of T.
 | 
						|
    //
 | 
						|
    // Note that this is not a condition on forming the aggregate
 | 
						|
    // initialization, only on actually performing initialization,
 | 
						|
    // so it is not checked in VerifyOnly mode.
 | 
						|
    //
 | 
						|
    // FIXME: This is the only reordering diagnostic we produce, and it only
 | 
						|
    // catches cases where we have a top-level field designator that jumps
 | 
						|
    // backwards. This is the only such case that is reachable in an
 | 
						|
    // otherwise-valid C++20 program, so is the only case that's required for
 | 
						|
    // conformance, but for consistency, we should diagnose all the other
 | 
						|
    // cases where a designator takes us backwards too.
 | 
						|
    if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
 | 
						|
        NextField &&
 | 
						|
        (*NextField == RT->getDecl()->field_end() ||
 | 
						|
         (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
 | 
						|
      // Find the field that we just initialized.
 | 
						|
      FieldDecl *PrevField = nullptr;
 | 
						|
      for (auto FI = RT->getDecl()->field_begin();
 | 
						|
           FI != RT->getDecl()->field_end(); ++FI) {
 | 
						|
        if (FI->isUnnamedBitfield())
 | 
						|
          continue;
 | 
						|
        if (*NextField != RT->getDecl()->field_end() &&
 | 
						|
            declaresSameEntity(*FI, **NextField))
 | 
						|
          break;
 | 
						|
        PrevField = *FI;
 | 
						|
      }
 | 
						|
 | 
						|
      if (PrevField &&
 | 
						|
          PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
 | 
						|
        SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
 | 
						|
            << KnownField << PrevField << DIE->getSourceRange();
 | 
						|
 | 
						|
        unsigned OldIndex = NumBases + PrevField->getFieldIndex();
 | 
						|
        if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
 | 
						|
          if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
 | 
						|
            SemaRef.Diag(PrevInit->getBeginLoc(),
 | 
						|
                         diag::note_previous_field_init)
 | 
						|
                << PrevField << PrevInit->getSourceRange();
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // Update the designator with the field declaration.
 | 
						|
    if (!VerifyOnly)
 | 
						|
      D->setField(*Field);
 | 
						|
 | 
						|
    // Make sure that our non-designated initializer list has space
 | 
						|
    // for a subobject corresponding to this field.
 | 
						|
    if (StructuredList && FieldIndex >= StructuredList->getNumInits())
 | 
						|
      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
 | 
						|
 | 
						|
    // This designator names a flexible array member.
 | 
						|
    if (Field->getType()->isIncompleteArrayType()) {
 | 
						|
      bool Invalid = false;
 | 
						|
      if ((DesigIdx + 1) != DIE->size()) {
 | 
						|
        // We can't designate an object within the flexible array
 | 
						|
        // member (because GCC doesn't allow it).
 | 
						|
        if (!VerifyOnly) {
 | 
						|
          DesignatedInitExpr::Designator *NextD
 | 
						|
            = DIE->getDesignator(DesigIdx + 1);
 | 
						|
          SemaRef.Diag(NextD->getBeginLoc(),
 | 
						|
                       diag::err_designator_into_flexible_array_member)
 | 
						|
              << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
 | 
						|
          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
 | 
						|
            << *Field;
 | 
						|
        }
 | 
						|
        Invalid = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
 | 
						|
          !isa<StringLiteral>(DIE->getInit())) {
 | 
						|
        // The initializer is not an initializer list.
 | 
						|
        if (!VerifyOnly) {
 | 
						|
          SemaRef.Diag(DIE->getInit()->getBeginLoc(),
 | 
						|
                       diag::err_flexible_array_init_needs_braces)
 | 
						|
              << DIE->getInit()->getSourceRange();
 | 
						|
          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
 | 
						|
            << *Field;
 | 
						|
        }
 | 
						|
        Invalid = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check GNU flexible array initializer.
 | 
						|
      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
 | 
						|
                                             TopLevelObject))
 | 
						|
        Invalid = true;
 | 
						|
 | 
						|
      if (Invalid) {
 | 
						|
        ++Index;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Initialize the array.
 | 
						|
      bool prevHadError = hadError;
 | 
						|
      unsigned newStructuredIndex = FieldIndex;
 | 
						|
      unsigned OldIndex = Index;
 | 
						|
      IList->setInit(Index, DIE->getInit());
 | 
						|
 | 
						|
      InitializedEntity MemberEntity =
 | 
						|
        InitializedEntity::InitializeMember(*Field, &Entity);
 | 
						|
      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
 | 
						|
                          StructuredList, newStructuredIndex);
 | 
						|
 | 
						|
      IList->setInit(OldIndex, DIE);
 | 
						|
      if (hadError && !prevHadError) {
 | 
						|
        ++Field;
 | 
						|
        ++FieldIndex;
 | 
						|
        if (NextField)
 | 
						|
          *NextField = Field;
 | 
						|
        StructuredIndex = FieldIndex;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Recurse to check later designated subobjects.
 | 
						|
      QualType FieldType = Field->getType();
 | 
						|
      unsigned newStructuredIndex = FieldIndex;
 | 
						|
 | 
						|
      InitializedEntity MemberEntity =
 | 
						|
        InitializedEntity::InitializeMember(*Field, &Entity);
 | 
						|
      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
 | 
						|
                                     FieldType, nullptr, nullptr, Index,
 | 
						|
                                     StructuredList, newStructuredIndex,
 | 
						|
                                     FinishSubobjectInit, false))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Find the position of the next field to be initialized in this
 | 
						|
    // subobject.
 | 
						|
    ++Field;
 | 
						|
    ++FieldIndex;
 | 
						|
 | 
						|
    // If this the first designator, our caller will continue checking
 | 
						|
    // the rest of this struct/class/union subobject.
 | 
						|
    if (IsFirstDesignator) {
 | 
						|
      if (NextField)
 | 
						|
        *NextField = Field;
 | 
						|
      StructuredIndex = FieldIndex;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!FinishSubobjectInit)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We've already initialized something in the union; we're done.
 | 
						|
    if (RT->getDecl()->isUnion())
 | 
						|
      return hadError;
 | 
						|
 | 
						|
    // Check the remaining fields within this class/struct/union subobject.
 | 
						|
    bool prevHadError = hadError;
 | 
						|
 | 
						|
    auto NoBases =
 | 
						|
        CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
 | 
						|
                                        CXXRecordDecl::base_class_iterator());
 | 
						|
    CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
 | 
						|
                          false, Index, StructuredList, FieldIndex);
 | 
						|
    return hadError && !prevHadError;
 | 
						|
  }
 | 
						|
 | 
						|
  // C99 6.7.8p6:
 | 
						|
  //
 | 
						|
  //   If a designator has the form
 | 
						|
  //
 | 
						|
  //      [ constant-expression ]
 | 
						|
  //
 | 
						|
  //   then the current object (defined below) shall have array
 | 
						|
  //   type and the expression shall be an integer constant
 | 
						|
  //   expression. If the array is of unknown size, any
 | 
						|
  //   nonnegative value is valid.
 | 
						|
  //
 | 
						|
  // Additionally, cope with the GNU extension that permits
 | 
						|
  // designators of the form
 | 
						|
  //
 | 
						|
  //      [ constant-expression ... constant-expression ]
 | 
						|
  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
 | 
						|
  if (!AT) {
 | 
						|
    if (!VerifyOnly)
 | 
						|
      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
 | 
						|
        << CurrentObjectType;
 | 
						|
    ++Index;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *IndexExpr = nullptr;
 | 
						|
  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
 | 
						|
  if (D->isArrayDesignator()) {
 | 
						|
    IndexExpr = DIE->getArrayIndex(*D);
 | 
						|
    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
 | 
						|
    DesignatedEndIndex = DesignatedStartIndex;
 | 
						|
  } else {
 | 
						|
    assert(D->isArrayRangeDesignator() && "Need array-range designator");
 | 
						|
 | 
						|
    DesignatedStartIndex =
 | 
						|
      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
 | 
						|
    DesignatedEndIndex =
 | 
						|
      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
 | 
						|
    IndexExpr = DIE->getArrayRangeEnd(*D);
 | 
						|
 | 
						|
    // Codegen can't handle evaluating array range designators that have side
 | 
						|
    // effects, because we replicate the AST value for each initialized element.
 | 
						|
    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
 | 
						|
    // elements with something that has a side effect, so codegen can emit an
 | 
						|
    // "error unsupported" error instead of miscompiling the app.
 | 
						|
    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
 | 
						|
        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
 | 
						|
      FullyStructuredList->sawArrayRangeDesignator();
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantArrayType>(AT)) {
 | 
						|
    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
 | 
						|
    DesignatedStartIndex
 | 
						|
      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
 | 
						|
    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
 | 
						|
    DesignatedEndIndex
 | 
						|
      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
 | 
						|
    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
 | 
						|
    if (DesignatedEndIndex >= MaxElements) {
 | 
						|
      if (!VerifyOnly)
 | 
						|
        SemaRef.Diag(IndexExpr->getBeginLoc(),
 | 
						|
                     diag::err_array_designator_too_large)
 | 
						|
            << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10)
 | 
						|
            << IndexExpr->getSourceRange();
 | 
						|
      ++Index;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    unsigned DesignatedIndexBitWidth =
 | 
						|
      ConstantArrayType::getMaxSizeBits(SemaRef.Context);
 | 
						|
    DesignatedStartIndex =
 | 
						|
      DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
 | 
						|
    DesignatedEndIndex =
 | 
						|
      DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
 | 
						|
    DesignatedStartIndex.setIsUnsigned(true);
 | 
						|
    DesignatedEndIndex.setIsUnsigned(true);
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsStringLiteralInitUpdate =
 | 
						|
      StructuredList && StructuredList->isStringLiteralInit();
 | 
						|
  if (IsStringLiteralInitUpdate && VerifyOnly) {
 | 
						|
    // We're just verifying an update to a string literal init. We don't need
 | 
						|
    // to split the string up into individual characters to do that.
 | 
						|
    StructuredList = nullptr;
 | 
						|
  } else if (IsStringLiteralInitUpdate) {
 | 
						|
    // We're modifying a string literal init; we have to decompose the string
 | 
						|
    // so we can modify the individual characters.
 | 
						|
    ASTContext &Context = SemaRef.Context;
 | 
						|
    Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts();
 | 
						|
 | 
						|
    // Compute the character type
 | 
						|
    QualType CharTy = AT->getElementType();
 | 
						|
 | 
						|
    // Compute the type of the integer literals.
 | 
						|
    QualType PromotedCharTy = CharTy;
 | 
						|
    if (CharTy->isPromotableIntegerType())
 | 
						|
      PromotedCharTy = Context.getPromotedIntegerType(CharTy);
 | 
						|
    unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
 | 
						|
 | 
						|
    if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
 | 
						|
      // Get the length of the string.
 | 
						|
      uint64_t StrLen = SL->getLength();
 | 
						|
      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
 | 
						|
        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
 | 
						|
      StructuredList->resizeInits(Context, StrLen);
 | 
						|
 | 
						|
      // Build a literal for each character in the string, and put them into
 | 
						|
      // the init list.
 | 
						|
      for (unsigned i = 0, e = StrLen; i != e; ++i) {
 | 
						|
        llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
 | 
						|
        Expr *Init = new (Context) IntegerLiteral(
 | 
						|
            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
 | 
						|
        if (CharTy != PromotedCharTy)
 | 
						|
          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
 | 
						|
                                          Init, nullptr, VK_PRValue,
 | 
						|
                                          FPOptionsOverride());
 | 
						|
        StructuredList->updateInit(Context, i, Init);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
 | 
						|
      std::string Str;
 | 
						|
      Context.getObjCEncodingForType(E->getEncodedType(), Str);
 | 
						|
 | 
						|
      // Get the length of the string.
 | 
						|
      uint64_t StrLen = Str.size();
 | 
						|
      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
 | 
						|
        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
 | 
						|
      StructuredList->resizeInits(Context, StrLen);
 | 
						|
 | 
						|
      // Build a literal for each character in the string, and put them into
 | 
						|
      // the init list.
 | 
						|
      for (unsigned i = 0, e = StrLen; i != e; ++i) {
 | 
						|
        llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
 | 
						|
        Expr *Init = new (Context) IntegerLiteral(
 | 
						|
            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
 | 
						|
        if (CharTy != PromotedCharTy)
 | 
						|
          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
 | 
						|
                                          Init, nullptr, VK_PRValue,
 | 
						|
                                          FPOptionsOverride());
 | 
						|
        StructuredList->updateInit(Context, i, Init);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that our non-designated initializer list has space
 | 
						|
  // for a subobject corresponding to this array element.
 | 
						|
  if (StructuredList &&
 | 
						|
      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
 | 
						|
    StructuredList->resizeInits(SemaRef.Context,
 | 
						|
                                DesignatedEndIndex.getZExtValue() + 1);
 | 
						|
 | 
						|
  // Repeatedly perform subobject initializations in the range
 | 
						|
  // [DesignatedStartIndex, DesignatedEndIndex].
 | 
						|
 | 
						|
  // Move to the next designator
 | 
						|
  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
 | 
						|
  unsigned OldIndex = Index;
 | 
						|
 | 
						|
  InitializedEntity ElementEntity =
 | 
						|
    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | 
						|
 | 
						|
  while (DesignatedStartIndex <= DesignatedEndIndex) {
 | 
						|
    // Recurse to check later designated subobjects.
 | 
						|
    QualType ElementType = AT->getElementType();
 | 
						|
    Index = OldIndex;
 | 
						|
 | 
						|
    ElementEntity.setElementIndex(ElementIndex);
 | 
						|
    if (CheckDesignatedInitializer(
 | 
						|
            ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
 | 
						|
            nullptr, Index, StructuredList, ElementIndex,
 | 
						|
            FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
 | 
						|
            false))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Move to the next index in the array that we'll be initializing.
 | 
						|
    ++DesignatedStartIndex;
 | 
						|
    ElementIndex = DesignatedStartIndex.getZExtValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // If this the first designator, our caller will continue checking
 | 
						|
  // the rest of this array subobject.
 | 
						|
  if (IsFirstDesignator) {
 | 
						|
    if (NextElementIndex)
 | 
						|
      *NextElementIndex = DesignatedStartIndex;
 | 
						|
    StructuredIndex = ElementIndex;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FinishSubobjectInit)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check the remaining elements within this array subobject.
 | 
						|
  bool prevHadError = hadError;
 | 
						|
  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
 | 
						|
                 /*SubobjectIsDesignatorContext=*/false, Index,
 | 
						|
                 StructuredList, ElementIndex);
 | 
						|
  return hadError && !prevHadError;
 | 
						|
}
 | 
						|
 | 
						|
// Get the structured initializer list for a subobject of type
 | 
						|
// @p CurrentObjectType.
 | 
						|
InitListExpr *
 | 
						|
InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
 | 
						|
                                            QualType CurrentObjectType,
 | 
						|
                                            InitListExpr *StructuredList,
 | 
						|
                                            unsigned StructuredIndex,
 | 
						|
                                            SourceRange InitRange,
 | 
						|
                                            bool IsFullyOverwritten) {
 | 
						|
  if (!StructuredList)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Expr *ExistingInit = nullptr;
 | 
						|
  if (StructuredIndex < StructuredList->getNumInits())
 | 
						|
    ExistingInit = StructuredList->getInit(StructuredIndex);
 | 
						|
 | 
						|
  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
 | 
						|
    // There might have already been initializers for subobjects of the current
 | 
						|
    // object, but a subsequent initializer list will overwrite the entirety
 | 
						|
    // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
 | 
						|
    //
 | 
						|
    // struct P { char x[6]; };
 | 
						|
    // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
 | 
						|
    //
 | 
						|
    // The first designated initializer is ignored, and l.x is just "f".
 | 
						|
    if (!IsFullyOverwritten)
 | 
						|
      return Result;
 | 
						|
 | 
						|
  if (ExistingInit) {
 | 
						|
    // We are creating an initializer list that initializes the
 | 
						|
    // subobjects of the current object, but there was already an
 | 
						|
    // initialization that completely initialized the current
 | 
						|
    // subobject:
 | 
						|
    //
 | 
						|
    // struct X { int a, b; };
 | 
						|
    // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
 | 
						|
    //
 | 
						|
    // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
 | 
						|
    // designated initializer overwrites the [0].b initializer
 | 
						|
    // from the prior initialization.
 | 
						|
    //
 | 
						|
    // When the existing initializer is an expression rather than an
 | 
						|
    // initializer list, we cannot decompose and update it in this way.
 | 
						|
    // For example:
 | 
						|
    //
 | 
						|
    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
 | 
						|
    //
 | 
						|
    // This case is handled by CheckDesignatedInitializer.
 | 
						|
    diagnoseInitOverride(ExistingInit, InitRange);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned ExpectedNumInits = 0;
 | 
						|
  if (Index < IList->getNumInits()) {
 | 
						|
    if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
 | 
						|
      ExpectedNumInits = Init->getNumInits();
 | 
						|
    else
 | 
						|
      ExpectedNumInits = IList->getNumInits() - Index;
 | 
						|
  }
 | 
						|
 | 
						|
  InitListExpr *Result =
 | 
						|
      createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
 | 
						|
 | 
						|
  // Link this new initializer list into the structured initializer
 | 
						|
  // lists.
 | 
						|
  StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
InitListExpr *
 | 
						|
InitListChecker::createInitListExpr(QualType CurrentObjectType,
 | 
						|
                                    SourceRange InitRange,
 | 
						|
                                    unsigned ExpectedNumInits) {
 | 
						|
  InitListExpr *Result
 | 
						|
    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
 | 
						|
                                         InitRange.getBegin(), None,
 | 
						|
                                         InitRange.getEnd());
 | 
						|
 | 
						|
  QualType ResultType = CurrentObjectType;
 | 
						|
  if (!ResultType->isArrayType())
 | 
						|
    ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
 | 
						|
  Result->setType(ResultType);
 | 
						|
 | 
						|
  // Pre-allocate storage for the structured initializer list.
 | 
						|
  unsigned NumElements = 0;
 | 
						|
 | 
						|
  if (const ArrayType *AType
 | 
						|
      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
 | 
						|
    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
 | 
						|
      NumElements = CAType->getSize().getZExtValue();
 | 
						|
      // Simple heuristic so that we don't allocate a very large
 | 
						|
      // initializer with many empty entries at the end.
 | 
						|
      if (NumElements > ExpectedNumInits)
 | 
						|
        NumElements = 0;
 | 
						|
    }
 | 
						|
  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
 | 
						|
    NumElements = VType->getNumElements();
 | 
						|
  } else if (CurrentObjectType->isRecordType()) {
 | 
						|
    NumElements = numStructUnionElements(CurrentObjectType);
 | 
						|
  }
 | 
						|
 | 
						|
  Result->reserveInits(SemaRef.Context, NumElements);
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Update the initializer at index @p StructuredIndex within the
 | 
						|
/// structured initializer list to the value @p expr.
 | 
						|
void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
 | 
						|
                                                  unsigned &StructuredIndex,
 | 
						|
                                                  Expr *expr) {
 | 
						|
  // No structured initializer list to update
 | 
						|
  if (!StructuredList)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
 | 
						|
                                                  StructuredIndex, expr)) {
 | 
						|
    // This initializer overwrites a previous initializer.
 | 
						|
    // No need to diagnose when `expr` is nullptr because a more relevant
 | 
						|
    // diagnostic has already been issued and this diagnostic is potentially
 | 
						|
    // noise.
 | 
						|
    if (expr)
 | 
						|
      diagnoseInitOverride(PrevInit, expr->getSourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  ++StructuredIndex;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether we can perform aggregate initialization for the purposes
 | 
						|
/// of overload resolution.
 | 
						|
bool Sema::CanPerformAggregateInitializationForOverloadResolution(
 | 
						|
    const InitializedEntity &Entity, InitListExpr *From) {
 | 
						|
  QualType Type = Entity.getType();
 | 
						|
  InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
 | 
						|
                        /*TreatUnavailableAsInvalid=*/false,
 | 
						|
                        /*InOverloadResolution=*/true);
 | 
						|
  return !Check.HadError();
 | 
						|
}
 | 
						|
 | 
						|
/// Check that the given Index expression is a valid array designator
 | 
						|
/// value. This is essentially just a wrapper around
 | 
						|
/// VerifyIntegerConstantExpression that also checks for negative values
 | 
						|
/// and produces a reasonable diagnostic if there is a
 | 
						|
/// failure. Returns the index expression, possibly with an implicit cast
 | 
						|
/// added, on success.  If everything went okay, Value will receive the
 | 
						|
/// value of the constant expression.
 | 
						|
static ExprResult
 | 
						|
CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
 | 
						|
  SourceLocation Loc = Index->getBeginLoc();
 | 
						|
 | 
						|
  // Make sure this is an integer constant expression.
 | 
						|
  ExprResult Result =
 | 
						|
      S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
 | 
						|
  if (Result.isInvalid())
 | 
						|
    return Result;
 | 
						|
 | 
						|
  if (Value.isSigned() && Value.isNegative())
 | 
						|
    return S.Diag(Loc, diag::err_array_designator_negative)
 | 
						|
           << toString(Value, 10) << Index->getSourceRange();
 | 
						|
 | 
						|
  Value.setIsUnsigned(true);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
 | 
						|
                                            SourceLocation EqualOrColonLoc,
 | 
						|
                                            bool GNUSyntax,
 | 
						|
                                            ExprResult Init) {
 | 
						|
  typedef DesignatedInitExpr::Designator ASTDesignator;
 | 
						|
 | 
						|
  bool Invalid = false;
 | 
						|
  SmallVector<ASTDesignator, 32> Designators;
 | 
						|
  SmallVector<Expr *, 32> InitExpressions;
 | 
						|
 | 
						|
  // Build designators and check array designator expressions.
 | 
						|
  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
 | 
						|
    const Designator &D = Desig.getDesignator(Idx);
 | 
						|
    switch (D.getKind()) {
 | 
						|
    case Designator::FieldDesignator:
 | 
						|
      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
 | 
						|
                                          D.getFieldLoc()));
 | 
						|
      break;
 | 
						|
 | 
						|
    case Designator::ArrayDesignator: {
 | 
						|
      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
 | 
						|
      llvm::APSInt IndexValue;
 | 
						|
      if (!Index->isTypeDependent() && !Index->isValueDependent())
 | 
						|
        Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
 | 
						|
      if (!Index)
 | 
						|
        Invalid = true;
 | 
						|
      else {
 | 
						|
        Designators.push_back(ASTDesignator(InitExpressions.size(),
 | 
						|
                                            D.getLBracketLoc(),
 | 
						|
                                            D.getRBracketLoc()));
 | 
						|
        InitExpressions.push_back(Index);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Designator::ArrayRangeDesignator: {
 | 
						|
      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
 | 
						|
      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
 | 
						|
      llvm::APSInt StartValue;
 | 
						|
      llvm::APSInt EndValue;
 | 
						|
      bool StartDependent = StartIndex->isTypeDependent() ||
 | 
						|
                            StartIndex->isValueDependent();
 | 
						|
      bool EndDependent = EndIndex->isTypeDependent() ||
 | 
						|
                          EndIndex->isValueDependent();
 | 
						|
      if (!StartDependent)
 | 
						|
        StartIndex =
 | 
						|
            CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
 | 
						|
      if (!EndDependent)
 | 
						|
        EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
 | 
						|
 | 
						|
      if (!StartIndex || !EndIndex)
 | 
						|
        Invalid = true;
 | 
						|
      else {
 | 
						|
        // Make sure we're comparing values with the same bit width.
 | 
						|
        if (StartDependent || EndDependent) {
 | 
						|
          // Nothing to compute.
 | 
						|
        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
 | 
						|
          EndValue = EndValue.extend(StartValue.getBitWidth());
 | 
						|
        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
 | 
						|
          StartValue = StartValue.extend(EndValue.getBitWidth());
 | 
						|
 | 
						|
        if (!StartDependent && !EndDependent && EndValue < StartValue) {
 | 
						|
          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
 | 
						|
            << toString(StartValue, 10) << toString(EndValue, 10)
 | 
						|
            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
 | 
						|
          Invalid = true;
 | 
						|
        } else {
 | 
						|
          Designators.push_back(ASTDesignator(InitExpressions.size(),
 | 
						|
                                              D.getLBracketLoc(),
 | 
						|
                                              D.getEllipsisLoc(),
 | 
						|
                                              D.getRBracketLoc()));
 | 
						|
          InitExpressions.push_back(StartIndex);
 | 
						|
          InitExpressions.push_back(EndIndex);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Invalid || Init.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Clear out the expressions within the designation.
 | 
						|
  Desig.ClearExprs(*this);
 | 
						|
 | 
						|
  return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
 | 
						|
                                    EqualOrColonLoc, GNUSyntax,
 | 
						|
                                    Init.getAs<Expr>());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Initialization entity
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
 | 
						|
                                     const InitializedEntity &Parent)
 | 
						|
  : Parent(&Parent), Index(Index)
 | 
						|
{
 | 
						|
  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
 | 
						|
    Kind = EK_ArrayElement;
 | 
						|
    Type = AT->getElementType();
 | 
						|
  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
 | 
						|
    Kind = EK_VectorElement;
 | 
						|
    Type = VT->getElementType();
 | 
						|
  } else {
 | 
						|
    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
 | 
						|
    assert(CT && "Unexpected type");
 | 
						|
    Kind = EK_ComplexElement;
 | 
						|
    Type = CT->getElementType();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
InitializedEntity
 | 
						|
InitializedEntity::InitializeBase(ASTContext &Context,
 | 
						|
                                  const CXXBaseSpecifier *Base,
 | 
						|
                                  bool IsInheritedVirtualBase,
 | 
						|
                                  const InitializedEntity *Parent) {
 | 
						|
  InitializedEntity Result;
 | 
						|
  Result.Kind = EK_Base;
 | 
						|
  Result.Parent = Parent;
 | 
						|
  Result.Base = {Base, IsInheritedVirtualBase};
 | 
						|
  Result.Type = Base->getType();
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
DeclarationName InitializedEntity::getName() const {
 | 
						|
  switch (getKind()) {
 | 
						|
  case EK_Parameter:
 | 
						|
  case EK_Parameter_CF_Audited: {
 | 
						|
    ParmVarDecl *D = Parameter.getPointer();
 | 
						|
    return (D ? D->getDeclName() : DeclarationName());
 | 
						|
  }
 | 
						|
 | 
						|
  case EK_Variable:
 | 
						|
  case EK_Member:
 | 
						|
  case EK_Binding:
 | 
						|
  case EK_TemplateParameter:
 | 
						|
    return Variable.VariableOrMember->getDeclName();
 | 
						|
 | 
						|
  case EK_LambdaCapture:
 | 
						|
    return DeclarationName(Capture.VarID);
 | 
						|
 | 
						|
  case EK_Result:
 | 
						|
  case EK_StmtExprResult:
 | 
						|
  case EK_Exception:
 | 
						|
  case EK_New:
 | 
						|
  case EK_Temporary:
 | 
						|
  case EK_Base:
 | 
						|
  case EK_Delegating:
 | 
						|
  case EK_ArrayElement:
 | 
						|
  case EK_VectorElement:
 | 
						|
  case EK_ComplexElement:
 | 
						|
  case EK_BlockElement:
 | 
						|
  case EK_LambdaToBlockConversionBlockElement:
 | 
						|
  case EK_CompoundLiteralInit:
 | 
						|
  case EK_RelatedResult:
 | 
						|
    return DeclarationName();
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid EntityKind!");
 | 
						|
}
 | 
						|
 | 
						|
ValueDecl *InitializedEntity::getDecl() const {
 | 
						|
  switch (getKind()) {
 | 
						|
  case EK_Variable:
 | 
						|
  case EK_Member:
 | 
						|
  case EK_Binding:
 | 
						|
  case EK_TemplateParameter:
 | 
						|
    return Variable.VariableOrMember;
 | 
						|
 | 
						|
  case EK_Parameter:
 | 
						|
  case EK_Parameter_CF_Audited:
 | 
						|
    return Parameter.getPointer();
 | 
						|
 | 
						|
  case EK_Result:
 | 
						|
  case EK_StmtExprResult:
 | 
						|
  case EK_Exception:
 | 
						|
  case EK_New:
 | 
						|
  case EK_Temporary:
 | 
						|
  case EK_Base:
 | 
						|
  case EK_Delegating:
 | 
						|
  case EK_ArrayElement:
 | 
						|
  case EK_VectorElement:
 | 
						|
  case EK_ComplexElement:
 | 
						|
  case EK_BlockElement:
 | 
						|
  case EK_LambdaToBlockConversionBlockElement:
 | 
						|
  case EK_LambdaCapture:
 | 
						|
  case EK_CompoundLiteralInit:
 | 
						|
  case EK_RelatedResult:
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid EntityKind!");
 | 
						|
}
 | 
						|
 | 
						|
bool InitializedEntity::allowsNRVO() const {
 | 
						|
  switch (getKind()) {
 | 
						|
  case EK_Result:
 | 
						|
  case EK_Exception:
 | 
						|
    return LocAndNRVO.NRVO;
 | 
						|
 | 
						|
  case EK_StmtExprResult:
 | 
						|
  case EK_Variable:
 | 
						|
  case EK_Parameter:
 | 
						|
  case EK_Parameter_CF_Audited:
 | 
						|
  case EK_TemplateParameter:
 | 
						|
  case EK_Member:
 | 
						|
  case EK_Binding:
 | 
						|
  case EK_New:
 | 
						|
  case EK_Temporary:
 | 
						|
  case EK_CompoundLiteralInit:
 | 
						|
  case EK_Base:
 | 
						|
  case EK_Delegating:
 | 
						|
  case EK_ArrayElement:
 | 
						|
  case EK_VectorElement:
 | 
						|
  case EK_ComplexElement:
 | 
						|
  case EK_BlockElement:
 | 
						|
  case EK_LambdaToBlockConversionBlockElement:
 | 
						|
  case EK_LambdaCapture:
 | 
						|
  case EK_RelatedResult:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
 | 
						|
  assert(getParent() != this);
 | 
						|
  unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
 | 
						|
  for (unsigned I = 0; I != Depth; ++I)
 | 
						|
    OS << "`-";
 | 
						|
 | 
						|
  switch (getKind()) {
 | 
						|
  case EK_Variable: OS << "Variable"; break;
 | 
						|
  case EK_Parameter: OS << "Parameter"; break;
 | 
						|
  case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
 | 
						|
    break;
 | 
						|
  case EK_TemplateParameter: OS << "TemplateParameter"; break;
 | 
						|
  case EK_Result: OS << "Result"; break;
 | 
						|
  case EK_StmtExprResult: OS << "StmtExprResult"; break;
 | 
						|
  case EK_Exception: OS << "Exception"; break;
 | 
						|
  case EK_Member: OS << "Member"; break;
 | 
						|
  case EK_Binding: OS << "Binding"; break;
 | 
						|
  case EK_New: OS << "New"; break;
 | 
						|
  case EK_Temporary: OS << "Temporary"; break;
 | 
						|
  case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
 | 
						|
  case EK_RelatedResult: OS << "RelatedResult"; break;
 | 
						|
  case EK_Base: OS << "Base"; break;
 | 
						|
  case EK_Delegating: OS << "Delegating"; break;
 | 
						|
  case EK_ArrayElement: OS << "ArrayElement " << Index; break;
 | 
						|
  case EK_VectorElement: OS << "VectorElement " << Index; break;
 | 
						|
  case EK_ComplexElement: OS << "ComplexElement " << Index; break;
 | 
						|
  case EK_BlockElement: OS << "Block"; break;
 | 
						|
  case EK_LambdaToBlockConversionBlockElement:
 | 
						|
    OS << "Block (lambda)";
 | 
						|
    break;
 | 
						|
  case EK_LambdaCapture:
 | 
						|
    OS << "LambdaCapture ";
 | 
						|
    OS << DeclarationName(Capture.VarID);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *D = getDecl()) {
 | 
						|
    OS << " ";
 | 
						|
    D->printQualifiedName(OS);
 | 
						|
  }
 | 
						|
 | 
						|
  OS << " '" << getType() << "'\n";
 | 
						|
 | 
						|
  return Depth + 1;
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD void InitializedEntity::dump() const {
 | 
						|
  dumpImpl(llvm::errs());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Initialization sequence
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void InitializationSequence::Step::Destroy() {
 | 
						|
  switch (Kind) {
 | 
						|
  case SK_ResolveAddressOfOverloadedFunction:
 | 
						|
  case SK_CastDerivedToBasePRValue:
 | 
						|
  case SK_CastDerivedToBaseXValue:
 | 
						|
  case SK_CastDerivedToBaseLValue:
 | 
						|
  case SK_BindReference:
 | 
						|
  case SK_BindReferenceToTemporary:
 | 
						|
  case SK_FinalCopy:
 | 
						|
  case SK_ExtraneousCopyToTemporary:
 | 
						|
  case SK_UserConversion:
 | 
						|
  case SK_QualificationConversionPRValue:
 | 
						|
  case SK_QualificationConversionXValue:
 | 
						|
  case SK_QualificationConversionLValue:
 | 
						|
  case SK_FunctionReferenceConversion:
 | 
						|
  case SK_AtomicConversion:
 | 
						|
  case SK_ListInitialization:
 | 
						|
  case SK_UnwrapInitList:
 | 
						|
  case SK_RewrapInitList:
 | 
						|
  case SK_ConstructorInitialization:
 | 
						|
  case SK_ConstructorInitializationFromList:
 | 
						|
  case SK_ZeroInitialization:
 | 
						|
  case SK_CAssignment:
 | 
						|
  case SK_StringInit:
 | 
						|
  case SK_ObjCObjectConversion:
 | 
						|
  case SK_ArrayLoopIndex:
 | 
						|
  case SK_ArrayLoopInit:
 | 
						|
  case SK_ArrayInit:
 | 
						|
  case SK_GNUArrayInit:
 | 
						|
  case SK_ParenthesizedArrayInit:
 | 
						|
  case SK_PassByIndirectCopyRestore:
 | 
						|
  case SK_PassByIndirectRestore:
 | 
						|
  case SK_ProduceObjCObject:
 | 
						|
  case SK_StdInitializerList:
 | 
						|
  case SK_StdInitializerListConstructorCall:
 | 
						|
  case SK_OCLSamplerInit:
 | 
						|
  case SK_OCLZeroOpaqueType:
 | 
						|
    break;
 | 
						|
 | 
						|
  case SK_ConversionSequence:
 | 
						|
  case SK_ConversionSequenceNoNarrowing:
 | 
						|
    delete ICS;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool InitializationSequence::isDirectReferenceBinding() const {
 | 
						|
  // There can be some lvalue adjustments after the SK_BindReference step.
 | 
						|
  for (const Step &S : llvm::reverse(Steps)) {
 | 
						|
    if (S.Kind == SK_BindReference)
 | 
						|
      return true;
 | 
						|
    if (S.Kind == SK_BindReferenceToTemporary)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool InitializationSequence::isAmbiguous() const {
 | 
						|
  if (!Failed())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (getFailureKind()) {
 | 
						|
  case FK_TooManyInitsForReference:
 | 
						|
  case FK_ParenthesizedListInitForReference:
 | 
						|
  case FK_ArrayNeedsInitList:
 | 
						|
  case FK_ArrayNeedsInitListOrStringLiteral:
 | 
						|
  case FK_ArrayNeedsInitListOrWideStringLiteral:
 | 
						|
  case FK_NarrowStringIntoWideCharArray:
 | 
						|
  case FK_WideStringIntoCharArray:
 | 
						|
  case FK_IncompatWideStringIntoWideChar:
 | 
						|
  case FK_PlainStringIntoUTF8Char:
 | 
						|
  case FK_UTF8StringIntoPlainChar:
 | 
						|
  case FK_AddressOfOverloadFailed: // FIXME: Could do better
 | 
						|
  case FK_NonConstLValueReferenceBindingToTemporary:
 | 
						|
  case FK_NonConstLValueReferenceBindingToBitfield:
 | 
						|
  case FK_NonConstLValueReferenceBindingToVectorElement:
 | 
						|
  case FK_NonConstLValueReferenceBindingToMatrixElement:
 | 
						|
  case FK_NonConstLValueReferenceBindingToUnrelated:
 | 
						|
  case FK_RValueReferenceBindingToLValue:
 | 
						|
  case FK_ReferenceAddrspaceMismatchTemporary:
 | 
						|
  case FK_ReferenceInitDropsQualifiers:
 | 
						|
  case FK_ReferenceInitFailed:
 | 
						|
  case FK_ConversionFailed:
 | 
						|
  case FK_ConversionFromPropertyFailed:
 | 
						|
  case FK_TooManyInitsForScalar:
 | 
						|
  case FK_ParenthesizedListInitForScalar:
 | 
						|
  case FK_ReferenceBindingToInitList:
 | 
						|
  case FK_InitListBadDestinationType:
 | 
						|
  case FK_DefaultInitOfConst:
 | 
						|
  case FK_Incomplete:
 | 
						|
  case FK_ArrayTypeMismatch:
 | 
						|
  case FK_NonConstantArrayInit:
 | 
						|
  case FK_ListInitializationFailed:
 | 
						|
  case FK_VariableLengthArrayHasInitializer:
 | 
						|
  case FK_PlaceholderType:
 | 
						|
  case FK_ExplicitConstructor:
 | 
						|
  case FK_AddressOfUnaddressableFunction:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case FK_ReferenceInitOverloadFailed:
 | 
						|
  case FK_UserConversionOverloadFailed:
 | 
						|
  case FK_ConstructorOverloadFailed:
 | 
						|
  case FK_ListConstructorOverloadFailed:
 | 
						|
    return FailedOverloadResult == OR_Ambiguous;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid EntityKind!");
 | 
						|
}
 | 
						|
 | 
						|
bool InitializationSequence::isConstructorInitialization() const {
 | 
						|
  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
InitializationSequence
 | 
						|
::AddAddressOverloadResolutionStep(FunctionDecl *Function,
 | 
						|
                                   DeclAccessPair Found,
 | 
						|
                                   bool HadMultipleCandidates) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ResolveAddressOfOverloadedFunction;
 | 
						|
  S.Type = Function->getType();
 | 
						|
  S.Function.HadMultipleCandidates = HadMultipleCandidates;
 | 
						|
  S.Function.Function = Function;
 | 
						|
  S.Function.FoundDecl = Found;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
 | 
						|
                                                      ExprValueKind VK) {
 | 
						|
  Step S;
 | 
						|
  switch (VK) {
 | 
						|
  case VK_PRValue:
 | 
						|
    S.Kind = SK_CastDerivedToBasePRValue;
 | 
						|
    break;
 | 
						|
  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
 | 
						|
  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
 | 
						|
  }
 | 
						|
  S.Type = BaseType;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddReferenceBindingStep(QualType T,
 | 
						|
                                                     bool BindingTemporary) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddFinalCopy(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_FinalCopy;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ExtraneousCopyToTemporary;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
 | 
						|
                                              DeclAccessPair FoundDecl,
 | 
						|
                                              QualType T,
 | 
						|
                                              bool HadMultipleCandidates) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_UserConversion;
 | 
						|
  S.Type = T;
 | 
						|
  S.Function.HadMultipleCandidates = HadMultipleCandidates;
 | 
						|
  S.Function.Function = Function;
 | 
						|
  S.Function.FoundDecl = FoundDecl;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddQualificationConversionStep(QualType Ty,
 | 
						|
                                                            ExprValueKind VK) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning
 | 
						|
  switch (VK) {
 | 
						|
  case VK_PRValue:
 | 
						|
    S.Kind = SK_QualificationConversionPRValue;
 | 
						|
    break;
 | 
						|
  case VK_XValue:
 | 
						|
    S.Kind = SK_QualificationConversionXValue;
 | 
						|
    break;
 | 
						|
  case VK_LValue:
 | 
						|
    S.Kind = SK_QualificationConversionLValue;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  S.Type = Ty;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_FunctionReferenceConversion;
 | 
						|
  S.Type = Ty;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_AtomicConversion;
 | 
						|
  S.Type = Ty;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddConversionSequenceStep(
 | 
						|
    const ImplicitConversionSequence &ICS, QualType T,
 | 
						|
    bool TopLevelOfInitList) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
 | 
						|
                              : SK_ConversionSequence;
 | 
						|
  S.Type = T;
 | 
						|
  S.ICS = new ImplicitConversionSequence(ICS);
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddListInitializationStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ListInitialization;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddConstructorInitializationStep(
 | 
						|
    DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
 | 
						|
    bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
 | 
						|
                                     : SK_ConstructorInitializationFromList
 | 
						|
                        : SK_ConstructorInitialization;
 | 
						|
  S.Type = T;
 | 
						|
  S.Function.HadMultipleCandidates = HadMultipleCandidates;
 | 
						|
  S.Function.Function = Constructor;
 | 
						|
  S.Function.FoundDecl = FoundDecl;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddZeroInitializationStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ZeroInitialization;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddCAssignmentStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_CAssignment;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddStringInitStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_StringInit;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ObjCObjectConversion;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ArrayLoopIndex;
 | 
						|
  S.Type = EltT;
 | 
						|
  Steps.insert(Steps.begin(), S);
 | 
						|
 | 
						|
  S.Kind = SK_ArrayLoopInit;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ParenthesizedArrayInit;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
 | 
						|
                                                              bool shouldCopy) {
 | 
						|
  Step s;
 | 
						|
  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
 | 
						|
                       : SK_PassByIndirectRestore);
 | 
						|
  s.Type = type;
 | 
						|
  Steps.push_back(s);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_ProduceObjCObject;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_StdInitializerList;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_OCLSamplerInit;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_OCLZeroOpaqueType;
 | 
						|
  S.Type = T;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::RewrapReferenceInitList(QualType T,
 | 
						|
                                                     InitListExpr *Syntactic) {
 | 
						|
  assert(Syntactic->getNumInits() == 1 &&
 | 
						|
         "Can only rewrap trivial init lists.");
 | 
						|
  Step S;
 | 
						|
  S.Kind = SK_UnwrapInitList;
 | 
						|
  S.Type = Syntactic->getInit(0)->getType();
 | 
						|
  Steps.insert(Steps.begin(), S);
 | 
						|
 | 
						|
  S.Kind = SK_RewrapInitList;
 | 
						|
  S.Type = T;
 | 
						|
  S.WrappingSyntacticList = Syntactic;
 | 
						|
  Steps.push_back(S);
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::SetOverloadFailure(FailureKind Failure,
 | 
						|
                                                OverloadingResult Result) {
 | 
						|
  setSequenceKind(FailedSequence);
 | 
						|
  this->Failure = Failure;
 | 
						|
  this->FailedOverloadResult = Result;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Attempt initialization
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Tries to add a zero initializer. Returns true if that worked.
 | 
						|
static bool
 | 
						|
maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
 | 
						|
                                   const InitializedEntity &Entity) {
 | 
						|
  if (Entity.getKind() != InitializedEntity::EK_Variable)
 | 
						|
    return false;
 | 
						|
 | 
						|
  VarDecl *VD = cast<VarDecl>(Entity.getDecl());
 | 
						|
  if (VD->getInit() || VD->getEndLoc().isMacroID())
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType VariableTy = VD->getType().getCanonicalType();
 | 
						|
  SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
 | 
						|
  std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
 | 
						|
  if (!Init.empty()) {
 | 
						|
    Sequence.AddZeroInitializationStep(Entity.getType());
 | 
						|
    Sequence.SetZeroInitializationFixit(Init, Loc);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void MaybeProduceObjCObject(Sema &S,
 | 
						|
                                   InitializationSequence &Sequence,
 | 
						|
                                   const InitializedEntity &Entity) {
 | 
						|
  if (!S.getLangOpts().ObjCAutoRefCount) return;
 | 
						|
 | 
						|
  /// When initializing a parameter, produce the value if it's marked
 | 
						|
  /// __attribute__((ns_consumed)).
 | 
						|
  if (Entity.isParameterKind()) {
 | 
						|
    if (!Entity.isParameterConsumed())
 | 
						|
      return;
 | 
						|
 | 
						|
    assert(Entity.getType()->isObjCRetainableType() &&
 | 
						|
           "consuming an object of unretainable type?");
 | 
						|
    Sequence.AddProduceObjCObjectStep(Entity.getType());
 | 
						|
 | 
						|
  /// When initializing a return value, if the return type is a
 | 
						|
  /// retainable type, then returns need to immediately retain the
 | 
						|
  /// object.  If an autorelease is required, it will be done at the
 | 
						|
  /// last instant.
 | 
						|
  } else if (Entity.getKind() == InitializedEntity::EK_Result ||
 | 
						|
             Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
 | 
						|
    if (!Entity.getType()->isObjCRetainableType())
 | 
						|
      return;
 | 
						|
 | 
						|
    Sequence.AddProduceObjCObjectStep(Entity.getType());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void TryListInitialization(Sema &S,
 | 
						|
                                  const InitializedEntity &Entity,
 | 
						|
                                  const InitializationKind &Kind,
 | 
						|
                                  InitListExpr *InitList,
 | 
						|
                                  InitializationSequence &Sequence,
 | 
						|
                                  bool TreatUnavailableAsInvalid);
 | 
						|
 | 
						|
/// When initializing from init list via constructor, handle
 | 
						|
/// initialization of an object of type std::initializer_list<T>.
 | 
						|
///
 | 
						|
/// \return true if we have handled initialization of an object of type
 | 
						|
/// std::initializer_list<T>, false otherwise.
 | 
						|
static bool TryInitializerListConstruction(Sema &S,
 | 
						|
                                           InitListExpr *List,
 | 
						|
                                           QualType DestType,
 | 
						|
                                           InitializationSequence &Sequence,
 | 
						|
                                           bool TreatUnavailableAsInvalid) {
 | 
						|
  QualType E;
 | 
						|
  if (!S.isStdInitializerList(DestType, &E))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!S.isCompleteType(List->getExprLoc(), E)) {
 | 
						|
    Sequence.setIncompleteTypeFailure(E);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try initializing a temporary array from the init list.
 | 
						|
  QualType ArrayType = S.Context.getConstantArrayType(
 | 
						|
      E.withConst(),
 | 
						|
      llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
 | 
						|
                  List->getNumInits()),
 | 
						|
      nullptr, clang::ArrayType::Normal, 0);
 | 
						|
  InitializedEntity HiddenArray =
 | 
						|
      InitializedEntity::InitializeTemporary(ArrayType);
 | 
						|
  InitializationKind Kind = InitializationKind::CreateDirectList(
 | 
						|
      List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
 | 
						|
  TryListInitialization(S, HiddenArray, Kind, List, Sequence,
 | 
						|
                        TreatUnavailableAsInvalid);
 | 
						|
  if (Sequence)
 | 
						|
    Sequence.AddStdInitializerListConstructionStep(DestType);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine if the constructor has the signature of a copy or move
 | 
						|
/// constructor for the type T of the class in which it was found. That is,
 | 
						|
/// determine if its first parameter is of type T or reference to (possibly
 | 
						|
/// cv-qualified) T.
 | 
						|
static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
 | 
						|
                                   const ConstructorInfo &Info) {
 | 
						|
  if (Info.Constructor->getNumParams() == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType ParmT =
 | 
						|
      Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
 | 
						|
  QualType ClassT =
 | 
						|
      Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
 | 
						|
 | 
						|
  return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
 | 
						|
}
 | 
						|
 | 
						|
static OverloadingResult
 | 
						|
ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
 | 
						|
                           MultiExprArg Args,
 | 
						|
                           OverloadCandidateSet &CandidateSet,
 | 
						|
                           QualType DestType,
 | 
						|
                           DeclContext::lookup_result Ctors,
 | 
						|
                           OverloadCandidateSet::iterator &Best,
 | 
						|
                           bool CopyInitializing, bool AllowExplicit,
 | 
						|
                           bool OnlyListConstructors, bool IsListInit,
 | 
						|
                           bool SecondStepOfCopyInit = false) {
 | 
						|
  CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
 | 
						|
  CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
 | 
						|
 | 
						|
  for (NamedDecl *D : Ctors) {
 | 
						|
    auto Info = getConstructorInfo(D);
 | 
						|
    if (!Info.Constructor || Info.Constructor->isInvalidDecl())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // C++11 [over.best.ics]p4:
 | 
						|
    //   ... and the constructor or user-defined conversion function is a
 | 
						|
    //   candidate by
 | 
						|
    //   - 13.3.1.3, when the argument is the temporary in the second step
 | 
						|
    //     of a class copy-initialization, or
 | 
						|
    //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
 | 
						|
    //   - the second phase of 13.3.1.7 when the initializer list has exactly
 | 
						|
    //     one element that is itself an initializer list, and the target is
 | 
						|
    //     the first parameter of a constructor of class X, and the conversion
 | 
						|
    //     is to X or reference to (possibly cv-qualified X),
 | 
						|
    //   user-defined conversion sequences are not considered.
 | 
						|
    bool SuppressUserConversions =
 | 
						|
        SecondStepOfCopyInit ||
 | 
						|
        (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
 | 
						|
         hasCopyOrMoveCtorParam(S.Context, Info));
 | 
						|
 | 
						|
    if (Info.ConstructorTmpl)
 | 
						|
      S.AddTemplateOverloadCandidate(
 | 
						|
          Info.ConstructorTmpl, Info.FoundDecl,
 | 
						|
          /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
 | 
						|
          /*PartialOverloading=*/false, AllowExplicit);
 | 
						|
    else {
 | 
						|
      // C++ [over.match.copy]p1:
 | 
						|
      //   - When initializing a temporary to be bound to the first parameter
 | 
						|
      //     of a constructor [for type T] that takes a reference to possibly
 | 
						|
      //     cv-qualified T as its first argument, called with a single
 | 
						|
      //     argument in the context of direct-initialization, explicit
 | 
						|
      //     conversion functions are also considered.
 | 
						|
      // FIXME: What if a constructor template instantiates to such a signature?
 | 
						|
      bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
 | 
						|
                               Args.size() == 1 &&
 | 
						|
                               hasCopyOrMoveCtorParam(S.Context, Info);
 | 
						|
      S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
 | 
						|
                             CandidateSet, SuppressUserConversions,
 | 
						|
                             /*PartialOverloading=*/false, AllowExplicit,
 | 
						|
                             AllowExplicitConv);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Work around a bug in C++17 guaranteed copy elision.
 | 
						|
  //
 | 
						|
  // When initializing an object of class type T by constructor
 | 
						|
  // ([over.match.ctor]) or by list-initialization ([over.match.list])
 | 
						|
  // from a single expression of class type U, conversion functions of
 | 
						|
  // U that convert to the non-reference type cv T are candidates.
 | 
						|
  // Explicit conversion functions are only candidates during
 | 
						|
  // direct-initialization.
 | 
						|
  //
 | 
						|
  // Note: SecondStepOfCopyInit is only ever true in this case when
 | 
						|
  // evaluating whether to produce a C++98 compatibility warning.
 | 
						|
  if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
 | 
						|
      !SecondStepOfCopyInit) {
 | 
						|
    Expr *Initializer = Args[0];
 | 
						|
    auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
 | 
						|
    if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
 | 
						|
      const auto &Conversions = SourceRD->getVisibleConversionFunctions();
 | 
						|
      for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
 | 
						|
        NamedDecl *D = *I;
 | 
						|
        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
 | 
						|
        D = D->getUnderlyingDecl();
 | 
						|
 | 
						|
        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
        CXXConversionDecl *Conv;
 | 
						|
        if (ConvTemplate)
 | 
						|
          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | 
						|
        else
 | 
						|
          Conv = cast<CXXConversionDecl>(D);
 | 
						|
 | 
						|
        if (ConvTemplate)
 | 
						|
          S.AddTemplateConversionCandidate(
 | 
						|
              ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
 | 
						|
              CandidateSet, AllowExplicit, AllowExplicit,
 | 
						|
              /*AllowResultConversion*/ false);
 | 
						|
        else
 | 
						|
          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
 | 
						|
                                   DestType, CandidateSet, AllowExplicit,
 | 
						|
                                   AllowExplicit,
 | 
						|
                                   /*AllowResultConversion*/ false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform overload resolution and return the result.
 | 
						|
  return CandidateSet.BestViableFunction(S, DeclLoc, Best);
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt initialization by constructor (C++ [dcl.init]), which
 | 
						|
/// enumerates the constructors of the initialized entity and performs overload
 | 
						|
/// resolution to select the best.
 | 
						|
/// \param DestType       The destination class type.
 | 
						|
/// \param DestArrayType  The destination type, which is either DestType or
 | 
						|
///                       a (possibly multidimensional) array of DestType.
 | 
						|
/// \param IsListInit     Is this list-initialization?
 | 
						|
/// \param IsInitListCopy Is this non-list-initialization resulting from a
 | 
						|
///                       list-initialization from {x} where x is the same
 | 
						|
///                       type as the entity?
 | 
						|
static void TryConstructorInitialization(Sema &S,
 | 
						|
                                         const InitializedEntity &Entity,
 | 
						|
                                         const InitializationKind &Kind,
 | 
						|
                                         MultiExprArg Args, QualType DestType,
 | 
						|
                                         QualType DestArrayType,
 | 
						|
                                         InitializationSequence &Sequence,
 | 
						|
                                         bool IsListInit = false,
 | 
						|
                                         bool IsInitListCopy = false) {
 | 
						|
  assert(((!IsListInit && !IsInitListCopy) ||
 | 
						|
          (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
 | 
						|
         "IsListInit/IsInitListCopy must come with a single initializer list "
 | 
						|
         "argument.");
 | 
						|
  InitListExpr *ILE =
 | 
						|
      (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
 | 
						|
  MultiExprArg UnwrappedArgs =
 | 
						|
      ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
 | 
						|
 | 
						|
  // The type we're constructing needs to be complete.
 | 
						|
  if (!S.isCompleteType(Kind.getLocation(), DestType)) {
 | 
						|
    Sequence.setIncompleteTypeFailure(DestType);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++17 [dcl.init]p17:
 | 
						|
  //     - If the initializer expression is a prvalue and the cv-unqualified
 | 
						|
  //       version of the source type is the same class as the class of the
 | 
						|
  //       destination, the initializer expression is used to initialize the
 | 
						|
  //       destination object.
 | 
						|
  // Per DR (no number yet), this does not apply when initializing a base
 | 
						|
  // class or delegating to another constructor from a mem-initializer.
 | 
						|
  // ObjC++: Lambda captured by the block in the lambda to block conversion
 | 
						|
  // should avoid copy elision.
 | 
						|
  if (S.getLangOpts().CPlusPlus17 &&
 | 
						|
      Entity.getKind() != InitializedEntity::EK_Base &&
 | 
						|
      Entity.getKind() != InitializedEntity::EK_Delegating &&
 | 
						|
      Entity.getKind() !=
 | 
						|
          InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
 | 
						|
      UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() &&
 | 
						|
      S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
 | 
						|
    // Convert qualifications if necessary.
 | 
						|
    Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
 | 
						|
    if (ILE)
 | 
						|
      Sequence.RewrapReferenceInitList(DestType, ILE);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const RecordType *DestRecordType = DestType->getAs<RecordType>();
 | 
						|
  assert(DestRecordType && "Constructor initialization requires record type");
 | 
						|
  CXXRecordDecl *DestRecordDecl
 | 
						|
    = cast<CXXRecordDecl>(DestRecordType->getDecl());
 | 
						|
 | 
						|
  // Build the candidate set directly in the initialization sequence
 | 
						|
  // structure, so that it will persist if we fail.
 | 
						|
  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
 | 
						|
 | 
						|
  // Determine whether we are allowed to call explicit constructors or
 | 
						|
  // explicit conversion operators.
 | 
						|
  bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
 | 
						|
  bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
 | 
						|
 | 
						|
  //   - Otherwise, if T is a class type, constructors are considered. The
 | 
						|
  //     applicable constructors are enumerated, and the best one is chosen
 | 
						|
  //     through overload resolution.
 | 
						|
  DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
 | 
						|
 | 
						|
  OverloadingResult Result = OR_No_Viable_Function;
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  bool AsInitializerList = false;
 | 
						|
 | 
						|
  // C++11 [over.match.list]p1, per DR1467:
 | 
						|
  //   When objects of non-aggregate type T are list-initialized, such that
 | 
						|
  //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
 | 
						|
  //   according to the rules in this section, overload resolution selects
 | 
						|
  //   the constructor in two phases:
 | 
						|
  //
 | 
						|
  //   - Initially, the candidate functions are the initializer-list
 | 
						|
  //     constructors of the class T and the argument list consists of the
 | 
						|
  //     initializer list as a single argument.
 | 
						|
  if (IsListInit) {
 | 
						|
    AsInitializerList = true;
 | 
						|
 | 
						|
    // If the initializer list has no elements and T has a default constructor,
 | 
						|
    // the first phase is omitted.
 | 
						|
    if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
 | 
						|
      Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
 | 
						|
                                          CandidateSet, DestType, Ctors, Best,
 | 
						|
                                          CopyInitialization, AllowExplicit,
 | 
						|
                                          /*OnlyListConstructors=*/true,
 | 
						|
                                          IsListInit);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [over.match.list]p1:
 | 
						|
  //   - If no viable initializer-list constructor is found, overload resolution
 | 
						|
  //     is performed again, where the candidate functions are all the
 | 
						|
  //     constructors of the class T and the argument list consists of the
 | 
						|
  //     elements of the initializer list.
 | 
						|
  if (Result == OR_No_Viable_Function) {
 | 
						|
    AsInitializerList = false;
 | 
						|
    Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
 | 
						|
                                        CandidateSet, DestType, Ctors, Best,
 | 
						|
                                        CopyInitialization, AllowExplicit,
 | 
						|
                                        /*OnlyListConstructors=*/false,
 | 
						|
                                        IsListInit);
 | 
						|
  }
 | 
						|
  if (Result) {
 | 
						|
    Sequence.SetOverloadFailure(
 | 
						|
        IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
 | 
						|
                   : InitializationSequence::FK_ConstructorOverloadFailed,
 | 
						|
        Result);
 | 
						|
 | 
						|
    if (Result != OR_Deleted)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  // In C++17, ResolveConstructorOverload can select a conversion function
 | 
						|
  // instead of a constructor.
 | 
						|
  if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
 | 
						|
    // Add the user-defined conversion step that calls the conversion function.
 | 
						|
    QualType ConvType = CD->getConversionType();
 | 
						|
    assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
 | 
						|
           "should not have selected this conversion function");
 | 
						|
    Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
 | 
						|
                                   HadMultipleCandidates);
 | 
						|
    if (!S.Context.hasSameType(ConvType, DestType))
 | 
						|
      Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
 | 
						|
    if (IsListInit)
 | 
						|
      Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
 | 
						|
  if (Result != OR_Deleted) {
 | 
						|
    // C++11 [dcl.init]p6:
 | 
						|
    //   If a program calls for the default initialization of an object
 | 
						|
    //   of a const-qualified type T, T shall be a class type with a
 | 
						|
    //   user-provided default constructor.
 | 
						|
    // C++ core issue 253 proposal:
 | 
						|
    //   If the implicit default constructor initializes all subobjects, no
 | 
						|
    //   initializer should be required.
 | 
						|
    // The 253 proposal is for example needed to process libstdc++ headers
 | 
						|
    // in 5.x.
 | 
						|
    if (Kind.getKind() == InitializationKind::IK_Default &&
 | 
						|
        Entity.getType().isConstQualified()) {
 | 
						|
      if (!CtorDecl->getParent()->allowConstDefaultInit()) {
 | 
						|
        if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
 | 
						|
          Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [over.match.list]p1:
 | 
						|
    //   In copy-list-initialization, if an explicit constructor is chosen, the
 | 
						|
    //   initializer is ill-formed.
 | 
						|
    if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
 | 
						|
      Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // [class.copy.elision]p3:
 | 
						|
  // In some copy-initialization contexts, a two-stage overload resolution
 | 
						|
  // is performed.
 | 
						|
  // If the first overload resolution selects a deleted function, we also
 | 
						|
  // need the initialization sequence to decide whether to perform the second
 | 
						|
  // overload resolution.
 | 
						|
  // For deleted functions in other contexts, there is no need to get the
 | 
						|
  // initialization sequence.
 | 
						|
  if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Add the constructor initialization step. Any cv-qualification conversion is
 | 
						|
  // subsumed by the initialization.
 | 
						|
  Sequence.AddConstructorInitializationStep(
 | 
						|
      Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
 | 
						|
      IsListInit | IsInitListCopy, AsInitializerList);
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
ResolveOverloadedFunctionForReferenceBinding(Sema &S,
 | 
						|
                                             Expr *Initializer,
 | 
						|
                                             QualType &SourceType,
 | 
						|
                                             QualType &UnqualifiedSourceType,
 | 
						|
                                             QualType UnqualifiedTargetType,
 | 
						|
                                             InitializationSequence &Sequence) {
 | 
						|
  if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
 | 
						|
        S.Context.OverloadTy) {
 | 
						|
    DeclAccessPair Found;
 | 
						|
    bool HadMultipleCandidates = false;
 | 
						|
    if (FunctionDecl *Fn
 | 
						|
        = S.ResolveAddressOfOverloadedFunction(Initializer,
 | 
						|
                                               UnqualifiedTargetType,
 | 
						|
                                               false, Found,
 | 
						|
                                               &HadMultipleCandidates)) {
 | 
						|
      Sequence.AddAddressOverloadResolutionStep(Fn, Found,
 | 
						|
                                                HadMultipleCandidates);
 | 
						|
      SourceType = Fn->getType();
 | 
						|
      UnqualifiedSourceType = SourceType.getUnqualifiedType();
 | 
						|
    } else if (!UnqualifiedTargetType->isRecordType()) {
 | 
						|
      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void TryReferenceInitializationCore(Sema &S,
 | 
						|
                                           const InitializedEntity &Entity,
 | 
						|
                                           const InitializationKind &Kind,
 | 
						|
                                           Expr *Initializer,
 | 
						|
                                           QualType cv1T1, QualType T1,
 | 
						|
                                           Qualifiers T1Quals,
 | 
						|
                                           QualType cv2T2, QualType T2,
 | 
						|
                                           Qualifiers T2Quals,
 | 
						|
                                           InitializationSequence &Sequence);
 | 
						|
 | 
						|
static void TryValueInitialization(Sema &S,
 | 
						|
                                   const InitializedEntity &Entity,
 | 
						|
                                   const InitializationKind &Kind,
 | 
						|
                                   InitializationSequence &Sequence,
 | 
						|
                                   InitListExpr *InitList = nullptr);
 | 
						|
 | 
						|
/// Attempt list initialization of a reference.
 | 
						|
static void TryReferenceListInitialization(Sema &S,
 | 
						|
                                           const InitializedEntity &Entity,
 | 
						|
                                           const InitializationKind &Kind,
 | 
						|
                                           InitListExpr *InitList,
 | 
						|
                                           InitializationSequence &Sequence,
 | 
						|
                                           bool TreatUnavailableAsInvalid) {
 | 
						|
  // First, catch C++03 where this isn't possible.
 | 
						|
  if (!S.getLangOpts().CPlusPlus11) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Can't reference initialize a compound literal.
 | 
						|
  if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
  QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
 | 
						|
  Qualifiers T1Quals;
 | 
						|
  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
 | 
						|
 | 
						|
  // Reference initialization via an initializer list works thus:
 | 
						|
  // If the initializer list consists of a single element that is
 | 
						|
  // reference-related to the referenced type, bind directly to that element
 | 
						|
  // (possibly creating temporaries).
 | 
						|
  // Otherwise, initialize a temporary with the initializer list and
 | 
						|
  // bind to that.
 | 
						|
  if (InitList->getNumInits() == 1) {
 | 
						|
    Expr *Initializer = InitList->getInit(0);
 | 
						|
    QualType cv2T2 = S.getCompletedType(Initializer);
 | 
						|
    Qualifiers T2Quals;
 | 
						|
    QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
 | 
						|
 | 
						|
    // If this fails, creating a temporary wouldn't work either.
 | 
						|
    if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
 | 
						|
                                                     T1, Sequence))
 | 
						|
      return;
 | 
						|
 | 
						|
    SourceLocation DeclLoc = Initializer->getBeginLoc();
 | 
						|
    Sema::ReferenceCompareResult RefRelationship
 | 
						|
      = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
 | 
						|
    if (RefRelationship >= Sema::Ref_Related) {
 | 
						|
      // Try to bind the reference here.
 | 
						|
      TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
 | 
						|
                                     T1Quals, cv2T2, T2, T2Quals, Sequence);
 | 
						|
      if (Sequence)
 | 
						|
        Sequence.RewrapReferenceInitList(cv1T1, InitList);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Update the initializer if we've resolved an overloaded function.
 | 
						|
    if (Sequence.step_begin() != Sequence.step_end())
 | 
						|
      Sequence.RewrapReferenceInitList(cv1T1, InitList);
 | 
						|
  }
 | 
						|
  // Perform address space compatibility check.
 | 
						|
  QualType cv1T1IgnoreAS = cv1T1;
 | 
						|
  if (T1Quals.hasAddressSpace()) {
 | 
						|
    Qualifiers T2Quals;
 | 
						|
    (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
 | 
						|
    if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
 | 
						|
      Sequence.SetFailed(
 | 
						|
          InitializationSequence::FK_ReferenceInitDropsQualifiers);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // Ignore address space of reference type at this point and perform address
 | 
						|
    // space conversion after the reference binding step.
 | 
						|
    cv1T1IgnoreAS =
 | 
						|
        S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
 | 
						|
  }
 | 
						|
  // Not reference-related. Create a temporary and bind to that.
 | 
						|
  InitializedEntity TempEntity =
 | 
						|
      InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
 | 
						|
 | 
						|
  TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
 | 
						|
                        TreatUnavailableAsInvalid);
 | 
						|
  if (Sequence) {
 | 
						|
    if (DestType->isRValueReferenceType() ||
 | 
						|
        (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
 | 
						|
      Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
 | 
						|
                                       /*BindingTemporary=*/true);
 | 
						|
      if (T1Quals.hasAddressSpace())
 | 
						|
        Sequence.AddQualificationConversionStep(
 | 
						|
            cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
 | 
						|
    } else
 | 
						|
      Sequence.SetFailed(
 | 
						|
          InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt list initialization (C++0x [dcl.init.list])
 | 
						|
static void TryListInitialization(Sema &S,
 | 
						|
                                  const InitializedEntity &Entity,
 | 
						|
                                  const InitializationKind &Kind,
 | 
						|
                                  InitListExpr *InitList,
 | 
						|
                                  InitializationSequence &Sequence,
 | 
						|
                                  bool TreatUnavailableAsInvalid) {
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
 | 
						|
  // C++ doesn't allow scalar initialization with more than one argument.
 | 
						|
  // But C99 complex numbers are scalars and it makes sense there.
 | 
						|
  if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
 | 
						|
      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (DestType->isReferenceType()) {
 | 
						|
    TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
 | 
						|
                                   TreatUnavailableAsInvalid);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DestType->isRecordType() &&
 | 
						|
      !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
 | 
						|
    Sequence.setIncompleteTypeFailure(DestType);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [dcl.init.list]p3, per DR1467:
 | 
						|
  // - If T is a class type and the initializer list has a single element of
 | 
						|
  //   type cv U, where U is T or a class derived from T, the object is
 | 
						|
  //   initialized from that element (by copy-initialization for
 | 
						|
  //   copy-list-initialization, or by direct-initialization for
 | 
						|
  //   direct-list-initialization).
 | 
						|
  // - Otherwise, if T is a character array and the initializer list has a
 | 
						|
  //   single element that is an appropriately-typed string literal
 | 
						|
  //   (8.5.2 [dcl.init.string]), initialization is performed as described
 | 
						|
  //   in that section.
 | 
						|
  // - Otherwise, if T is an aggregate, [...] (continue below).
 | 
						|
  if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
 | 
						|
    if (DestType->isRecordType()) {
 | 
						|
      QualType InitType = InitList->getInit(0)->getType();
 | 
						|
      if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
 | 
						|
          S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
 | 
						|
        Expr *InitListAsExpr = InitList;
 | 
						|
        TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
 | 
						|
                                     DestType, Sequence,
 | 
						|
                                     /*InitListSyntax*/false,
 | 
						|
                                     /*IsInitListCopy*/true);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
 | 
						|
      Expr *SubInit[1] = {InitList->getInit(0)};
 | 
						|
      if (!isa<VariableArrayType>(DestAT) &&
 | 
						|
          IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
 | 
						|
        InitializationKind SubKind =
 | 
						|
            Kind.getKind() == InitializationKind::IK_DirectList
 | 
						|
                ? InitializationKind::CreateDirect(Kind.getLocation(),
 | 
						|
                                                   InitList->getLBraceLoc(),
 | 
						|
                                                   InitList->getRBraceLoc())
 | 
						|
                : Kind;
 | 
						|
        Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
 | 
						|
                                /*TopLevelOfInitList*/ true,
 | 
						|
                                TreatUnavailableAsInvalid);
 | 
						|
 | 
						|
        // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
 | 
						|
        // the element is not an appropriately-typed string literal, in which
 | 
						|
        // case we should proceed as in C++11 (below).
 | 
						|
        if (Sequence) {
 | 
						|
          Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [dcl.init.list]p3:
 | 
						|
  //   - If T is an aggregate, aggregate initialization is performed.
 | 
						|
  if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
 | 
						|
      (S.getLangOpts().CPlusPlus11 &&
 | 
						|
       S.isStdInitializerList(DestType, nullptr))) {
 | 
						|
    if (S.getLangOpts().CPlusPlus11) {
 | 
						|
      //   - Otherwise, if the initializer list has no elements and T is a
 | 
						|
      //     class type with a default constructor, the object is
 | 
						|
      //     value-initialized.
 | 
						|
      if (InitList->getNumInits() == 0) {
 | 
						|
        CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
 | 
						|
        if (S.LookupDefaultConstructor(RD)) {
 | 
						|
          TryValueInitialization(S, Entity, Kind, Sequence, InitList);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      //   - Otherwise, if T is a specialization of std::initializer_list<E>,
 | 
						|
      //     an initializer_list object constructed [...]
 | 
						|
      if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
 | 
						|
                                         TreatUnavailableAsInvalid))
 | 
						|
        return;
 | 
						|
 | 
						|
      //   - Otherwise, if T is a class type, constructors are considered.
 | 
						|
      Expr *InitListAsExpr = InitList;
 | 
						|
      TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
 | 
						|
                                   DestType, Sequence, /*InitListSyntax*/true);
 | 
						|
    } else
 | 
						|
      Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
 | 
						|
      InitList->getNumInits() == 1) {
 | 
						|
    Expr *E = InitList->getInit(0);
 | 
						|
 | 
						|
    //   - Otherwise, if T is an enumeration with a fixed underlying type,
 | 
						|
    //     the initializer-list has a single element v, and the initialization
 | 
						|
    //     is direct-list-initialization, the object is initialized with the
 | 
						|
    //     value T(v); if a narrowing conversion is required to convert v to
 | 
						|
    //     the underlying type of T, the program is ill-formed.
 | 
						|
    auto *ET = DestType->getAs<EnumType>();
 | 
						|
    if (S.getLangOpts().CPlusPlus17 &&
 | 
						|
        Kind.getKind() == InitializationKind::IK_DirectList &&
 | 
						|
        ET && ET->getDecl()->isFixed() &&
 | 
						|
        !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
 | 
						|
        (E->getType()->isIntegralOrUnscopedEnumerationType() ||
 | 
						|
         E->getType()->isFloatingType())) {
 | 
						|
      // There are two ways that T(v) can work when T is an enumeration type.
 | 
						|
      // If there is either an implicit conversion sequence from v to T or
 | 
						|
      // a conversion function that can convert from v to T, then we use that.
 | 
						|
      // Otherwise, if v is of integral, unscoped enumeration, or floating-point
 | 
						|
      // type, it is converted to the enumeration type via its underlying type.
 | 
						|
      // There is no overlap possible between these two cases (except when the
 | 
						|
      // source value is already of the destination type), and the first
 | 
						|
      // case is handled by the general case for single-element lists below.
 | 
						|
      ImplicitConversionSequence ICS;
 | 
						|
      ICS.setStandard();
 | 
						|
      ICS.Standard.setAsIdentityConversion();
 | 
						|
      if (!E->isPRValue())
 | 
						|
        ICS.Standard.First = ICK_Lvalue_To_Rvalue;
 | 
						|
      // If E is of a floating-point type, then the conversion is ill-formed
 | 
						|
      // due to narrowing, but go through the motions in order to produce the
 | 
						|
      // right diagnostic.
 | 
						|
      ICS.Standard.Second = E->getType()->isFloatingType()
 | 
						|
                                ? ICK_Floating_Integral
 | 
						|
                                : ICK_Integral_Conversion;
 | 
						|
      ICS.Standard.setFromType(E->getType());
 | 
						|
      ICS.Standard.setToType(0, E->getType());
 | 
						|
      ICS.Standard.setToType(1, DestType);
 | 
						|
      ICS.Standard.setToType(2, DestType);
 | 
						|
      Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
 | 
						|
                                         /*TopLevelOfInitList*/true);
 | 
						|
      Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    //   - Otherwise, if the initializer list has a single element of type E
 | 
						|
    //     [...references are handled above...], the object or reference is
 | 
						|
    //     initialized from that element (by copy-initialization for
 | 
						|
    //     copy-list-initialization, or by direct-initialization for
 | 
						|
    //     direct-list-initialization); if a narrowing conversion is required
 | 
						|
    //     to convert the element to T, the program is ill-formed.
 | 
						|
    //
 | 
						|
    // Per core-24034, this is direct-initialization if we were performing
 | 
						|
    // direct-list-initialization and copy-initialization otherwise.
 | 
						|
    // We can't use InitListChecker for this, because it always performs
 | 
						|
    // copy-initialization. This only matters if we might use an 'explicit'
 | 
						|
    // conversion operator, or for the special case conversion of nullptr_t to
 | 
						|
    // bool, so we only need to handle those cases.
 | 
						|
    //
 | 
						|
    // FIXME: Why not do this in all cases?
 | 
						|
    Expr *Init = InitList->getInit(0);
 | 
						|
    if (Init->getType()->isRecordType() ||
 | 
						|
        (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
 | 
						|
      InitializationKind SubKind =
 | 
						|
          Kind.getKind() == InitializationKind::IK_DirectList
 | 
						|
              ? InitializationKind::CreateDirect(Kind.getLocation(),
 | 
						|
                                                 InitList->getLBraceLoc(),
 | 
						|
                                                 InitList->getRBraceLoc())
 | 
						|
              : Kind;
 | 
						|
      Expr *SubInit[1] = { Init };
 | 
						|
      Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
 | 
						|
                              /*TopLevelOfInitList*/true,
 | 
						|
                              TreatUnavailableAsInvalid);
 | 
						|
      if (Sequence)
 | 
						|
        Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  InitListChecker CheckInitList(S, Entity, InitList,
 | 
						|
          DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
 | 
						|
  if (CheckInitList.HadError()) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the list initialization step with the built init list.
 | 
						|
  Sequence.AddListInitializationStep(DestType);
 | 
						|
}
 | 
						|
 | 
						|
/// Try a reference initialization that involves calling a conversion
 | 
						|
/// function.
 | 
						|
static OverloadingResult TryRefInitWithConversionFunction(
 | 
						|
    Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
 | 
						|
    Expr *Initializer, bool AllowRValues, bool IsLValueRef,
 | 
						|
    InitializationSequence &Sequence) {
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
  QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
 | 
						|
  QualType T1 = cv1T1.getUnqualifiedType();
 | 
						|
  QualType cv2T2 = Initializer->getType();
 | 
						|
  QualType T2 = cv2T2.getUnqualifiedType();
 | 
						|
 | 
						|
  assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
 | 
						|
         "Must have incompatible references when binding via conversion");
 | 
						|
 | 
						|
  // Build the candidate set directly in the initialization sequence
 | 
						|
  // structure, so that it will persist if we fail.
 | 
						|
  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
 | 
						|
  CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
 | 
						|
 | 
						|
  // Determine whether we are allowed to call explicit conversion operators.
 | 
						|
  // Note that none of [over.match.copy], [over.match.conv], nor
 | 
						|
  // [over.match.ref] permit an explicit constructor to be chosen when
 | 
						|
  // initializing a reference, not even for direct-initialization.
 | 
						|
  bool AllowExplicitCtors = false;
 | 
						|
  bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
 | 
						|
 | 
						|
  const RecordType *T1RecordType = nullptr;
 | 
						|
  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
 | 
						|
      S.isCompleteType(Kind.getLocation(), T1)) {
 | 
						|
    // The type we're converting to is a class type. Enumerate its constructors
 | 
						|
    // to see if there is a suitable conversion.
 | 
						|
    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
 | 
						|
 | 
						|
    for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
 | 
						|
      auto Info = getConstructorInfo(D);
 | 
						|
      if (!Info.Constructor)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!Info.Constructor->isInvalidDecl() &&
 | 
						|
          Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
 | 
						|
        if (Info.ConstructorTmpl)
 | 
						|
          S.AddTemplateOverloadCandidate(
 | 
						|
              Info.ConstructorTmpl, Info.FoundDecl,
 | 
						|
              /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
 | 
						|
              /*SuppressUserConversions=*/true,
 | 
						|
              /*PartialOverloading*/ false, AllowExplicitCtors);
 | 
						|
        else
 | 
						|
          S.AddOverloadCandidate(
 | 
						|
              Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
 | 
						|
              /*SuppressUserConversions=*/true,
 | 
						|
              /*PartialOverloading*/ false, AllowExplicitCtors);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
 | 
						|
    return OR_No_Viable_Function;
 | 
						|
 | 
						|
  const RecordType *T2RecordType = nullptr;
 | 
						|
  if ((T2RecordType = T2->getAs<RecordType>()) &&
 | 
						|
      S.isCompleteType(Kind.getLocation(), T2)) {
 | 
						|
    // The type we're converting from is a class type, enumerate its conversion
 | 
						|
    // functions.
 | 
						|
    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
 | 
						|
 | 
						|
    const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
 | 
						|
    for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
 | 
						|
      NamedDecl *D = *I;
 | 
						|
      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
 | 
						|
      if (isa<UsingShadowDecl>(D))
 | 
						|
        D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
 | 
						|
      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
      CXXConversionDecl *Conv;
 | 
						|
      if (ConvTemplate)
 | 
						|
        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | 
						|
      else
 | 
						|
        Conv = cast<CXXConversionDecl>(D);
 | 
						|
 | 
						|
      // If the conversion function doesn't return a reference type,
 | 
						|
      // it can't be considered for this conversion unless we're allowed to
 | 
						|
      // consider rvalues.
 | 
						|
      // FIXME: Do we need to make sure that we only consider conversion
 | 
						|
      // candidates with reference-compatible results? That might be needed to
 | 
						|
      // break recursion.
 | 
						|
      if ((AllowRValues ||
 | 
						|
           Conv->getConversionType()->isLValueReferenceType())) {
 | 
						|
        if (ConvTemplate)
 | 
						|
          S.AddTemplateConversionCandidate(
 | 
						|
              ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
 | 
						|
              CandidateSet,
 | 
						|
              /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
 | 
						|
        else
 | 
						|
          S.AddConversionCandidate(
 | 
						|
              Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
 | 
						|
              /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
 | 
						|
    return OR_No_Viable_Function;
 | 
						|
 | 
						|
  SourceLocation DeclLoc = Initializer->getBeginLoc();
 | 
						|
 | 
						|
  // Perform overload resolution. If it fails, return the failed result.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  if (OverloadingResult Result
 | 
						|
        = CandidateSet.BestViableFunction(S, DeclLoc, Best))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  FunctionDecl *Function = Best->Function;
 | 
						|
  // This is the overload that will be used for this initialization step if we
 | 
						|
  // use this initialization. Mark it as referenced.
 | 
						|
  Function->setReferenced();
 | 
						|
 | 
						|
  // Compute the returned type and value kind of the conversion.
 | 
						|
  QualType cv3T3;
 | 
						|
  if (isa<CXXConversionDecl>(Function))
 | 
						|
    cv3T3 = Function->getReturnType();
 | 
						|
  else
 | 
						|
    cv3T3 = T1;
 | 
						|
 | 
						|
  ExprValueKind VK = VK_PRValue;
 | 
						|
  if (cv3T3->isLValueReferenceType())
 | 
						|
    VK = VK_LValue;
 | 
						|
  else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
 | 
						|
    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
 | 
						|
  cv3T3 = cv3T3.getNonLValueExprType(S.Context);
 | 
						|
 | 
						|
  // Add the user-defined conversion step.
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
  Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
 | 
						|
                                 HadMultipleCandidates);
 | 
						|
 | 
						|
  // Determine whether we'll need to perform derived-to-base adjustments or
 | 
						|
  // other conversions.
 | 
						|
  Sema::ReferenceConversions RefConv;
 | 
						|
  Sema::ReferenceCompareResult NewRefRelationship =
 | 
						|
      S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
 | 
						|
 | 
						|
  // Add the final conversion sequence, if necessary.
 | 
						|
  if (NewRefRelationship == Sema::Ref_Incompatible) {
 | 
						|
    assert(!isa<CXXConstructorDecl>(Function) &&
 | 
						|
           "should not have conversion after constructor");
 | 
						|
 | 
						|
    ImplicitConversionSequence ICS;
 | 
						|
    ICS.setStandard();
 | 
						|
    ICS.Standard = Best->FinalConversion;
 | 
						|
    Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
 | 
						|
 | 
						|
    // Every implicit conversion results in a prvalue, except for a glvalue
 | 
						|
    // derived-to-base conversion, which we handle below.
 | 
						|
    cv3T3 = ICS.Standard.getToType(2);
 | 
						|
    VK = VK_PRValue;
 | 
						|
  }
 | 
						|
 | 
						|
  //   If the converted initializer is a prvalue, its type T4 is adjusted to
 | 
						|
  //   type "cv1 T4" and the temporary materialization conversion is applied.
 | 
						|
  //
 | 
						|
  // We adjust the cv-qualifications to match the reference regardless of
 | 
						|
  // whether we have a prvalue so that the AST records the change. In this
 | 
						|
  // case, T4 is "cv3 T3".
 | 
						|
  QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
 | 
						|
  if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
 | 
						|
    Sequence.AddQualificationConversionStep(cv1T4, VK);
 | 
						|
  Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue);
 | 
						|
  VK = IsLValueRef ? VK_LValue : VK_XValue;
 | 
						|
 | 
						|
  if (RefConv & Sema::ReferenceConversions::DerivedToBase)
 | 
						|
    Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
 | 
						|
  else if (RefConv & Sema::ReferenceConversions::ObjC)
 | 
						|
    Sequence.AddObjCObjectConversionStep(cv1T1);
 | 
						|
  else if (RefConv & Sema::ReferenceConversions::Function)
 | 
						|
    Sequence.AddFunctionReferenceConversionStep(cv1T1);
 | 
						|
  else if (RefConv & Sema::ReferenceConversions::Qualification) {
 | 
						|
    if (!S.Context.hasSameType(cv1T4, cv1T1))
 | 
						|
      Sequence.AddQualificationConversionStep(cv1T1, VK);
 | 
						|
  }
 | 
						|
 | 
						|
  return OR_Success;
 | 
						|
}
 | 
						|
 | 
						|
static void CheckCXX98CompatAccessibleCopy(Sema &S,
 | 
						|
                                           const InitializedEntity &Entity,
 | 
						|
                                           Expr *CurInitExpr);
 | 
						|
 | 
						|
/// Attempt reference initialization (C++0x [dcl.init.ref])
 | 
						|
static void TryReferenceInitialization(Sema &S,
 | 
						|
                                       const InitializedEntity &Entity,
 | 
						|
                                       const InitializationKind &Kind,
 | 
						|
                                       Expr *Initializer,
 | 
						|
                                       InitializationSequence &Sequence) {
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
  QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
 | 
						|
  Qualifiers T1Quals;
 | 
						|
  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
 | 
						|
  QualType cv2T2 = S.getCompletedType(Initializer);
 | 
						|
  Qualifiers T2Quals;
 | 
						|
  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
 | 
						|
 | 
						|
  // If the initializer is the address of an overloaded function, try
 | 
						|
  // to resolve the overloaded function. If all goes well, T2 is the
 | 
						|
  // type of the resulting function.
 | 
						|
  if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
 | 
						|
                                                   T1, Sequence))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Delegate everything else to a subfunction.
 | 
						|
  TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
 | 
						|
                                 T1Quals, cv2T2, T2, T2Quals, Sequence);
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether an expression is a non-referenceable glvalue (one to
 | 
						|
/// which a reference can never bind). Attempting to bind a reference to
 | 
						|
/// such a glvalue will always create a temporary.
 | 
						|
static bool isNonReferenceableGLValue(Expr *E) {
 | 
						|
  return E->refersToBitField() || E->refersToVectorElement() ||
 | 
						|
         E->refersToMatrixElement();
 | 
						|
}
 | 
						|
 | 
						|
/// Reference initialization without resolving overloaded functions.
 | 
						|
///
 | 
						|
/// We also can get here in C if we call a builtin which is declared as
 | 
						|
/// a function with a parameter of reference type (such as __builtin_va_end()).
 | 
						|
static void TryReferenceInitializationCore(Sema &S,
 | 
						|
                                           const InitializedEntity &Entity,
 | 
						|
                                           const InitializationKind &Kind,
 | 
						|
                                           Expr *Initializer,
 | 
						|
                                           QualType cv1T1, QualType T1,
 | 
						|
                                           Qualifiers T1Quals,
 | 
						|
                                           QualType cv2T2, QualType T2,
 | 
						|
                                           Qualifiers T2Quals,
 | 
						|
                                           InitializationSequence &Sequence) {
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
  SourceLocation DeclLoc = Initializer->getBeginLoc();
 | 
						|
 | 
						|
  // Compute some basic properties of the types and the initializer.
 | 
						|
  bool isLValueRef = DestType->isLValueReferenceType();
 | 
						|
  bool isRValueRef = !isLValueRef;
 | 
						|
  Expr::Classification InitCategory = Initializer->Classify(S.Context);
 | 
						|
 | 
						|
  Sema::ReferenceConversions RefConv;
 | 
						|
  Sema::ReferenceCompareResult RefRelationship =
 | 
						|
      S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
 | 
						|
 | 
						|
  // C++0x [dcl.init.ref]p5:
 | 
						|
  //   A reference to type "cv1 T1" is initialized by an expression of type
 | 
						|
  //   "cv2 T2" as follows:
 | 
						|
  //
 | 
						|
  //     - If the reference is an lvalue reference and the initializer
 | 
						|
  //       expression
 | 
						|
  // Note the analogous bullet points for rvalue refs to functions. Because
 | 
						|
  // there are no function rvalues in C++, rvalue refs to functions are treated
 | 
						|
  // like lvalue refs.
 | 
						|
  OverloadingResult ConvOvlResult = OR_Success;
 | 
						|
  bool T1Function = T1->isFunctionType();
 | 
						|
  if (isLValueRef || T1Function) {
 | 
						|
    if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
 | 
						|
        (RefRelationship == Sema::Ref_Compatible ||
 | 
						|
         (Kind.isCStyleOrFunctionalCast() &&
 | 
						|
          RefRelationship == Sema::Ref_Related))) {
 | 
						|
      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
 | 
						|
      //     reference-compatible with "cv2 T2," or
 | 
						|
      if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
 | 
						|
                     Sema::ReferenceConversions::ObjC)) {
 | 
						|
        // If we're converting the pointee, add any qualifiers first;
 | 
						|
        // these qualifiers must all be top-level, so just convert to "cv1 T2".
 | 
						|
        if (RefConv & (Sema::ReferenceConversions::Qualification))
 | 
						|
          Sequence.AddQualificationConversionStep(
 | 
						|
              S.Context.getQualifiedType(T2, T1Quals),
 | 
						|
              Initializer->getValueKind());
 | 
						|
        if (RefConv & Sema::ReferenceConversions::DerivedToBase)
 | 
						|
          Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
 | 
						|
        else
 | 
						|
          Sequence.AddObjCObjectConversionStep(cv1T1);
 | 
						|
      } else if (RefConv & Sema::ReferenceConversions::Qualification) {
 | 
						|
        // Perform a (possibly multi-level) qualification conversion.
 | 
						|
        Sequence.AddQualificationConversionStep(cv1T1,
 | 
						|
                                                Initializer->getValueKind());
 | 
						|
      } else if (RefConv & Sema::ReferenceConversions::Function) {
 | 
						|
        Sequence.AddFunctionReferenceConversionStep(cv1T1);
 | 
						|
      }
 | 
						|
 | 
						|
      // We only create a temporary here when binding a reference to a
 | 
						|
      // bit-field or vector element. Those cases are't supposed to be
 | 
						|
      // handled by this bullet, but the outcome is the same either way.
 | 
						|
      Sequence.AddReferenceBindingStep(cv1T1, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    //     - has a class type (i.e., T2 is a class type), where T1 is not
 | 
						|
    //       reference-related to T2, and can be implicitly converted to an
 | 
						|
    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
 | 
						|
    //       with "cv3 T3" (this conversion is selected by enumerating the
 | 
						|
    //       applicable conversion functions (13.3.1.6) and choosing the best
 | 
						|
    //       one through overload resolution (13.3)),
 | 
						|
    // If we have an rvalue ref to function type here, the rhs must be
 | 
						|
    // an rvalue. DR1287 removed the "implicitly" here.
 | 
						|
    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
 | 
						|
        (isLValueRef || InitCategory.isRValue())) {
 | 
						|
      if (S.getLangOpts().CPlusPlus) {
 | 
						|
        // Try conversion functions only for C++.
 | 
						|
        ConvOvlResult = TryRefInitWithConversionFunction(
 | 
						|
            S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
 | 
						|
            /*IsLValueRef*/ isLValueRef, Sequence);
 | 
						|
        if (ConvOvlResult == OR_Success)
 | 
						|
          return;
 | 
						|
        if (ConvOvlResult != OR_No_Viable_Function)
 | 
						|
          Sequence.SetOverloadFailure(
 | 
						|
              InitializationSequence::FK_ReferenceInitOverloadFailed,
 | 
						|
              ConvOvlResult);
 | 
						|
      } else {
 | 
						|
        ConvOvlResult = OR_No_Viable_Function;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //     - Otherwise, the reference shall be an lvalue reference to a
 | 
						|
  //       non-volatile const type (i.e., cv1 shall be const), or the reference
 | 
						|
  //       shall be an rvalue reference.
 | 
						|
  //       For address spaces, we interpret this to mean that an addr space
 | 
						|
  //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
 | 
						|
  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
 | 
						|
                       T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
 | 
						|
    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
 | 
						|
      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | 
						|
    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
 | 
						|
      Sequence.SetOverloadFailure(
 | 
						|
                        InitializationSequence::FK_ReferenceInitOverloadFailed,
 | 
						|
                                  ConvOvlResult);
 | 
						|
    else if (!InitCategory.isLValue())
 | 
						|
      Sequence.SetFailed(
 | 
						|
          T1Quals.isAddressSpaceSupersetOf(T2Quals)
 | 
						|
              ? InitializationSequence::
 | 
						|
                    FK_NonConstLValueReferenceBindingToTemporary
 | 
						|
              : InitializationSequence::FK_ReferenceInitDropsQualifiers);
 | 
						|
    else {
 | 
						|
      InitializationSequence::FailureKind FK;
 | 
						|
      switch (RefRelationship) {
 | 
						|
      case Sema::Ref_Compatible:
 | 
						|
        if (Initializer->refersToBitField())
 | 
						|
          FK = InitializationSequence::
 | 
						|
              FK_NonConstLValueReferenceBindingToBitfield;
 | 
						|
        else if (Initializer->refersToVectorElement())
 | 
						|
          FK = InitializationSequence::
 | 
						|
              FK_NonConstLValueReferenceBindingToVectorElement;
 | 
						|
        else if (Initializer->refersToMatrixElement())
 | 
						|
          FK = InitializationSequence::
 | 
						|
              FK_NonConstLValueReferenceBindingToMatrixElement;
 | 
						|
        else
 | 
						|
          llvm_unreachable("unexpected kind of compatible initializer");
 | 
						|
        break;
 | 
						|
      case Sema::Ref_Related:
 | 
						|
        FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
 | 
						|
        break;
 | 
						|
      case Sema::Ref_Incompatible:
 | 
						|
        FK = InitializationSequence::
 | 
						|
            FK_NonConstLValueReferenceBindingToUnrelated;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      Sequence.SetFailed(FK);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //    - If the initializer expression
 | 
						|
  //      - is an
 | 
						|
  // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
 | 
						|
  // [1z]   rvalue (but not a bit-field) or
 | 
						|
  //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
 | 
						|
  //
 | 
						|
  // Note: functions are handled above and below rather than here...
 | 
						|
  if (!T1Function &&
 | 
						|
      (RefRelationship == Sema::Ref_Compatible ||
 | 
						|
       (Kind.isCStyleOrFunctionalCast() &&
 | 
						|
        RefRelationship == Sema::Ref_Related)) &&
 | 
						|
      ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
 | 
						|
       (InitCategory.isPRValue() &&
 | 
						|
        (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
 | 
						|
         T2->isArrayType())))) {
 | 
						|
    ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue;
 | 
						|
    if (InitCategory.isPRValue() && T2->isRecordType()) {
 | 
						|
      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
 | 
						|
      // compiler the freedom to perform a copy here or bind to the
 | 
						|
      // object, while C++0x requires that we bind directly to the
 | 
						|
      // object. Hence, we always bind to the object without making an
 | 
						|
      // extra copy. However, in C++03 requires that we check for the
 | 
						|
      // presence of a suitable copy constructor:
 | 
						|
      //
 | 
						|
      //   The constructor that would be used to make the copy shall
 | 
						|
      //   be callable whether or not the copy is actually done.
 | 
						|
      if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
 | 
						|
        Sequence.AddExtraneousCopyToTemporary(cv2T2);
 | 
						|
      else if (S.getLangOpts().CPlusPlus11)
 | 
						|
        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
 | 
						|
    }
 | 
						|
 | 
						|
    // C++1z [dcl.init.ref]/5.2.1.2:
 | 
						|
    //   If the converted initializer is a prvalue, its type T4 is adjusted
 | 
						|
    //   to type "cv1 T4" and the temporary materialization conversion is
 | 
						|
    //   applied.
 | 
						|
    // Postpone address space conversions to after the temporary materialization
 | 
						|
    // conversion to allow creating temporaries in the alloca address space.
 | 
						|
    auto T1QualsIgnoreAS = T1Quals;
 | 
						|
    auto T2QualsIgnoreAS = T2Quals;
 | 
						|
    if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
 | 
						|
      T1QualsIgnoreAS.removeAddressSpace();
 | 
						|
      T2QualsIgnoreAS.removeAddressSpace();
 | 
						|
    }
 | 
						|
    QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
 | 
						|
    if (T1QualsIgnoreAS != T2QualsIgnoreAS)
 | 
						|
      Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
 | 
						|
    Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue);
 | 
						|
    ValueKind = isLValueRef ? VK_LValue : VK_XValue;
 | 
						|
    // Add addr space conversion if required.
 | 
						|
    if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
 | 
						|
      auto T4Quals = cv1T4.getQualifiers();
 | 
						|
      T4Quals.addAddressSpace(T1Quals.getAddressSpace());
 | 
						|
      QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
 | 
						|
      Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
 | 
						|
      cv1T4 = cv1T4WithAS;
 | 
						|
    }
 | 
						|
 | 
						|
    //   In any case, the reference is bound to the resulting glvalue (or to
 | 
						|
    //   an appropriate base class subobject).
 | 
						|
    if (RefConv & Sema::ReferenceConversions::DerivedToBase)
 | 
						|
      Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
 | 
						|
    else if (RefConv & Sema::ReferenceConversions::ObjC)
 | 
						|
      Sequence.AddObjCObjectConversionStep(cv1T1);
 | 
						|
    else if (RefConv & Sema::ReferenceConversions::Qualification) {
 | 
						|
      if (!S.Context.hasSameType(cv1T4, cv1T1))
 | 
						|
        Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //       - has a class type (i.e., T2 is a class type), where T1 is not
 | 
						|
  //         reference-related to T2, and can be implicitly converted to an
 | 
						|
  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
 | 
						|
  //         where "cv1 T1" is reference-compatible with "cv3 T3",
 | 
						|
  //
 | 
						|
  // DR1287 removes the "implicitly" here.
 | 
						|
  if (T2->isRecordType()) {
 | 
						|
    if (RefRelationship == Sema::Ref_Incompatible) {
 | 
						|
      ConvOvlResult = TryRefInitWithConversionFunction(
 | 
						|
          S, Entity, Kind, Initializer, /*AllowRValues*/ true,
 | 
						|
          /*IsLValueRef*/ isLValueRef, Sequence);
 | 
						|
      if (ConvOvlResult)
 | 
						|
        Sequence.SetOverloadFailure(
 | 
						|
            InitializationSequence::FK_ReferenceInitOverloadFailed,
 | 
						|
            ConvOvlResult);
 | 
						|
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RefRelationship == Sema::Ref_Compatible &&
 | 
						|
        isRValueRef && InitCategory.isLValue()) {
 | 
						|
      Sequence.SetFailed(
 | 
						|
        InitializationSequence::FK_RValueReferenceBindingToLValue);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
 | 
						|
  //        from the initializer expression using the rules for a non-reference
 | 
						|
  //        copy-initialization (8.5). The reference is then bound to the
 | 
						|
  //        temporary. [...]
 | 
						|
 | 
						|
  // Ignore address space of reference type at this point and perform address
 | 
						|
  // space conversion after the reference binding step.
 | 
						|
  QualType cv1T1IgnoreAS =
 | 
						|
      T1Quals.hasAddressSpace()
 | 
						|
          ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
 | 
						|
          : cv1T1;
 | 
						|
 | 
						|
  InitializedEntity TempEntity =
 | 
						|
      InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
 | 
						|
 | 
						|
  // FIXME: Why do we use an implicit conversion here rather than trying
 | 
						|
  // copy-initialization?
 | 
						|
  ImplicitConversionSequence ICS
 | 
						|
    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
 | 
						|
                              /*SuppressUserConversions=*/false,
 | 
						|
                              Sema::AllowedExplicit::None,
 | 
						|
                              /*FIXME:InOverloadResolution=*/false,
 | 
						|
                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
 | 
						|
                              /*AllowObjCWritebackConversion=*/false);
 | 
						|
 | 
						|
  if (ICS.isBad()) {
 | 
						|
    // FIXME: Use the conversion function set stored in ICS to turn
 | 
						|
    // this into an overloading ambiguity diagnostic. However, we need
 | 
						|
    // to keep that set as an OverloadCandidateSet rather than as some
 | 
						|
    // other kind of set.
 | 
						|
    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
 | 
						|
      Sequence.SetOverloadFailure(
 | 
						|
                        InitializationSequence::FK_ReferenceInitOverloadFailed,
 | 
						|
                                  ConvOvlResult);
 | 
						|
    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
 | 
						|
      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | 
						|
    else
 | 
						|
      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
 | 
						|
    return;
 | 
						|
  } else {
 | 
						|
    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  //        [...] If T1 is reference-related to T2, cv1 must be the
 | 
						|
  //        same cv-qualification as, or greater cv-qualification
 | 
						|
  //        than, cv2; otherwise, the program is ill-formed.
 | 
						|
  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
 | 
						|
  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
 | 
						|
  if (RefRelationship == Sema::Ref_Related &&
 | 
						|
      ((T1CVRQuals | T2CVRQuals) != T1CVRQuals ||
 | 
						|
       !T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
 | 
						|
    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
 | 
						|
  //   reference, the initializer expression shall not be an lvalue.
 | 
						|
  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
 | 
						|
      InitCategory.isLValue()) {
 | 
						|
    Sequence.SetFailed(
 | 
						|
                    InitializationSequence::FK_RValueReferenceBindingToLValue);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
 | 
						|
 | 
						|
  if (T1Quals.hasAddressSpace()) {
 | 
						|
    if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
 | 
						|
                                              LangAS::Default)) {
 | 
						|
      Sequence.SetFailed(
 | 
						|
          InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
 | 
						|
                                                               : VK_XValue);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt character array initialization from a string literal
 | 
						|
/// (C++ [dcl.init.string], C99 6.7.8).
 | 
						|
static void TryStringLiteralInitialization(Sema &S,
 | 
						|
                                           const InitializedEntity &Entity,
 | 
						|
                                           const InitializationKind &Kind,
 | 
						|
                                           Expr *Initializer,
 | 
						|
                                       InitializationSequence &Sequence) {
 | 
						|
  Sequence.AddStringInitStep(Entity.getType());
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt value initialization (C++ [dcl.init]p7).
 | 
						|
static void TryValueInitialization(Sema &S,
 | 
						|
                                   const InitializedEntity &Entity,
 | 
						|
                                   const InitializationKind &Kind,
 | 
						|
                                   InitializationSequence &Sequence,
 | 
						|
                                   InitListExpr *InitList) {
 | 
						|
  assert((!InitList || InitList->getNumInits() == 0) &&
 | 
						|
         "Shouldn't use value-init for non-empty init lists");
 | 
						|
 | 
						|
  // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
 | 
						|
  //
 | 
						|
  //   To value-initialize an object of type T means:
 | 
						|
  QualType T = Entity.getType();
 | 
						|
 | 
						|
  //     -- if T is an array type, then each element is value-initialized;
 | 
						|
  T = S.Context.getBaseElementType(T);
 | 
						|
 | 
						|
  if (const RecordType *RT = T->getAs<RecordType>()) {
 | 
						|
    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
 | 
						|
      bool NeedZeroInitialization = true;
 | 
						|
      // C++98:
 | 
						|
      // -- if T is a class type (clause 9) with a user-declared constructor
 | 
						|
      //    (12.1), then the default constructor for T is called (and the
 | 
						|
      //    initialization is ill-formed if T has no accessible default
 | 
						|
      //    constructor);
 | 
						|
      // C++11:
 | 
						|
      // -- if T is a class type (clause 9) with either no default constructor
 | 
						|
      //    (12.1 [class.ctor]) or a default constructor that is user-provided
 | 
						|
      //    or deleted, then the object is default-initialized;
 | 
						|
      //
 | 
						|
      // Note that the C++11 rule is the same as the C++98 rule if there are no
 | 
						|
      // defaulted or deleted constructors, so we just use it unconditionally.
 | 
						|
      CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
 | 
						|
      if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
 | 
						|
        NeedZeroInitialization = false;
 | 
						|
 | 
						|
      // -- if T is a (possibly cv-qualified) non-union class type without a
 | 
						|
      //    user-provided or deleted default constructor, then the object is
 | 
						|
      //    zero-initialized and, if T has a non-trivial default constructor,
 | 
						|
      //    default-initialized;
 | 
						|
      // The 'non-union' here was removed by DR1502. The 'non-trivial default
 | 
						|
      // constructor' part was removed by DR1507.
 | 
						|
      if (NeedZeroInitialization)
 | 
						|
        Sequence.AddZeroInitializationStep(Entity.getType());
 | 
						|
 | 
						|
      // C++03:
 | 
						|
      // -- if T is a non-union class type without a user-declared constructor,
 | 
						|
      //    then every non-static data member and base class component of T is
 | 
						|
      //    value-initialized;
 | 
						|
      // [...] A program that calls for [...] value-initialization of an
 | 
						|
      // entity of reference type is ill-formed.
 | 
						|
      //
 | 
						|
      // C++11 doesn't need this handling, because value-initialization does not
 | 
						|
      // occur recursively there, and the implicit default constructor is
 | 
						|
      // defined as deleted in the problematic cases.
 | 
						|
      if (!S.getLangOpts().CPlusPlus11 &&
 | 
						|
          ClassDecl->hasUninitializedReferenceMember()) {
 | 
						|
        Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is list-value-initialization, pass the empty init list on when
 | 
						|
      // building the constructor call. This affects the semantics of a few
 | 
						|
      // things (such as whether an explicit default constructor can be called).
 | 
						|
      Expr *InitListAsExpr = InitList;
 | 
						|
      MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
 | 
						|
      bool InitListSyntax = InitList;
 | 
						|
 | 
						|
      // FIXME: Instead of creating a CXXConstructExpr of array type here,
 | 
						|
      // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
 | 
						|
      return TryConstructorInitialization(
 | 
						|
          S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Sequence.AddZeroInitializationStep(Entity.getType());
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt default initialization (C++ [dcl.init]p6).
 | 
						|
static void TryDefaultInitialization(Sema &S,
 | 
						|
                                     const InitializedEntity &Entity,
 | 
						|
                                     const InitializationKind &Kind,
 | 
						|
                                     InitializationSequence &Sequence) {
 | 
						|
  assert(Kind.getKind() == InitializationKind::IK_Default);
 | 
						|
 | 
						|
  // C++ [dcl.init]p6:
 | 
						|
  //   To default-initialize an object of type T means:
 | 
						|
  //     - if T is an array type, each element is default-initialized;
 | 
						|
  QualType DestType = S.Context.getBaseElementType(Entity.getType());
 | 
						|
 | 
						|
  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
 | 
						|
  //       constructor for T is called (and the initialization is ill-formed if
 | 
						|
  //       T has no accessible default constructor);
 | 
						|
  if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
 | 
						|
    TryConstructorInitialization(S, Entity, Kind, None, DestType,
 | 
						|
                                 Entity.getType(), Sequence);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //     - otherwise, no initialization is performed.
 | 
						|
 | 
						|
  //   If a program calls for the default initialization of an object of
 | 
						|
  //   a const-qualified type T, T shall be a class type with a user-provided
 | 
						|
  //   default constructor.
 | 
						|
  if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
 | 
						|
    if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
 | 
						|
      Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the destination type has a lifetime property, zero-initialize it.
 | 
						|
  if (DestType.getQualifiers().hasObjCLifetime()) {
 | 
						|
    Sequence.AddZeroInitializationStep(Entity.getType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt a user-defined conversion between two types (C++ [dcl.init]),
 | 
						|
/// which enumerates all conversion functions and performs overload resolution
 | 
						|
/// to select the best.
 | 
						|
static void TryUserDefinedConversion(Sema &S,
 | 
						|
                                     QualType DestType,
 | 
						|
                                     const InitializationKind &Kind,
 | 
						|
                                     Expr *Initializer,
 | 
						|
                                     InitializationSequence &Sequence,
 | 
						|
                                     bool TopLevelOfInitList) {
 | 
						|
  assert(!DestType->isReferenceType() && "References are handled elsewhere");
 | 
						|
  QualType SourceType = Initializer->getType();
 | 
						|
  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
 | 
						|
         "Must have a class type to perform a user-defined conversion");
 | 
						|
 | 
						|
  // Build the candidate set directly in the initialization sequence
 | 
						|
  // structure, so that it will persist if we fail.
 | 
						|
  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
 | 
						|
  CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
 | 
						|
  CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
 | 
						|
 | 
						|
  // Determine whether we are allowed to call explicit constructors or
 | 
						|
  // explicit conversion operators.
 | 
						|
  bool AllowExplicit = Kind.AllowExplicit();
 | 
						|
 | 
						|
  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
 | 
						|
    // The type we're converting to is a class type. Enumerate its constructors
 | 
						|
    // to see if there is a suitable conversion.
 | 
						|
    CXXRecordDecl *DestRecordDecl
 | 
						|
      = cast<CXXRecordDecl>(DestRecordType->getDecl());
 | 
						|
 | 
						|
    // Try to complete the type we're converting to.
 | 
						|
    if (S.isCompleteType(Kind.getLocation(), DestType)) {
 | 
						|
      for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
 | 
						|
        auto Info = getConstructorInfo(D);
 | 
						|
        if (!Info.Constructor)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (!Info.Constructor->isInvalidDecl() &&
 | 
						|
            Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
 | 
						|
          if (Info.ConstructorTmpl)
 | 
						|
            S.AddTemplateOverloadCandidate(
 | 
						|
                Info.ConstructorTmpl, Info.FoundDecl,
 | 
						|
                /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
 | 
						|
                /*SuppressUserConversions=*/true,
 | 
						|
                /*PartialOverloading*/ false, AllowExplicit);
 | 
						|
          else
 | 
						|
            S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
 | 
						|
                                   Initializer, CandidateSet,
 | 
						|
                                   /*SuppressUserConversions=*/true,
 | 
						|
                                   /*PartialOverloading*/ false, AllowExplicit);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation DeclLoc = Initializer->getBeginLoc();
 | 
						|
 | 
						|
  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
 | 
						|
    // The type we're converting from is a class type, enumerate its conversion
 | 
						|
    // functions.
 | 
						|
 | 
						|
    // We can only enumerate the conversion functions for a complete type; if
 | 
						|
    // the type isn't complete, simply skip this step.
 | 
						|
    if (S.isCompleteType(DeclLoc, SourceType)) {
 | 
						|
      CXXRecordDecl *SourceRecordDecl
 | 
						|
        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
 | 
						|
 | 
						|
      const auto &Conversions =
 | 
						|
          SourceRecordDecl->getVisibleConversionFunctions();
 | 
						|
      for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
 | 
						|
        NamedDecl *D = *I;
 | 
						|
        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
 | 
						|
        if (isa<UsingShadowDecl>(D))
 | 
						|
          D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
 | 
						|
        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
        CXXConversionDecl *Conv;
 | 
						|
        if (ConvTemplate)
 | 
						|
          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | 
						|
        else
 | 
						|
          Conv = cast<CXXConversionDecl>(D);
 | 
						|
 | 
						|
        if (ConvTemplate)
 | 
						|
          S.AddTemplateConversionCandidate(
 | 
						|
              ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
 | 
						|
              CandidateSet, AllowExplicit, AllowExplicit);
 | 
						|
        else
 | 
						|
          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
 | 
						|
                                   DestType, CandidateSet, AllowExplicit,
 | 
						|
                                   AllowExplicit);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform overload resolution. If it fails, return the failed result.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  if (OverloadingResult Result
 | 
						|
        = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
 | 
						|
    Sequence.SetOverloadFailure(
 | 
						|
        InitializationSequence::FK_UserConversionOverloadFailed, Result);
 | 
						|
 | 
						|
    // [class.copy.elision]p3:
 | 
						|
    // In some copy-initialization contexts, a two-stage overload resolution
 | 
						|
    // is performed.
 | 
						|
    // If the first overload resolution selects a deleted function, we also
 | 
						|
    // need the initialization sequence to decide whether to perform the second
 | 
						|
    // overload resolution.
 | 
						|
    if (!(Result == OR_Deleted &&
 | 
						|
          Kind.getKind() == InitializationKind::IK_Copy))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *Function = Best->Function;
 | 
						|
  Function->setReferenced();
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  if (isa<CXXConstructorDecl>(Function)) {
 | 
						|
    // Add the user-defined conversion step. Any cv-qualification conversion is
 | 
						|
    // subsumed by the initialization. Per DR5, the created temporary is of the
 | 
						|
    // cv-unqualified type of the destination.
 | 
						|
    Sequence.AddUserConversionStep(Function, Best->FoundDecl,
 | 
						|
                                   DestType.getUnqualifiedType(),
 | 
						|
                                   HadMultipleCandidates);
 | 
						|
 | 
						|
    // C++14 and before:
 | 
						|
    //   - if the function is a constructor, the call initializes a temporary
 | 
						|
    //     of the cv-unqualified version of the destination type. The [...]
 | 
						|
    //     temporary [...] is then used to direct-initialize, according to the
 | 
						|
    //     rules above, the object that is the destination of the
 | 
						|
    //     copy-initialization.
 | 
						|
    // Note that this just performs a simple object copy from the temporary.
 | 
						|
    //
 | 
						|
    // C++17:
 | 
						|
    //   - if the function is a constructor, the call is a prvalue of the
 | 
						|
    //     cv-unqualified version of the destination type whose return object
 | 
						|
    //     is initialized by the constructor. The call is used to
 | 
						|
    //     direct-initialize, according to the rules above, the object that
 | 
						|
    //     is the destination of the copy-initialization.
 | 
						|
    // Therefore we need to do nothing further.
 | 
						|
    //
 | 
						|
    // FIXME: Mark this copy as extraneous.
 | 
						|
    if (!S.getLangOpts().CPlusPlus17)
 | 
						|
      Sequence.AddFinalCopy(DestType);
 | 
						|
    else if (DestType.hasQualifiers())
 | 
						|
      Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the user-defined conversion step that calls the conversion function.
 | 
						|
  QualType ConvType = Function->getCallResultType();
 | 
						|
  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
 | 
						|
                                 HadMultipleCandidates);
 | 
						|
 | 
						|
  if (ConvType->getAs<RecordType>()) {
 | 
						|
    //   The call is used to direct-initialize [...] the object that is the
 | 
						|
    //   destination of the copy-initialization.
 | 
						|
    //
 | 
						|
    // In C++17, this does not call a constructor if we enter /17.6.1:
 | 
						|
    //   - If the initializer expression is a prvalue and the cv-unqualified
 | 
						|
    //     version of the source type is the same as the class of the
 | 
						|
    //     destination [... do not make an extra copy]
 | 
						|
    //
 | 
						|
    // FIXME: Mark this copy as extraneous.
 | 
						|
    if (!S.getLangOpts().CPlusPlus17 ||
 | 
						|
        Function->getReturnType()->isReferenceType() ||
 | 
						|
        !S.Context.hasSameUnqualifiedType(ConvType, DestType))
 | 
						|
      Sequence.AddFinalCopy(DestType);
 | 
						|
    else if (!S.Context.hasSameType(ConvType, DestType))
 | 
						|
      Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the conversion following the call to the conversion function
 | 
						|
  // is interesting, add it as a separate step.
 | 
						|
  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
 | 
						|
      Best->FinalConversion.Third) {
 | 
						|
    ImplicitConversionSequence ICS;
 | 
						|
    ICS.setStandard();
 | 
						|
    ICS.Standard = Best->FinalConversion;
 | 
						|
    Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
 | 
						|
/// a function with a pointer return type contains a 'return false;' statement.
 | 
						|
/// In C++11, 'false' is not a null pointer, so this breaks the build of any
 | 
						|
/// code using that header.
 | 
						|
///
 | 
						|
/// Work around this by treating 'return false;' as zero-initializing the result
 | 
						|
/// if it's used in a pointer-returning function in a system header.
 | 
						|
static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
 | 
						|
                                              const InitializedEntity &Entity,
 | 
						|
                                              const Expr *Init) {
 | 
						|
  return S.getLangOpts().CPlusPlus11 &&
 | 
						|
         Entity.getKind() == InitializedEntity::EK_Result &&
 | 
						|
         Entity.getType()->isPointerType() &&
 | 
						|
         isa<CXXBoolLiteralExpr>(Init) &&
 | 
						|
         !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
 | 
						|
         S.getSourceManager().isInSystemHeader(Init->getExprLoc());
 | 
						|
}
 | 
						|
 | 
						|
/// The non-zero enum values here are indexes into diagnostic alternatives.
 | 
						|
enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
 | 
						|
 | 
						|
/// Determines whether this expression is an acceptable ICR source.
 | 
						|
static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
 | 
						|
                                         bool isAddressOf, bool &isWeakAccess) {
 | 
						|
  // Skip parens.
 | 
						|
  e = e->IgnoreParens();
 | 
						|
 | 
						|
  // Skip address-of nodes.
 | 
						|
  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
 | 
						|
    if (op->getOpcode() == UO_AddrOf)
 | 
						|
      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
 | 
						|
                                isWeakAccess);
 | 
						|
 | 
						|
  // Skip certain casts.
 | 
						|
  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
 | 
						|
    switch (ce->getCastKind()) {
 | 
						|
    case CK_Dependent:
 | 
						|
    case CK_BitCast:
 | 
						|
    case CK_LValueBitCast:
 | 
						|
    case CK_NoOp:
 | 
						|
      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
 | 
						|
 | 
						|
    case CK_ArrayToPointerDecay:
 | 
						|
      return IIK_nonscalar;
 | 
						|
 | 
						|
    case CK_NullToPointer:
 | 
						|
      return IIK_okay;
 | 
						|
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  // If we have a declaration reference, it had better be a local variable.
 | 
						|
  } else if (isa<DeclRefExpr>(e)) {
 | 
						|
    // set isWeakAccess to true, to mean that there will be an implicit
 | 
						|
    // load which requires a cleanup.
 | 
						|
    if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
 | 
						|
      isWeakAccess = true;
 | 
						|
 | 
						|
    if (!isAddressOf) return IIK_nonlocal;
 | 
						|
 | 
						|
    VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
 | 
						|
    if (!var) return IIK_nonlocal;
 | 
						|
 | 
						|
    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
 | 
						|
 | 
						|
  // If we have a conditional operator, check both sides.
 | 
						|
  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
 | 
						|
    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
 | 
						|
                                                isWeakAccess))
 | 
						|
      return iik;
 | 
						|
 | 
						|
    return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
 | 
						|
 | 
						|
  // These are never scalar.
 | 
						|
  } else if (isa<ArraySubscriptExpr>(e)) {
 | 
						|
    return IIK_nonscalar;
 | 
						|
 | 
						|
  // Otherwise, it needs to be a null pointer constant.
 | 
						|
  } else {
 | 
						|
    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
 | 
						|
            ? IIK_okay : IIK_nonlocal);
 | 
						|
  }
 | 
						|
 | 
						|
  return IIK_nonlocal;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the given expression is a valid operand for an
 | 
						|
/// indirect copy/restore.
 | 
						|
static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
 | 
						|
  assert(src->isPRValue());
 | 
						|
  bool isWeakAccess = false;
 | 
						|
  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
 | 
						|
  // If isWeakAccess to true, there will be an implicit
 | 
						|
  // load which requires a cleanup.
 | 
						|
  if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
 | 
						|
    S.Cleanup.setExprNeedsCleanups(true);
 | 
						|
 | 
						|
  if (iik == IIK_okay) return;
 | 
						|
 | 
						|
  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
 | 
						|
    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
 | 
						|
    << src->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether we have compatible array types for the
 | 
						|
/// purposes of GNU by-copy array initialization.
 | 
						|
static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
 | 
						|
                                    const ArrayType *Source) {
 | 
						|
  // If the source and destination array types are equivalent, we're
 | 
						|
  // done.
 | 
						|
  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Make sure that the element types are the same.
 | 
						|
  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The only mismatch we allow is when the destination is an
 | 
						|
  // incomplete array type and the source is a constant array type.
 | 
						|
  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
 | 
						|
}
 | 
						|
 | 
						|
static bool tryObjCWritebackConversion(Sema &S,
 | 
						|
                                       InitializationSequence &Sequence,
 | 
						|
                                       const InitializedEntity &Entity,
 | 
						|
                                       Expr *Initializer) {
 | 
						|
  bool ArrayDecay = false;
 | 
						|
  QualType ArgType = Initializer->getType();
 | 
						|
  QualType ArgPointee;
 | 
						|
  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
 | 
						|
    ArrayDecay = true;
 | 
						|
    ArgPointee = ArgArrayType->getElementType();
 | 
						|
    ArgType = S.Context.getPointerType(ArgPointee);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle write-back conversion.
 | 
						|
  QualType ConvertedArgType;
 | 
						|
  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
 | 
						|
                                   ConvertedArgType))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We should copy unless we're passing to an argument explicitly
 | 
						|
  // marked 'out'.
 | 
						|
  bool ShouldCopy = true;
 | 
						|
  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
 | 
						|
    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
 | 
						|
 | 
						|
  // Do we need an lvalue conversion?
 | 
						|
  if (ArrayDecay || Initializer->isGLValue()) {
 | 
						|
    ImplicitConversionSequence ICS;
 | 
						|
    ICS.setStandard();
 | 
						|
    ICS.Standard.setAsIdentityConversion();
 | 
						|
 | 
						|
    QualType ResultType;
 | 
						|
    if (ArrayDecay) {
 | 
						|
      ICS.Standard.First = ICK_Array_To_Pointer;
 | 
						|
      ResultType = S.Context.getPointerType(ArgPointee);
 | 
						|
    } else {
 | 
						|
      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
 | 
						|
      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
 | 
						|
    }
 | 
						|
 | 
						|
    Sequence.AddConversionSequenceStep(ICS, ResultType);
 | 
						|
  }
 | 
						|
 | 
						|
  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool TryOCLSamplerInitialization(Sema &S,
 | 
						|
                                        InitializationSequence &Sequence,
 | 
						|
                                        QualType DestType,
 | 
						|
                                        Expr *Initializer) {
 | 
						|
  if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
 | 
						|
      (!Initializer->isIntegerConstantExpr(S.Context) &&
 | 
						|
      !Initializer->getType()->isSamplerT()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Sequence.AddOCLSamplerInitStep(DestType);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
 | 
						|
  return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
 | 
						|
    (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
 | 
						|
}
 | 
						|
 | 
						|
static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
 | 
						|
                                               InitializationSequence &Sequence,
 | 
						|
                                               QualType DestType,
 | 
						|
                                               Expr *Initializer) {
 | 
						|
  if (!S.getLangOpts().OpenCL)
 | 
						|
    return false;
 | 
						|
 | 
						|
  //
 | 
						|
  // OpenCL 1.2 spec, s6.12.10
 | 
						|
  //
 | 
						|
  // The event argument can also be used to associate the
 | 
						|
  // async_work_group_copy with a previous async copy allowing
 | 
						|
  // an event to be shared by multiple async copies; otherwise
 | 
						|
  // event should be zero.
 | 
						|
  //
 | 
						|
  if (DestType->isEventT() || DestType->isQueueT()) {
 | 
						|
    if (!IsZeroInitializer(Initializer, S))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Sequence.AddOCLZeroOpaqueTypeStep(DestType);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We should allow zero initialization for all types defined in the
 | 
						|
  // cl_intel_device_side_avc_motion_estimation extension, except
 | 
						|
  // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
 | 
						|
  if (S.getOpenCLOptions().isAvailableOption(
 | 
						|
          "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
 | 
						|
      DestType->isOCLIntelSubgroupAVCType()) {
 | 
						|
    if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
 | 
						|
        DestType->isOCLIntelSubgroupAVCMceResultType())
 | 
						|
      return false;
 | 
						|
    if (!IsZeroInitializer(Initializer, S))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Sequence.AddOCLZeroOpaqueTypeStep(DestType);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
InitializationSequence::InitializationSequence(
 | 
						|
    Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
 | 
						|
    MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
 | 
						|
    : FailedOverloadResult(OR_Success),
 | 
						|
      FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
 | 
						|
  InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
 | 
						|
                 TreatUnavailableAsInvalid);
 | 
						|
}
 | 
						|
 | 
						|
/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
 | 
						|
/// address of that function, this returns true. Otherwise, it returns false.
 | 
						|
static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
 | 
						|
  auto *DRE = dyn_cast<DeclRefExpr>(E);
 | 
						|
  if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return !S.checkAddressOfFunctionIsAvailable(
 | 
						|
      cast<FunctionDecl>(DRE->getDecl()));
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether we can perform an elementwise array copy for this kind
 | 
						|
/// of entity.
 | 
						|
static bool canPerformArrayCopy(const InitializedEntity &Entity) {
 | 
						|
  switch (Entity.getKind()) {
 | 
						|
  case InitializedEntity::EK_LambdaCapture:
 | 
						|
    // C++ [expr.prim.lambda]p24:
 | 
						|
    //   For array members, the array elements are direct-initialized in
 | 
						|
    //   increasing subscript order.
 | 
						|
    return true;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Variable:
 | 
						|
    // C++ [dcl.decomp]p1:
 | 
						|
    //   [...] each element is copy-initialized or direct-initialized from the
 | 
						|
    //   corresponding element of the assignment-expression [...]
 | 
						|
    return isa<DecompositionDecl>(Entity.getDecl());
 | 
						|
 | 
						|
  case InitializedEntity::EK_Member:
 | 
						|
    // C++ [class.copy.ctor]p14:
 | 
						|
    //   - if the member is an array, each element is direct-initialized with
 | 
						|
    //     the corresponding subobject of x
 | 
						|
    return Entity.isImplicitMemberInitializer();
 | 
						|
 | 
						|
  case InitializedEntity::EK_ArrayElement:
 | 
						|
    // All the above cases are intended to apply recursively, even though none
 | 
						|
    // of them actually say that.
 | 
						|
    if (auto *E = Entity.getParent())
 | 
						|
      return canPerformArrayCopy(*E);
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::InitializeFrom(Sema &S,
 | 
						|
                                            const InitializedEntity &Entity,
 | 
						|
                                            const InitializationKind &Kind,
 | 
						|
                                            MultiExprArg Args,
 | 
						|
                                            bool TopLevelOfInitList,
 | 
						|
                                            bool TreatUnavailableAsInvalid) {
 | 
						|
  ASTContext &Context = S.Context;
 | 
						|
 | 
						|
  // Eliminate non-overload placeholder types in the arguments.  We
 | 
						|
  // need to do this before checking whether types are dependent
 | 
						|
  // because lowering a pseudo-object expression might well give us
 | 
						|
  // something of dependent type.
 | 
						|
  for (unsigned I = 0, E = Args.size(); I != E; ++I)
 | 
						|
    if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
 | 
						|
      // FIXME: should we be doing this here?
 | 
						|
      ExprResult result = S.CheckPlaceholderExpr(Args[I]);
 | 
						|
      if (result.isInvalid()) {
 | 
						|
        SetFailed(FK_PlaceholderType);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      Args[I] = result.get();
 | 
						|
    }
 | 
						|
 | 
						|
  // C++0x [dcl.init]p16:
 | 
						|
  //   The semantics of initializers are as follows. The destination type is
 | 
						|
  //   the type of the object or reference being initialized and the source
 | 
						|
  //   type is the type of the initializer expression. The source type is not
 | 
						|
  //   defined when the initializer is a braced-init-list or when it is a
 | 
						|
  //   parenthesized list of expressions.
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
 | 
						|
  if (DestType->isDependentType() ||
 | 
						|
      Expr::hasAnyTypeDependentArguments(Args)) {
 | 
						|
    SequenceKind = DependentSequence;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Almost everything is a normal sequence.
 | 
						|
  setSequenceKind(NormalSequence);
 | 
						|
 | 
						|
  QualType SourceType;
 | 
						|
  Expr *Initializer = nullptr;
 | 
						|
  if (Args.size() == 1) {
 | 
						|
    Initializer = Args[0];
 | 
						|
    if (S.getLangOpts().ObjC) {
 | 
						|
      if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
 | 
						|
                                              DestType, Initializer->getType(),
 | 
						|
                                              Initializer) ||
 | 
						|
          S.CheckConversionToObjCLiteral(DestType, Initializer))
 | 
						|
        Args[0] = Initializer;
 | 
						|
    }
 | 
						|
    if (!isa<InitListExpr>(Initializer))
 | 
						|
      SourceType = Initializer->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  //     - If the initializer is a (non-parenthesized) braced-init-list, the
 | 
						|
  //       object is list-initialized (8.5.4).
 | 
						|
  if (Kind.getKind() != InitializationKind::IK_Direct) {
 | 
						|
    if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
 | 
						|
      TryListInitialization(S, Entity, Kind, InitList, *this,
 | 
						|
                            TreatUnavailableAsInvalid);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //     - If the destination type is a reference type, see 8.5.3.
 | 
						|
  if (DestType->isReferenceType()) {
 | 
						|
    // C++0x [dcl.init.ref]p1:
 | 
						|
    //   A variable declared to be a T& or T&&, that is, "reference to type T"
 | 
						|
    //   (8.3.2), shall be initialized by an object, or function, of type T or
 | 
						|
    //   by an object that can be converted into a T.
 | 
						|
    // (Therefore, multiple arguments are not permitted.)
 | 
						|
    if (Args.size() != 1)
 | 
						|
      SetFailed(FK_TooManyInitsForReference);
 | 
						|
    // C++17 [dcl.init.ref]p5:
 | 
						|
    //   A reference [...] is initialized by an expression [...] as follows:
 | 
						|
    // If the initializer is not an expression, presumably we should reject,
 | 
						|
    // but the standard fails to actually say so.
 | 
						|
    else if (isa<InitListExpr>(Args[0]))
 | 
						|
      SetFailed(FK_ParenthesizedListInitForReference);
 | 
						|
    else
 | 
						|
      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //     - If the initializer is (), the object is value-initialized.
 | 
						|
  if (Kind.getKind() == InitializationKind::IK_Value ||
 | 
						|
      (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
 | 
						|
    TryValueInitialization(S, Entity, Kind, *this);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle default initialization.
 | 
						|
  if (Kind.getKind() == InitializationKind::IK_Default) {
 | 
						|
    TryDefaultInitialization(S, Entity, Kind, *this);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //     - If the destination type is an array of characters, an array of
 | 
						|
  //       char16_t, an array of char32_t, or an array of wchar_t, and the
 | 
						|
  //       initializer is a string literal, see 8.5.2.
 | 
						|
  //     - Otherwise, if the destination type is an array, the program is
 | 
						|
  //       ill-formed.
 | 
						|
  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
 | 
						|
    if (Initializer && isa<VariableArrayType>(DestAT)) {
 | 
						|
      SetFailed(FK_VariableLengthArrayHasInitializer);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Initializer) {
 | 
						|
      switch (IsStringInit(Initializer, DestAT, Context)) {
 | 
						|
      case SIF_None:
 | 
						|
        TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
 | 
						|
        return;
 | 
						|
      case SIF_NarrowStringIntoWideChar:
 | 
						|
        SetFailed(FK_NarrowStringIntoWideCharArray);
 | 
						|
        return;
 | 
						|
      case SIF_WideStringIntoChar:
 | 
						|
        SetFailed(FK_WideStringIntoCharArray);
 | 
						|
        return;
 | 
						|
      case SIF_IncompatWideStringIntoWideChar:
 | 
						|
        SetFailed(FK_IncompatWideStringIntoWideChar);
 | 
						|
        return;
 | 
						|
      case SIF_PlainStringIntoUTF8Char:
 | 
						|
        SetFailed(FK_PlainStringIntoUTF8Char);
 | 
						|
        return;
 | 
						|
      case SIF_UTF8StringIntoPlainChar:
 | 
						|
        SetFailed(FK_UTF8StringIntoPlainChar);
 | 
						|
        return;
 | 
						|
      case SIF_Other:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Some kinds of initialization permit an array to be initialized from
 | 
						|
    // another array of the same type, and perform elementwise initialization.
 | 
						|
    if (Initializer && isa<ConstantArrayType>(DestAT) &&
 | 
						|
        S.Context.hasSameUnqualifiedType(Initializer->getType(),
 | 
						|
                                         Entity.getType()) &&
 | 
						|
        canPerformArrayCopy(Entity)) {
 | 
						|
      // If source is a prvalue, use it directly.
 | 
						|
      if (Initializer->isPRValue()) {
 | 
						|
        AddArrayInitStep(DestType, /*IsGNUExtension*/false);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // Emit element-at-a-time copy loop.
 | 
						|
      InitializedEntity Element =
 | 
						|
          InitializedEntity::InitializeElement(S.Context, 0, Entity);
 | 
						|
      QualType InitEltT =
 | 
						|
          Context.getAsArrayType(Initializer->getType())->getElementType();
 | 
						|
      OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
 | 
						|
                          Initializer->getValueKind(),
 | 
						|
                          Initializer->getObjectKind());
 | 
						|
      Expr *OVEAsExpr = &OVE;
 | 
						|
      InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
 | 
						|
                     TreatUnavailableAsInvalid);
 | 
						|
      if (!Failed())
 | 
						|
        AddArrayInitLoopStep(Entity.getType(), InitEltT);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Note: as an GNU C extension, we allow initialization of an
 | 
						|
    // array from a compound literal that creates an array of the same
 | 
						|
    // type, so long as the initializer has no side effects.
 | 
						|
    if (!S.getLangOpts().CPlusPlus && Initializer &&
 | 
						|
        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
 | 
						|
        Initializer->getType()->isArrayType()) {
 | 
						|
      const ArrayType *SourceAT
 | 
						|
        = Context.getAsArrayType(Initializer->getType());
 | 
						|
      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
 | 
						|
        SetFailed(FK_ArrayTypeMismatch);
 | 
						|
      else if (Initializer->HasSideEffects(S.Context))
 | 
						|
        SetFailed(FK_NonConstantArrayInit);
 | 
						|
      else {
 | 
						|
        AddArrayInitStep(DestType, /*IsGNUExtension*/true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Note: as a GNU C++ extension, we allow list-initialization of a
 | 
						|
    // class member of array type from a parenthesized initializer list.
 | 
						|
    else if (S.getLangOpts().CPlusPlus &&
 | 
						|
             Entity.getKind() == InitializedEntity::EK_Member &&
 | 
						|
             Initializer && isa<InitListExpr>(Initializer)) {
 | 
						|
      TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
 | 
						|
                            *this, TreatUnavailableAsInvalid);
 | 
						|
      AddParenthesizedArrayInitStep(DestType);
 | 
						|
    } else if (DestAT->getElementType()->isCharType())
 | 
						|
      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
 | 
						|
    else if (IsWideCharCompatible(DestAT->getElementType(), Context))
 | 
						|
      SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
 | 
						|
    else
 | 
						|
      SetFailed(FK_ArrayNeedsInitList);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine whether we should consider writeback conversions for
 | 
						|
  // Objective-C ARC.
 | 
						|
  bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
 | 
						|
         Entity.isParameterKind();
 | 
						|
 | 
						|
  if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
 | 
						|
    return;
 | 
						|
 | 
						|
  // We're at the end of the line for C: it's either a write-back conversion
 | 
						|
  // or it's a C assignment. There's no need to check anything else.
 | 
						|
  if (!S.getLangOpts().CPlusPlus) {
 | 
						|
    // If allowed, check whether this is an Objective-C writeback conversion.
 | 
						|
    if (allowObjCWritebackConversion &&
 | 
						|
        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Handle initialization in C
 | 
						|
    AddCAssignmentStep(DestType);
 | 
						|
    MaybeProduceObjCObject(S, *this, Entity);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(S.getLangOpts().CPlusPlus);
 | 
						|
 | 
						|
  //     - If the destination type is a (possibly cv-qualified) class type:
 | 
						|
  if (DestType->isRecordType()) {
 | 
						|
    //     - If the initialization is direct-initialization, or if it is
 | 
						|
    //       copy-initialization where the cv-unqualified version of the
 | 
						|
    //       source type is the same class as, or a derived class of, the
 | 
						|
    //       class of the destination, constructors are considered. [...]
 | 
						|
    if (Kind.getKind() == InitializationKind::IK_Direct ||
 | 
						|
        (Kind.getKind() == InitializationKind::IK_Copy &&
 | 
						|
         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
 | 
						|
          S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
 | 
						|
      TryConstructorInitialization(S, Entity, Kind, Args,
 | 
						|
                                   DestType, DestType, *this);
 | 
						|
    //     - Otherwise (i.e., for the remaining copy-initialization cases),
 | 
						|
    //       user-defined conversion sequences that can convert from the source
 | 
						|
    //       type to the destination type or (when a conversion function is
 | 
						|
    //       used) to a derived class thereof are enumerated as described in
 | 
						|
    //       13.3.1.4, and the best one is chosen through overload resolution
 | 
						|
    //       (13.3).
 | 
						|
    else
 | 
						|
      TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
 | 
						|
                               TopLevelOfInitList);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Args.size() >= 1 && "Zero-argument case handled above");
 | 
						|
 | 
						|
  // For HLSL ext vector types we allow list initialization behavior for C++
 | 
						|
  // constructor syntax. This is accomplished by converting initialization
 | 
						|
  // arguments an InitListExpr late.
 | 
						|
  if (S.getLangOpts().HLSL && DestType->isExtVectorType() &&
 | 
						|
      (SourceType.isNull() ||
 | 
						|
       !Context.hasSameUnqualifiedType(SourceType, DestType))) {
 | 
						|
 | 
						|
    llvm::SmallVector<Expr *> InitArgs;
 | 
						|
    for (auto Arg : Args) {
 | 
						|
      if (Arg->getType()->isExtVectorType()) {
 | 
						|
        const auto *VTy = Arg->getType()->castAs<ExtVectorType>();
 | 
						|
        unsigned Elm = VTy->getNumElements();
 | 
						|
        for (unsigned Idx = 0; Idx < Elm; ++Idx) {
 | 
						|
          InitArgs.emplace_back(new (Context) ArraySubscriptExpr(
 | 
						|
              Arg,
 | 
						|
              IntegerLiteral::Create(
 | 
						|
                  Context, llvm::APInt(Context.getIntWidth(Context.IntTy), Idx),
 | 
						|
                  Context.IntTy, SourceLocation()),
 | 
						|
              VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(),
 | 
						|
              SourceLocation()));
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        InitArgs.emplace_back(Arg);
 | 
						|
    }
 | 
						|
    InitListExpr *ILE = new (Context) InitListExpr(
 | 
						|
        S.getASTContext(), SourceLocation(), InitArgs, SourceLocation());
 | 
						|
    Args[0] = ILE;
 | 
						|
    AddListInitializationStep(DestType);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The remaining cases all need a source type.
 | 
						|
  if (Args.size() > 1) {
 | 
						|
    SetFailed(FK_TooManyInitsForScalar);
 | 
						|
    return;
 | 
						|
  } else if (isa<InitListExpr>(Args[0])) {
 | 
						|
    SetFailed(FK_ParenthesizedListInitForScalar);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //    - Otherwise, if the source type is a (possibly cv-qualified) class
 | 
						|
  //      type, conversion functions are considered.
 | 
						|
  if (!SourceType.isNull() && SourceType->isRecordType()) {
 | 
						|
    // For a conversion to _Atomic(T) from either T or a class type derived
 | 
						|
    // from T, initialize the T object then convert to _Atomic type.
 | 
						|
    bool NeedAtomicConversion = false;
 | 
						|
    if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
 | 
						|
      if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
 | 
						|
          S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
 | 
						|
                          Atomic->getValueType())) {
 | 
						|
        DestType = Atomic->getValueType();
 | 
						|
        NeedAtomicConversion = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
 | 
						|
                             TopLevelOfInitList);
 | 
						|
    MaybeProduceObjCObject(S, *this, Entity);
 | 
						|
    if (!Failed() && NeedAtomicConversion)
 | 
						|
      AddAtomicConversionStep(Entity.getType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //    - Otherwise, if the initialization is direct-initialization, the source
 | 
						|
  //    type is std::nullptr_t, and the destination type is bool, the initial
 | 
						|
  //    value of the object being initialized is false.
 | 
						|
  if (!SourceType.isNull() && SourceType->isNullPtrType() &&
 | 
						|
      DestType->isBooleanType() &&
 | 
						|
      Kind.getKind() == InitializationKind::IK_Direct) {
 | 
						|
    AddConversionSequenceStep(
 | 
						|
        ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
 | 
						|
                                                     Initializer->isGLValue()),
 | 
						|
        DestType);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //    - Otherwise, the initial value of the object being initialized is the
 | 
						|
  //      (possibly converted) value of the initializer expression. Standard
 | 
						|
  //      conversions (Clause 4) will be used, if necessary, to convert the
 | 
						|
  //      initializer expression to the cv-unqualified version of the
 | 
						|
  //      destination type; no user-defined conversions are considered.
 | 
						|
 | 
						|
  ImplicitConversionSequence ICS
 | 
						|
    = S.TryImplicitConversion(Initializer, DestType,
 | 
						|
                              /*SuppressUserConversions*/true,
 | 
						|
                              Sema::AllowedExplicit::None,
 | 
						|
                              /*InOverloadResolution*/ false,
 | 
						|
                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
 | 
						|
                              allowObjCWritebackConversion);
 | 
						|
 | 
						|
  if (ICS.isStandard() &&
 | 
						|
      ICS.Standard.Second == ICK_Writeback_Conversion) {
 | 
						|
    // Objective-C ARC writeback conversion.
 | 
						|
 | 
						|
    // We should copy unless we're passing to an argument explicitly
 | 
						|
    // marked 'out'.
 | 
						|
    bool ShouldCopy = true;
 | 
						|
    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
 | 
						|
      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
 | 
						|
 | 
						|
    // If there was an lvalue adjustment, add it as a separate conversion.
 | 
						|
    if (ICS.Standard.First == ICK_Array_To_Pointer ||
 | 
						|
        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
 | 
						|
      ImplicitConversionSequence LvalueICS;
 | 
						|
      LvalueICS.setStandard();
 | 
						|
      LvalueICS.Standard.setAsIdentityConversion();
 | 
						|
      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
 | 
						|
      LvalueICS.Standard.First = ICS.Standard.First;
 | 
						|
      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
 | 
						|
    }
 | 
						|
 | 
						|
    AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
 | 
						|
  } else if (ICS.isBad()) {
 | 
						|
    DeclAccessPair dap;
 | 
						|
    if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
 | 
						|
      AddZeroInitializationStep(Entity.getType());
 | 
						|
    } else if (Initializer->getType() == Context.OverloadTy &&
 | 
						|
               !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
 | 
						|
                                                     false, dap))
 | 
						|
      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | 
						|
    else if (Initializer->getType()->isFunctionType() &&
 | 
						|
             isExprAnUnaddressableFunction(S, Initializer))
 | 
						|
      SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
 | 
						|
    else
 | 
						|
      SetFailed(InitializationSequence::FK_ConversionFailed);
 | 
						|
  } else {
 | 
						|
    AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
 | 
						|
 | 
						|
    MaybeProduceObjCObject(S, *this, Entity);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
InitializationSequence::~InitializationSequence() {
 | 
						|
  for (auto &S : Steps)
 | 
						|
    S.Destroy();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Perform initialization
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
static Sema::AssignmentAction
 | 
						|
getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
 | 
						|
  switch(Entity.getKind()) {
 | 
						|
  case InitializedEntity::EK_Variable:
 | 
						|
  case InitializedEntity::EK_New:
 | 
						|
  case InitializedEntity::EK_Exception:
 | 
						|
  case InitializedEntity::EK_Base:
 | 
						|
  case InitializedEntity::EK_Delegating:
 | 
						|
    return Sema::AA_Initializing;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Parameter:
 | 
						|
    if (Entity.getDecl() &&
 | 
						|
        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
 | 
						|
      return Sema::AA_Sending;
 | 
						|
 | 
						|
    return Sema::AA_Passing;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Parameter_CF_Audited:
 | 
						|
    if (Entity.getDecl() &&
 | 
						|
      isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
 | 
						|
      return Sema::AA_Sending;
 | 
						|
 | 
						|
    return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Result:
 | 
						|
  case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
 | 
						|
    return Sema::AA_Returning;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Temporary:
 | 
						|
  case InitializedEntity::EK_RelatedResult:
 | 
						|
    // FIXME: Can we tell apart casting vs. converting?
 | 
						|
    return Sema::AA_Casting;
 | 
						|
 | 
						|
  case InitializedEntity::EK_TemplateParameter:
 | 
						|
    // This is really initialization, but refer to it as conversion for
 | 
						|
    // consistency with CheckConvertedConstantExpression.
 | 
						|
    return Sema::AA_Converting;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Member:
 | 
						|
  case InitializedEntity::EK_Binding:
 | 
						|
  case InitializedEntity::EK_ArrayElement:
 | 
						|
  case InitializedEntity::EK_VectorElement:
 | 
						|
  case InitializedEntity::EK_ComplexElement:
 | 
						|
  case InitializedEntity::EK_BlockElement:
 | 
						|
  case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
 | 
						|
  case InitializedEntity::EK_LambdaCapture:
 | 
						|
  case InitializedEntity::EK_CompoundLiteralInit:
 | 
						|
    return Sema::AA_Initializing;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid EntityKind!");
 | 
						|
}
 | 
						|
 | 
						|
/// Whether we should bind a created object as a temporary when
 | 
						|
/// initializing the given entity.
 | 
						|
static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
 | 
						|
  switch (Entity.getKind()) {
 | 
						|
  case InitializedEntity::EK_ArrayElement:
 | 
						|
  case InitializedEntity::EK_Member:
 | 
						|
  case InitializedEntity::EK_Result:
 | 
						|
  case InitializedEntity::EK_StmtExprResult:
 | 
						|
  case InitializedEntity::EK_New:
 | 
						|
  case InitializedEntity::EK_Variable:
 | 
						|
  case InitializedEntity::EK_Base:
 | 
						|
  case InitializedEntity::EK_Delegating:
 | 
						|
  case InitializedEntity::EK_VectorElement:
 | 
						|
  case InitializedEntity::EK_ComplexElement:
 | 
						|
  case InitializedEntity::EK_Exception:
 | 
						|
  case InitializedEntity::EK_BlockElement:
 | 
						|
  case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
 | 
						|
  case InitializedEntity::EK_LambdaCapture:
 | 
						|
  case InitializedEntity::EK_CompoundLiteralInit:
 | 
						|
  case InitializedEntity::EK_TemplateParameter:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case InitializedEntity::EK_Parameter:
 | 
						|
  case InitializedEntity::EK_Parameter_CF_Audited:
 | 
						|
  case InitializedEntity::EK_Temporary:
 | 
						|
  case InitializedEntity::EK_RelatedResult:
 | 
						|
  case InitializedEntity::EK_Binding:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("missed an InitializedEntity kind?");
 | 
						|
}
 | 
						|
 | 
						|
/// Whether the given entity, when initialized with an object
 | 
						|
/// created for that initialization, requires destruction.
 | 
						|
static bool shouldDestroyEntity(const InitializedEntity &Entity) {
 | 
						|
  switch (Entity.getKind()) {
 | 
						|
    case InitializedEntity::EK_Result:
 | 
						|
    case InitializedEntity::EK_StmtExprResult:
 | 
						|
    case InitializedEntity::EK_New:
 | 
						|
    case InitializedEntity::EK_Base:
 | 
						|
    case InitializedEntity::EK_Delegating:
 | 
						|
    case InitializedEntity::EK_VectorElement:
 | 
						|
    case InitializedEntity::EK_ComplexElement:
 | 
						|
    case InitializedEntity::EK_BlockElement:
 | 
						|
    case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
 | 
						|
    case InitializedEntity::EK_LambdaCapture:
 | 
						|
      return false;
 | 
						|
 | 
						|
    case InitializedEntity::EK_Member:
 | 
						|
    case InitializedEntity::EK_Binding:
 | 
						|
    case InitializedEntity::EK_Variable:
 | 
						|
    case InitializedEntity::EK_Parameter:
 | 
						|
    case InitializedEntity::EK_Parameter_CF_Audited:
 | 
						|
    case InitializedEntity::EK_TemplateParameter:
 | 
						|
    case InitializedEntity::EK_Temporary:
 | 
						|
    case InitializedEntity::EK_ArrayElement:
 | 
						|
    case InitializedEntity::EK_Exception:
 | 
						|
    case InitializedEntity::EK_CompoundLiteralInit:
 | 
						|
    case InitializedEntity::EK_RelatedResult:
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("missed an InitializedEntity kind?");
 | 
						|
}
 | 
						|
 | 
						|
/// Get the location at which initialization diagnostics should appear.
 | 
						|
static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
 | 
						|
                                           Expr *Initializer) {
 | 
						|
  switch (Entity.getKind()) {
 | 
						|
  case InitializedEntity::EK_Result:
 | 
						|
  case InitializedEntity::EK_StmtExprResult:
 | 
						|
    return Entity.getReturnLoc();
 | 
						|
 | 
						|
  case InitializedEntity::EK_Exception:
 | 
						|
    return Entity.getThrowLoc();
 | 
						|
 | 
						|
  case InitializedEntity::EK_Variable:
 | 
						|
  case InitializedEntity::EK_Binding:
 | 
						|
    return Entity.getDecl()->getLocation();
 | 
						|
 | 
						|
  case InitializedEntity::EK_LambdaCapture:
 | 
						|
    return Entity.getCaptureLoc();
 | 
						|
 | 
						|
  case InitializedEntity::EK_ArrayElement:
 | 
						|
  case InitializedEntity::EK_Member:
 | 
						|
  case InitializedEntity::EK_Parameter:
 | 
						|
  case InitializedEntity::EK_Parameter_CF_Audited:
 | 
						|
  case InitializedEntity::EK_TemplateParameter:
 | 
						|
  case InitializedEntity::EK_Temporary:
 | 
						|
  case InitializedEntity::EK_New:
 | 
						|
  case InitializedEntity::EK_Base:
 | 
						|
  case InitializedEntity::EK_Delegating:
 | 
						|
  case InitializedEntity::EK_VectorElement:
 | 
						|
  case InitializedEntity::EK_ComplexElement:
 | 
						|
  case InitializedEntity::EK_BlockElement:
 | 
						|
  case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
 | 
						|
  case InitializedEntity::EK_CompoundLiteralInit:
 | 
						|
  case InitializedEntity::EK_RelatedResult:
 | 
						|
    return Initializer->getBeginLoc();
 | 
						|
  }
 | 
						|
  llvm_unreachable("missed an InitializedEntity kind?");
 | 
						|
}
 | 
						|
 | 
						|
/// Make a (potentially elidable) temporary copy of the object
 | 
						|
/// provided by the given initializer by calling the appropriate copy
 | 
						|
/// constructor.
 | 
						|
///
 | 
						|
/// \param S The Sema object used for type-checking.
 | 
						|
///
 | 
						|
/// \param T The type of the temporary object, which must either be
 | 
						|
/// the type of the initializer expression or a superclass thereof.
 | 
						|
///
 | 
						|
/// \param Entity The entity being initialized.
 | 
						|
///
 | 
						|
/// \param CurInit The initializer expression.
 | 
						|
///
 | 
						|
/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
 | 
						|
/// is permitted in C++03 (but not C++0x) when binding a reference to
 | 
						|
/// an rvalue.
 | 
						|
///
 | 
						|
/// \returns An expression that copies the initializer expression into
 | 
						|
/// a temporary object, or an error expression if a copy could not be
 | 
						|
/// created.
 | 
						|
static ExprResult CopyObject(Sema &S,
 | 
						|
                             QualType T,
 | 
						|
                             const InitializedEntity &Entity,
 | 
						|
                             ExprResult CurInit,
 | 
						|
                             bool IsExtraneousCopy) {
 | 
						|
  if (CurInit.isInvalid())
 | 
						|
    return CurInit;
 | 
						|
  // Determine which class type we're copying to.
 | 
						|
  Expr *CurInitExpr = (Expr *)CurInit.get();
 | 
						|
  CXXRecordDecl *Class = nullptr;
 | 
						|
  if (const RecordType *Record = T->getAs<RecordType>())
 | 
						|
    Class = cast<CXXRecordDecl>(Record->getDecl());
 | 
						|
  if (!Class)
 | 
						|
    return CurInit;
 | 
						|
 | 
						|
  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
 | 
						|
 | 
						|
  // Make sure that the type we are copying is complete.
 | 
						|
  if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
 | 
						|
    return CurInit;
 | 
						|
 | 
						|
  // Perform overload resolution using the class's constructors. Per
 | 
						|
  // C++11 [dcl.init]p16, second bullet for class types, this initialization
 | 
						|
  // is direct-initialization.
 | 
						|
  OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
 | 
						|
  DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
 | 
						|
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (ResolveConstructorOverload(
 | 
						|
      S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
 | 
						|
      /*CopyInitializing=*/false, /*AllowExplicit=*/true,
 | 
						|
      /*OnlyListConstructors=*/false, /*IsListInit=*/false,
 | 
						|
      /*SecondStepOfCopyInit=*/true)) {
 | 
						|
  case OR_Success:
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    CandidateSet.NoteCandidates(
 | 
						|
        PartialDiagnosticAt(
 | 
						|
            Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
 | 
						|
                             ? diag::ext_rvalue_to_reference_temp_copy_no_viable
 | 
						|
                             : diag::err_temp_copy_no_viable)
 | 
						|
                     << (int)Entity.getKind() << CurInitExpr->getType()
 | 
						|
                     << CurInitExpr->getSourceRange()),
 | 
						|
        S, OCD_AllCandidates, CurInitExpr);
 | 
						|
    if (!IsExtraneousCopy || S.isSFINAEContext())
 | 
						|
      return ExprError();
 | 
						|
    return CurInit;
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    CandidateSet.NoteCandidates(
 | 
						|
        PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
 | 
						|
                                     << (int)Entity.getKind()
 | 
						|
                                     << CurInitExpr->getType()
 | 
						|
                                     << CurInitExpr->getSourceRange()),
 | 
						|
        S, OCD_AmbiguousCandidates, CurInitExpr);
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  case OR_Deleted:
 | 
						|
    S.Diag(Loc, diag::err_temp_copy_deleted)
 | 
						|
      << (int)Entity.getKind() << CurInitExpr->getType()
 | 
						|
      << CurInitExpr->getSourceRange();
 | 
						|
    S.NoteDeletedFunction(Best->Function);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  bool HadMultipleCandidates = CandidateSet.size() > 1;
 | 
						|
 | 
						|
  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
 | 
						|
  SmallVector<Expr*, 8> ConstructorArgs;
 | 
						|
  CurInit.get(); // Ownership transferred into MultiExprArg, below.
 | 
						|
 | 
						|
  S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
 | 
						|
                           IsExtraneousCopy);
 | 
						|
 | 
						|
  if (IsExtraneousCopy) {
 | 
						|
    // If this is a totally extraneous copy for C++03 reference
 | 
						|
    // binding purposes, just return the original initialization
 | 
						|
    // expression. We don't generate an (elided) copy operation here
 | 
						|
    // because doing so would require us to pass down a flag to avoid
 | 
						|
    // infinite recursion, where each step adds another extraneous,
 | 
						|
    // elidable copy.
 | 
						|
 | 
						|
    // Instantiate the default arguments of any extra parameters in
 | 
						|
    // the selected copy constructor, as if we were going to create a
 | 
						|
    // proper call to the copy constructor.
 | 
						|
    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
 | 
						|
      ParmVarDecl *Parm = Constructor->getParamDecl(I);
 | 
						|
      if (S.RequireCompleteType(Loc, Parm->getType(),
 | 
						|
                                diag::err_call_incomplete_argument))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Build the default argument expression; we don't actually care
 | 
						|
      // if this succeeds or not, because this routine will complain
 | 
						|
      // if there was a problem.
 | 
						|
      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
 | 
						|
    }
 | 
						|
 | 
						|
    return CurInitExpr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine the arguments required to actually perform the
 | 
						|
  // constructor call (we might have derived-to-base conversions, or
 | 
						|
  // the copy constructor may have default arguments).
 | 
						|
  if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
 | 
						|
                                ConstructorArgs))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // C++0x [class.copy]p32:
 | 
						|
  //   When certain criteria are met, an implementation is allowed to
 | 
						|
  //   omit the copy/move construction of a class object, even if the
 | 
						|
  //   copy/move constructor and/or destructor for the object have
 | 
						|
  //   side effects. [...]
 | 
						|
  //     - when a temporary class object that has not been bound to a
 | 
						|
  //       reference (12.2) would be copied/moved to a class object
 | 
						|
  //       with the same cv-unqualified type, the copy/move operation
 | 
						|
  //       can be omitted by constructing the temporary object
 | 
						|
  //       directly into the target of the omitted copy/move
 | 
						|
  //
 | 
						|
  // Note that the other three bullets are handled elsewhere. Copy
 | 
						|
  // elision for return statements and throw expressions are handled as part
 | 
						|
  // of constructor initialization, while copy elision for exception handlers
 | 
						|
  // is handled by the run-time.
 | 
						|
  //
 | 
						|
  // FIXME: If the function parameter is not the same type as the temporary, we
 | 
						|
  // should still be able to elide the copy, but we don't have a way to
 | 
						|
  // represent in the AST how much should be elided in this case.
 | 
						|
  bool Elidable =
 | 
						|
      CurInitExpr->isTemporaryObject(S.Context, Class) &&
 | 
						|
      S.Context.hasSameUnqualifiedType(
 | 
						|
          Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
 | 
						|
          CurInitExpr->getType());
 | 
						|
 | 
						|
  // Actually perform the constructor call.
 | 
						|
  CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
 | 
						|
                                    Elidable,
 | 
						|
                                    ConstructorArgs,
 | 
						|
                                    HadMultipleCandidates,
 | 
						|
                                    /*ListInit*/ false,
 | 
						|
                                    /*StdInitListInit*/ false,
 | 
						|
                                    /*ZeroInit*/ false,
 | 
						|
                                    CXXConstructExpr::CK_Complete,
 | 
						|
                                    SourceRange());
 | 
						|
 | 
						|
  // If we're supposed to bind temporaries, do so.
 | 
						|
  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
 | 
						|
    CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
 | 
						|
  return CurInit;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether elidable copy construction for binding a reference to
 | 
						|
/// a temporary would have succeeded if we were building in C++98 mode, for
 | 
						|
/// -Wc++98-compat.
 | 
						|
static void CheckCXX98CompatAccessibleCopy(Sema &S,
 | 
						|
                                           const InitializedEntity &Entity,
 | 
						|
                                           Expr *CurInitExpr) {
 | 
						|
  assert(S.getLangOpts().CPlusPlus11);
 | 
						|
 | 
						|
  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
 | 
						|
  if (!Record)
 | 
						|
    return;
 | 
						|
 | 
						|
  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
 | 
						|
  if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Find constructors which would have been considered.
 | 
						|
  OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
 | 
						|
  DeclContext::lookup_result Ctors =
 | 
						|
      S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
 | 
						|
 | 
						|
  // Perform overload resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  OverloadingResult OR = ResolveConstructorOverload(
 | 
						|
      S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
 | 
						|
      /*CopyInitializing=*/false, /*AllowExplicit=*/true,
 | 
						|
      /*OnlyListConstructors=*/false, /*IsListInit=*/false,
 | 
						|
      /*SecondStepOfCopyInit=*/true);
 | 
						|
 | 
						|
  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
 | 
						|
    << OR << (int)Entity.getKind() << CurInitExpr->getType()
 | 
						|
    << CurInitExpr->getSourceRange();
 | 
						|
 | 
						|
  switch (OR) {
 | 
						|
  case OR_Success:
 | 
						|
    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
 | 
						|
                             Best->FoundDecl, Entity, Diag);
 | 
						|
    // FIXME: Check default arguments as far as that's possible.
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
 | 
						|
                                OCD_AllCandidates, CurInitExpr);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
 | 
						|
                                OCD_AmbiguousCandidates, CurInitExpr);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_Deleted:
 | 
						|
    S.Diag(Loc, Diag);
 | 
						|
    S.NoteDeletedFunction(Best->Function);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::PrintInitLocationNote(Sema &S,
 | 
						|
                                              const InitializedEntity &Entity) {
 | 
						|
  if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
 | 
						|
    if (Entity.getDecl()->getLocation().isInvalid())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (Entity.getDecl()->getDeclName())
 | 
						|
      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
 | 
						|
        << Entity.getDecl()->getDeclName();
 | 
						|
    else
 | 
						|
      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
 | 
						|
  }
 | 
						|
  else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
 | 
						|
           Entity.getMethodDecl())
 | 
						|
    S.Diag(Entity.getMethodDecl()->getLocation(),
 | 
						|
           diag::note_method_return_type_change)
 | 
						|
      << Entity.getMethodDecl()->getDeclName();
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the parameters describe a constructor initialization of
 | 
						|
/// an explicit temporary object, e.g. "Point(x, y)".
 | 
						|
static bool isExplicitTemporary(const InitializedEntity &Entity,
 | 
						|
                                const InitializationKind &Kind,
 | 
						|
                                unsigned NumArgs) {
 | 
						|
  switch (Entity.getKind()) {
 | 
						|
  case InitializedEntity::EK_Temporary:
 | 
						|
  case InitializedEntity::EK_CompoundLiteralInit:
 | 
						|
  case InitializedEntity::EK_RelatedResult:
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Kind.getKind()) {
 | 
						|
  case InitializationKind::IK_DirectList:
 | 
						|
    return true;
 | 
						|
  // FIXME: Hack to work around cast weirdness.
 | 
						|
  case InitializationKind::IK_Direct:
 | 
						|
  case InitializationKind::IK_Value:
 | 
						|
    return NumArgs != 1;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static ExprResult
 | 
						|
PerformConstructorInitialization(Sema &S,
 | 
						|
                                 const InitializedEntity &Entity,
 | 
						|
                                 const InitializationKind &Kind,
 | 
						|
                                 MultiExprArg Args,
 | 
						|
                                 const InitializationSequence::Step& Step,
 | 
						|
                                 bool &ConstructorInitRequiresZeroInit,
 | 
						|
                                 bool IsListInitialization,
 | 
						|
                                 bool IsStdInitListInitialization,
 | 
						|
                                 SourceLocation LBraceLoc,
 | 
						|
                                 SourceLocation RBraceLoc) {
 | 
						|
  unsigned NumArgs = Args.size();
 | 
						|
  CXXConstructorDecl *Constructor
 | 
						|
    = cast<CXXConstructorDecl>(Step.Function.Function);
 | 
						|
  bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
 | 
						|
 | 
						|
  // Build a call to the selected constructor.
 | 
						|
  SmallVector<Expr*, 8> ConstructorArgs;
 | 
						|
  SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
 | 
						|
                         ? Kind.getEqualLoc()
 | 
						|
                         : Kind.getLocation();
 | 
						|
 | 
						|
  if (Kind.getKind() == InitializationKind::IK_Default) {
 | 
						|
    // Force even a trivial, implicit default constructor to be
 | 
						|
    // semantically checked. We do this explicitly because we don't build
 | 
						|
    // the definition for completely trivial constructors.
 | 
						|
    assert(Constructor->getParent() && "No parent class for constructor.");
 | 
						|
    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
 | 
						|
        Constructor->isTrivial() && !Constructor->isUsed(false)) {
 | 
						|
      S.runWithSufficientStackSpace(Loc, [&] {
 | 
						|
        S.DefineImplicitDefaultConstructor(Loc, Constructor);
 | 
						|
      });
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult CurInit((Expr *)nullptr);
 | 
						|
 | 
						|
  // C++ [over.match.copy]p1:
 | 
						|
  //   - When initializing a temporary to be bound to the first parameter
 | 
						|
  //     of a constructor that takes a reference to possibly cv-qualified
 | 
						|
  //     T as its first argument, called with a single argument in the
 | 
						|
  //     context of direct-initialization, explicit conversion functions
 | 
						|
  //     are also considered.
 | 
						|
  bool AllowExplicitConv =
 | 
						|
      Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
 | 
						|
      hasCopyOrMoveCtorParam(S.Context,
 | 
						|
                             getConstructorInfo(Step.Function.FoundDecl));
 | 
						|
 | 
						|
  // Determine the arguments required to actually perform the constructor
 | 
						|
  // call.
 | 
						|
  if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
 | 
						|
                                ConstructorArgs, AllowExplicitConv,
 | 
						|
                                IsListInitialization))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (isExplicitTemporary(Entity, Kind, NumArgs)) {
 | 
						|
    // An explicitly-constructed temporary, e.g., X(1, 2).
 | 
						|
    if (S.DiagnoseUseOfDecl(Constructor, Loc))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
 | 
						|
    if (!TSInfo)
 | 
						|
      TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
 | 
						|
    SourceRange ParenOrBraceRange =
 | 
						|
        (Kind.getKind() == InitializationKind::IK_DirectList)
 | 
						|
        ? SourceRange(LBraceLoc, RBraceLoc)
 | 
						|
        : Kind.getParenOrBraceRange();
 | 
						|
 | 
						|
    CXXConstructorDecl *CalleeDecl = Constructor;
 | 
						|
    if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
 | 
						|
            Step.Function.FoundDecl.getDecl())) {
 | 
						|
      CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
 | 
						|
      if (S.DiagnoseUseOfDecl(CalleeDecl, Loc))
 | 
						|
        return ExprError();
 | 
						|
    }
 | 
						|
    S.MarkFunctionReferenced(Loc, CalleeDecl);
 | 
						|
 | 
						|
    CurInit = S.CheckForImmediateInvocation(
 | 
						|
        CXXTemporaryObjectExpr::Create(
 | 
						|
            S.Context, CalleeDecl,
 | 
						|
            Entity.getType().getNonLValueExprType(S.Context), TSInfo,
 | 
						|
            ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
 | 
						|
            IsListInitialization, IsStdInitListInitialization,
 | 
						|
            ConstructorInitRequiresZeroInit),
 | 
						|
        CalleeDecl);
 | 
						|
  } else {
 | 
						|
    CXXConstructExpr::ConstructionKind ConstructKind =
 | 
						|
      CXXConstructExpr::CK_Complete;
 | 
						|
 | 
						|
    if (Entity.getKind() == InitializedEntity::EK_Base) {
 | 
						|
      ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
 | 
						|
        CXXConstructExpr::CK_VirtualBase :
 | 
						|
        CXXConstructExpr::CK_NonVirtualBase;
 | 
						|
    } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
 | 
						|
      ConstructKind = CXXConstructExpr::CK_Delegating;
 | 
						|
    }
 | 
						|
 | 
						|
    // Only get the parenthesis or brace range if it is a list initialization or
 | 
						|
    // direct construction.
 | 
						|
    SourceRange ParenOrBraceRange;
 | 
						|
    if (IsListInitialization)
 | 
						|
      ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
 | 
						|
    else if (Kind.getKind() == InitializationKind::IK_Direct)
 | 
						|
      ParenOrBraceRange = Kind.getParenOrBraceRange();
 | 
						|
 | 
						|
    // If the entity allows NRVO, mark the construction as elidable
 | 
						|
    // unconditionally.
 | 
						|
    if (Entity.allowsNRVO())
 | 
						|
      CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
 | 
						|
                                        Step.Function.FoundDecl,
 | 
						|
                                        Constructor, /*Elidable=*/true,
 | 
						|
                                        ConstructorArgs,
 | 
						|
                                        HadMultipleCandidates,
 | 
						|
                                        IsListInitialization,
 | 
						|
                                        IsStdInitListInitialization,
 | 
						|
                                        ConstructorInitRequiresZeroInit,
 | 
						|
                                        ConstructKind,
 | 
						|
                                        ParenOrBraceRange);
 | 
						|
    else
 | 
						|
      CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
 | 
						|
                                        Step.Function.FoundDecl,
 | 
						|
                                        Constructor,
 | 
						|
                                        ConstructorArgs,
 | 
						|
                                        HadMultipleCandidates,
 | 
						|
                                        IsListInitialization,
 | 
						|
                                        IsStdInitListInitialization,
 | 
						|
                                        ConstructorInitRequiresZeroInit,
 | 
						|
                                        ConstructKind,
 | 
						|
                                        ParenOrBraceRange);
 | 
						|
  }
 | 
						|
  if (CurInit.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Only check access if all of that succeeded.
 | 
						|
  S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
 | 
						|
  if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
 | 
						|
    if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
  if (shouldBindAsTemporary(Entity))
 | 
						|
    CurInit = S.MaybeBindToTemporary(CurInit.get());
 | 
						|
 | 
						|
  return CurInit;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
enum LifetimeKind {
 | 
						|
  /// The lifetime of a temporary bound to this entity ends at the end of the
 | 
						|
  /// full-expression, and that's (probably) fine.
 | 
						|
  LK_FullExpression,
 | 
						|
 | 
						|
  /// The lifetime of a temporary bound to this entity is extended to the
 | 
						|
  /// lifeitme of the entity itself.
 | 
						|
  LK_Extended,
 | 
						|
 | 
						|
  /// The lifetime of a temporary bound to this entity probably ends too soon,
 | 
						|
  /// because the entity is allocated in a new-expression.
 | 
						|
  LK_New,
 | 
						|
 | 
						|
  /// The lifetime of a temporary bound to this entity ends too soon, because
 | 
						|
  /// the entity is a return object.
 | 
						|
  LK_Return,
 | 
						|
 | 
						|
  /// The lifetime of a temporary bound to this entity ends too soon, because
 | 
						|
  /// the entity is the result of a statement expression.
 | 
						|
  LK_StmtExprResult,
 | 
						|
 | 
						|
  /// This is a mem-initializer: if it would extend a temporary (other than via
 | 
						|
  /// a default member initializer), the program is ill-formed.
 | 
						|
  LK_MemInitializer,
 | 
						|
};
 | 
						|
using LifetimeResult =
 | 
						|
    llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine the declaration which an initialized entity ultimately refers to,
 | 
						|
/// for the purpose of lifetime-extending a temporary bound to a reference in
 | 
						|
/// the initialization of \p Entity.
 | 
						|
static LifetimeResult getEntityLifetime(
 | 
						|
    const InitializedEntity *Entity,
 | 
						|
    const InitializedEntity *InitField = nullptr) {
 | 
						|
  // C++11 [class.temporary]p5:
 | 
						|
  switch (Entity->getKind()) {
 | 
						|
  case InitializedEntity::EK_Variable:
 | 
						|
    //   The temporary [...] persists for the lifetime of the reference
 | 
						|
    return {Entity, LK_Extended};
 | 
						|
 | 
						|
  case InitializedEntity::EK_Member:
 | 
						|
    // For subobjects, we look at the complete object.
 | 
						|
    if (Entity->getParent())
 | 
						|
      return getEntityLifetime(Entity->getParent(), Entity);
 | 
						|
 | 
						|
    //   except:
 | 
						|
    // C++17 [class.base.init]p8:
 | 
						|
    //   A temporary expression bound to a reference member in a
 | 
						|
    //   mem-initializer is ill-formed.
 | 
						|
    // C++17 [class.base.init]p11:
 | 
						|
    //   A temporary expression bound to a reference member from a
 | 
						|
    //   default member initializer is ill-formed.
 | 
						|
    //
 | 
						|
    // The context of p11 and its example suggest that it's only the use of a
 | 
						|
    // default member initializer from a constructor that makes the program
 | 
						|
    // ill-formed, not its mere existence, and that it can even be used by
 | 
						|
    // aggregate initialization.
 | 
						|
    return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
 | 
						|
                                                         : LK_MemInitializer};
 | 
						|
 | 
						|
  case InitializedEntity::EK_Binding:
 | 
						|
    // Per [dcl.decomp]p3, the binding is treated as a variable of reference
 | 
						|
    // type.
 | 
						|
    return {Entity, LK_Extended};
 | 
						|
 | 
						|
  case InitializedEntity::EK_Parameter:
 | 
						|
  case InitializedEntity::EK_Parameter_CF_Audited:
 | 
						|
    //   -- A temporary bound to a reference parameter in a function call
 | 
						|
    //      persists until the completion of the full-expression containing
 | 
						|
    //      the call.
 | 
						|
    return {nullptr, LK_FullExpression};
 | 
						|
 | 
						|
  case InitializedEntity::EK_TemplateParameter:
 | 
						|
    // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
 | 
						|
    return {nullptr, LK_FullExpression};
 | 
						|
 | 
						|
  case InitializedEntity::EK_Result:
 | 
						|
    //   -- The lifetime of a temporary bound to the returned value in a
 | 
						|
    //      function return statement is not extended; the temporary is
 | 
						|
    //      destroyed at the end of the full-expression in the return statement.
 | 
						|
    return {nullptr, LK_Return};
 | 
						|
 | 
						|
  case InitializedEntity::EK_StmtExprResult:
 | 
						|
    // FIXME: Should we lifetime-extend through the result of a statement
 | 
						|
    // expression?
 | 
						|
    return {nullptr, LK_StmtExprResult};
 | 
						|
 | 
						|
  case InitializedEntity::EK_New:
 | 
						|
    //   -- A temporary bound to a reference in a new-initializer persists
 | 
						|
    //      until the completion of the full-expression containing the
 | 
						|
    //      new-initializer.
 | 
						|
    return {nullptr, LK_New};
 | 
						|
 | 
						|
  case InitializedEntity::EK_Temporary:
 | 
						|
  case InitializedEntity::EK_CompoundLiteralInit:
 | 
						|
  case InitializedEntity::EK_RelatedResult:
 | 
						|
    // We don't yet know the storage duration of the surrounding temporary.
 | 
						|
    // Assume it's got full-expression duration for now, it will patch up our
 | 
						|
    // storage duration if that's not correct.
 | 
						|
    return {nullptr, LK_FullExpression};
 | 
						|
 | 
						|
  case InitializedEntity::EK_ArrayElement:
 | 
						|
    // For subobjects, we look at the complete object.
 | 
						|
    return getEntityLifetime(Entity->getParent(), InitField);
 | 
						|
 | 
						|
  case InitializedEntity::EK_Base:
 | 
						|
    // For subobjects, we look at the complete object.
 | 
						|
    if (Entity->getParent())
 | 
						|
      return getEntityLifetime(Entity->getParent(), InitField);
 | 
						|
    return {InitField, LK_MemInitializer};
 | 
						|
 | 
						|
  case InitializedEntity::EK_Delegating:
 | 
						|
    // We can reach this case for aggregate initialization in a constructor:
 | 
						|
    //   struct A { int &&r; };
 | 
						|
    //   struct B : A { B() : A{0} {} };
 | 
						|
    // In this case, use the outermost field decl as the context.
 | 
						|
    return {InitField, LK_MemInitializer};
 | 
						|
 | 
						|
  case InitializedEntity::EK_BlockElement:
 | 
						|
  case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
 | 
						|
  case InitializedEntity::EK_LambdaCapture:
 | 
						|
  case InitializedEntity::EK_VectorElement:
 | 
						|
  case InitializedEntity::EK_ComplexElement:
 | 
						|
    return {nullptr, LK_FullExpression};
 | 
						|
 | 
						|
  case InitializedEntity::EK_Exception:
 | 
						|
    // FIXME: Can we diagnose lifetime problems with exceptions?
 | 
						|
    return {nullptr, LK_FullExpression};
 | 
						|
  }
 | 
						|
  llvm_unreachable("unknown entity kind");
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
enum ReferenceKind {
 | 
						|
  /// Lifetime would be extended by a reference binding to a temporary.
 | 
						|
  RK_ReferenceBinding,
 | 
						|
  /// Lifetime would be extended by a std::initializer_list object binding to
 | 
						|
  /// its backing array.
 | 
						|
  RK_StdInitializerList,
 | 
						|
};
 | 
						|
 | 
						|
/// A temporary or local variable. This will be one of:
 | 
						|
///  * A MaterializeTemporaryExpr.
 | 
						|
///  * A DeclRefExpr whose declaration is a local.
 | 
						|
///  * An AddrLabelExpr.
 | 
						|
///  * A BlockExpr for a block with captures.
 | 
						|
using Local = Expr*;
 | 
						|
 | 
						|
/// Expressions we stepped over when looking for the local state. Any steps
 | 
						|
/// that would inhibit lifetime extension or take us out of subexpressions of
 | 
						|
/// the initializer are included.
 | 
						|
struct IndirectLocalPathEntry {
 | 
						|
  enum EntryKind {
 | 
						|
    DefaultInit,
 | 
						|
    AddressOf,
 | 
						|
    VarInit,
 | 
						|
    LValToRVal,
 | 
						|
    LifetimeBoundCall,
 | 
						|
    TemporaryCopy,
 | 
						|
    LambdaCaptureInit,
 | 
						|
    GslReferenceInit,
 | 
						|
    GslPointerInit
 | 
						|
  } Kind;
 | 
						|
  Expr *E;
 | 
						|
  union {
 | 
						|
    const Decl *D = nullptr;
 | 
						|
    const LambdaCapture *Capture;
 | 
						|
  };
 | 
						|
  IndirectLocalPathEntry() {}
 | 
						|
  IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
 | 
						|
  IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
 | 
						|
      : Kind(K), E(E), D(D) {}
 | 
						|
  IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
 | 
						|
      : Kind(K), E(E), Capture(Capture) {}
 | 
						|
};
 | 
						|
 | 
						|
using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
 | 
						|
 | 
						|
struct RevertToOldSizeRAII {
 | 
						|
  IndirectLocalPath &Path;
 | 
						|
  unsigned OldSize = Path.size();
 | 
						|
  RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
 | 
						|
  ~RevertToOldSizeRAII() { Path.resize(OldSize); }
 | 
						|
};
 | 
						|
 | 
						|
using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
 | 
						|
                                             ReferenceKind RK)>;
 | 
						|
}
 | 
						|
 | 
						|
static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
 | 
						|
  for (auto E : Path)
 | 
						|
    if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool pathContainsInit(IndirectLocalPath &Path) {
 | 
						|
  return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
 | 
						|
    return E.Kind == IndirectLocalPathEntry::DefaultInit ||
 | 
						|
           E.Kind == IndirectLocalPathEntry::VarInit;
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
 | 
						|
                                             Expr *Init, LocalVisitor Visit,
 | 
						|
                                             bool RevisitSubinits,
 | 
						|
                                             bool EnableLifetimeWarnings);
 | 
						|
 | 
						|
static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
 | 
						|
                                                  Expr *Init, ReferenceKind RK,
 | 
						|
                                                  LocalVisitor Visit,
 | 
						|
                                                  bool EnableLifetimeWarnings);
 | 
						|
 | 
						|
template <typename T> static bool isRecordWithAttr(QualType Type) {
 | 
						|
  if (auto *RD = Type->getAsCXXRecordDecl())
 | 
						|
    return RD->hasAttr<T>();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Decl::isInStdNamespace will return false for iterators in some STL
 | 
						|
// implementations due to them being defined in a namespace outside of the std
 | 
						|
// namespace.
 | 
						|
static bool isInStlNamespace(const Decl *D) {
 | 
						|
  const DeclContext *DC = D->getDeclContext();
 | 
						|
  if (!DC)
 | 
						|
    return false;
 | 
						|
  if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
 | 
						|
    if (const IdentifierInfo *II = ND->getIdentifier()) {
 | 
						|
      StringRef Name = II->getName();
 | 
						|
      if (Name.size() >= 2 && Name.front() == '_' &&
 | 
						|
          (Name[1] == '_' || isUppercase(Name[1])))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
  return DC->isStdNamespace();
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
 | 
						|
  if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
 | 
						|
    if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
 | 
						|
      return true;
 | 
						|
  if (!isInStlNamespace(Callee->getParent()))
 | 
						|
    return false;
 | 
						|
  if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
 | 
						|
      !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
 | 
						|
    return false;
 | 
						|
  if (Callee->getReturnType()->isPointerType() ||
 | 
						|
      isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
 | 
						|
    if (!Callee->getIdentifier())
 | 
						|
      return false;
 | 
						|
    return llvm::StringSwitch<bool>(Callee->getName())
 | 
						|
        .Cases("begin", "rbegin", "cbegin", "crbegin", true)
 | 
						|
        .Cases("end", "rend", "cend", "crend", true)
 | 
						|
        .Cases("c_str", "data", "get", true)
 | 
						|
        // Map and set types.
 | 
						|
        .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
 | 
						|
        .Default(false);
 | 
						|
  } else if (Callee->getReturnType()->isReferenceType()) {
 | 
						|
    if (!Callee->getIdentifier()) {
 | 
						|
      auto OO = Callee->getOverloadedOperator();
 | 
						|
      return OO == OverloadedOperatorKind::OO_Subscript ||
 | 
						|
             OO == OverloadedOperatorKind::OO_Star;
 | 
						|
    }
 | 
						|
    return llvm::StringSwitch<bool>(Callee->getName())
 | 
						|
        .Cases("front", "back", "at", "top", "value", true)
 | 
						|
        .Default(false);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
 | 
						|
  if (!FD->getIdentifier() || FD->getNumParams() != 1)
 | 
						|
    return false;
 | 
						|
  const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
 | 
						|
  if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
 | 
						|
    return false;
 | 
						|
  if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
 | 
						|
      !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
 | 
						|
    return false;
 | 
						|
  if (FD->getReturnType()->isPointerType() ||
 | 
						|
      isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
 | 
						|
    return llvm::StringSwitch<bool>(FD->getName())
 | 
						|
        .Cases("begin", "rbegin", "cbegin", "crbegin", true)
 | 
						|
        .Cases("end", "rend", "cend", "crend", true)
 | 
						|
        .Case("data", true)
 | 
						|
        .Default(false);
 | 
						|
  } else if (FD->getReturnType()->isReferenceType()) {
 | 
						|
    return llvm::StringSwitch<bool>(FD->getName())
 | 
						|
        .Cases("get", "any_cast", true)
 | 
						|
        .Default(false);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
 | 
						|
                                    LocalVisitor Visit) {
 | 
						|
  auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
 | 
						|
    // We are not interested in the temporary base objects of gsl Pointers:
 | 
						|
    //   Temp().ptr; // Here ptr might not dangle.
 | 
						|
    if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
 | 
						|
      return;
 | 
						|
    // Once we initialized a value with a reference, it can no longer dangle.
 | 
						|
    if (!Value) {
 | 
						|
      for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) {
 | 
						|
        if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit)
 | 
						|
          continue;
 | 
						|
        if (PE.Kind == IndirectLocalPathEntry::GslPointerInit)
 | 
						|
          return;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
 | 
						|
                          : IndirectLocalPathEntry::GslReferenceInit,
 | 
						|
                    Arg, D});
 | 
						|
    if (Arg->isGLValue())
 | 
						|
      visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
 | 
						|
                                            Visit,
 | 
						|
                                            /*EnableLifetimeWarnings=*/true);
 | 
						|
    else
 | 
						|
      visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
 | 
						|
                                       /*EnableLifetimeWarnings=*/true);
 | 
						|
    Path.pop_back();
 | 
						|
  };
 | 
						|
 | 
						|
  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
 | 
						|
    const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
 | 
						|
    if (MD && shouldTrackImplicitObjectArg(MD))
 | 
						|
      VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
 | 
						|
                      !MD->getReturnType()->isReferenceType());
 | 
						|
    return;
 | 
						|
  } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
 | 
						|
    FunctionDecl *Callee = OCE->getDirectCallee();
 | 
						|
    if (Callee && Callee->isCXXInstanceMember() &&
 | 
						|
        shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
 | 
						|
      VisitPointerArg(Callee, OCE->getArg(0),
 | 
						|
                      !Callee->getReturnType()->isReferenceType());
 | 
						|
    return;
 | 
						|
  } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
 | 
						|
    FunctionDecl *Callee = CE->getDirectCallee();
 | 
						|
    if (Callee && shouldTrackFirstArgument(Callee))
 | 
						|
      VisitPointerArg(Callee, CE->getArg(0),
 | 
						|
                      !Callee->getReturnType()->isReferenceType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
 | 
						|
    const auto *Ctor = CCE->getConstructor();
 | 
						|
    const CXXRecordDecl *RD = Ctor->getParent();
 | 
						|
    if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
 | 
						|
      VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
 | 
						|
  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
 | 
						|
  if (!TSI)
 | 
						|
    return false;
 | 
						|
  // Don't declare this variable in the second operand of the for-statement;
 | 
						|
  // GCC miscompiles that by ending its lifetime before evaluating the
 | 
						|
  // third operand. See gcc.gnu.org/PR86769.
 | 
						|
  AttributedTypeLoc ATL;
 | 
						|
  for (TypeLoc TL = TSI->getTypeLoc();
 | 
						|
       (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
 | 
						|
       TL = ATL.getModifiedLoc()) {
 | 
						|
    if (ATL.getAttrAs<LifetimeBoundAttr>())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Assume that all assignment operators with a "normal" return type return
 | 
						|
  // *this, that is, an lvalue reference that is the same type as the implicit
 | 
						|
  // object parameter (or the LHS for a non-member operator$=).
 | 
						|
  OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
 | 
						|
  if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
 | 
						|
    QualType RetT = FD->getReturnType();
 | 
						|
    if (RetT->isLValueReferenceType()) {
 | 
						|
      ASTContext &Ctx = FD->getASTContext();
 | 
						|
      QualType LHST;
 | 
						|
      auto *MD = dyn_cast<CXXMethodDecl>(FD);
 | 
						|
      if (MD && MD->isCXXInstanceMember())
 | 
						|
        LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
 | 
						|
      else
 | 
						|
        LHST = MD->getParamDecl(0)->getType();
 | 
						|
      if (Ctx.hasSameType(RetT, LHST))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
 | 
						|
                                        LocalVisitor Visit) {
 | 
						|
  const FunctionDecl *Callee;
 | 
						|
  ArrayRef<Expr*> Args;
 | 
						|
 | 
						|
  if (auto *CE = dyn_cast<CallExpr>(Call)) {
 | 
						|
    Callee = CE->getDirectCallee();
 | 
						|
    Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
 | 
						|
  } else {
 | 
						|
    auto *CCE = cast<CXXConstructExpr>(Call);
 | 
						|
    Callee = CCE->getConstructor();
 | 
						|
    Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
 | 
						|
  }
 | 
						|
  if (!Callee)
 | 
						|
    return;
 | 
						|
 | 
						|
  Expr *ObjectArg = nullptr;
 | 
						|
  if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
 | 
						|
    ObjectArg = Args[0];
 | 
						|
    Args = Args.slice(1);
 | 
						|
  } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
 | 
						|
    ObjectArg = MCE->getImplicitObjectArgument();
 | 
						|
  }
 | 
						|
 | 
						|
  auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
 | 
						|
    Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
 | 
						|
    if (Arg->isGLValue())
 | 
						|
      visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
 | 
						|
                                            Visit,
 | 
						|
                                            /*EnableLifetimeWarnings=*/false);
 | 
						|
    else
 | 
						|
      visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
 | 
						|
                                       /*EnableLifetimeWarnings=*/false);
 | 
						|
    Path.pop_back();
 | 
						|
  };
 | 
						|
 | 
						|
  if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
 | 
						|
    VisitLifetimeBoundArg(Callee, ObjectArg);
 | 
						|
 | 
						|
  for (unsigned I = 0,
 | 
						|
                N = std::min<unsigned>(Callee->getNumParams(), Args.size());
 | 
						|
       I != N; ++I) {
 | 
						|
    if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
 | 
						|
      VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Visit the locals that would be reachable through a reference bound to the
 | 
						|
/// glvalue expression \c Init.
 | 
						|
static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
 | 
						|
                                                  Expr *Init, ReferenceKind RK,
 | 
						|
                                                  LocalVisitor Visit,
 | 
						|
                                                  bool EnableLifetimeWarnings) {
 | 
						|
  RevertToOldSizeRAII RAII(Path);
 | 
						|
 | 
						|
  // Walk past any constructs which we can lifetime-extend across.
 | 
						|
  Expr *Old;
 | 
						|
  do {
 | 
						|
    Old = Init;
 | 
						|
 | 
						|
    if (auto *FE = dyn_cast<FullExpr>(Init))
 | 
						|
      Init = FE->getSubExpr();
 | 
						|
 | 
						|
    if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
 | 
						|
      // If this is just redundant braces around an initializer, step over it.
 | 
						|
      if (ILE->isTransparent())
 | 
						|
        Init = ILE->getInit(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // Step over any subobject adjustments; we may have a materialized
 | 
						|
    // temporary inside them.
 | 
						|
    Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
 | 
						|
 | 
						|
    // Per current approach for DR1376, look through casts to reference type
 | 
						|
    // when performing lifetime extension.
 | 
						|
    if (CastExpr *CE = dyn_cast<CastExpr>(Init))
 | 
						|
      if (CE->getSubExpr()->isGLValue())
 | 
						|
        Init = CE->getSubExpr();
 | 
						|
 | 
						|
    // Per the current approach for DR1299, look through array element access
 | 
						|
    // on array glvalues when performing lifetime extension.
 | 
						|
    if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
 | 
						|
      Init = ASE->getBase();
 | 
						|
      auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
 | 
						|
      if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
 | 
						|
        Init = ICE->getSubExpr();
 | 
						|
      else
 | 
						|
        // We can't lifetime extend through this but we might still find some
 | 
						|
        // retained temporaries.
 | 
						|
        return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
 | 
						|
                                                EnableLifetimeWarnings);
 | 
						|
    }
 | 
						|
 | 
						|
    // Step into CXXDefaultInitExprs so we can diagnose cases where a
 | 
						|
    // constructor inherits one as an implicit mem-initializer.
 | 
						|
    if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
 | 
						|
      Path.push_back(
 | 
						|
          {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
 | 
						|
      Init = DIE->getExpr();
 | 
						|
    }
 | 
						|
  } while (Init != Old);
 | 
						|
 | 
						|
  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
 | 
						|
    if (Visit(Path, Local(MTE), RK))
 | 
						|
      visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
 | 
						|
                                       EnableLifetimeWarnings);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<CallExpr>(Init)) {
 | 
						|
    if (EnableLifetimeWarnings)
 | 
						|
      handleGslAnnotatedTypes(Path, Init, Visit);
 | 
						|
    return visitLifetimeBoundArguments(Path, Init, Visit);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Init->getStmtClass()) {
 | 
						|
  case Stmt::DeclRefExprClass: {
 | 
						|
    // If we find the name of a local non-reference parameter, we could have a
 | 
						|
    // lifetime problem.
 | 
						|
    auto *DRE = cast<DeclRefExpr>(Init);
 | 
						|
    auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
 | 
						|
    if (VD && VD->hasLocalStorage() &&
 | 
						|
        !DRE->refersToEnclosingVariableOrCapture()) {
 | 
						|
      if (!VD->getType()->isReferenceType()) {
 | 
						|
        Visit(Path, Local(DRE), RK);
 | 
						|
      } else if (isa<ParmVarDecl>(DRE->getDecl())) {
 | 
						|
        // The lifetime of a reference parameter is unknown; assume it's OK
 | 
						|
        // for now.
 | 
						|
        break;
 | 
						|
      } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
 | 
						|
        Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
 | 
						|
        visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
 | 
						|
                                              RK_ReferenceBinding, Visit,
 | 
						|
                                              EnableLifetimeWarnings);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::UnaryOperatorClass: {
 | 
						|
    // The only unary operator that make sense to handle here
 | 
						|
    // is Deref.  All others don't resolve to a "name."  This includes
 | 
						|
    // handling all sorts of rvalues passed to a unary operator.
 | 
						|
    const UnaryOperator *U = cast<UnaryOperator>(Init);
 | 
						|
    if (U->getOpcode() == UO_Deref)
 | 
						|
      visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
 | 
						|
                                       EnableLifetimeWarnings);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::OMPArraySectionExprClass: {
 | 
						|
    visitLocalsRetainedByInitializer(Path,
 | 
						|
                                     cast<OMPArraySectionExpr>(Init)->getBase(),
 | 
						|
                                     Visit, true, EnableLifetimeWarnings);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::ConditionalOperatorClass:
 | 
						|
  case Stmt::BinaryConditionalOperatorClass: {
 | 
						|
    auto *C = cast<AbstractConditionalOperator>(Init);
 | 
						|
    if (!C->getTrueExpr()->getType()->isVoidType())
 | 
						|
      visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
 | 
						|
                                            EnableLifetimeWarnings);
 | 
						|
    if (!C->getFalseExpr()->getType()->isVoidType())
 | 
						|
      visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
 | 
						|
                                            EnableLifetimeWarnings);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Visit the left-hand side of an -> or ->*.
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Visit the locals that would be reachable through an object initialized by
 | 
						|
/// the prvalue expression \c Init.
 | 
						|
static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
 | 
						|
                                             Expr *Init, LocalVisitor Visit,
 | 
						|
                                             bool RevisitSubinits,
 | 
						|
                                             bool EnableLifetimeWarnings) {
 | 
						|
  RevertToOldSizeRAII RAII(Path);
 | 
						|
 | 
						|
  Expr *Old;
 | 
						|
  do {
 | 
						|
    Old = Init;
 | 
						|
 | 
						|
    // Step into CXXDefaultInitExprs so we can diagnose cases where a
 | 
						|
    // constructor inherits one as an implicit mem-initializer.
 | 
						|
    if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
 | 
						|
      Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
 | 
						|
      Init = DIE->getExpr();
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *FE = dyn_cast<FullExpr>(Init))
 | 
						|
      Init = FE->getSubExpr();
 | 
						|
 | 
						|
    // Dig out the expression which constructs the extended temporary.
 | 
						|
    Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
 | 
						|
 | 
						|
    if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
 | 
						|
      Init = BTE->getSubExpr();
 | 
						|
 | 
						|
    Init = Init->IgnoreParens();
 | 
						|
 | 
						|
    // Step over value-preserving rvalue casts.
 | 
						|
    if (auto *CE = dyn_cast<CastExpr>(Init)) {
 | 
						|
      switch (CE->getCastKind()) {
 | 
						|
      case CK_LValueToRValue:
 | 
						|
        // If we can match the lvalue to a const object, we can look at its
 | 
						|
        // initializer.
 | 
						|
        Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
 | 
						|
        return visitLocalsRetainedByReferenceBinding(
 | 
						|
            Path, Init, RK_ReferenceBinding,
 | 
						|
            [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
 | 
						|
          if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
 | 
						|
            auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
 | 
						|
            if (VD && VD->getType().isConstQualified() && VD->getInit() &&
 | 
						|
                !isVarOnPath(Path, VD)) {
 | 
						|
              Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
 | 
						|
              visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
 | 
						|
                                               EnableLifetimeWarnings);
 | 
						|
            }
 | 
						|
          } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
 | 
						|
            if (MTE->getType().isConstQualified())
 | 
						|
              visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
 | 
						|
                                               true, EnableLifetimeWarnings);
 | 
						|
          }
 | 
						|
          return false;
 | 
						|
        }, EnableLifetimeWarnings);
 | 
						|
 | 
						|
        // We assume that objects can be retained by pointers cast to integers,
 | 
						|
        // but not if the integer is cast to floating-point type or to _Complex.
 | 
						|
        // We assume that casts to 'bool' do not preserve enough information to
 | 
						|
        // retain a local object.
 | 
						|
      case CK_NoOp:
 | 
						|
      case CK_BitCast:
 | 
						|
      case CK_BaseToDerived:
 | 
						|
      case CK_DerivedToBase:
 | 
						|
      case CK_UncheckedDerivedToBase:
 | 
						|
      case CK_Dynamic:
 | 
						|
      case CK_ToUnion:
 | 
						|
      case CK_UserDefinedConversion:
 | 
						|
      case CK_ConstructorConversion:
 | 
						|
      case CK_IntegralToPointer:
 | 
						|
      case CK_PointerToIntegral:
 | 
						|
      case CK_VectorSplat:
 | 
						|
      case CK_IntegralCast:
 | 
						|
      case CK_CPointerToObjCPointerCast:
 | 
						|
      case CK_BlockPointerToObjCPointerCast:
 | 
						|
      case CK_AnyPointerToBlockPointerCast:
 | 
						|
      case CK_AddressSpaceConversion:
 | 
						|
        break;
 | 
						|
 | 
						|
      case CK_ArrayToPointerDecay:
 | 
						|
        // Model array-to-pointer decay as taking the address of the array
 | 
						|
        // lvalue.
 | 
						|
        Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
 | 
						|
        return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
 | 
						|
                                                     RK_ReferenceBinding, Visit,
 | 
						|
                                                     EnableLifetimeWarnings);
 | 
						|
 | 
						|
      default:
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      Init = CE->getSubExpr();
 | 
						|
    }
 | 
						|
  } while (Old != Init);
 | 
						|
 | 
						|
  // C++17 [dcl.init.list]p6:
 | 
						|
  //   initializing an initializer_list object from the array extends the
 | 
						|
  //   lifetime of the array exactly like binding a reference to a temporary.
 | 
						|
  if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
 | 
						|
    return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
 | 
						|
                                                 RK_StdInitializerList, Visit,
 | 
						|
                                                 EnableLifetimeWarnings);
 | 
						|
 | 
						|
  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
 | 
						|
    // We already visited the elements of this initializer list while
 | 
						|
    // performing the initialization. Don't visit them again unless we've
 | 
						|
    // changed the lifetime of the initialized entity.
 | 
						|
    if (!RevisitSubinits)
 | 
						|
      return;
 | 
						|
 | 
						|
    if (ILE->isTransparent())
 | 
						|
      return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
 | 
						|
                                              RevisitSubinits,
 | 
						|
                                              EnableLifetimeWarnings);
 | 
						|
 | 
						|
    if (ILE->getType()->isArrayType()) {
 | 
						|
      for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
 | 
						|
        visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
 | 
						|
                                         RevisitSubinits,
 | 
						|
                                         EnableLifetimeWarnings);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
 | 
						|
      assert(RD->isAggregate() && "aggregate init on non-aggregate");
 | 
						|
 | 
						|
      // If we lifetime-extend a braced initializer which is initializing an
 | 
						|
      // aggregate, and that aggregate contains reference members which are
 | 
						|
      // bound to temporaries, those temporaries are also lifetime-extended.
 | 
						|
      if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
 | 
						|
          ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
 | 
						|
        visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
 | 
						|
                                              RK_ReferenceBinding, Visit,
 | 
						|
                                              EnableLifetimeWarnings);
 | 
						|
      else {
 | 
						|
        unsigned Index = 0;
 | 
						|
        for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
 | 
						|
          visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
 | 
						|
                                           RevisitSubinits,
 | 
						|
                                           EnableLifetimeWarnings);
 | 
						|
        for (const auto *I : RD->fields()) {
 | 
						|
          if (Index >= ILE->getNumInits())
 | 
						|
            break;
 | 
						|
          if (I->isUnnamedBitfield())
 | 
						|
            continue;
 | 
						|
          Expr *SubInit = ILE->getInit(Index);
 | 
						|
          if (I->getType()->isReferenceType())
 | 
						|
            visitLocalsRetainedByReferenceBinding(Path, SubInit,
 | 
						|
                                                  RK_ReferenceBinding, Visit,
 | 
						|
                                                  EnableLifetimeWarnings);
 | 
						|
          else
 | 
						|
            // This might be either aggregate-initialization of a member or
 | 
						|
            // initialization of a std::initializer_list object. Regardless,
 | 
						|
            // we should recursively lifetime-extend that initializer.
 | 
						|
            visitLocalsRetainedByInitializer(Path, SubInit, Visit,
 | 
						|
                                             RevisitSubinits,
 | 
						|
                                             EnableLifetimeWarnings);
 | 
						|
          ++Index;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The lifetime of an init-capture is that of the closure object constructed
 | 
						|
  // by a lambda-expression.
 | 
						|
  if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
 | 
						|
    LambdaExpr::capture_iterator CapI = LE->capture_begin();
 | 
						|
    for (Expr *E : LE->capture_inits()) {
 | 
						|
      assert(CapI != LE->capture_end());
 | 
						|
      const LambdaCapture &Cap = *CapI++;
 | 
						|
      if (!E)
 | 
						|
        continue;
 | 
						|
      if (Cap.capturesVariable())
 | 
						|
        Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
 | 
						|
      if (E->isGLValue())
 | 
						|
        visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
 | 
						|
                                              Visit, EnableLifetimeWarnings);
 | 
						|
      else
 | 
						|
        visitLocalsRetainedByInitializer(Path, E, Visit, true,
 | 
						|
                                         EnableLifetimeWarnings);
 | 
						|
      if (Cap.capturesVariable())
 | 
						|
        Path.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Assume that a copy or move from a temporary references the same objects
 | 
						|
  // that the temporary does.
 | 
						|
  if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
 | 
						|
    if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
 | 
						|
      if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
 | 
						|
        Expr *Arg = MTE->getSubExpr();
 | 
						|
        Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
 | 
						|
                        CCE->getConstructor()});
 | 
						|
        visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
 | 
						|
                                         /*EnableLifetimeWarnings*/false);
 | 
						|
        Path.pop_back();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
 | 
						|
    if (EnableLifetimeWarnings)
 | 
						|
      handleGslAnnotatedTypes(Path, Init, Visit);
 | 
						|
    return visitLifetimeBoundArguments(Path, Init, Visit);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Init->getStmtClass()) {
 | 
						|
  case Stmt::UnaryOperatorClass: {
 | 
						|
    auto *UO = cast<UnaryOperator>(Init);
 | 
						|
    // If the initializer is the address of a local, we could have a lifetime
 | 
						|
    // problem.
 | 
						|
    if (UO->getOpcode() == UO_AddrOf) {
 | 
						|
      // If this is &rvalue, then it's ill-formed and we have already diagnosed
 | 
						|
      // it. Don't produce a redundant warning about the lifetime of the
 | 
						|
      // temporary.
 | 
						|
      if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
 | 
						|
        return;
 | 
						|
 | 
						|
      Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
 | 
						|
      visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
 | 
						|
                                            RK_ReferenceBinding, Visit,
 | 
						|
                                            EnableLifetimeWarnings);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::BinaryOperatorClass: {
 | 
						|
    // Handle pointer arithmetic.
 | 
						|
    auto *BO = cast<BinaryOperator>(Init);
 | 
						|
    BinaryOperatorKind BOK = BO->getOpcode();
 | 
						|
    if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
 | 
						|
      break;
 | 
						|
 | 
						|
    if (BO->getLHS()->getType()->isPointerType())
 | 
						|
      visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
 | 
						|
                                       EnableLifetimeWarnings);
 | 
						|
    else if (BO->getRHS()->getType()->isPointerType())
 | 
						|
      visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
 | 
						|
                                       EnableLifetimeWarnings);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::ConditionalOperatorClass:
 | 
						|
  case Stmt::BinaryConditionalOperatorClass: {
 | 
						|
    auto *C = cast<AbstractConditionalOperator>(Init);
 | 
						|
    // In C++, we can have a throw-expression operand, which has 'void' type
 | 
						|
    // and isn't interesting from a lifetime perspective.
 | 
						|
    if (!C->getTrueExpr()->getType()->isVoidType())
 | 
						|
      visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
 | 
						|
                                       EnableLifetimeWarnings);
 | 
						|
    if (!C->getFalseExpr()->getType()->isVoidType())
 | 
						|
      visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
 | 
						|
                                       EnableLifetimeWarnings);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::BlockExprClass:
 | 
						|
    if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
 | 
						|
      // This is a local block, whose lifetime is that of the function.
 | 
						|
      Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Stmt::AddrLabelExprClass:
 | 
						|
    // We want to warn if the address of a label would escape the function.
 | 
						|
    Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Whether a path to an object supports lifetime extension.
 | 
						|
enum PathLifetimeKind {
 | 
						|
  /// Lifetime-extend along this path.
 | 
						|
  Extend,
 | 
						|
  /// We should lifetime-extend, but we don't because (due to technical
 | 
						|
  /// limitations) we can't. This happens for default member initializers,
 | 
						|
  /// which we don't clone for every use, so we don't have a unique
 | 
						|
  /// MaterializeTemporaryExpr to update.
 | 
						|
  ShouldExtend,
 | 
						|
  /// Do not lifetime extend along this path.
 | 
						|
  NoExtend
 | 
						|
};
 | 
						|
 | 
						|
/// Determine whether this is an indirect path to a temporary that we are
 | 
						|
/// supposed to lifetime-extend along.
 | 
						|
static PathLifetimeKind
 | 
						|
shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
 | 
						|
  PathLifetimeKind Kind = PathLifetimeKind::Extend;
 | 
						|
  for (auto Elem : Path) {
 | 
						|
    if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
 | 
						|
      Kind = PathLifetimeKind::ShouldExtend;
 | 
						|
    else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
 | 
						|
      return PathLifetimeKind::NoExtend;
 | 
						|
  }
 | 
						|
  return Kind;
 | 
						|
}
 | 
						|
 | 
						|
/// Find the range for the first interesting entry in the path at or after I.
 | 
						|
static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
 | 
						|
                                      Expr *E) {
 | 
						|
  for (unsigned N = Path.size(); I != N; ++I) {
 | 
						|
    switch (Path[I].Kind) {
 | 
						|
    case IndirectLocalPathEntry::AddressOf:
 | 
						|
    case IndirectLocalPathEntry::LValToRVal:
 | 
						|
    case IndirectLocalPathEntry::LifetimeBoundCall:
 | 
						|
    case IndirectLocalPathEntry::TemporaryCopy:
 | 
						|
    case IndirectLocalPathEntry::GslReferenceInit:
 | 
						|
    case IndirectLocalPathEntry::GslPointerInit:
 | 
						|
      // These exist primarily to mark the path as not permitting or
 | 
						|
      // supporting lifetime extension.
 | 
						|
      break;
 | 
						|
 | 
						|
    case IndirectLocalPathEntry::VarInit:
 | 
						|
      if (cast<VarDecl>(Path[I].D)->isImplicit())
 | 
						|
        return SourceRange();
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case IndirectLocalPathEntry::DefaultInit:
 | 
						|
      return Path[I].E->getSourceRange();
 | 
						|
 | 
						|
    case IndirectLocalPathEntry::LambdaCaptureInit:
 | 
						|
      if (!Path[I].Capture->capturesVariable())
 | 
						|
        continue;
 | 
						|
      return Path[I].E->getSourceRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return E->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
 | 
						|
  for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
 | 
						|
    if (It->Kind == IndirectLocalPathEntry::VarInit)
 | 
						|
      continue;
 | 
						|
    if (It->Kind == IndirectLocalPathEntry::AddressOf)
 | 
						|
      continue;
 | 
						|
    if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall)
 | 
						|
      continue;
 | 
						|
    return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
 | 
						|
           It->Kind == IndirectLocalPathEntry::GslReferenceInit;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
 | 
						|
                                    Expr *Init) {
 | 
						|
  LifetimeResult LR = getEntityLifetime(&Entity);
 | 
						|
  LifetimeKind LK = LR.getInt();
 | 
						|
  const InitializedEntity *ExtendingEntity = LR.getPointer();
 | 
						|
 | 
						|
  // If this entity doesn't have an interesting lifetime, don't bother looking
 | 
						|
  // for temporaries within its initializer.
 | 
						|
  if (LK == LK_FullExpression)
 | 
						|
    return;
 | 
						|
 | 
						|
  auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
 | 
						|
                              ReferenceKind RK) -> bool {
 | 
						|
    SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
 | 
						|
    SourceLocation DiagLoc = DiagRange.getBegin();
 | 
						|
 | 
						|
    auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
 | 
						|
 | 
						|
    bool IsGslPtrInitWithGslTempOwner = false;
 | 
						|
    bool IsLocalGslOwner = false;
 | 
						|
    if (pathOnlyInitializesGslPointer(Path)) {
 | 
						|
      if (isa<DeclRefExpr>(L)) {
 | 
						|
        // We do not want to follow the references when returning a pointer originating
 | 
						|
        // from a local owner to avoid the following false positive:
 | 
						|
        //   int &p = *localUniquePtr;
 | 
						|
        //   someContainer.add(std::move(localUniquePtr));
 | 
						|
        //   return p;
 | 
						|
        IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
 | 
						|
        if (pathContainsInit(Path) || !IsLocalGslOwner)
 | 
						|
          return false;
 | 
						|
      } else {
 | 
						|
        IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
 | 
						|
                            isRecordWithAttr<OwnerAttr>(MTE->getType());
 | 
						|
        // Skipping a chain of initializing gsl::Pointer annotated objects.
 | 
						|
        // We are looking only for the final source to find out if it was
 | 
						|
        // a local or temporary owner or the address of a local variable/param.
 | 
						|
        if (!IsGslPtrInitWithGslTempOwner)
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    switch (LK) {
 | 
						|
    case LK_FullExpression:
 | 
						|
      llvm_unreachable("already handled this");
 | 
						|
 | 
						|
    case LK_Extended: {
 | 
						|
      if (!MTE) {
 | 
						|
        // The initialized entity has lifetime beyond the full-expression,
 | 
						|
        // and the local entity does too, so don't warn.
 | 
						|
        //
 | 
						|
        // FIXME: We should consider warning if a static / thread storage
 | 
						|
        // duration variable retains an automatic storage duration local.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
 | 
						|
        Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      switch (shouldLifetimeExtendThroughPath(Path)) {
 | 
						|
      case PathLifetimeKind::Extend:
 | 
						|
        // Update the storage duration of the materialized temporary.
 | 
						|
        // FIXME: Rebuild the expression instead of mutating it.
 | 
						|
        MTE->setExtendingDecl(ExtendingEntity->getDecl(),
 | 
						|
                              ExtendingEntity->allocateManglingNumber());
 | 
						|
        // Also visit the temporaries lifetime-extended by this initializer.
 | 
						|
        return true;
 | 
						|
 | 
						|
      case PathLifetimeKind::ShouldExtend:
 | 
						|
        // We're supposed to lifetime-extend the temporary along this path (per
 | 
						|
        // the resolution of DR1815), but we don't support that yet.
 | 
						|
        //
 | 
						|
        // FIXME: Properly handle this situation. Perhaps the easiest approach
 | 
						|
        // would be to clone the initializer expression on each use that would
 | 
						|
        // lifetime extend its temporaries.
 | 
						|
        Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
 | 
						|
            << RK << DiagRange;
 | 
						|
        break;
 | 
						|
 | 
						|
      case PathLifetimeKind::NoExtend:
 | 
						|
        // If the path goes through the initialization of a variable or field,
 | 
						|
        // it can't possibly reach a temporary created in this full-expression.
 | 
						|
        // We will have already diagnosed any problems with the initializer.
 | 
						|
        if (pathContainsInit(Path))
 | 
						|
          return false;
 | 
						|
 | 
						|
        Diag(DiagLoc, diag::warn_dangling_variable)
 | 
						|
            << RK << !Entity.getParent()
 | 
						|
            << ExtendingEntity->getDecl()->isImplicit()
 | 
						|
            << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case LK_MemInitializer: {
 | 
						|
      if (isa<MaterializeTemporaryExpr>(L)) {
 | 
						|
        // Under C++ DR1696, if a mem-initializer (or a default member
 | 
						|
        // initializer used by the absence of one) would lifetime-extend a
 | 
						|
        // temporary, the program is ill-formed.
 | 
						|
        if (auto *ExtendingDecl =
 | 
						|
                ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
 | 
						|
          if (IsGslPtrInitWithGslTempOwner) {
 | 
						|
            Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
 | 
						|
                << ExtendingDecl << DiagRange;
 | 
						|
            Diag(ExtendingDecl->getLocation(),
 | 
						|
                 diag::note_ref_or_ptr_member_declared_here)
 | 
						|
                << true;
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
          bool IsSubobjectMember = ExtendingEntity != &Entity;
 | 
						|
          Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
 | 
						|
                                PathLifetimeKind::NoExtend
 | 
						|
                            ? diag::err_dangling_member
 | 
						|
                            : diag::warn_dangling_member)
 | 
						|
              << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
 | 
						|
          // Don't bother adding a note pointing to the field if we're inside
 | 
						|
          // its default member initializer; our primary diagnostic points to
 | 
						|
          // the same place in that case.
 | 
						|
          if (Path.empty() ||
 | 
						|
              Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
 | 
						|
            Diag(ExtendingDecl->getLocation(),
 | 
						|
                 diag::note_lifetime_extending_member_declared_here)
 | 
						|
                << RK << IsSubobjectMember;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // We have a mem-initializer but no particular field within it; this
 | 
						|
          // is either a base class or a delegating initializer directly
 | 
						|
          // initializing the base-class from something that doesn't live long
 | 
						|
          // enough.
 | 
						|
          //
 | 
						|
          // FIXME: Warn on this.
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Paths via a default initializer can only occur during error recovery
 | 
						|
        // (there's no other way that a default initializer can refer to a
 | 
						|
        // local). Don't produce a bogus warning on those cases.
 | 
						|
        if (pathContainsInit(Path))
 | 
						|
          return false;
 | 
						|
 | 
						|
        // Suppress false positives for code like the one below:
 | 
						|
        //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
 | 
						|
        if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
 | 
						|
          return false;
 | 
						|
 | 
						|
        auto *DRE = dyn_cast<DeclRefExpr>(L);
 | 
						|
        auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
 | 
						|
        if (!VD) {
 | 
						|
          // A member was initialized to a local block.
 | 
						|
          // FIXME: Warn on this.
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        if (auto *Member =
 | 
						|
                ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
 | 
						|
          bool IsPointer = !Member->getType()->isReferenceType();
 | 
						|
          Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
 | 
						|
                                  : diag::warn_bind_ref_member_to_parameter)
 | 
						|
              << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
 | 
						|
          Diag(Member->getLocation(),
 | 
						|
               diag::note_ref_or_ptr_member_declared_here)
 | 
						|
              << (unsigned)IsPointer;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case LK_New:
 | 
						|
      if (isa<MaterializeTemporaryExpr>(L)) {
 | 
						|
        if (IsGslPtrInitWithGslTempOwner)
 | 
						|
          Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
 | 
						|
        else
 | 
						|
          Diag(DiagLoc, RK == RK_ReferenceBinding
 | 
						|
                            ? diag::warn_new_dangling_reference
 | 
						|
                            : diag::warn_new_dangling_initializer_list)
 | 
						|
              << !Entity.getParent() << DiagRange;
 | 
						|
      } else {
 | 
						|
        // We can't determine if the allocation outlives the local declaration.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    case LK_Return:
 | 
						|
    case LK_StmtExprResult:
 | 
						|
      if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
 | 
						|
        // We can't determine if the local variable outlives the statement
 | 
						|
        // expression.
 | 
						|
        if (LK == LK_StmtExprResult)
 | 
						|
          return false;
 | 
						|
        Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
 | 
						|
            << Entity.getType()->isReferenceType() << DRE->getDecl()
 | 
						|
            << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
 | 
						|
      } else if (isa<BlockExpr>(L)) {
 | 
						|
        Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
 | 
						|
      } else if (isa<AddrLabelExpr>(L)) {
 | 
						|
        // Don't warn when returning a label from a statement expression.
 | 
						|
        // Leaving the scope doesn't end its lifetime.
 | 
						|
        if (LK == LK_StmtExprResult)
 | 
						|
          return false;
 | 
						|
        Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
 | 
						|
      } else {
 | 
						|
        Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
 | 
						|
         << Entity.getType()->isReferenceType() << DiagRange;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned I = 0; I != Path.size(); ++I) {
 | 
						|
      auto Elem = Path[I];
 | 
						|
 | 
						|
      switch (Elem.Kind) {
 | 
						|
      case IndirectLocalPathEntry::AddressOf:
 | 
						|
      case IndirectLocalPathEntry::LValToRVal:
 | 
						|
        // These exist primarily to mark the path as not permitting or
 | 
						|
        // supporting lifetime extension.
 | 
						|
        break;
 | 
						|
 | 
						|
      case IndirectLocalPathEntry::LifetimeBoundCall:
 | 
						|
      case IndirectLocalPathEntry::TemporaryCopy:
 | 
						|
      case IndirectLocalPathEntry::GslPointerInit:
 | 
						|
      case IndirectLocalPathEntry::GslReferenceInit:
 | 
						|
        // FIXME: Consider adding a note for these.
 | 
						|
        break;
 | 
						|
 | 
						|
      case IndirectLocalPathEntry::DefaultInit: {
 | 
						|
        auto *FD = cast<FieldDecl>(Elem.D);
 | 
						|
        Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
 | 
						|
            << FD << nextPathEntryRange(Path, I + 1, L);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case IndirectLocalPathEntry::VarInit: {
 | 
						|
        const VarDecl *VD = cast<VarDecl>(Elem.D);
 | 
						|
        Diag(VD->getLocation(), diag::note_local_var_initializer)
 | 
						|
            << VD->getType()->isReferenceType()
 | 
						|
            << VD->isImplicit() << VD->getDeclName()
 | 
						|
            << nextPathEntryRange(Path, I + 1, L);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case IndirectLocalPathEntry::LambdaCaptureInit:
 | 
						|
        if (!Elem.Capture->capturesVariable())
 | 
						|
          break;
 | 
						|
        // FIXME: We can't easily tell apart an init-capture from a nested
 | 
						|
        // capture of an init-capture.
 | 
						|
        const VarDecl *VD = Elem.Capture->getCapturedVar();
 | 
						|
        Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
 | 
						|
            << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
 | 
						|
            << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
 | 
						|
            << nextPathEntryRange(Path, I + 1, L);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // We didn't lifetime-extend, so don't go any further; we don't need more
 | 
						|
    // warnings or errors on inner temporaries within this one's initializer.
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
 | 
						|
      diag::warn_dangling_lifetime_pointer, SourceLocation());
 | 
						|
  llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
 | 
						|
  if (Init->isGLValue())
 | 
						|
    visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
 | 
						|
                                          TemporaryVisitor,
 | 
						|
                                          EnableLifetimeWarnings);
 | 
						|
  else
 | 
						|
    visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
 | 
						|
                                     EnableLifetimeWarnings);
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseNarrowingInInitList(Sema &S,
 | 
						|
                                        const ImplicitConversionSequence &ICS,
 | 
						|
                                        QualType PreNarrowingType,
 | 
						|
                                        QualType EntityType,
 | 
						|
                                        const Expr *PostInit);
 | 
						|
 | 
						|
/// Provide warnings when std::move is used on construction.
 | 
						|
static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
 | 
						|
                                    bool IsReturnStmt) {
 | 
						|
  if (!InitExpr)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (S.inTemplateInstantiation())
 | 
						|
    return;
 | 
						|
 | 
						|
  QualType DestType = InitExpr->getType();
 | 
						|
  if (!DestType->isRecordType())
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned DiagID = 0;
 | 
						|
  if (IsReturnStmt) {
 | 
						|
    const CXXConstructExpr *CCE =
 | 
						|
        dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
 | 
						|
    if (!CCE || CCE->getNumArgs() != 1)
 | 
						|
      return;
 | 
						|
 | 
						|
    if (!CCE->getConstructor()->isCopyOrMoveConstructor())
 | 
						|
      return;
 | 
						|
 | 
						|
    InitExpr = CCE->getArg(0)->IgnoreImpCasts();
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the std::move call and get the argument.
 | 
						|
  const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
 | 
						|
  if (!CE || !CE->isCallToStdMove())
 | 
						|
    return;
 | 
						|
 | 
						|
  const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
 | 
						|
 | 
						|
  if (IsReturnStmt) {
 | 
						|
    const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
 | 
						|
    if (!DRE || DRE->refersToEnclosingVariableOrCapture())
 | 
						|
      return;
 | 
						|
 | 
						|
    const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
 | 
						|
    if (!VD || !VD->hasLocalStorage())
 | 
						|
      return;
 | 
						|
 | 
						|
    // __block variables are not moved implicitly.
 | 
						|
    if (VD->hasAttr<BlocksAttr>())
 | 
						|
      return;
 | 
						|
 | 
						|
    QualType SourceType = VD->getType();
 | 
						|
    if (!SourceType->isRecordType())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we're returning a function parameter, copy elision
 | 
						|
    // is not possible.
 | 
						|
    if (isa<ParmVarDecl>(VD))
 | 
						|
      DiagID = diag::warn_redundant_move_on_return;
 | 
						|
    else
 | 
						|
      DiagID = diag::warn_pessimizing_move_on_return;
 | 
						|
  } else {
 | 
						|
    DiagID = diag::warn_pessimizing_move_on_initialization;
 | 
						|
    const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
 | 
						|
    if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(CE->getBeginLoc(), DiagID);
 | 
						|
 | 
						|
  // Get all the locations for a fix-it.  Don't emit the fix-it if any location
 | 
						|
  // is within a macro.
 | 
						|
  SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
 | 
						|
  if (CallBegin.isMacroID())
 | 
						|
    return;
 | 
						|
  SourceLocation RParen = CE->getRParenLoc();
 | 
						|
  if (RParen.isMacroID())
 | 
						|
    return;
 | 
						|
  SourceLocation LParen;
 | 
						|
  SourceLocation ArgLoc = Arg->getBeginLoc();
 | 
						|
 | 
						|
  // Special testing for the argument location.  Since the fix-it needs the
 | 
						|
  // location right before the argument, the argument location can be in a
 | 
						|
  // macro only if it is at the beginning of the macro.
 | 
						|
  while (ArgLoc.isMacroID() &&
 | 
						|
         S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
 | 
						|
    ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
 | 
						|
  }
 | 
						|
 | 
						|
  if (LParen.isMacroID())
 | 
						|
    return;
 | 
						|
 | 
						|
  LParen = ArgLoc.getLocWithOffset(-1);
 | 
						|
 | 
						|
  S.Diag(CE->getBeginLoc(), diag::note_remove_move)
 | 
						|
      << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
 | 
						|
      << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
 | 
						|
}
 | 
						|
 | 
						|
static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
 | 
						|
  // Check to see if we are dereferencing a null pointer.  If so, this is
 | 
						|
  // undefined behavior, so warn about it.  This only handles the pattern
 | 
						|
  // "*null", which is a very syntactic check.
 | 
						|
  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
 | 
						|
    if (UO->getOpcode() == UO_Deref &&
 | 
						|
        UO->getSubExpr()->IgnoreParenCasts()->
 | 
						|
        isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
 | 
						|
    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
 | 
						|
                          S.PDiag(diag::warn_binding_null_to_reference)
 | 
						|
                            << UO->getSubExpr()->getSourceRange());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MaterializeTemporaryExpr *
 | 
						|
Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
 | 
						|
                                     bool BoundToLvalueReference) {
 | 
						|
  auto MTE = new (Context)
 | 
						|
      MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
 | 
						|
 | 
						|
  // Order an ExprWithCleanups for lifetime marks.
 | 
						|
  //
 | 
						|
  // TODO: It'll be good to have a single place to check the access of the
 | 
						|
  // destructor and generate ExprWithCleanups for various uses. Currently these
 | 
						|
  // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
 | 
						|
  // but there may be a chance to merge them.
 | 
						|
  Cleanup.setExprNeedsCleanups(false);
 | 
						|
  return MTE;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
 | 
						|
  // In C++98, we don't want to implicitly create an xvalue.
 | 
						|
  // FIXME: This means that AST consumers need to deal with "prvalues" that
 | 
						|
  // denote materialized temporaries. Maybe we should add another ValueKind
 | 
						|
  // for "xvalue pretending to be a prvalue" for C++98 support.
 | 
						|
  if (!E->isPRValue() || !getLangOpts().CPlusPlus11)
 | 
						|
    return E;
 | 
						|
 | 
						|
  // C++1z [conv.rval]/1: T shall be a complete type.
 | 
						|
  // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
 | 
						|
  // If so, we should check for a non-abstract class type here too.
 | 
						|
  QualType T = E->getType();
 | 
						|
  if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  return CreateMaterializeTemporaryExpr(E->getType(), E, false);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
 | 
						|
                                                ExprValueKind VK,
 | 
						|
                                                CheckedConversionKind CCK) {
 | 
						|
 | 
						|
  CastKind CK = CK_NoOp;
 | 
						|
 | 
						|
  if (VK == VK_PRValue) {
 | 
						|
    auto PointeeTy = Ty->getPointeeType();
 | 
						|
    auto ExprPointeeTy = E->getType()->getPointeeType();
 | 
						|
    if (!PointeeTy.isNull() &&
 | 
						|
        PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
 | 
						|
      CK = CK_AddressSpaceConversion;
 | 
						|
  } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
 | 
						|
    CK = CK_AddressSpaceConversion;
 | 
						|
  }
 | 
						|
 | 
						|
  return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult InitializationSequence::Perform(Sema &S,
 | 
						|
                                           const InitializedEntity &Entity,
 | 
						|
                                           const InitializationKind &Kind,
 | 
						|
                                           MultiExprArg Args,
 | 
						|
                                           QualType *ResultType) {
 | 
						|
  if (Failed()) {
 | 
						|
    Diagnose(S, Entity, Kind, Args);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
  if (!ZeroInitializationFixit.empty()) {
 | 
						|
    unsigned DiagID = diag::err_default_init_const;
 | 
						|
    if (Decl *D = Entity.getDecl())
 | 
						|
      if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
 | 
						|
        DiagID = diag::ext_default_init_const;
 | 
						|
 | 
						|
    // The initialization would have succeeded with this fixit. Since the fixit
 | 
						|
    // is on the error, we need to build a valid AST in this case, so this isn't
 | 
						|
    // handled in the Failed() branch above.
 | 
						|
    QualType DestType = Entity.getType();
 | 
						|
    S.Diag(Kind.getLocation(), DiagID)
 | 
						|
        << DestType << (bool)DestType->getAs<RecordType>()
 | 
						|
        << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
 | 
						|
                                      ZeroInitializationFixit);
 | 
						|
  }
 | 
						|
 | 
						|
  if (getKind() == DependentSequence) {
 | 
						|
    // If the declaration is a non-dependent, incomplete array type
 | 
						|
    // that has an initializer, then its type will be completed once
 | 
						|
    // the initializer is instantiated.
 | 
						|
    if (ResultType && !Entity.getType()->isDependentType() &&
 | 
						|
        Args.size() == 1) {
 | 
						|
      QualType DeclType = Entity.getType();
 | 
						|
      if (const IncompleteArrayType *ArrayT
 | 
						|
                           = S.Context.getAsIncompleteArrayType(DeclType)) {
 | 
						|
        // FIXME: We don't currently have the ability to accurately
 | 
						|
        // compute the length of an initializer list without
 | 
						|
        // performing full type-checking of the initializer list
 | 
						|
        // (since we have to determine where braces are implicitly
 | 
						|
        // introduced and such).  So, we fall back to making the array
 | 
						|
        // type a dependently-sized array type with no specified
 | 
						|
        // bound.
 | 
						|
        if (isa<InitListExpr>((Expr *)Args[0])) {
 | 
						|
          SourceRange Brackets;
 | 
						|
 | 
						|
          // Scavange the location of the brackets from the entity, if we can.
 | 
						|
          if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
 | 
						|
            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
 | 
						|
              TypeLoc TL = TInfo->getTypeLoc();
 | 
						|
              if (IncompleteArrayTypeLoc ArrayLoc =
 | 
						|
                      TL.getAs<IncompleteArrayTypeLoc>())
 | 
						|
                Brackets = ArrayLoc.getBracketsRange();
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          *ResultType
 | 
						|
            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
 | 
						|
                                                   /*NumElts=*/nullptr,
 | 
						|
                                                   ArrayT->getSizeModifier(),
 | 
						|
                                       ArrayT->getIndexTypeCVRQualifiers(),
 | 
						|
                                                   Brackets);
 | 
						|
        }
 | 
						|
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (Kind.getKind() == InitializationKind::IK_Direct &&
 | 
						|
        !Kind.isExplicitCast()) {
 | 
						|
      // Rebuild the ParenListExpr.
 | 
						|
      SourceRange ParenRange = Kind.getParenOrBraceRange();
 | 
						|
      return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
 | 
						|
                                  Args);
 | 
						|
    }
 | 
						|
    assert(Kind.getKind() == InitializationKind::IK_Copy ||
 | 
						|
           Kind.isExplicitCast() ||
 | 
						|
           Kind.getKind() == InitializationKind::IK_DirectList);
 | 
						|
    return ExprResult(Args[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  // No steps means no initialization.
 | 
						|
  if (Steps.empty())
 | 
						|
    return ExprResult((Expr *)nullptr);
 | 
						|
 | 
						|
  if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
 | 
						|
      Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
 | 
						|
      !Entity.isParamOrTemplateParamKind()) {
 | 
						|
    // Produce a C++98 compatibility warning if we are initializing a reference
 | 
						|
    // from an initializer list. For parameters, we produce a better warning
 | 
						|
    // elsewhere.
 | 
						|
    Expr *Init = Args[0];
 | 
						|
    S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
 | 
						|
        << Init->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
 | 
						|
  QualType ETy = Entity.getType();
 | 
						|
  bool HasGlobalAS = ETy.hasAddressSpace() &&
 | 
						|
                     ETy.getAddressSpace() == LangAS::opencl_global;
 | 
						|
 | 
						|
  if (S.getLangOpts().OpenCLVersion >= 200 &&
 | 
						|
      ETy->isAtomicType() && !HasGlobalAS &&
 | 
						|
      Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
 | 
						|
    S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
 | 
						|
        << 1
 | 
						|
        << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  QualType DestType = Entity.getType().getNonReferenceType();
 | 
						|
  // FIXME: Ugly hack around the fact that Entity.getType() is not
 | 
						|
  // the same as Entity.getDecl()->getType() in cases involving type merging,
 | 
						|
  //  and we want latter when it makes sense.
 | 
						|
  if (ResultType)
 | 
						|
    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
 | 
						|
                                     Entity.getType();
 | 
						|
 | 
						|
  ExprResult CurInit((Expr *)nullptr);
 | 
						|
  SmallVector<Expr*, 4> ArrayLoopCommonExprs;
 | 
						|
 | 
						|
  // HLSL allows vector initialization to function like list initialization, but
 | 
						|
  // use the syntax of a C++-like constructor.
 | 
						|
  bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() &&
 | 
						|
                          isa<InitListExpr>(Args[0]);
 | 
						|
  (void)IsHLSLVectorInit;
 | 
						|
 | 
						|
  // For initialization steps that start with a single initializer,
 | 
						|
  // grab the only argument out the Args and place it into the "current"
 | 
						|
  // initializer.
 | 
						|
  switch (Steps.front().Kind) {
 | 
						|
  case SK_ResolveAddressOfOverloadedFunction:
 | 
						|
  case SK_CastDerivedToBasePRValue:
 | 
						|
  case SK_CastDerivedToBaseXValue:
 | 
						|
  case SK_CastDerivedToBaseLValue:
 | 
						|
  case SK_BindReference:
 | 
						|
  case SK_BindReferenceToTemporary:
 | 
						|
  case SK_FinalCopy:
 | 
						|
  case SK_ExtraneousCopyToTemporary:
 | 
						|
  case SK_UserConversion:
 | 
						|
  case SK_QualificationConversionLValue:
 | 
						|
  case SK_QualificationConversionXValue:
 | 
						|
  case SK_QualificationConversionPRValue:
 | 
						|
  case SK_FunctionReferenceConversion:
 | 
						|
  case SK_AtomicConversion:
 | 
						|
  case SK_ConversionSequence:
 | 
						|
  case SK_ConversionSequenceNoNarrowing:
 | 
						|
  case SK_ListInitialization:
 | 
						|
  case SK_UnwrapInitList:
 | 
						|
  case SK_RewrapInitList:
 | 
						|
  case SK_CAssignment:
 | 
						|
  case SK_StringInit:
 | 
						|
  case SK_ObjCObjectConversion:
 | 
						|
  case SK_ArrayLoopIndex:
 | 
						|
  case SK_ArrayLoopInit:
 | 
						|
  case SK_ArrayInit:
 | 
						|
  case SK_GNUArrayInit:
 | 
						|
  case SK_ParenthesizedArrayInit:
 | 
						|
  case SK_PassByIndirectCopyRestore:
 | 
						|
  case SK_PassByIndirectRestore:
 | 
						|
  case SK_ProduceObjCObject:
 | 
						|
  case SK_StdInitializerList:
 | 
						|
  case SK_OCLSamplerInit:
 | 
						|
  case SK_OCLZeroOpaqueType: {
 | 
						|
    assert(Args.size() == 1 || IsHLSLVectorInit);
 | 
						|
    CurInit = Args[0];
 | 
						|
    if (!CurInit.get()) return ExprError();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case SK_ConstructorInitialization:
 | 
						|
  case SK_ConstructorInitializationFromList:
 | 
						|
  case SK_StdInitializerListConstructorCall:
 | 
						|
  case SK_ZeroInitialization:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Promote from an unevaluated context to an unevaluated list context in
 | 
						|
  // C++11 list-initialization; we need to instantiate entities usable in
 | 
						|
  // constant expressions here in order to perform narrowing checks =(
 | 
						|
  EnterExpressionEvaluationContext Evaluated(
 | 
						|
      S, EnterExpressionEvaluationContext::InitList,
 | 
						|
      CurInit.get() && isa<InitListExpr>(CurInit.get()));
 | 
						|
 | 
						|
  // C++ [class.abstract]p2:
 | 
						|
  //   no objects of an abstract class can be created except as subobjects
 | 
						|
  //   of a class derived from it
 | 
						|
  auto checkAbstractType = [&](QualType T) -> bool {
 | 
						|
    if (Entity.getKind() == InitializedEntity::EK_Base ||
 | 
						|
        Entity.getKind() == InitializedEntity::EK_Delegating)
 | 
						|
      return false;
 | 
						|
    return S.RequireNonAbstractType(Kind.getLocation(), T,
 | 
						|
                                    diag::err_allocation_of_abstract_type);
 | 
						|
  };
 | 
						|
 | 
						|
  // Walk through the computed steps for the initialization sequence,
 | 
						|
  // performing the specified conversions along the way.
 | 
						|
  bool ConstructorInitRequiresZeroInit = false;
 | 
						|
  for (step_iterator Step = step_begin(), StepEnd = step_end();
 | 
						|
       Step != StepEnd; ++Step) {
 | 
						|
    if (CurInit.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
 | 
						|
 | 
						|
    switch (Step->Kind) {
 | 
						|
    case SK_ResolveAddressOfOverloadedFunction:
 | 
						|
      // Overload resolution determined which function invoke; update the
 | 
						|
      // initializer to reflect that choice.
 | 
						|
      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
 | 
						|
      if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
 | 
						|
        return ExprError();
 | 
						|
      CurInit = S.FixOverloadedFunctionReference(CurInit,
 | 
						|
                                                 Step->Function.FoundDecl,
 | 
						|
                                                 Step->Function.Function);
 | 
						|
      // We might get back another placeholder expression if we resolved to a
 | 
						|
      // builtin.
 | 
						|
      if (!CurInit.isInvalid())
 | 
						|
        CurInit = S.CheckPlaceholderExpr(CurInit.get());
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_CastDerivedToBasePRValue:
 | 
						|
    case SK_CastDerivedToBaseXValue:
 | 
						|
    case SK_CastDerivedToBaseLValue: {
 | 
						|
      // We have a derived-to-base cast that produces either an rvalue or an
 | 
						|
      // lvalue. Perform that cast.
 | 
						|
 | 
						|
      CXXCastPath BasePath;
 | 
						|
 | 
						|
      // Casts to inaccessible base classes are allowed with C-style casts.
 | 
						|
      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
 | 
						|
      if (S.CheckDerivedToBaseConversion(
 | 
						|
              SourceType, Step->Type, CurInit.get()->getBeginLoc(),
 | 
						|
              CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      ExprValueKind VK =
 | 
						|
          Step->Kind == SK_CastDerivedToBaseLValue
 | 
						|
              ? VK_LValue
 | 
						|
              : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue
 | 
						|
                                                          : VK_PRValue);
 | 
						|
      CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
 | 
						|
                                         CK_DerivedToBase, CurInit.get(),
 | 
						|
                                         &BasePath, VK, FPOptionsOverride());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_BindReference:
 | 
						|
      // Reference binding does not have any corresponding ASTs.
 | 
						|
 | 
						|
      // Check exception specifications
 | 
						|
      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // We don't check for e.g. function pointers here, since address
 | 
						|
      // availability checks should only occur when the function first decays
 | 
						|
      // into a pointer or reference.
 | 
						|
      if (CurInit.get()->getType()->isFunctionProtoType()) {
 | 
						|
        if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
 | 
						|
          if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
 | 
						|
            if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
 | 
						|
                                                     DRE->getBeginLoc()))
 | 
						|
              return ExprError();
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      CheckForNullPointerDereference(S, CurInit.get());
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_BindReferenceToTemporary: {
 | 
						|
      // Make sure the "temporary" is actually an rvalue.
 | 
						|
      assert(CurInit.get()->isPRValue() && "not a temporary");
 | 
						|
 | 
						|
      // Check exception specifications
 | 
						|
      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      QualType MTETy = Step->Type;
 | 
						|
 | 
						|
      // When this is an incomplete array type (such as when this is
 | 
						|
      // initializing an array of unknown bounds from an init list), use THAT
 | 
						|
      // type instead so that we propagate the array bounds.
 | 
						|
      if (MTETy->isIncompleteArrayType() &&
 | 
						|
          !CurInit.get()->getType()->isIncompleteArrayType() &&
 | 
						|
          S.Context.hasSameType(
 | 
						|
              MTETy->getPointeeOrArrayElementType(),
 | 
						|
              CurInit.get()->getType()->getPointeeOrArrayElementType()))
 | 
						|
        MTETy = CurInit.get()->getType();
 | 
						|
 | 
						|
      // Materialize the temporary into memory.
 | 
						|
      MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
 | 
						|
          MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
 | 
						|
      CurInit = MTE;
 | 
						|
 | 
						|
      // If we're extending this temporary to automatic storage duration -- we
 | 
						|
      // need to register its cleanup during the full-expression's cleanups.
 | 
						|
      if (MTE->getStorageDuration() == SD_Automatic &&
 | 
						|
          MTE->getType().isDestructedType())
 | 
						|
        S.Cleanup.setExprNeedsCleanups(true);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_FinalCopy:
 | 
						|
      if (checkAbstractType(Step->Type))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // If the overall initialization is initializing a temporary, we already
 | 
						|
      // bound our argument if it was necessary to do so. If not (if we're
 | 
						|
      // ultimately initializing a non-temporary), our argument needs to be
 | 
						|
      // bound since it's initializing a function parameter.
 | 
						|
      // FIXME: This is a mess. Rationalize temporary destruction.
 | 
						|
      if (!shouldBindAsTemporary(Entity))
 | 
						|
        CurInit = S.MaybeBindToTemporary(CurInit.get());
 | 
						|
      CurInit = CopyObject(S, Step->Type, Entity, CurInit,
 | 
						|
                           /*IsExtraneousCopy=*/false);
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ExtraneousCopyToTemporary:
 | 
						|
      CurInit = CopyObject(S, Step->Type, Entity, CurInit,
 | 
						|
                           /*IsExtraneousCopy=*/true);
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_UserConversion: {
 | 
						|
      // We have a user-defined conversion that invokes either a constructor
 | 
						|
      // or a conversion function.
 | 
						|
      CastKind CastKind;
 | 
						|
      FunctionDecl *Fn = Step->Function.Function;
 | 
						|
      DeclAccessPair FoundFn = Step->Function.FoundDecl;
 | 
						|
      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
 | 
						|
      bool CreatedObject = false;
 | 
						|
      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
 | 
						|
        // Build a call to the selected constructor.
 | 
						|
        SmallVector<Expr*, 8> ConstructorArgs;
 | 
						|
        SourceLocation Loc = CurInit.get()->getBeginLoc();
 | 
						|
 | 
						|
        // Determine the arguments required to actually perform the constructor
 | 
						|
        // call.
 | 
						|
        Expr *Arg = CurInit.get();
 | 
						|
        if (S.CompleteConstructorCall(Constructor, Step->Type,
 | 
						|
                                      MultiExprArg(&Arg, 1), Loc,
 | 
						|
                                      ConstructorArgs))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        // Build an expression that constructs a temporary.
 | 
						|
        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
 | 
						|
                                          FoundFn, Constructor,
 | 
						|
                                          ConstructorArgs,
 | 
						|
                                          HadMultipleCandidates,
 | 
						|
                                          /*ListInit*/ false,
 | 
						|
                                          /*StdInitListInit*/ false,
 | 
						|
                                          /*ZeroInit*/ false,
 | 
						|
                                          CXXConstructExpr::CK_Complete,
 | 
						|
                                          SourceRange());
 | 
						|
        if (CurInit.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
 | 
						|
                                 Entity);
 | 
						|
        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        CastKind = CK_ConstructorConversion;
 | 
						|
        CreatedObject = true;
 | 
						|
      } else {
 | 
						|
        // Build a call to the conversion function.
 | 
						|
        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
 | 
						|
        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
 | 
						|
                                    FoundFn);
 | 
						|
        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
 | 
						|
                                           HadMultipleCandidates);
 | 
						|
        if (CurInit.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        CastKind = CK_UserDefinedConversion;
 | 
						|
        CreatedObject = Conversion->getReturnType()->isRecordType();
 | 
						|
      }
 | 
						|
 | 
						|
      if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      CurInit = ImplicitCastExpr::Create(
 | 
						|
          S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
 | 
						|
          CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
 | 
						|
 | 
						|
      if (shouldBindAsTemporary(Entity))
 | 
						|
        // The overall entity is temporary, so this expression should be
 | 
						|
        // destroyed at the end of its full-expression.
 | 
						|
        CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
 | 
						|
      else if (CreatedObject && shouldDestroyEntity(Entity)) {
 | 
						|
        // The object outlasts the full-expression, but we need to prepare for
 | 
						|
        // a destructor being run on it.
 | 
						|
        // FIXME: It makes no sense to do this here. This should happen
 | 
						|
        // regardless of how we initialized the entity.
 | 
						|
        QualType T = CurInit.get()->getType();
 | 
						|
        if (const RecordType *Record = T->getAs<RecordType>()) {
 | 
						|
          CXXDestructorDecl *Destructor
 | 
						|
            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
 | 
						|
          S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
 | 
						|
                                  S.PDiag(diag::err_access_dtor_temp) << T);
 | 
						|
          S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
 | 
						|
          if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
 | 
						|
            return ExprError();
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_QualificationConversionLValue:
 | 
						|
    case SK_QualificationConversionXValue:
 | 
						|
    case SK_QualificationConversionPRValue: {
 | 
						|
      // Perform a qualification conversion; these can never go wrong.
 | 
						|
      ExprValueKind VK =
 | 
						|
          Step->Kind == SK_QualificationConversionLValue
 | 
						|
              ? VK_LValue
 | 
						|
              : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
 | 
						|
                                                                : VK_PRValue);
 | 
						|
      CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_FunctionReferenceConversion:
 | 
						|
      assert(CurInit.get()->isLValue() &&
 | 
						|
             "function reference should be lvalue");
 | 
						|
      CurInit =
 | 
						|
          S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_AtomicConversion: {
 | 
						|
      assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic");
 | 
						|
      CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
 | 
						|
                                    CK_NonAtomicToAtomic, VK_PRValue);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ConversionSequence:
 | 
						|
    case SK_ConversionSequenceNoNarrowing: {
 | 
						|
      if (const auto *FromPtrType =
 | 
						|
              CurInit.get()->getType()->getAs<PointerType>()) {
 | 
						|
        if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
 | 
						|
          if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
 | 
						|
              !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
 | 
						|
            // Do not check static casts here because they are checked earlier
 | 
						|
            // in Sema::ActOnCXXNamedCast()
 | 
						|
            if (!Kind.isStaticCast()) {
 | 
						|
              S.Diag(CurInit.get()->getExprLoc(),
 | 
						|
                     diag::warn_noderef_to_dereferenceable_pointer)
 | 
						|
                  << CurInit.get()->getSourceRange();
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      Sema::CheckedConversionKind CCK
 | 
						|
        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
 | 
						|
        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
 | 
						|
        : Kind.isExplicitCast()? Sema::CCK_OtherCast
 | 
						|
        : Sema::CCK_ImplicitConversion;
 | 
						|
      ExprResult CurInitExprRes =
 | 
						|
        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
 | 
						|
                                    getAssignmentAction(Entity), CCK);
 | 
						|
      if (CurInitExprRes.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
 | 
						|
 | 
						|
      CurInit = CurInitExprRes;
 | 
						|
 | 
						|
      if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
 | 
						|
          S.getLangOpts().CPlusPlus)
 | 
						|
        DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
 | 
						|
                                    CurInit.get());
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ListInitialization: {
 | 
						|
      if (checkAbstractType(Step->Type))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
 | 
						|
      // If we're not initializing the top-level entity, we need to create an
 | 
						|
      // InitializeTemporary entity for our target type.
 | 
						|
      QualType Ty = Step->Type;
 | 
						|
      bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
 | 
						|
      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
 | 
						|
      InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
 | 
						|
      InitListChecker PerformInitList(S, InitEntity,
 | 
						|
          InitList, Ty, /*VerifyOnly=*/false,
 | 
						|
          /*TreatUnavailableAsInvalid=*/false);
 | 
						|
      if (PerformInitList.HadError())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // Hack: We must update *ResultType if available in order to set the
 | 
						|
      // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
 | 
						|
      // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
 | 
						|
      if (ResultType &&
 | 
						|
          ResultType->getNonReferenceType()->isIncompleteArrayType()) {
 | 
						|
        if ((*ResultType)->isRValueReferenceType())
 | 
						|
          Ty = S.Context.getRValueReferenceType(Ty);
 | 
						|
        else if ((*ResultType)->isLValueReferenceType())
 | 
						|
          Ty = S.Context.getLValueReferenceType(Ty,
 | 
						|
            (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
 | 
						|
        *ResultType = Ty;
 | 
						|
      }
 | 
						|
 | 
						|
      InitListExpr *StructuredInitList =
 | 
						|
          PerformInitList.getFullyStructuredList();
 | 
						|
      CurInit.get();
 | 
						|
      CurInit = shouldBindAsTemporary(InitEntity)
 | 
						|
          ? S.MaybeBindToTemporary(StructuredInitList)
 | 
						|
          : StructuredInitList;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ConstructorInitializationFromList: {
 | 
						|
      if (checkAbstractType(Step->Type))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // When an initializer list is passed for a parameter of type "reference
 | 
						|
      // to object", we don't get an EK_Temporary entity, but instead an
 | 
						|
      // EK_Parameter entity with reference type.
 | 
						|
      // FIXME: This is a hack. What we really should do is create a user
 | 
						|
      // conversion step for this case, but this makes it considerably more
 | 
						|
      // complicated. For now, this will do.
 | 
						|
      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
 | 
						|
                                        Entity.getType().getNonReferenceType());
 | 
						|
      bool UseTemporary = Entity.getType()->isReferenceType();
 | 
						|
      assert(Args.size() == 1 && "expected a single argument for list init");
 | 
						|
      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
 | 
						|
      S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
 | 
						|
        << InitList->getSourceRange();
 | 
						|
      MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
 | 
						|
      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
 | 
						|
                                                                   Entity,
 | 
						|
                                                 Kind, Arg, *Step,
 | 
						|
                                               ConstructorInitRequiresZeroInit,
 | 
						|
                                               /*IsListInitialization*/true,
 | 
						|
                                               /*IsStdInitListInit*/false,
 | 
						|
                                               InitList->getLBraceLoc(),
 | 
						|
                                               InitList->getRBraceLoc());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_UnwrapInitList:
 | 
						|
      CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_RewrapInitList: {
 | 
						|
      Expr *E = CurInit.get();
 | 
						|
      InitListExpr *Syntactic = Step->WrappingSyntacticList;
 | 
						|
      InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
 | 
						|
          Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
 | 
						|
      ILE->setSyntacticForm(Syntactic);
 | 
						|
      ILE->setType(E->getType());
 | 
						|
      ILE->setValueKind(E->getValueKind());
 | 
						|
      CurInit = ILE;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ConstructorInitialization:
 | 
						|
    case SK_StdInitializerListConstructorCall: {
 | 
						|
      if (checkAbstractType(Step->Type))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // When an initializer list is passed for a parameter of type "reference
 | 
						|
      // to object", we don't get an EK_Temporary entity, but instead an
 | 
						|
      // EK_Parameter entity with reference type.
 | 
						|
      // FIXME: This is a hack. What we really should do is create a user
 | 
						|
      // conversion step for this case, but this makes it considerably more
 | 
						|
      // complicated. For now, this will do.
 | 
						|
      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
 | 
						|
                                        Entity.getType().getNonReferenceType());
 | 
						|
      bool UseTemporary = Entity.getType()->isReferenceType();
 | 
						|
      bool IsStdInitListInit =
 | 
						|
          Step->Kind == SK_StdInitializerListConstructorCall;
 | 
						|
      Expr *Source = CurInit.get();
 | 
						|
      SourceRange Range = Kind.hasParenOrBraceRange()
 | 
						|
                              ? Kind.getParenOrBraceRange()
 | 
						|
                              : SourceRange();
 | 
						|
      CurInit = PerformConstructorInitialization(
 | 
						|
          S, UseTemporary ? TempEntity : Entity, Kind,
 | 
						|
          Source ? MultiExprArg(Source) : Args, *Step,
 | 
						|
          ConstructorInitRequiresZeroInit,
 | 
						|
          /*IsListInitialization*/ IsStdInitListInit,
 | 
						|
          /*IsStdInitListInitialization*/ IsStdInitListInit,
 | 
						|
          /*LBraceLoc*/ Range.getBegin(),
 | 
						|
          /*RBraceLoc*/ Range.getEnd());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ZeroInitialization: {
 | 
						|
      step_iterator NextStep = Step;
 | 
						|
      ++NextStep;
 | 
						|
      if (NextStep != StepEnd &&
 | 
						|
          (NextStep->Kind == SK_ConstructorInitialization ||
 | 
						|
           NextStep->Kind == SK_ConstructorInitializationFromList)) {
 | 
						|
        // The need for zero-initialization is recorded directly into
 | 
						|
        // the call to the object's constructor within the next step.
 | 
						|
        ConstructorInitRequiresZeroInit = true;
 | 
						|
      } else if (Kind.getKind() == InitializationKind::IK_Value &&
 | 
						|
                 S.getLangOpts().CPlusPlus &&
 | 
						|
                 !Kind.isImplicitValueInit()) {
 | 
						|
        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
 | 
						|
        if (!TSInfo)
 | 
						|
          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
 | 
						|
                                                    Kind.getRange().getBegin());
 | 
						|
 | 
						|
        CurInit = new (S.Context) CXXScalarValueInitExpr(
 | 
						|
            Entity.getType().getNonLValueExprType(S.Context), TSInfo,
 | 
						|
            Kind.getRange().getEnd());
 | 
						|
      } else {
 | 
						|
        CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_CAssignment: {
 | 
						|
      QualType SourceType = CurInit.get()->getType();
 | 
						|
 | 
						|
      // Save off the initial CurInit in case we need to emit a diagnostic
 | 
						|
      ExprResult InitialCurInit = CurInit;
 | 
						|
      ExprResult Result = CurInit;
 | 
						|
      Sema::AssignConvertType ConvTy =
 | 
						|
        S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
 | 
						|
            Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
 | 
						|
      if (Result.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      CurInit = Result;
 | 
						|
 | 
						|
      // If this is a call, allow conversion to a transparent union.
 | 
						|
      ExprResult CurInitExprRes = CurInit;
 | 
						|
      if (ConvTy != Sema::Compatible &&
 | 
						|
          Entity.isParameterKind() &&
 | 
						|
          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
 | 
						|
            == Sema::Compatible)
 | 
						|
        ConvTy = Sema::Compatible;
 | 
						|
      if (CurInitExprRes.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      CurInit = CurInitExprRes;
 | 
						|
 | 
						|
      bool Complained;
 | 
						|
      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
 | 
						|
                                     Step->Type, SourceType,
 | 
						|
                                     InitialCurInit.get(),
 | 
						|
                                     getAssignmentAction(Entity, true),
 | 
						|
                                     &Complained)) {
 | 
						|
        PrintInitLocationNote(S, Entity);
 | 
						|
        return ExprError();
 | 
						|
      } else if (Complained)
 | 
						|
        PrintInitLocationNote(S, Entity);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_StringInit: {
 | 
						|
      QualType Ty = Step->Type;
 | 
						|
      bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
 | 
						|
      CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
 | 
						|
                      S.Context.getAsArrayType(Ty), S);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ObjCObjectConversion:
 | 
						|
      CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
 | 
						|
                          CK_ObjCObjectLValueCast,
 | 
						|
                          CurInit.get()->getValueKind());
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ArrayLoopIndex: {
 | 
						|
      Expr *Cur = CurInit.get();
 | 
						|
      Expr *BaseExpr = new (S.Context)
 | 
						|
          OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
 | 
						|
                          Cur->getValueKind(), Cur->getObjectKind(), Cur);
 | 
						|
      Expr *IndexExpr =
 | 
						|
          new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
 | 
						|
      CurInit = S.CreateBuiltinArraySubscriptExpr(
 | 
						|
          BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
 | 
						|
      ArrayLoopCommonExprs.push_back(BaseExpr);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_ArrayLoopInit: {
 | 
						|
      assert(!ArrayLoopCommonExprs.empty() &&
 | 
						|
             "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
 | 
						|
      Expr *Common = ArrayLoopCommonExprs.pop_back_val();
 | 
						|
      CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
 | 
						|
                                                  CurInit.get());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_GNUArrayInit:
 | 
						|
      // Okay: we checked everything before creating this step. Note that
 | 
						|
      // this is a GNU extension.
 | 
						|
      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
 | 
						|
        << Step->Type << CurInit.get()->getType()
 | 
						|
        << CurInit.get()->getSourceRange();
 | 
						|
      updateGNUCompoundLiteralRValue(CurInit.get());
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case SK_ArrayInit:
 | 
						|
      // If the destination type is an incomplete array type, update the
 | 
						|
      // type accordingly.
 | 
						|
      if (ResultType) {
 | 
						|
        if (const IncompleteArrayType *IncompleteDest
 | 
						|
                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
 | 
						|
          if (const ConstantArrayType *ConstantSource
 | 
						|
                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
 | 
						|
            *ResultType = S.Context.getConstantArrayType(
 | 
						|
                                             IncompleteDest->getElementType(),
 | 
						|
                                             ConstantSource->getSize(),
 | 
						|
                                             ConstantSource->getSizeExpr(),
 | 
						|
                                             ArrayType::Normal, 0);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ParenthesizedArrayInit:
 | 
						|
      // Okay: we checked everything before creating this step. Note that
 | 
						|
      // this is a GNU extension.
 | 
						|
      S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
 | 
						|
        << CurInit.get()->getSourceRange();
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_PassByIndirectCopyRestore:
 | 
						|
    case SK_PassByIndirectRestore:
 | 
						|
      checkIndirectCopyRestoreSource(S, CurInit.get());
 | 
						|
      CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
 | 
						|
          CurInit.get(), Step->Type,
 | 
						|
          Step->Kind == SK_PassByIndirectCopyRestore);
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ProduceObjCObject:
 | 
						|
      CurInit = ImplicitCastExpr::Create(
 | 
						|
          S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
 | 
						|
          VK_PRValue, FPOptionsOverride());
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_StdInitializerList: {
 | 
						|
      S.Diag(CurInit.get()->getExprLoc(),
 | 
						|
             diag::warn_cxx98_compat_initializer_list_init)
 | 
						|
        << CurInit.get()->getSourceRange();
 | 
						|
 | 
						|
      // Materialize the temporary into memory.
 | 
						|
      MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
 | 
						|
          CurInit.get()->getType(), CurInit.get(),
 | 
						|
          /*BoundToLvalueReference=*/false);
 | 
						|
 | 
						|
      // Wrap it in a construction of a std::initializer_list<T>.
 | 
						|
      CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
 | 
						|
 | 
						|
      // Bind the result, in case the library has given initializer_list a
 | 
						|
      // non-trivial destructor.
 | 
						|
      if (shouldBindAsTemporary(Entity))
 | 
						|
        CurInit = S.MaybeBindToTemporary(CurInit.get());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case SK_OCLSamplerInit: {
 | 
						|
      // Sampler initialization have 5 cases:
 | 
						|
      //   1. function argument passing
 | 
						|
      //      1a. argument is a file-scope variable
 | 
						|
      //      1b. argument is a function-scope variable
 | 
						|
      //      1c. argument is one of caller function's parameters
 | 
						|
      //   2. variable initialization
 | 
						|
      //      2a. initializing a file-scope variable
 | 
						|
      //      2b. initializing a function-scope variable
 | 
						|
      //
 | 
						|
      // For file-scope variables, since they cannot be initialized by function
 | 
						|
      // call of __translate_sampler_initializer in LLVM IR, their references
 | 
						|
      // need to be replaced by a cast from their literal initializers to
 | 
						|
      // sampler type. Since sampler variables can only be used in function
 | 
						|
      // calls as arguments, we only need to replace them when handling the
 | 
						|
      // argument passing.
 | 
						|
      assert(Step->Type->isSamplerT() &&
 | 
						|
             "Sampler initialization on non-sampler type.");
 | 
						|
      Expr *Init = CurInit.get()->IgnoreParens();
 | 
						|
      QualType SourceType = Init->getType();
 | 
						|
      // Case 1
 | 
						|
      if (Entity.isParameterKind()) {
 | 
						|
        if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
 | 
						|
          S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
 | 
						|
            << SourceType;
 | 
						|
          break;
 | 
						|
        } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
 | 
						|
          auto Var = cast<VarDecl>(DRE->getDecl());
 | 
						|
          // Case 1b and 1c
 | 
						|
          // No cast from integer to sampler is needed.
 | 
						|
          if (!Var->hasGlobalStorage()) {
 | 
						|
            CurInit = ImplicitCastExpr::Create(
 | 
						|
                S.Context, Step->Type, CK_LValueToRValue, Init,
 | 
						|
                /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          // Case 1a
 | 
						|
          // For function call with a file-scope sampler variable as argument,
 | 
						|
          // get the integer literal.
 | 
						|
          // Do not diagnose if the file-scope variable does not have initializer
 | 
						|
          // since this has already been diagnosed when parsing the variable
 | 
						|
          // declaration.
 | 
						|
          if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
 | 
						|
            break;
 | 
						|
          Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
 | 
						|
            Var->getInit()))->getSubExpr();
 | 
						|
          SourceType = Init->getType();
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Case 2
 | 
						|
        // Check initializer is 32 bit integer constant.
 | 
						|
        // If the initializer is taken from global variable, do not diagnose since
 | 
						|
        // this has already been done when parsing the variable declaration.
 | 
						|
        if (!Init->isConstantInitializer(S.Context, false))
 | 
						|
          break;
 | 
						|
 | 
						|
        if (!SourceType->isIntegerType() ||
 | 
						|
            32 != S.Context.getIntWidth(SourceType)) {
 | 
						|
          S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
 | 
						|
            << SourceType;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        Expr::EvalResult EVResult;
 | 
						|
        Init->EvaluateAsInt(EVResult, S.Context);
 | 
						|
        llvm::APSInt Result = EVResult.Val.getInt();
 | 
						|
        const uint64_t SamplerValue = Result.getLimitedValue();
 | 
						|
        // 32-bit value of sampler's initializer is interpreted as
 | 
						|
        // bit-field with the following structure:
 | 
						|
        // |unspecified|Filter|Addressing Mode| Normalized Coords|
 | 
						|
        // |31        6|5    4|3             1|                 0|
 | 
						|
        // This structure corresponds to enum values of sampler properties
 | 
						|
        // defined in SPIR spec v1.2 and also opencl-c.h
 | 
						|
        unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
 | 
						|
        unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
 | 
						|
        if (FilterMode != 1 && FilterMode != 2 &&
 | 
						|
            !S.getOpenCLOptions().isAvailableOption(
 | 
						|
                "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
 | 
						|
          S.Diag(Kind.getLocation(),
 | 
						|
                 diag::warn_sampler_initializer_invalid_bits)
 | 
						|
                 << "Filter Mode";
 | 
						|
        if (AddressingMode > 4)
 | 
						|
          S.Diag(Kind.getLocation(),
 | 
						|
                 diag::warn_sampler_initializer_invalid_bits)
 | 
						|
                 << "Addressing Mode";
 | 
						|
      }
 | 
						|
 | 
						|
      // Cases 1a, 2a and 2b
 | 
						|
      // Insert cast from integer to sampler.
 | 
						|
      CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
 | 
						|
                                      CK_IntToOCLSampler);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case SK_OCLZeroOpaqueType: {
 | 
						|
      assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
 | 
						|
              Step->Type->isOCLIntelSubgroupAVCType()) &&
 | 
						|
             "Wrong type for initialization of OpenCL opaque type.");
 | 
						|
 | 
						|
      CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
 | 
						|
                                    CK_ZeroToOCLOpaqueType,
 | 
						|
                                    CurInit.get()->getValueKind());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether the initializer has a shorter lifetime than the initialized
 | 
						|
  // entity, and if not, either lifetime-extend or warn as appropriate.
 | 
						|
  if (auto *Init = CurInit.get())
 | 
						|
    S.checkInitializerLifetime(Entity, Init);
 | 
						|
 | 
						|
  // Diagnose non-fatal problems with the completed initialization.
 | 
						|
  if (Entity.getKind() == InitializedEntity::EK_Member &&
 | 
						|
      cast<FieldDecl>(Entity.getDecl())->isBitField())
 | 
						|
    S.CheckBitFieldInitialization(Kind.getLocation(),
 | 
						|
                                  cast<FieldDecl>(Entity.getDecl()),
 | 
						|
                                  CurInit.get());
 | 
						|
 | 
						|
  // Check for std::move on construction.
 | 
						|
  if (const Expr *E = CurInit.get()) {
 | 
						|
    CheckMoveOnConstruction(S, E,
 | 
						|
                            Entity.getKind() == InitializedEntity::EK_Result);
 | 
						|
  }
 | 
						|
 | 
						|
  return CurInit;
 | 
						|
}
 | 
						|
 | 
						|
/// Somewhere within T there is an uninitialized reference subobject.
 | 
						|
/// Dig it out and diagnose it.
 | 
						|
static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
 | 
						|
                                           QualType T) {
 | 
						|
  if (T->isReferenceType()) {
 | 
						|
    S.Diag(Loc, diag::err_reference_without_init)
 | 
						|
      << T.getNonReferenceType();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
 | 
						|
  if (!RD || !RD->hasUninitializedReferenceMember())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (const auto *FI : RD->fields()) {
 | 
						|
    if (FI->isUnnamedBitfield())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
 | 
						|
      S.Diag(Loc, diag::note_value_initialization_here) << RD;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto &BI : RD->bases()) {
 | 
						|
    if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
 | 
						|
      S.Diag(Loc, diag::note_value_initialization_here) << RD;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Diagnose initialization failures
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Emit notes associated with an initialization that failed due to a
 | 
						|
/// "simple" conversion failure.
 | 
						|
static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
 | 
						|
                                   Expr *op) {
 | 
						|
  QualType destType = entity.getType();
 | 
						|
  if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
 | 
						|
      op->getType()->isObjCObjectPointerType()) {
 | 
						|
 | 
						|
    // Emit a possible note about the conversion failing because the
 | 
						|
    // operand is a message send with a related result type.
 | 
						|
    S.EmitRelatedResultTypeNote(op);
 | 
						|
 | 
						|
    // Emit a possible note about a return failing because we're
 | 
						|
    // expecting a related result type.
 | 
						|
    if (entity.getKind() == InitializedEntity::EK_Result)
 | 
						|
      S.EmitRelatedResultTypeNoteForReturn(destType);
 | 
						|
  }
 | 
						|
  QualType fromType = op->getType();
 | 
						|
  QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType();
 | 
						|
  QualType destPointeeType = destType.getCanonicalType()->getPointeeType();
 | 
						|
  auto *fromDecl = fromType->getPointeeCXXRecordDecl();
 | 
						|
  auto *destDecl = destType->getPointeeCXXRecordDecl();
 | 
						|
  if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
 | 
						|
      destDecl->getDeclKind() == Decl::CXXRecord &&
 | 
						|
      !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
 | 
						|
      !fromDecl->hasDefinition() &&
 | 
						|
      destPointeeType.getQualifiers().compatiblyIncludes(
 | 
						|
          fromPointeeType.getQualifiers()))
 | 
						|
    S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
 | 
						|
        << S.getASTContext().getTagDeclType(fromDecl)
 | 
						|
        << S.getASTContext().getTagDeclType(destDecl);
 | 
						|
}
 | 
						|
 | 
						|
static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
 | 
						|
                             InitListExpr *InitList) {
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
 | 
						|
  QualType E;
 | 
						|
  if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
 | 
						|
    QualType ArrayType = S.Context.getConstantArrayType(
 | 
						|
        E.withConst(),
 | 
						|
        llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
 | 
						|
                    InitList->getNumInits()),
 | 
						|
        nullptr, clang::ArrayType::Normal, 0);
 | 
						|
    InitializedEntity HiddenArray =
 | 
						|
        InitializedEntity::InitializeTemporary(ArrayType);
 | 
						|
    return diagnoseListInit(S, HiddenArray, InitList);
 | 
						|
  }
 | 
						|
 | 
						|
  if (DestType->isReferenceType()) {
 | 
						|
    // A list-initialization failure for a reference means that we tried to
 | 
						|
    // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
 | 
						|
    // inner initialization failed.
 | 
						|
    QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
 | 
						|
    diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
 | 
						|
    SourceLocation Loc = InitList->getBeginLoc();
 | 
						|
    if (auto *D = Entity.getDecl())
 | 
						|
      Loc = D->getLocation();
 | 
						|
    S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
 | 
						|
                                   /*VerifyOnly=*/false,
 | 
						|
                                   /*TreatUnavailableAsInvalid=*/false);
 | 
						|
  assert(DiagnoseInitList.HadError() &&
 | 
						|
         "Inconsistent init list check result.");
 | 
						|
}
 | 
						|
 | 
						|
bool InitializationSequence::Diagnose(Sema &S,
 | 
						|
                                      const InitializedEntity &Entity,
 | 
						|
                                      const InitializationKind &Kind,
 | 
						|
                                      ArrayRef<Expr *> Args) {
 | 
						|
  if (!Failed())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // When we want to diagnose only one element of a braced-init-list,
 | 
						|
  // we need to factor it out.
 | 
						|
  Expr *OnlyArg;
 | 
						|
  if (Args.size() == 1) {
 | 
						|
    auto *List = dyn_cast<InitListExpr>(Args[0]);
 | 
						|
    if (List && List->getNumInits() == 1)
 | 
						|
      OnlyArg = List->getInit(0);
 | 
						|
    else
 | 
						|
      OnlyArg = Args[0];
 | 
						|
  }
 | 
						|
  else
 | 
						|
    OnlyArg = nullptr;
 | 
						|
 | 
						|
  QualType DestType = Entity.getType();
 | 
						|
  switch (Failure) {
 | 
						|
  case FK_TooManyInitsForReference:
 | 
						|
    // FIXME: Customize for the initialized entity?
 | 
						|
    if (Args.empty()) {
 | 
						|
      // Dig out the reference subobject which is uninitialized and diagnose it.
 | 
						|
      // If this is value-initialization, this could be nested some way within
 | 
						|
      // the target type.
 | 
						|
      assert(Kind.getKind() == InitializationKind::IK_Value ||
 | 
						|
             DestType->isReferenceType());
 | 
						|
      bool Diagnosed =
 | 
						|
        DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
 | 
						|
      assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
 | 
						|
      (void)Diagnosed;
 | 
						|
    } else  // FIXME: diagnostic below could be better!
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
 | 
						|
          << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
 | 
						|
    break;
 | 
						|
  case FK_ParenthesizedListInitForReference:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
 | 
						|
      << 1 << Entity.getType() << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ArrayNeedsInitList:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
 | 
						|
    break;
 | 
						|
  case FK_ArrayNeedsInitListOrStringLiteral:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
 | 
						|
    break;
 | 
						|
  case FK_ArrayNeedsInitListOrWideStringLiteral:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
 | 
						|
    break;
 | 
						|
  case FK_NarrowStringIntoWideCharArray:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
 | 
						|
    break;
 | 
						|
  case FK_WideStringIntoCharArray:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
 | 
						|
    break;
 | 
						|
  case FK_IncompatWideStringIntoWideChar:
 | 
						|
    S.Diag(Kind.getLocation(),
 | 
						|
           diag::err_array_init_incompat_wide_string_into_wchar);
 | 
						|
    break;
 | 
						|
  case FK_PlainStringIntoUTF8Char:
 | 
						|
    S.Diag(Kind.getLocation(),
 | 
						|
           diag::err_array_init_plain_string_into_char8_t);
 | 
						|
    S.Diag(Args.front()->getBeginLoc(),
 | 
						|
           diag::note_array_init_plain_string_into_char8_t)
 | 
						|
        << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
 | 
						|
    break;
 | 
						|
  case FK_UTF8StringIntoPlainChar:
 | 
						|
    S.Diag(Kind.getLocation(),
 | 
						|
           diag::err_array_init_utf8_string_into_char)
 | 
						|
      << S.getLangOpts().CPlusPlus20;
 | 
						|
    break;
 | 
						|
  case FK_ArrayTypeMismatch:
 | 
						|
  case FK_NonConstantArrayInit:
 | 
						|
    S.Diag(Kind.getLocation(),
 | 
						|
           (Failure == FK_ArrayTypeMismatch
 | 
						|
              ? diag::err_array_init_different_type
 | 
						|
              : diag::err_array_init_non_constant_array))
 | 
						|
      << DestType.getNonReferenceType()
 | 
						|
      << OnlyArg->getType()
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_VariableLengthArrayHasInitializer:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_AddressOfOverloadFailed: {
 | 
						|
    DeclAccessPair Found;
 | 
						|
    S.ResolveAddressOfOverloadedFunction(OnlyArg,
 | 
						|
                                         DestType.getNonReferenceType(),
 | 
						|
                                         true,
 | 
						|
                                         Found);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_AddressOfUnaddressableFunction: {
 | 
						|
    auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
 | 
						|
    S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
 | 
						|
                                        OnlyArg->getBeginLoc());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_ReferenceInitOverloadFailed:
 | 
						|
  case FK_UserConversionOverloadFailed:
 | 
						|
    switch (FailedOverloadResult) {
 | 
						|
    case OR_Ambiguous:
 | 
						|
 | 
						|
      FailedCandidateSet.NoteCandidates(
 | 
						|
          PartialDiagnosticAt(
 | 
						|
              Kind.getLocation(),
 | 
						|
              Failure == FK_UserConversionOverloadFailed
 | 
						|
                  ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
 | 
						|
                     << OnlyArg->getType() << DestType
 | 
						|
                     << Args[0]->getSourceRange())
 | 
						|
                  : (S.PDiag(diag::err_ref_init_ambiguous)
 | 
						|
                     << DestType << OnlyArg->getType()
 | 
						|
                     << Args[0]->getSourceRange())),
 | 
						|
          S, OCD_AmbiguousCandidates, Args);
 | 
						|
      break;
 | 
						|
 | 
						|
    case OR_No_Viable_Function: {
 | 
						|
      auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
 | 
						|
      if (!S.RequireCompleteType(Kind.getLocation(),
 | 
						|
                                 DestType.getNonReferenceType(),
 | 
						|
                          diag::err_typecheck_nonviable_condition_incomplete,
 | 
						|
                               OnlyArg->getType(), Args[0]->getSourceRange()))
 | 
						|
        S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
 | 
						|
          << (Entity.getKind() == InitializedEntity::EK_Result)
 | 
						|
          << OnlyArg->getType() << Args[0]->getSourceRange()
 | 
						|
          << DestType.getNonReferenceType();
 | 
						|
 | 
						|
      FailedCandidateSet.NoteCandidates(S, Args, Cands);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case OR_Deleted: {
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
 | 
						|
        << OnlyArg->getType() << DestType.getNonReferenceType()
 | 
						|
        << Args[0]->getSourceRange();
 | 
						|
      OverloadCandidateSet::iterator Best;
 | 
						|
      OverloadingResult Ovl
 | 
						|
        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
 | 
						|
      if (Ovl == OR_Deleted) {
 | 
						|
        S.NoteDeletedFunction(Best->Function);
 | 
						|
      } else {
 | 
						|
        llvm_unreachable("Inconsistent overload resolution?");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case OR_Success:
 | 
						|
      llvm_unreachable("Conversion did not fail!");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_NonConstLValueReferenceBindingToTemporary:
 | 
						|
    if (isa<InitListExpr>(Args[0])) {
 | 
						|
      S.Diag(Kind.getLocation(),
 | 
						|
             diag::err_lvalue_reference_bind_to_initlist)
 | 
						|
      << DestType.getNonReferenceType().isVolatileQualified()
 | 
						|
      << DestType.getNonReferenceType()
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
 | 
						|
  case FK_NonConstLValueReferenceBindingToUnrelated:
 | 
						|
    S.Diag(Kind.getLocation(),
 | 
						|
           Failure == FK_NonConstLValueReferenceBindingToTemporary
 | 
						|
             ? diag::err_lvalue_reference_bind_to_temporary
 | 
						|
             : diag::err_lvalue_reference_bind_to_unrelated)
 | 
						|
      << DestType.getNonReferenceType().isVolatileQualified()
 | 
						|
      << DestType.getNonReferenceType()
 | 
						|
      << OnlyArg->getType()
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_NonConstLValueReferenceBindingToBitfield: {
 | 
						|
    // We don't necessarily have an unambiguous source bit-field.
 | 
						|
    FieldDecl *BitField = Args[0]->getSourceBitField();
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
 | 
						|
      << DestType.isVolatileQualified()
 | 
						|
      << (BitField ? BitField->getDeclName() : DeclarationName())
 | 
						|
      << (BitField != nullptr)
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    if (BitField)
 | 
						|
      S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_NonConstLValueReferenceBindingToVectorElement:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
 | 
						|
      << DestType.isVolatileQualified()
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_NonConstLValueReferenceBindingToMatrixElement:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
 | 
						|
        << DestType.isVolatileQualified() << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_RValueReferenceBindingToLValue:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
 | 
						|
      << DestType.getNonReferenceType() << OnlyArg->getType()
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ReferenceAddrspaceMismatchTemporary:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
 | 
						|
        << DestType << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ReferenceInitDropsQualifiers: {
 | 
						|
    QualType SourceType = OnlyArg->getType();
 | 
						|
    QualType NonRefType = DestType.getNonReferenceType();
 | 
						|
    Qualifiers DroppedQualifiers =
 | 
						|
        SourceType.getQualifiers() - NonRefType.getQualifiers();
 | 
						|
 | 
						|
    if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
 | 
						|
            SourceType.getQualifiers()))
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
 | 
						|
          << NonRefType << SourceType << 1 /*addr space*/
 | 
						|
          << Args[0]->getSourceRange();
 | 
						|
    else if (DroppedQualifiers.hasQualifiers())
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
 | 
						|
          << NonRefType << SourceType << 0 /*cv quals*/
 | 
						|
          << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
 | 
						|
          << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
 | 
						|
    else
 | 
						|
      // FIXME: Consider decomposing the type and explaining which qualifiers
 | 
						|
      // were dropped where, or on which level a 'const' is missing, etc.
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
 | 
						|
          << NonRefType << SourceType << 2 /*incompatible quals*/
 | 
						|
          << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_ReferenceInitFailed:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
 | 
						|
      << DestType.getNonReferenceType()
 | 
						|
      << DestType.getNonReferenceType()->isIncompleteType()
 | 
						|
      << OnlyArg->isLValue()
 | 
						|
      << OnlyArg->getType()
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    emitBadConversionNotes(S, Entity, Args[0]);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ConversionFailed: {
 | 
						|
    QualType FromType = OnlyArg->getType();
 | 
						|
    PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
 | 
						|
      << (int)Entity.getKind()
 | 
						|
      << DestType
 | 
						|
      << OnlyArg->isLValue()
 | 
						|
      << FromType
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
 | 
						|
    S.Diag(Kind.getLocation(), PDiag);
 | 
						|
    emitBadConversionNotes(S, Entity, Args[0]);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_ConversionFromPropertyFailed:
 | 
						|
    // No-op. This error has already been reported.
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_TooManyInitsForScalar: {
 | 
						|
    SourceRange R;
 | 
						|
 | 
						|
    auto *InitList = dyn_cast<InitListExpr>(Args[0]);
 | 
						|
    if (InitList && InitList->getNumInits() >= 1) {
 | 
						|
      R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
 | 
						|
    } else {
 | 
						|
      assert(Args.size() > 1 && "Expected multiple initializers!");
 | 
						|
      R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    R.setBegin(S.getLocForEndOfToken(R.getBegin()));
 | 
						|
    if (Kind.isCStyleOrFunctionalCast())
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
 | 
						|
        << R;
 | 
						|
    else
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
 | 
						|
        << /*scalar=*/2 << R;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_ParenthesizedListInitForScalar:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
 | 
						|
      << 0 << Entity.getType() << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ReferenceBindingToInitList:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
 | 
						|
      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_InitListBadDestinationType:
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
 | 
						|
      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ListConstructorOverloadFailed:
 | 
						|
  case FK_ConstructorOverloadFailed: {
 | 
						|
    SourceRange ArgsRange;
 | 
						|
    if (Args.size())
 | 
						|
      ArgsRange =
 | 
						|
          SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
 | 
						|
 | 
						|
    if (Failure == FK_ListConstructorOverloadFailed) {
 | 
						|
      assert(Args.size() == 1 &&
 | 
						|
             "List construction from other than 1 argument.");
 | 
						|
      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
 | 
						|
      Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Using "DestType" for the entity we're printing is probably
 | 
						|
    // bad.
 | 
						|
    switch (FailedOverloadResult) {
 | 
						|
      case OR_Ambiguous:
 | 
						|
        FailedCandidateSet.NoteCandidates(
 | 
						|
            PartialDiagnosticAt(Kind.getLocation(),
 | 
						|
                                S.PDiag(diag::err_ovl_ambiguous_init)
 | 
						|
                                    << DestType << ArgsRange),
 | 
						|
            S, OCD_AmbiguousCandidates, Args);
 | 
						|
        break;
 | 
						|
 | 
						|
      case OR_No_Viable_Function:
 | 
						|
        if (Kind.getKind() == InitializationKind::IK_Default &&
 | 
						|
            (Entity.getKind() == InitializedEntity::EK_Base ||
 | 
						|
             Entity.getKind() == InitializedEntity::EK_Member) &&
 | 
						|
            isa<CXXConstructorDecl>(S.CurContext)) {
 | 
						|
          // This is implicit default initialization of a member or
 | 
						|
          // base within a constructor. If no viable function was
 | 
						|
          // found, notify the user that they need to explicitly
 | 
						|
          // initialize this base/member.
 | 
						|
          CXXConstructorDecl *Constructor
 | 
						|
            = cast<CXXConstructorDecl>(S.CurContext);
 | 
						|
          const CXXRecordDecl *InheritedFrom = nullptr;
 | 
						|
          if (auto Inherited = Constructor->getInheritedConstructor())
 | 
						|
            InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
 | 
						|
          if (Entity.getKind() == InitializedEntity::EK_Base) {
 | 
						|
            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
 | 
						|
              << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
 | 
						|
              << S.Context.getTypeDeclType(Constructor->getParent())
 | 
						|
              << /*base=*/0
 | 
						|
              << Entity.getType()
 | 
						|
              << InheritedFrom;
 | 
						|
 | 
						|
            RecordDecl *BaseDecl
 | 
						|
              = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
 | 
						|
                                                                  ->getDecl();
 | 
						|
            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
 | 
						|
              << S.Context.getTagDeclType(BaseDecl);
 | 
						|
          } else {
 | 
						|
            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
 | 
						|
              << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
 | 
						|
              << S.Context.getTypeDeclType(Constructor->getParent())
 | 
						|
              << /*member=*/1
 | 
						|
              << Entity.getName()
 | 
						|
              << InheritedFrom;
 | 
						|
            S.Diag(Entity.getDecl()->getLocation(),
 | 
						|
                   diag::note_member_declared_at);
 | 
						|
 | 
						|
            if (const RecordType *Record
 | 
						|
                                 = Entity.getType()->getAs<RecordType>())
 | 
						|
              S.Diag(Record->getDecl()->getLocation(),
 | 
						|
                     diag::note_previous_decl)
 | 
						|
                << S.Context.getTagDeclType(Record->getDecl());
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        FailedCandidateSet.NoteCandidates(
 | 
						|
            PartialDiagnosticAt(
 | 
						|
                Kind.getLocation(),
 | 
						|
                S.PDiag(diag::err_ovl_no_viable_function_in_init)
 | 
						|
                    << DestType << ArgsRange),
 | 
						|
            S, OCD_AllCandidates, Args);
 | 
						|
        break;
 | 
						|
 | 
						|
      case OR_Deleted: {
 | 
						|
        OverloadCandidateSet::iterator Best;
 | 
						|
        OverloadingResult Ovl
 | 
						|
          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
 | 
						|
        if (Ovl != OR_Deleted) {
 | 
						|
          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
 | 
						|
              << DestType << ArgsRange;
 | 
						|
          llvm_unreachable("Inconsistent overload resolution?");
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        // If this is a defaulted or implicitly-declared function, then
 | 
						|
        // it was implicitly deleted. Make it clear that the deletion was
 | 
						|
        // implicit.
 | 
						|
        if (S.isImplicitlyDeleted(Best->Function))
 | 
						|
          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
 | 
						|
            << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
 | 
						|
            << DestType << ArgsRange;
 | 
						|
        else
 | 
						|
          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
 | 
						|
              << DestType << ArgsRange;
 | 
						|
 | 
						|
        S.NoteDeletedFunction(Best->Function);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case OR_Success:
 | 
						|
        llvm_unreachable("Conversion did not fail!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  break;
 | 
						|
 | 
						|
  case FK_DefaultInitOfConst:
 | 
						|
    if (Entity.getKind() == InitializedEntity::EK_Member &&
 | 
						|
        isa<CXXConstructorDecl>(S.CurContext)) {
 | 
						|
      // This is implicit default-initialization of a const member in
 | 
						|
      // a constructor. Complain that it needs to be explicitly
 | 
						|
      // initialized.
 | 
						|
      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
 | 
						|
        << (Constructor->getInheritedConstructor() ? 2 :
 | 
						|
            Constructor->isImplicit() ? 1 : 0)
 | 
						|
        << S.Context.getTypeDeclType(Constructor->getParent())
 | 
						|
        << /*const=*/1
 | 
						|
        << Entity.getName();
 | 
						|
      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
 | 
						|
        << Entity.getName();
 | 
						|
    } else {
 | 
						|
      S.Diag(Kind.getLocation(), diag::err_default_init_const)
 | 
						|
          << DestType << (bool)DestType->getAs<RecordType>();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_Incomplete:
 | 
						|
    S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
 | 
						|
                          diag::err_init_incomplete_type);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_ListInitializationFailed: {
 | 
						|
    // Run the init list checker again to emit diagnostics.
 | 
						|
    InitListExpr *InitList = cast<InitListExpr>(Args[0]);
 | 
						|
    diagnoseListInit(S, Entity, InitList);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_PlaceholderType: {
 | 
						|
    // FIXME: Already diagnosed!
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case FK_ExplicitConstructor: {
 | 
						|
    S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
 | 
						|
      << Args[0]->getSourceRange();
 | 
						|
    OverloadCandidateSet::iterator Best;
 | 
						|
    OverloadingResult Ovl
 | 
						|
      = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
 | 
						|
    (void)Ovl;
 | 
						|
    assert(Ovl == OR_Success && "Inconsistent overload resolution");
 | 
						|
    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
 | 
						|
    S.Diag(CtorDecl->getLocation(),
 | 
						|
           diag::note_explicit_ctor_deduction_guide_here) << false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  PrintInitLocationNote(S, Entity);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::dump(raw_ostream &OS) const {
 | 
						|
  switch (SequenceKind) {
 | 
						|
  case FailedSequence: {
 | 
						|
    OS << "Failed sequence: ";
 | 
						|
    switch (Failure) {
 | 
						|
    case FK_TooManyInitsForReference:
 | 
						|
      OS << "too many initializers for reference";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ParenthesizedListInitForReference:
 | 
						|
      OS << "parenthesized list init for reference";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ArrayNeedsInitList:
 | 
						|
      OS << "array requires initializer list";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_AddressOfUnaddressableFunction:
 | 
						|
      OS << "address of unaddressable function was taken";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ArrayNeedsInitListOrStringLiteral:
 | 
						|
      OS << "array requires initializer list or string literal";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ArrayNeedsInitListOrWideStringLiteral:
 | 
						|
      OS << "array requires initializer list or wide string literal";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_NarrowStringIntoWideCharArray:
 | 
						|
      OS << "narrow string into wide char array";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_WideStringIntoCharArray:
 | 
						|
      OS << "wide string into char array";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_IncompatWideStringIntoWideChar:
 | 
						|
      OS << "incompatible wide string into wide char array";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_PlainStringIntoUTF8Char:
 | 
						|
      OS << "plain string literal into char8_t array";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_UTF8StringIntoPlainChar:
 | 
						|
      OS << "u8 string literal into char array";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ArrayTypeMismatch:
 | 
						|
      OS << "array type mismatch";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_NonConstantArrayInit:
 | 
						|
      OS << "non-constant array initializer";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_AddressOfOverloadFailed:
 | 
						|
      OS << "address of overloaded function failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ReferenceInitOverloadFailed:
 | 
						|
      OS << "overload resolution for reference initialization failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_NonConstLValueReferenceBindingToTemporary:
 | 
						|
      OS << "non-const lvalue reference bound to temporary";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_NonConstLValueReferenceBindingToBitfield:
 | 
						|
      OS << "non-const lvalue reference bound to bit-field";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_NonConstLValueReferenceBindingToVectorElement:
 | 
						|
      OS << "non-const lvalue reference bound to vector element";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_NonConstLValueReferenceBindingToMatrixElement:
 | 
						|
      OS << "non-const lvalue reference bound to matrix element";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_NonConstLValueReferenceBindingToUnrelated:
 | 
						|
      OS << "non-const lvalue reference bound to unrelated type";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_RValueReferenceBindingToLValue:
 | 
						|
      OS << "rvalue reference bound to an lvalue";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ReferenceInitDropsQualifiers:
 | 
						|
      OS << "reference initialization drops qualifiers";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ReferenceAddrspaceMismatchTemporary:
 | 
						|
      OS << "reference with mismatching address space bound to temporary";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ReferenceInitFailed:
 | 
						|
      OS << "reference initialization failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ConversionFailed:
 | 
						|
      OS << "conversion failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ConversionFromPropertyFailed:
 | 
						|
      OS << "conversion from property failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_TooManyInitsForScalar:
 | 
						|
      OS << "too many initializers for scalar";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ParenthesizedListInitForScalar:
 | 
						|
      OS << "parenthesized list init for reference";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ReferenceBindingToInitList:
 | 
						|
      OS << "referencing binding to initializer list";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_InitListBadDestinationType:
 | 
						|
      OS << "initializer list for non-aggregate, non-scalar type";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_UserConversionOverloadFailed:
 | 
						|
      OS << "overloading failed for user-defined conversion";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ConstructorOverloadFailed:
 | 
						|
      OS << "constructor overloading failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_DefaultInitOfConst:
 | 
						|
      OS << "default initialization of a const variable";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_Incomplete:
 | 
						|
      OS << "initialization of incomplete type";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ListInitializationFailed:
 | 
						|
      OS << "list initialization checker failure";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_VariableLengthArrayHasInitializer:
 | 
						|
      OS << "variable length array has an initializer";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_PlaceholderType:
 | 
						|
      OS << "initializer expression isn't contextually valid";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ListConstructorOverloadFailed:
 | 
						|
      OS << "list constructor overloading failed";
 | 
						|
      break;
 | 
						|
 | 
						|
    case FK_ExplicitConstructor:
 | 
						|
      OS << "list copy initialization chose explicit constructor";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    OS << '\n';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case DependentSequence:
 | 
						|
    OS << "Dependent sequence\n";
 | 
						|
    return;
 | 
						|
 | 
						|
  case NormalSequence:
 | 
						|
    OS << "Normal sequence: ";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
 | 
						|
    if (S != step_begin()) {
 | 
						|
      OS << " -> ";
 | 
						|
    }
 | 
						|
 | 
						|
    switch (S->Kind) {
 | 
						|
    case SK_ResolveAddressOfOverloadedFunction:
 | 
						|
      OS << "resolve address of overloaded function";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_CastDerivedToBasePRValue:
 | 
						|
      OS << "derived-to-base (prvalue)";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_CastDerivedToBaseXValue:
 | 
						|
      OS << "derived-to-base (xvalue)";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_CastDerivedToBaseLValue:
 | 
						|
      OS << "derived-to-base (lvalue)";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_BindReference:
 | 
						|
      OS << "bind reference to lvalue";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_BindReferenceToTemporary:
 | 
						|
      OS << "bind reference to a temporary";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_FinalCopy:
 | 
						|
      OS << "final copy in class direct-initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ExtraneousCopyToTemporary:
 | 
						|
      OS << "extraneous C++03 copy to temporary";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_UserConversion:
 | 
						|
      OS << "user-defined conversion via " << *S->Function.Function;
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_QualificationConversionPRValue:
 | 
						|
      OS << "qualification conversion (prvalue)";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_QualificationConversionXValue:
 | 
						|
      OS << "qualification conversion (xvalue)";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_QualificationConversionLValue:
 | 
						|
      OS << "qualification conversion (lvalue)";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_FunctionReferenceConversion:
 | 
						|
      OS << "function reference conversion";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_AtomicConversion:
 | 
						|
      OS << "non-atomic-to-atomic conversion";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ConversionSequence:
 | 
						|
      OS << "implicit conversion sequence (";
 | 
						|
      S->ICS->dump(); // FIXME: use OS
 | 
						|
      OS << ")";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ConversionSequenceNoNarrowing:
 | 
						|
      OS << "implicit conversion sequence with narrowing prohibited (";
 | 
						|
      S->ICS->dump(); // FIXME: use OS
 | 
						|
      OS << ")";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ListInitialization:
 | 
						|
      OS << "list aggregate initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_UnwrapInitList:
 | 
						|
      OS << "unwrap reference initializer list";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_RewrapInitList:
 | 
						|
      OS << "rewrap reference initializer list";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ConstructorInitialization:
 | 
						|
      OS << "constructor initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ConstructorInitializationFromList:
 | 
						|
      OS << "list initialization via constructor";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ZeroInitialization:
 | 
						|
      OS << "zero initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_CAssignment:
 | 
						|
      OS << "C assignment";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_StringInit:
 | 
						|
      OS << "string initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ObjCObjectConversion:
 | 
						|
      OS << "Objective-C object conversion";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ArrayLoopIndex:
 | 
						|
      OS << "indexing for array initialization loop";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ArrayLoopInit:
 | 
						|
      OS << "array initialization loop";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ArrayInit:
 | 
						|
      OS << "array initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_GNUArrayInit:
 | 
						|
      OS << "array initialization (GNU extension)";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ParenthesizedArrayInit:
 | 
						|
      OS << "parenthesized array initialization";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_PassByIndirectCopyRestore:
 | 
						|
      OS << "pass by indirect copy and restore";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_PassByIndirectRestore:
 | 
						|
      OS << "pass by indirect restore";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_ProduceObjCObject:
 | 
						|
      OS << "Objective-C object retension";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_StdInitializerList:
 | 
						|
      OS << "std::initializer_list from initializer list";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_StdInitializerListConstructorCall:
 | 
						|
      OS << "list initialization from std::initializer_list";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_OCLSamplerInit:
 | 
						|
      OS << "OpenCL sampler_t from integer constant";
 | 
						|
      break;
 | 
						|
 | 
						|
    case SK_OCLZeroOpaqueType:
 | 
						|
      OS << "OpenCL opaque type from zero";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    OS << " [" << S->Type << ']';
 | 
						|
  }
 | 
						|
 | 
						|
  OS << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void InitializationSequence::dump() const {
 | 
						|
  dump(llvm::errs());
 | 
						|
}
 | 
						|
 | 
						|
static bool NarrowingErrs(const LangOptions &L) {
 | 
						|
  return L.CPlusPlus11 &&
 | 
						|
         (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseNarrowingInInitList(Sema &S,
 | 
						|
                                        const ImplicitConversionSequence &ICS,
 | 
						|
                                        QualType PreNarrowingType,
 | 
						|
                                        QualType EntityType,
 | 
						|
                                        const Expr *PostInit) {
 | 
						|
  const StandardConversionSequence *SCS = nullptr;
 | 
						|
  switch (ICS.getKind()) {
 | 
						|
  case ImplicitConversionSequence::StandardConversion:
 | 
						|
    SCS = &ICS.Standard;
 | 
						|
    break;
 | 
						|
  case ImplicitConversionSequence::UserDefinedConversion:
 | 
						|
    SCS = &ICS.UserDefined.After;
 | 
						|
    break;
 | 
						|
  case ImplicitConversionSequence::AmbiguousConversion:
 | 
						|
  case ImplicitConversionSequence::EllipsisConversion:
 | 
						|
  case ImplicitConversionSequence::BadConversion:
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
 | 
						|
  APValue ConstantValue;
 | 
						|
  QualType ConstantType;
 | 
						|
  switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
 | 
						|
                                ConstantType)) {
 | 
						|
  case NK_Not_Narrowing:
 | 
						|
  case NK_Dependent_Narrowing:
 | 
						|
    // No narrowing occurred.
 | 
						|
    return;
 | 
						|
 | 
						|
  case NK_Type_Narrowing:
 | 
						|
    // This was a floating-to-integer conversion, which is always considered a
 | 
						|
    // narrowing conversion even if the value is a constant and can be
 | 
						|
    // represented exactly as an integer.
 | 
						|
    S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
 | 
						|
                                        ? diag::ext_init_list_type_narrowing
 | 
						|
                                        : diag::warn_init_list_type_narrowing)
 | 
						|
        << PostInit->getSourceRange()
 | 
						|
        << PreNarrowingType.getLocalUnqualifiedType()
 | 
						|
        << EntityType.getLocalUnqualifiedType();
 | 
						|
    break;
 | 
						|
 | 
						|
  case NK_Constant_Narrowing:
 | 
						|
    // A constant value was narrowed.
 | 
						|
    S.Diag(PostInit->getBeginLoc(),
 | 
						|
           NarrowingErrs(S.getLangOpts())
 | 
						|
               ? diag::ext_init_list_constant_narrowing
 | 
						|
               : diag::warn_init_list_constant_narrowing)
 | 
						|
        << PostInit->getSourceRange()
 | 
						|
        << ConstantValue.getAsString(S.getASTContext(), ConstantType)
 | 
						|
        << EntityType.getLocalUnqualifiedType();
 | 
						|
    break;
 | 
						|
 | 
						|
  case NK_Variable_Narrowing:
 | 
						|
    // A variable's value may have been narrowed.
 | 
						|
    S.Diag(PostInit->getBeginLoc(),
 | 
						|
           NarrowingErrs(S.getLangOpts())
 | 
						|
               ? diag::ext_init_list_variable_narrowing
 | 
						|
               : diag::warn_init_list_variable_narrowing)
 | 
						|
        << PostInit->getSourceRange()
 | 
						|
        << PreNarrowingType.getLocalUnqualifiedType()
 | 
						|
        << EntityType.getLocalUnqualifiedType();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallString<128> StaticCast;
 | 
						|
  llvm::raw_svector_ostream OS(StaticCast);
 | 
						|
  OS << "static_cast<";
 | 
						|
  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
 | 
						|
    // It's important to use the typedef's name if there is one so that the
 | 
						|
    // fixit doesn't break code using types like int64_t.
 | 
						|
    //
 | 
						|
    // FIXME: This will break if the typedef requires qualification.  But
 | 
						|
    // getQualifiedNameAsString() includes non-machine-parsable components.
 | 
						|
    OS << *TT->getDecl();
 | 
						|
  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
 | 
						|
    OS << BT->getName(S.getLangOpts());
 | 
						|
  else {
 | 
						|
    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
 | 
						|
    // with a broken cast.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  OS << ">(";
 | 
						|
  S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
 | 
						|
      << PostInit->getSourceRange()
 | 
						|
      << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
 | 
						|
      << FixItHint::CreateInsertion(
 | 
						|
             S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Initialization helper functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
bool
 | 
						|
Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
 | 
						|
                                   ExprResult Init) {
 | 
						|
  if (Init.isInvalid())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Expr *InitE = Init.get();
 | 
						|
  assert(InitE && "No initialization expression");
 | 
						|
 | 
						|
  InitializationKind Kind =
 | 
						|
      InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
 | 
						|
  InitializationSequence Seq(*this, Entity, Kind, InitE);
 | 
						|
  return !Seq.Failed();
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::PerformCopyInitialization(const InitializedEntity &Entity,
 | 
						|
                                SourceLocation EqualLoc,
 | 
						|
                                ExprResult Init,
 | 
						|
                                bool TopLevelOfInitList,
 | 
						|
                                bool AllowExplicit) {
 | 
						|
  if (Init.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  Expr *InitE = Init.get();
 | 
						|
  assert(InitE && "No initialization expression?");
 | 
						|
 | 
						|
  if (EqualLoc.isInvalid())
 | 
						|
    EqualLoc = InitE->getBeginLoc();
 | 
						|
 | 
						|
  InitializationKind Kind = InitializationKind::CreateCopy(
 | 
						|
      InitE->getBeginLoc(), EqualLoc, AllowExplicit);
 | 
						|
  InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
 | 
						|
 | 
						|
  // Prevent infinite recursion when performing parameter copy-initialization.
 | 
						|
  const bool ShouldTrackCopy =
 | 
						|
      Entity.isParameterKind() && Seq.isConstructorInitialization();
 | 
						|
  if (ShouldTrackCopy) {
 | 
						|
    if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) {
 | 
						|
      Seq.SetOverloadFailure(
 | 
						|
          InitializationSequence::FK_ConstructorOverloadFailed,
 | 
						|
          OR_No_Viable_Function);
 | 
						|
 | 
						|
      // Try to give a meaningful diagnostic note for the problematic
 | 
						|
      // constructor.
 | 
						|
      const auto LastStep = Seq.step_end() - 1;
 | 
						|
      assert(LastStep->Kind ==
 | 
						|
             InitializationSequence::SK_ConstructorInitialization);
 | 
						|
      const FunctionDecl *Function = LastStep->Function.Function;
 | 
						|
      auto Candidate =
 | 
						|
          llvm::find_if(Seq.getFailedCandidateSet(),
 | 
						|
                        [Function](const OverloadCandidate &Candidate) -> bool {
 | 
						|
                          return Candidate.Viable &&
 | 
						|
                                 Candidate.Function == Function &&
 | 
						|
                                 Candidate.Conversions.size() > 0;
 | 
						|
                        });
 | 
						|
      if (Candidate != Seq.getFailedCandidateSet().end() &&
 | 
						|
          Function->getNumParams() > 0) {
 | 
						|
        Candidate->Viable = false;
 | 
						|
        Candidate->FailureKind = ovl_fail_bad_conversion;
 | 
						|
        Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
 | 
						|
                                         InitE,
 | 
						|
                                         Function->getParamDecl(0)->getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    CurrentParameterCopyTypes.push_back(Entity.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
 | 
						|
 | 
						|
  if (ShouldTrackCopy)
 | 
						|
    CurrentParameterCopyTypes.pop_back();
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether RD is, or is derived from, a specialization of CTD.
 | 
						|
static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
 | 
						|
                                              ClassTemplateDecl *CTD) {
 | 
						|
  auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
 | 
						|
    auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
 | 
						|
    return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
 | 
						|
  };
 | 
						|
  return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::DeduceTemplateSpecializationFromInitializer(
 | 
						|
    TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
 | 
						|
    const InitializationKind &Kind, MultiExprArg Inits) {
 | 
						|
  auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
 | 
						|
      TSInfo->getType()->getContainedDeducedType());
 | 
						|
  assert(DeducedTST && "not a deduced template specialization type");
 | 
						|
 | 
						|
  auto TemplateName = DeducedTST->getTemplateName();
 | 
						|
  if (TemplateName.isDependent())
 | 
						|
    return SubstAutoTypeDependent(TSInfo->getType());
 | 
						|
 | 
						|
  // We can only perform deduction for class templates.
 | 
						|
  auto *Template =
 | 
						|
      dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
 | 
						|
  if (!Template) {
 | 
						|
    Diag(Kind.getLocation(),
 | 
						|
         diag::err_deduced_non_class_template_specialization_type)
 | 
						|
      << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
 | 
						|
    if (auto *TD = TemplateName.getAsTemplateDecl())
 | 
						|
      Diag(TD->getLocation(), diag::note_template_decl_here);
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Can't deduce from dependent arguments.
 | 
						|
  if (Expr::hasAnyTypeDependentArguments(Inits)) {
 | 
						|
    Diag(TSInfo->getTypeLoc().getBeginLoc(),
 | 
						|
         diag::warn_cxx14_compat_class_template_argument_deduction)
 | 
						|
        << TSInfo->getTypeLoc().getSourceRange() << 0;
 | 
						|
    return SubstAutoTypeDependent(TSInfo->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Perform "exact type" matching first, per CWG discussion?
 | 
						|
  //        Or implement this via an implied 'T(T) -> T' deduction guide?
 | 
						|
 | 
						|
  // FIXME: Do we need/want a std::initializer_list<T> special case?
 | 
						|
 | 
						|
  // Look up deduction guides, including those synthesized from constructors.
 | 
						|
  //
 | 
						|
  // C++1z [over.match.class.deduct]p1:
 | 
						|
  //   A set of functions and function templates is formed comprising:
 | 
						|
  //   - For each constructor of the class template designated by the
 | 
						|
  //     template-name, a function template [...]
 | 
						|
  //  - For each deduction-guide, a function or function template [...]
 | 
						|
  DeclarationNameInfo NameInfo(
 | 
						|
      Context.DeclarationNames.getCXXDeductionGuideName(Template),
 | 
						|
      TSInfo->getTypeLoc().getEndLoc());
 | 
						|
  LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
 | 
						|
  LookupQualifiedName(Guides, Template->getDeclContext());
 | 
						|
 | 
						|
  // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
 | 
						|
  // clear on this, but they're not found by name so access does not apply.
 | 
						|
  Guides.suppressDiagnostics();
 | 
						|
 | 
						|
  // Figure out if this is list-initialization.
 | 
						|
  InitListExpr *ListInit =
 | 
						|
      (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
 | 
						|
          ? dyn_cast<InitListExpr>(Inits[0])
 | 
						|
          : nullptr;
 | 
						|
 | 
						|
  // C++1z [over.match.class.deduct]p1:
 | 
						|
  //   Initialization and overload resolution are performed as described in
 | 
						|
  //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
 | 
						|
  //   (as appropriate for the type of initialization performed) for an object
 | 
						|
  //   of a hypothetical class type, where the selected functions and function
 | 
						|
  //   templates are considered to be the constructors of that class type
 | 
						|
  //
 | 
						|
  // Since we know we're initializing a class type of a type unrelated to that
 | 
						|
  // of the initializer, this reduces to something fairly reasonable.
 | 
						|
  OverloadCandidateSet Candidates(Kind.getLocation(),
 | 
						|
                                  OverloadCandidateSet::CSK_Normal);
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
 | 
						|
  bool HasAnyDeductionGuide = false;
 | 
						|
  bool AllowExplicit = !Kind.isCopyInit() || ListInit;
 | 
						|
 | 
						|
  auto tryToResolveOverload =
 | 
						|
      [&](bool OnlyListConstructors) -> OverloadingResult {
 | 
						|
    Candidates.clear(OverloadCandidateSet::CSK_Normal);
 | 
						|
    HasAnyDeductionGuide = false;
 | 
						|
 | 
						|
    for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
 | 
						|
      NamedDecl *D = (*I)->getUnderlyingDecl();
 | 
						|
      if (D->isInvalidDecl())
 | 
						|
        continue;
 | 
						|
 | 
						|
      auto *TD = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
      auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
 | 
						|
          TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
 | 
						|
      if (!GD)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!GD->isImplicit())
 | 
						|
        HasAnyDeductionGuide = true;
 | 
						|
 | 
						|
      // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
 | 
						|
      //   For copy-initialization, the candidate functions are all the
 | 
						|
      //   converting constructors (12.3.1) of that class.
 | 
						|
      // C++ [over.match.copy]p1: (non-list copy-initialization from class)
 | 
						|
      //   The converting constructors of T are candidate functions.
 | 
						|
      if (!AllowExplicit) {
 | 
						|
        // Overload resolution checks whether the deduction guide is declared
 | 
						|
        // explicit for us.
 | 
						|
 | 
						|
        // When looking for a converting constructor, deduction guides that
 | 
						|
        // could never be called with one argument are not interesting to
 | 
						|
        // check or note.
 | 
						|
        if (GD->getMinRequiredArguments() > 1 ||
 | 
						|
            (GD->getNumParams() == 0 && !GD->isVariadic()))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // C++ [over.match.list]p1.1: (first phase list initialization)
 | 
						|
      //   Initially, the candidate functions are the initializer-list
 | 
						|
      //   constructors of the class T
 | 
						|
      if (OnlyListConstructors && !isInitListConstructor(GD))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // C++ [over.match.list]p1.2: (second phase list initialization)
 | 
						|
      //   the candidate functions are all the constructors of the class T
 | 
						|
      // C++ [over.match.ctor]p1: (all other cases)
 | 
						|
      //   the candidate functions are all the constructors of the class of
 | 
						|
      //   the object being initialized
 | 
						|
 | 
						|
      // C++ [over.best.ics]p4:
 | 
						|
      //   When [...] the constructor [...] is a candidate by
 | 
						|
      //    - [over.match.copy] (in all cases)
 | 
						|
      // FIXME: The "second phase of [over.match.list] case can also
 | 
						|
      // theoretically happen here, but it's not clear whether we can
 | 
						|
      // ever have a parameter of the right type.
 | 
						|
      bool SuppressUserConversions = Kind.isCopyInit();
 | 
						|
 | 
						|
      if (TD)
 | 
						|
        AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
 | 
						|
                                     Inits, Candidates, SuppressUserConversions,
 | 
						|
                                     /*PartialOverloading*/ false,
 | 
						|
                                     AllowExplicit);
 | 
						|
      else
 | 
						|
        AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
 | 
						|
                             SuppressUserConversions,
 | 
						|
                             /*PartialOverloading*/ false, AllowExplicit);
 | 
						|
    }
 | 
						|
    return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
 | 
						|
  };
 | 
						|
 | 
						|
  OverloadingResult Result = OR_No_Viable_Function;
 | 
						|
 | 
						|
  // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
 | 
						|
  // try initializer-list constructors.
 | 
						|
  if (ListInit) {
 | 
						|
    bool TryListConstructors = true;
 | 
						|
 | 
						|
    // Try list constructors unless the list is empty and the class has one or
 | 
						|
    // more default constructors, in which case those constructors win.
 | 
						|
    if (!ListInit->getNumInits()) {
 | 
						|
      for (NamedDecl *D : Guides) {
 | 
						|
        auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
 | 
						|
        if (FD && FD->getMinRequiredArguments() == 0) {
 | 
						|
          TryListConstructors = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (ListInit->getNumInits() == 1) {
 | 
						|
      // C++ [over.match.class.deduct]:
 | 
						|
      //   As an exception, the first phase in [over.match.list] (considering
 | 
						|
      //   initializer-list constructors) is omitted if the initializer list
 | 
						|
      //   consists of a single expression of type cv U, where U is a
 | 
						|
      //   specialization of C or a class derived from a specialization of C.
 | 
						|
      Expr *E = ListInit->getInit(0);
 | 
						|
      auto *RD = E->getType()->getAsCXXRecordDecl();
 | 
						|
      if (!isa<InitListExpr>(E) && RD &&
 | 
						|
          isCompleteType(Kind.getLocation(), E->getType()) &&
 | 
						|
          isOrIsDerivedFromSpecializationOf(RD, Template))
 | 
						|
        TryListConstructors = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (TryListConstructors)
 | 
						|
      Result = tryToResolveOverload(/*OnlyListConstructor*/true);
 | 
						|
    // Then unwrap the initializer list and try again considering all
 | 
						|
    // constructors.
 | 
						|
    Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
 | 
						|
  }
 | 
						|
 | 
						|
  // If list-initialization fails, or if we're doing any other kind of
 | 
						|
  // initialization, we (eventually) consider constructors.
 | 
						|
  if (Result == OR_No_Viable_Function)
 | 
						|
    Result = tryToResolveOverload(/*OnlyListConstructor*/false);
 | 
						|
 | 
						|
  switch (Result) {
 | 
						|
  case OR_Ambiguous:
 | 
						|
    // FIXME: For list-initialization candidates, it'd usually be better to
 | 
						|
    // list why they were not viable when given the initializer list itself as
 | 
						|
    // an argument.
 | 
						|
    Candidates.NoteCandidates(
 | 
						|
        PartialDiagnosticAt(
 | 
						|
            Kind.getLocation(),
 | 
						|
            PDiag(diag::err_deduced_class_template_ctor_ambiguous)
 | 
						|
                << TemplateName),
 | 
						|
        *this, OCD_AmbiguousCandidates, Inits);
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  case OR_No_Viable_Function: {
 | 
						|
    CXXRecordDecl *Primary =
 | 
						|
        cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
 | 
						|
    bool Complete =
 | 
						|
        isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
 | 
						|
    Candidates.NoteCandidates(
 | 
						|
        PartialDiagnosticAt(
 | 
						|
            Kind.getLocation(),
 | 
						|
            PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
 | 
						|
                           : diag::err_deduced_class_template_incomplete)
 | 
						|
                << TemplateName << !Guides.empty()),
 | 
						|
        *this, OCD_AllCandidates, Inits);
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  case OR_Deleted: {
 | 
						|
    Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
 | 
						|
      << TemplateName;
 | 
						|
    NoteDeletedFunction(Best->Function);
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  case OR_Success:
 | 
						|
    // C++ [over.match.list]p1:
 | 
						|
    //   In copy-list-initialization, if an explicit constructor is chosen, the
 | 
						|
    //   initialization is ill-formed.
 | 
						|
    if (Kind.isCopyInit() && ListInit &&
 | 
						|
        cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
 | 
						|
      bool IsDeductionGuide = !Best->Function->isImplicit();
 | 
						|
      Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
 | 
						|
          << TemplateName << IsDeductionGuide;
 | 
						|
      Diag(Best->Function->getLocation(),
 | 
						|
           diag::note_explicit_ctor_deduction_guide_here)
 | 
						|
          << IsDeductionGuide;
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure we didn't select an unusable deduction guide, and mark it
 | 
						|
    // as referenced.
 | 
						|
    DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
 | 
						|
    MarkFunctionReferenced(Kind.getLocation(), Best->Function);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [dcl.type.class.deduct]p1:
 | 
						|
  //  The placeholder is replaced by the return type of the function selected
 | 
						|
  //  by overload resolution for class template deduction.
 | 
						|
  QualType DeducedType =
 | 
						|
      SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
 | 
						|
  Diag(TSInfo->getTypeLoc().getBeginLoc(),
 | 
						|
       diag::warn_cxx14_compat_class_template_argument_deduction)
 | 
						|
      << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
 | 
						|
 | 
						|
  // Warn if CTAD was used on a type that does not have any user-defined
 | 
						|
  // deduction guides.
 | 
						|
  if (!HasAnyDeductionGuide) {
 | 
						|
    Diag(TSInfo->getTypeLoc().getBeginLoc(),
 | 
						|
         diag::warn_ctad_maybe_unsupported)
 | 
						|
        << TemplateName;
 | 
						|
    Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
 | 
						|
  }
 | 
						|
 | 
						|
  return DeducedType;
 | 
						|
}
 |