256 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			256 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass 
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "machine-sink"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumSunk, "Number of machine instructions sunk");
 | |
| 
 | |
| namespace {
 | |
|   class VISIBILITY_HIDDEN MachineSinking : public MachineFunctionPass {
 | |
|     const TargetMachine   *TM;
 | |
|     const TargetInstrInfo *TII;
 | |
|     MachineFunction       *CurMF; // Current MachineFunction
 | |
|     MachineRegisterInfo  *RegInfo; // Machine register information
 | |
|     MachineDominatorTree *DT;   // Machine dominator tree for the current Loop
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
|     MachineSinking() : MachineFunctionPass((intptr_t)&ID) {}
 | |
|     
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
|     
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|     }
 | |
|   private:
 | |
|     bool ProcessBlock(MachineBasicBlock &MBB);
 | |
|     bool SinkInstruction(MachineInstr *MI, bool &SawStore);
 | |
|     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
 | |
|   };
 | |
|   
 | |
|   char MachineSinking::ID = 0;
 | |
|   RegisterPass<MachineSinking> X("machine-sink", "Machine code sinking");
 | |
| } // end anonymous namespace
 | |
| 
 | |
| FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
 | |
| 
 | |
| /// AllUsesDominatedByBlock - Return true if all uses of the specified register
 | |
| /// occur in blocks dominated by the specified block.
 | |
| bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 
 | |
|                                              MachineBasicBlock *MBB) const {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|          "Only makes sense for vregs");
 | |
|   for (MachineRegisterInfo::reg_iterator I = RegInfo->reg_begin(Reg),
 | |
|        E = RegInfo->reg_end(); I != E; ++I) {
 | |
|     if (I.getOperand().isDef()) continue;  // ignore def.
 | |
|     
 | |
|     // Determine the block of the use.
 | |
|     MachineInstr *UseInst = &*I;
 | |
|     MachineBasicBlock *UseBlock = UseInst->getParent();
 | |
|     if (UseInst->getOpcode() == TargetInstrInfo::PHI) {
 | |
|       // PHI nodes use the operand in the predecessor block, not the block with
 | |
|       // the PHI.
 | |
|       UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
 | |
|     }
 | |
|     // Check that it dominates.
 | |
|     if (!DT->dominates(MBB, UseBlock))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
 | |
|   DOUT << "******** Machine Sinking ********\n";
 | |
|   
 | |
|   CurMF = &MF;
 | |
|   TM = &CurMF->getTarget();
 | |
|   TII = TM->getInstrInfo();
 | |
|   RegInfo = &CurMF->getRegInfo();
 | |
|   DT = &getAnalysis<MachineDominatorTree>();
 | |
| 
 | |
|   bool EverMadeChange = false;
 | |
|   
 | |
|   while (1) {
 | |
|     bool MadeChange = false;
 | |
| 
 | |
|     // Process all basic blocks.
 | |
|     for (MachineFunction::iterator I = CurMF->begin(), E = CurMF->end(); 
 | |
|          I != E; ++I)
 | |
|       MadeChange |= ProcessBlock(*I);
 | |
|     
 | |
|     // If this iteration over the code changed anything, keep iterating.
 | |
|     if (!MadeChange) break;
 | |
|     EverMadeChange = true;
 | |
|   } 
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
 | |
|   bool MadeChange = false;
 | |
|   
 | |
|   // Can't sink anything out of a block that has less than two successors.
 | |
|   if (MBB.succ_size() <= 1) return false;
 | |
|   
 | |
|   // Walk the basic block bottom-up.  Remember if we saw a store.
 | |
|   bool SawStore = false;
 | |
|   for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ){
 | |
|     MachineBasicBlock::iterator LastIt = I;
 | |
|     if (SinkInstruction(--I, SawStore)) {
 | |
|       I = LastIt;
 | |
|       ++NumSunk;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// SinkInstruction - Determine whether it is safe to sink the specified machine
 | |
| /// instruction out of its current block into a successor.
 | |
| bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
 | |
|   const TargetInstrDesc &TID = MI->getDesc();
 | |
|   
 | |
|   // Ignore stuff that we obviously can't sink.
 | |
|   if (TID.mayStore() || TID.isCall()) {
 | |
|     SawStore = true;
 | |
|     return false;
 | |
|   }
 | |
|   if (TID.isReturn() || TID.isBranch() || TID.hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   // See if this instruction does a load.  If so, we have to guarantee that the
 | |
|   // loaded value doesn't change between the load and the end of block.  The
 | |
|   // check for isInvariantLoad gives the targe the chance to classify the load
 | |
|   // as always returning a constant, e.g. a constant pool load.
 | |
|   if (TID.mayLoad() && !TII->isInvariantLoad(MI)) {
 | |
|     // Otherwise, this is a real load.  If there is a store between the load and
 | |
|     // end of block, we can't sink the load.
 | |
|     //
 | |
|     // FIXME: we can't do this transformation until we know that the load is
 | |
|     // not volatile, and machineinstrs don't keep this info. :(
 | |
|     //
 | |
|     //if (SawStore) 
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // FIXME: This should include support for sinking instructions within the
 | |
|   // block they are currently in to shorten the live ranges.  We often get
 | |
|   // instructions sunk into the top of a large block, but it would be better to
 | |
|   // also sink them down before their first use in the block.  This xform has to
 | |
|   // be careful not to *increase* register pressure though, e.g. sinking
 | |
|   // "x = y + z" down if it kills y and z would increase the live ranges of y
 | |
|   // and z only the shrink the live range of x.
 | |
|   
 | |
|   // Loop over all the operands of the specified instruction.  If there is
 | |
|   // anything we can't handle, bail out.
 | |
|   MachineBasicBlock *ParentBlock = MI->getParent();
 | |
|   
 | |
|   // SuccToSinkTo - This is the successor to sink this instruction to, once we
 | |
|   // decide.
 | |
|   MachineBasicBlock *SuccToSinkTo = 0;
 | |
|   
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg()) continue;  // Ignore non-register operands.
 | |
|     
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0) continue;
 | |
|     
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|       // If this is a physical register use, we can't move it.  If it is a def,
 | |
|       // we can move it, but only if the def is dead.
 | |
|       if (MO.isUse() || !MO.isDead())
 | |
|         return false;
 | |
|     } else {
 | |
|       // Virtual register uses are always safe to sink.
 | |
|       if (MO.isUse()) continue;
 | |
|       
 | |
|       // FIXME: This picks a successor to sink into based on having one
 | |
|       // successor that dominates all the uses.  However, there are cases where
 | |
|       // sinking can happen but where the sink point isn't a successor.  For
 | |
|       // example:
 | |
|       //   x = computation
 | |
|       //   if () {} else {}
 | |
|       //   use x
 | |
|       // the instruction could be sunk over the whole diamond for the 
 | |
|       // if/then/else (or loop, etc), allowing it to be sunk into other blocks
 | |
|       // after that.
 | |
|       
 | |
|       // Virtual register defs can only be sunk if all their uses are in blocks
 | |
|       // dominated by one of the successors.
 | |
|       if (SuccToSinkTo) {
 | |
|         // If a previous operand picked a block to sink to, then this operand
 | |
|         // must be sinkable to the same block.
 | |
|         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo)) 
 | |
|           return false;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Otherwise, we should look at all the successors and decide which one
 | |
|       // we should sink to.
 | |
|       for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
 | |
|            E = ParentBlock->succ_end(); SI != E; ++SI) {
 | |
|         if (AllUsesDominatedByBlock(Reg, *SI)) {
 | |
|           SuccToSinkTo = *SI;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // If we couldn't find a block to sink to, ignore this instruction.
 | |
|       if (SuccToSinkTo == 0)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If there are no outputs, it must have side-effects.
 | |
|   if (SuccToSinkTo == 0)
 | |
|     return false;
 | |
|   
 | |
|   DEBUG(cerr << "Sink instr " << *MI);
 | |
|   DEBUG(cerr << "to block " << *SuccToSinkTo);
 | |
|   
 | |
|   // If the block has multiple predecessors, this would introduce computation on
 | |
|   // a path that it doesn't already exist.  We could split the critical edge,
 | |
|   // but for now we just punt.
 | |
|   // FIXME: Split critical edges if not backedges.
 | |
|   if (SuccToSinkTo->pred_size() > 1) {
 | |
|     DEBUG(cerr << " *** PUNTING: Critical edge found\n");
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Determine where to insert into.  Skip phi nodes.
 | |
|   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
 | |
|   while (InsertPos != SuccToSinkTo->end() && 
 | |
|          InsertPos->getOpcode() == TargetInstrInfo::PHI)
 | |
|     ++InsertPos;
 | |
|   
 | |
|   // Move the instruction.
 | |
|   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
 | |
|                        ++MachineBasicBlock::iterator(MI));
 | |
|   return true;
 | |
| }
 |