665 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			665 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LiveVariable analysis pass.  For each machine
 | |
| // instruction in the function, this pass calculates the set of registers that
 | |
| // are immediately dead after the instruction (i.e., the instruction calculates
 | |
| // the value, but it is never used) and the set of registers that are used by
 | |
| // the instruction, but are never used after the instruction (i.e., they are
 | |
| // killed).
 | |
| //
 | |
| // This class computes live variables using are sparse implementation based on
 | |
| // the machine code SSA form.  This class computes live variable information for
 | |
| // each virtual and _register allocatable_ physical register in a function.  It
 | |
| // uses the dominance properties of SSA form to efficiently compute live
 | |
| // variables for virtual registers, and assumes that physical registers are only
 | |
| // live within a single basic block (allowing it to do a single local analysis
 | |
| // to resolve physical register lifetimes in each basic block).  If a physical
 | |
| // register is not register allocatable, it is not tracked.  This is useful for
 | |
| // things like the stack pointer and condition codes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Config/alloca.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| char LiveVariables::ID = 0;
 | |
| static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
 | |
| 
 | |
| void LiveVariables::VarInfo::dump() const {
 | |
|   cerr << "  Alive in blocks: ";
 | |
|   for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
 | |
|     if (AliveBlocks[i]) cerr << i << ", ";
 | |
|   cerr << "  Used in blocks: ";
 | |
|   for (unsigned i = 0, e = UsedBlocks.size(); i != e; ++i)
 | |
|     if (UsedBlocks[i]) cerr << i << ", ";
 | |
|   cerr << "\n  Killed by:";
 | |
|   if (Kills.empty())
 | |
|     cerr << " No instructions.\n";
 | |
|   else {
 | |
|     for (unsigned i = 0, e = Kills.size(); i != e; ++i)
 | |
|       cerr << "\n    #" << i << ": " << *Kills[i];
 | |
|     cerr << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
 | |
| LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
 | |
|          "getVarInfo: not a virtual register!");
 | |
|   RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
 | |
|   if (RegIdx >= VirtRegInfo.size()) {
 | |
|     if (RegIdx >= 2*VirtRegInfo.size())
 | |
|       VirtRegInfo.resize(RegIdx*2);
 | |
|     else
 | |
|       VirtRegInfo.resize(2*VirtRegInfo.size());
 | |
|   }
 | |
|   VarInfo &VI = VirtRegInfo[RegIdx];
 | |
|   VI.AliveBlocks.resize(MF->getNumBlockIDs());
 | |
|   VI.UsedBlocks.resize(MF->getNumBlockIDs());
 | |
|   return VI;
 | |
| }
 | |
| 
 | |
| /// KillsRegister - Returns true if the machine instruction kills the specified
 | |
| /// register.
 | |
| bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isRegister() && MO.isKill()) {
 | |
|       unsigned MOReg = MO.getReg();
 | |
|       if (MOReg == Reg ||
 | |
|           (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
 | |
|            TargetRegisterInfo::isPhysicalRegister(Reg) &&
 | |
|            RegInfo->isSubRegister(MOReg, Reg)))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RegisterDefIsDead - Returns true if the register is dead in this machine
 | |
| /// instruction.
 | |
| bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isRegister() && MO.isDead()) {
 | |
|       unsigned MOReg = MO.getReg();
 | |
|       if ((MOReg == Reg) ||
 | |
|           (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
 | |
|            TargetRegisterInfo::isPhysicalRegister(Reg) &&
 | |
|            RegInfo->isSubRegister(MOReg, Reg)))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ModifiesRegister - Returns true if the machine instruction modifies the
 | |
| /// register.
 | |
| bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isRegister() && MO.isDef() && MO.getReg() == Reg)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
 | |
|                                             MachineBasicBlock *DefBlock,
 | |
|                                             MachineBasicBlock *MBB,
 | |
|                                     std::vector<MachineBasicBlock*> &WorkList) {
 | |
|   unsigned BBNum = MBB->getNumber();
 | |
|   
 | |
|   // Check to see if this basic block is one of the killing blocks.  If so,
 | |
|   // remove it.
 | |
|   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
 | |
|     if (VRInfo.Kills[i]->getParent() == MBB) {
 | |
|       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
 | |
|       break;
 | |
|     }
 | |
|   
 | |
|   if (MBB == DefBlock) return;  // Terminate recursion
 | |
| 
 | |
|   if (VRInfo.AliveBlocks[BBNum])
 | |
|     return;  // We already know the block is live
 | |
| 
 | |
|   // Mark the variable known alive in this bb
 | |
|   VRInfo.AliveBlocks[BBNum] = true;
 | |
| 
 | |
|   for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
 | |
|          E = MBB->pred_rend(); PI != E; ++PI)
 | |
|     WorkList.push_back(*PI);
 | |
| }
 | |
| 
 | |
| void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
 | |
|                                             MachineBasicBlock *DefBlock,
 | |
|                                             MachineBasicBlock *MBB) {
 | |
|   std::vector<MachineBasicBlock*> WorkList;
 | |
|   MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     MachineBasicBlock *Pred = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
 | |
|                                      MachineInstr *MI) {
 | |
|   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
 | |
|   assert(MRI.getVRegDef(reg) && "Register use before def!");
 | |
| 
 | |
|   unsigned BBNum = MBB->getNumber();
 | |
| 
 | |
|   VarInfo& VRInfo = getVarInfo(reg);
 | |
|   VRInfo.UsedBlocks[BBNum] = true;
 | |
|   VRInfo.NumUses++;
 | |
| 
 | |
|   // Check to see if this basic block is already a kill block.
 | |
|   if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
 | |
|     // Yes, this register is killed in this basic block already. Increase the
 | |
|     // live range by updating the kill instruction.
 | |
|     VRInfo.Kills.back() = MI;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
 | |
|     assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
 | |
| #endif
 | |
| 
 | |
|   assert(MBB != MRI.getVRegDef(reg)->getParent() &&
 | |
|          "Should have kill for defblock!");
 | |
| 
 | |
|   // Add a new kill entry for this basic block. If this virtual register is
 | |
|   // already marked as alive in this basic block, that means it is alive in at
 | |
|   // least one of the successor blocks, it's not a kill.
 | |
|   if (!VRInfo.AliveBlocks[BBNum])
 | |
|     VRInfo.Kills.push_back(MI);
 | |
| 
 | |
|   // Update all dominating blocks to mark them as "known live".
 | |
|   for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | |
|          E = MBB->pred_end(); PI != E; ++PI)
 | |
|     MarkVirtRegAliveInBlock(VRInfo, MRI.getVRegDef(reg)->getParent(), *PI);
 | |
| }
 | |
| 
 | |
| /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
 | |
| /// implicit defs to a machine instruction if there was an earlier def of its
 | |
| /// super-register.
 | |
| void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
 | |
|   // Turn previous partial def's into read/mod/write.
 | |
|   for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) {
 | |
|     MachineInstr *Def = PhysRegPartDef[Reg][i];
 | |
| 
 | |
|     // First one is just a def. This means the use is reading some undef bits.
 | |
|     if (i != 0)
 | |
|       Def->addOperand(MachineOperand::CreateReg(Reg,
 | |
|                                                 false /*IsDef*/,
 | |
|                                                 true  /*IsImp*/,
 | |
|                                                 true  /*IsKill*/));
 | |
| 
 | |
|     Def->addOperand(MachineOperand::CreateReg(Reg,
 | |
|                                               true  /*IsDef*/,
 | |
|                                               true  /*IsImp*/));
 | |
|   }
 | |
| 
 | |
|   PhysRegPartDef[Reg].clear();
 | |
| 
 | |
|   // There was an earlier def of a super-register. Add implicit def to that MI.
 | |
|   //
 | |
|   //   A: EAX = ...
 | |
|   //   B: ... = AX
 | |
|   //
 | |
|   // Add implicit def to A.
 | |
|   if (PhysRegInfo[Reg] && PhysRegInfo[Reg] != PhysRegPartUse[Reg] &&
 | |
|       !PhysRegUsed[Reg]) {
 | |
|     MachineInstr *Def = PhysRegInfo[Reg];
 | |
| 
 | |
|     if (!Def->findRegisterDefOperand(Reg))
 | |
|       Def->addOperand(MachineOperand::CreateReg(Reg,
 | |
|                                                 true  /*IsDef*/,
 | |
|                                                 true  /*IsImp*/));
 | |
|   }
 | |
| 
 | |
|   // There is a now a proper use, forget about the last partial use.
 | |
|   PhysRegPartUse[Reg] = NULL;
 | |
|   PhysRegInfo[Reg] = MI;
 | |
|   PhysRegUsed[Reg] = true;
 | |
| 
 | |
|   // Now reset the use information for the sub-registers.
 | |
|   for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
 | |
|        unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|     PhysRegPartUse[SubReg] = NULL;
 | |
|     PhysRegInfo[SubReg] = MI;
 | |
|     PhysRegUsed[SubReg] = true;
 | |
|   }
 | |
| 
 | |
|   for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
 | |
|        unsigned SuperReg = *SuperRegs; ++SuperRegs) {
 | |
|     // Remember the partial use of this super-register if it was previously
 | |
|     // defined.
 | |
|     bool HasPrevDef = PhysRegInfo[SuperReg] != NULL;
 | |
| 
 | |
|     if (!HasPrevDef)
 | |
|       // No need to go up more levels. A def of a register also sets its sub-
 | |
|       // registers. So if PhysRegInfo[SuperReg] is NULL, it means SuperReg's
 | |
|       // super-registers are not previously defined.
 | |
|       for (const unsigned *SSRegs = RegInfo->getSuperRegisters(SuperReg);
 | |
|            unsigned SSReg = *SSRegs; ++SSRegs)
 | |
|         if (PhysRegInfo[SSReg] != NULL) {
 | |
|           HasPrevDef = true;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|     if (HasPrevDef) {
 | |
|       PhysRegInfo[SuperReg] = MI;
 | |
|       PhysRegPartUse[SuperReg] = MI;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// addRegisterKills - For all of a register's sub-registers that are killed in
 | |
| /// at this machine instruction, mark them as "killed". (If the machine operand
 | |
| /// isn't found, add it first.)
 | |
| void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI,
 | |
|                                      SmallSet<unsigned, 4> &SubKills) {
 | |
|   if (SubKills.count(Reg) == 0) {
 | |
|     MI->addRegisterKilled(Reg, RegInfo, true);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
 | |
|        unsigned SubReg = *SubRegs; ++SubRegs)
 | |
|     addRegisterKills(SubReg, MI, SubKills);
 | |
| }
 | |
| 
 | |
| /// HandlePhysRegKill - The recursive version of HandlePhysRegKill. Returns true
 | |
| /// if:
 | |
| ///
 | |
| ///   - The register has no sub-registers and the machine instruction is the
 | |
| ///     last def/use of the register, or
 | |
| ///   - The register has sub-registers and none of them are killed elsewhere.
 | |
| ///
 | |
| /// SubKills is filled with the set of sub-registers that are killed elsewhere.
 | |
| bool LiveVariables::HandlePhysRegKill(unsigned Reg, const MachineInstr *RefMI,
 | |
|                                       SmallSet<unsigned, 4> &SubKills) {
 | |
|   const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
 | |
| 
 | |
|   for (; unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|     const MachineInstr *LastRef = PhysRegInfo[SubReg];
 | |
| 
 | |
|     if (LastRef != RefMI ||
 | |
|         !HandlePhysRegKill(SubReg, RefMI, SubKills))
 | |
|       SubKills.insert(SubReg);
 | |
|   }
 | |
| 
 | |
|   if (*SubRegs == 0) {
 | |
|     // No sub-registers, just check if reg is killed by RefMI.
 | |
|     if (PhysRegInfo[Reg] == RefMI)
 | |
|       return true;
 | |
|   } else if (SubKills.empty()) {
 | |
|     // None of the sub-registers are killed elsewhere.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// HandlePhysRegKill - Returns true if the whole register is killed in the
 | |
| /// machine instruction. If only some of its sub-registers are killed in this
 | |
| /// machine instruction, then mark those as killed and return false.
 | |
| bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) {
 | |
|   SmallSet<unsigned, 4> SubKills;
 | |
| 
 | |
|   if (HandlePhysRegKill(Reg, RefMI, SubKills)) {
 | |
|     // This machine instruction kills this register.
 | |
|     RefMI->addRegisterKilled(Reg, RegInfo, true);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Some sub-registers are killed by another machine instruction.
 | |
|   for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
 | |
|        unsigned SubReg = *SubRegs; ++SubRegs)
 | |
|     addRegisterKills(SubReg, RefMI, SubKills);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
 | |
|   // Does this kill a previous version of this register?
 | |
|   if (MachineInstr *LastRef = PhysRegInfo[Reg]) {
 | |
|     if (PhysRegUsed[Reg]) {
 | |
|       if (!HandlePhysRegKill(Reg, LastRef)) {
 | |
|         if (PhysRegPartUse[Reg])
 | |
|           PhysRegPartUse[Reg]->addRegisterKilled(Reg, RegInfo, true);
 | |
|       }
 | |
|     } else if (PhysRegPartUse[Reg]) {
 | |
|       // Add implicit use / kill to last partial use.
 | |
|       PhysRegPartUse[Reg]->addRegisterKilled(Reg, RegInfo, true);
 | |
|     } else if (LastRef != MI) {
 | |
|       // Defined, but not used. However, watch out for cases where a super-reg
 | |
|       // is also defined on the same MI.
 | |
|       LastRef->addRegisterDead(Reg, RegInfo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
 | |
|        unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|     if (MachineInstr *LastRef = PhysRegInfo[SubReg]) {
 | |
|       if (PhysRegUsed[SubReg]) {
 | |
|         if (!HandlePhysRegKill(SubReg, LastRef)) {
 | |
|           if (PhysRegPartUse[SubReg])
 | |
|             PhysRegPartUse[SubReg]->addRegisterKilled(SubReg, RegInfo, true);
 | |
|         }
 | |
|       } else if (PhysRegPartUse[SubReg]) {
 | |
|         // Add implicit use / kill to last use of a sub-register.
 | |
|         PhysRegPartUse[SubReg]->addRegisterKilled(SubReg, RegInfo, true);
 | |
|       } else if (LastRef != MI) {
 | |
|         // This must be a def of the subreg on the same MI.
 | |
|         LastRef->addRegisterDead(SubReg, RegInfo);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MI) {
 | |
|     for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
 | |
|          unsigned SuperReg = *SuperRegs; ++SuperRegs) {
 | |
|       if (PhysRegInfo[SuperReg] && PhysRegInfo[SuperReg] != MI) {
 | |
|         // The larger register is previously defined. Now a smaller part is
 | |
|         // being re-defined. Treat it as read/mod/write.
 | |
|         // EAX =
 | |
|         // AX  =        EAX<imp-use,kill>, EAX<imp-def>
 | |
|         MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
 | |
|                                                  true/*IsImp*/,true/*IsKill*/));
 | |
|         MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
 | |
|                                                  true/*IsImp*/));
 | |
|         PhysRegInfo[SuperReg] = MI;
 | |
|         PhysRegUsed[SuperReg] = false;
 | |
|         PhysRegPartUse[SuperReg] = NULL;
 | |
|       } else {
 | |
|         // Remember this partial def.
 | |
|         PhysRegPartDef[SuperReg].push_back(MI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     PhysRegInfo[Reg] = MI;
 | |
|     PhysRegUsed[Reg] = false;
 | |
|     PhysRegPartDef[Reg].clear();
 | |
|     PhysRegPartUse[Reg] = NULL;
 | |
| 
 | |
|     for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
 | |
|          unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|       PhysRegInfo[SubReg] = MI;
 | |
|       PhysRegUsed[SubReg] = false;
 | |
|       PhysRegPartDef[SubReg].clear();
 | |
|       PhysRegPartUse[SubReg] = NULL;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
 | |
|   MF = &mf;
 | |
|   RegInfo = MF->getTarget().getRegisterInfo();
 | |
|   MachineRegisterInfo& MRI = mf.getRegInfo();
 | |
|   assert(RegInfo && "Target doesn't have register information?");
 | |
| 
 | |
|   ReservedRegisters = RegInfo->getReservedRegs(mf);
 | |
| 
 | |
|   unsigned NumRegs = RegInfo->getNumRegs();
 | |
|   PhysRegInfo = new MachineInstr*[NumRegs];
 | |
|   PhysRegUsed = new bool[NumRegs];
 | |
|   PhysRegPartUse = new MachineInstr*[NumRegs];
 | |
|   PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs];
 | |
|   PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
 | |
|   std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
 | |
|   std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
 | |
|   std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
 | |
| 
 | |
|   /// Get some space for a respectable number of registers.
 | |
|   VirtRegInfo.resize(64);
 | |
| 
 | |
|   analyzePHINodes(mf);
 | |
| 
 | |
|   // Calculate live variable information in depth first order on the CFG of the
 | |
|   // function.  This guarantees that we will see the definition of a virtual
 | |
|   // register before its uses due to dominance properties of SSA (except for PHI
 | |
|   // nodes, which are treated as a special case).
 | |
|   MachineBasicBlock *Entry = MF->begin();
 | |
|   SmallPtrSet<MachineBasicBlock*,16> Visited;
 | |
| 
 | |
|   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
 | |
|          DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
 | |
|        DFI != E; ++DFI) {
 | |
|     MachineBasicBlock *MBB = *DFI;
 | |
| 
 | |
|     // Mark live-in registers as live-in.
 | |
|     for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
 | |
|            EE = MBB->livein_end(); II != EE; ++II) {
 | |
|       assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
 | |
|              "Cannot have a live-in virtual register!");
 | |
|       HandlePhysRegDef(*II, 0);
 | |
|     }
 | |
| 
 | |
|     // Loop over all of the instructions, processing them.
 | |
|     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
 | |
|          I != E; ++I) {
 | |
|       MachineInstr *MI = I;
 | |
| 
 | |
|       // Process all of the operands of the instruction...
 | |
|       unsigned NumOperandsToProcess = MI->getNumOperands();
 | |
| 
 | |
|       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
 | |
|       // of the uses.  They will be handled in other basic blocks.
 | |
|       if (MI->getOpcode() == TargetInstrInfo::PHI)
 | |
|         NumOperandsToProcess = 1;
 | |
| 
 | |
|       // Process all uses.
 | |
|       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
 | |
|         const MachineOperand &MO = MI->getOperand(i);
 | |
| 
 | |
|         if (MO.isRegister() && MO.isUse() && MO.getReg()) {
 | |
|           unsigned MOReg = MO.getReg();
 | |
| 
 | |
|           if (TargetRegisterInfo::isVirtualRegister(MOReg))
 | |
|             HandleVirtRegUse(MOReg, MBB, MI);
 | |
|           else if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
 | |
|                    !ReservedRegisters[MOReg])
 | |
|             HandlePhysRegUse(MOReg, MI);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Process all defs.
 | |
|       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
 | |
|         const MachineOperand &MO = MI->getOperand(i);
 | |
| 
 | |
|         if (MO.isRegister() && MO.isDef() && MO.getReg()) {
 | |
|           unsigned MOReg = MO.getReg();
 | |
| 
 | |
|           if (TargetRegisterInfo::isVirtualRegister(MOReg)) {
 | |
|             VarInfo &VRInfo = getVarInfo(MOReg);
 | |
| 
 | |
|             if (VRInfo.AliveBlocks.none())
 | |
|               // If vr is not alive in any block, then defaults to dead.
 | |
|               VRInfo.Kills.push_back(MI);
 | |
|           } else if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
 | |
|                      !ReservedRegisters[MOReg]) {
 | |
|             HandlePhysRegDef(MOReg, MI);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Handle any virtual assignments from PHI nodes which might be at the
 | |
|     // bottom of this basic block.  We check all of our successor blocks to see
 | |
|     // if they have PHI nodes, and if so, we simulate an assignment at the end
 | |
|     // of the current block.
 | |
|     if (!PHIVarInfo[MBB->getNumber()].empty()) {
 | |
|       SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
 | |
| 
 | |
|       for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
 | |
|              E = VarInfoVec.end(); I != E; ++I)
 | |
|         // Mark it alive only in the block we are representing.
 | |
|         MarkVirtRegAliveInBlock(getVarInfo(*I), MRI.getVRegDef(*I)->getParent(),
 | |
|                                 MBB);
 | |
|     }
 | |
| 
 | |
|     // Finally, if the last instruction in the block is a return, make sure to
 | |
|     // mark it as using all of the live-out values in the function.
 | |
|     if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
 | |
|       MachineInstr *Ret = &MBB->back();
 | |
| 
 | |
|       for (MachineRegisterInfo::liveout_iterator
 | |
|            I = MF->getRegInfo().liveout_begin(),
 | |
|            E = MF->getRegInfo().liveout_end(); I != E; ++I) {
 | |
|         assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
 | |
|                "Cannot have a live-in virtual register!");
 | |
|         HandlePhysRegUse(*I, Ret);
 | |
| 
 | |
|         // Add live-out registers as implicit uses.
 | |
|         if (Ret->findRegisterUseOperandIdx(*I) == -1)
 | |
|           Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Loop over PhysRegInfo, killing any registers that are available at the
 | |
|     // end of the basic block. This also resets the PhysRegInfo map.
 | |
|     for (unsigned i = 0; i != NumRegs; ++i)
 | |
|       if (PhysRegInfo[i])
 | |
|         HandlePhysRegDef(i, 0);
 | |
| 
 | |
|     // Clear some states between BB's. These are purely local information.
 | |
|     for (unsigned i = 0; i != NumRegs; ++i)
 | |
|       PhysRegPartDef[i].clear();
 | |
| 
 | |
|     std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
 | |
|     std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
 | |
|     std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
 | |
|   }
 | |
| 
 | |
|   // Convert and transfer the dead / killed information we have gathered into
 | |
|   // VirtRegInfo onto MI's.
 | |
|   for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
 | |
|     for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
 | |
|       if (VirtRegInfo[i].Kills[j] ==
 | |
|           MRI.getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
 | |
|         VirtRegInfo[i]
 | |
|           .Kills[j]->addRegisterDead(i +
 | |
|                                      TargetRegisterInfo::FirstVirtualRegister,
 | |
|                                      RegInfo);
 | |
|       else
 | |
|         VirtRegInfo[i]
 | |
|           .Kills[j]->addRegisterKilled(i +
 | |
|                                        TargetRegisterInfo::FirstVirtualRegister,
 | |
|                                        RegInfo);
 | |
| 
 | |
|   // Check to make sure there are no unreachable blocks in the MC CFG for the
 | |
|   // function.  If so, it is due to a bug in the instruction selector or some
 | |
|   // other part of the code generator if this happens.
 | |
| #ifndef NDEBUG
 | |
|   for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
 | |
|     assert(Visited.count(&*i) != 0 && "unreachable basic block found");
 | |
| #endif
 | |
| 
 | |
|   delete[] PhysRegInfo;
 | |
|   delete[] PhysRegUsed;
 | |
|   delete[] PhysRegPartUse;
 | |
|   delete[] PhysRegPartDef;
 | |
|   delete[] PHIVarInfo;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// instructionChanged - When the address of an instruction changes, this method
 | |
| /// should be called so that live variables can update its internal data
 | |
| /// structures.  This removes the records for OldMI, transfering them to the
 | |
| /// records for NewMI.
 | |
| void LiveVariables::instructionChanged(MachineInstr *OldMI,
 | |
|                                        MachineInstr *NewMI) {
 | |
|   // If the instruction defines any virtual registers, update the VarInfo,
 | |
|   // kill and dead information for the instruction.
 | |
|   for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = OldMI->getOperand(i);
 | |
|     if (MO.isRegister() && MO.getReg() &&
 | |
|         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|       unsigned Reg = MO.getReg();
 | |
|       VarInfo &VI = getVarInfo(Reg);
 | |
|       if (MO.isDef()) {
 | |
|         if (MO.isDead()) {
 | |
|           MO.setIsDead(false);
 | |
|           addVirtualRegisterDead(Reg, NewMI);
 | |
|         }
 | |
|       }
 | |
|       if (MO.isKill()) {
 | |
|         MO.setIsKill(false);
 | |
|         addVirtualRegisterKilled(Reg, NewMI);
 | |
|       }
 | |
|       // If this is a kill of the value, update the VI kills list.
 | |
|       if (VI.removeKill(OldMI))
 | |
|         VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// removeVirtualRegistersKilled - Remove all killed info for the specified
 | |
| /// instruction.
 | |
| void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isRegister() && MO.isKill()) {
 | |
|       MO.setIsKill(false);
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|         bool removed = getVarInfo(Reg).removeKill(MI);
 | |
|         assert(removed && "kill not in register's VarInfo?");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// removeVirtualRegistersDead - Remove all of the dead registers for the
 | |
| /// specified instruction from the live variable information.
 | |
| void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isRegister() && MO.isDead()) {
 | |
|       MO.setIsDead(false);
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|         bool removed = getVarInfo(Reg).removeKill(MI);
 | |
|         assert(removed && "kill not in register's VarInfo?");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In
 | |
| /// particular, we want to map the variable information of a virtual register
 | |
| /// which is used in a PHI node. We map that to the BB the vreg is coming from.
 | |
| ///
 | |
| void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
 | |
|   for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
 | |
|        I != E; ++I)
 | |
|     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
 | |
|          BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
 | |
|       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
 | |
|         PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
 | |
|           .push_back(BBI->getOperand(i).getReg());
 | |
| }
 |