355 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			355 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a virtual register map. This maps virtual registers to
 | |
| // physical registers and virtual registers to stack slots. It is created and
 | |
| // updated by a register allocator and then used by a machine code rewriter that
 | |
| // adds spill code and rewrites virtual into physical register references.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CODEGEN_VIRTREGMAP_H
 | |
| #define LLVM_CODEGEN_VIRTREGMAP_H
 | |
| 
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/IndexedMap.h"
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include <map>
 | |
| 
 | |
| namespace llvm {
 | |
|   class MachineInstr;
 | |
|   class MachineFunction;
 | |
|   class TargetInstrInfo;
 | |
| 
 | |
|   class VirtRegMap {
 | |
|   public:
 | |
|     enum {
 | |
|       NO_PHYS_REG = 0,
 | |
|       NO_STACK_SLOT = (1L << 30)-1,
 | |
|       MAX_STACK_SLOT = (1L << 18)-1
 | |
|     };
 | |
| 
 | |
|     enum ModRef { isRef = 1, isMod = 2, isModRef = 3 };
 | |
|     typedef std::multimap<MachineInstr*,
 | |
|                           std::pair<unsigned, ModRef> > MI2VirtMapTy;
 | |
| 
 | |
|   private:
 | |
|     const TargetInstrInfo &TII;
 | |
| 
 | |
|     MachineFunction &MF;
 | |
|     /// Virt2PhysMap - This is a virtual to physical register
 | |
|     /// mapping. Each virtual register is required to have an entry in
 | |
|     /// it; even spilled virtual registers (the register mapped to a
 | |
|     /// spilled register is the temporary used to load it from the
 | |
|     /// stack).
 | |
|     IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysMap;
 | |
| 
 | |
|     /// Virt2StackSlotMap - This is virtual register to stack slot
 | |
|     /// mapping. Each spilled virtual register has an entry in it
 | |
|     /// which corresponds to the stack slot this register is spilled
 | |
|     /// at.
 | |
|     IndexedMap<int, VirtReg2IndexFunctor> Virt2StackSlotMap;
 | |
| 
 | |
|     /// Virt2StackSlotMap - This is virtual register to rematerialization id
 | |
|     /// mapping. Each spilled virtual register that should be remat'd has an
 | |
|     /// entry in it which corresponds to the remat id.
 | |
|     IndexedMap<int, VirtReg2IndexFunctor> Virt2ReMatIdMap;
 | |
| 
 | |
|     /// Virt2SplitMap - This is virtual register to splitted virtual register
 | |
|     /// mapping.
 | |
|     IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2SplitMap;
 | |
| 
 | |
|     /// Virt2SplitKillMap - This is splitted virtual register to its last use
 | |
|     /// (kill) index mapping.
 | |
|     IndexedMap<unsigned> Virt2SplitKillMap;
 | |
| 
 | |
|     /// ReMatMap - This is virtual register to re-materialized instruction
 | |
|     /// mapping. Each virtual register whose definition is going to be
 | |
|     /// re-materialized has an entry in it.
 | |
|     IndexedMap<MachineInstr*, VirtReg2IndexFunctor> ReMatMap;
 | |
| 
 | |
|     /// MI2VirtMap - This is MachineInstr to virtual register
 | |
|     /// mapping. In the case of memory spill code being folded into
 | |
|     /// instructions, we need to know which virtual register was
 | |
|     /// read/written by this instruction.
 | |
|     MI2VirtMapTy MI2VirtMap;
 | |
| 
 | |
|     /// SpillPt2VirtMap - This records the virtual registers which should
 | |
|     /// be spilled right after the MachineInstr due to live interval
 | |
|     /// splitting.
 | |
|     std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >
 | |
|     SpillPt2VirtMap;
 | |
| 
 | |
|     /// RestorePt2VirtMap - This records the virtual registers which should
 | |
|     /// be restored right before the MachineInstr due to live interval
 | |
|     /// splitting.
 | |
|     std::map<MachineInstr*, std::vector<unsigned> > RestorePt2VirtMap;
 | |
| 
 | |
|     /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
 | |
|     /// virtual register, an unique id is being assigned. This keeps track of
 | |
|     /// the highest id used so far. Note, this starts at (1<<18) to avoid
 | |
|     /// conflicts with stack slot numbers.
 | |
|     int ReMatId;
 | |
| 
 | |
|     VirtRegMap(const VirtRegMap&);     // DO NOT IMPLEMENT
 | |
|     void operator=(const VirtRegMap&); // DO NOT IMPLEMENT
 | |
| 
 | |
|   public:
 | |
|     explicit VirtRegMap(MachineFunction &mf);
 | |
| 
 | |
|     void grow();
 | |
| 
 | |
|     /// @brief returns true if the specified virtual register is
 | |
|     /// mapped to a physical register
 | |
|     bool hasPhys(unsigned virtReg) const {
 | |
|       return getPhys(virtReg) != NO_PHYS_REG;
 | |
|     }
 | |
| 
 | |
|     /// @brief returns the physical register mapped to the specified
 | |
|     /// virtual register
 | |
|     unsigned getPhys(unsigned virtReg) const {
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | |
|       return Virt2PhysMap[virtReg];
 | |
|     }
 | |
| 
 | |
|     /// @brief creates a mapping for the specified virtual register to
 | |
|     /// the specified physical register
 | |
|     void assignVirt2Phys(unsigned virtReg, unsigned physReg) {
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(virtReg) &&
 | |
|              TargetRegisterInfo::isPhysicalRegister(physReg));
 | |
|       assert(Virt2PhysMap[virtReg] == NO_PHYS_REG &&
 | |
|              "attempt to assign physical register to already mapped "
 | |
|              "virtual register");
 | |
|       Virt2PhysMap[virtReg] = physReg;
 | |
|     }
 | |
| 
 | |
|     /// @brief clears the specified virtual register's, physical
 | |
|     /// register mapping
 | |
|     void clearVirt(unsigned virtReg) {
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | |
|       assert(Virt2PhysMap[virtReg] != NO_PHYS_REG &&
 | |
|              "attempt to clear a not assigned virtual register");
 | |
|       Virt2PhysMap[virtReg] = NO_PHYS_REG;
 | |
|     }
 | |
| 
 | |
|     /// @brief clears all virtual to physical register mappings
 | |
|     void clearAllVirt() {
 | |
|       Virt2PhysMap.clear();
 | |
|       grow();
 | |
|     }
 | |
| 
 | |
|     /// @brief records virtReg is a split live interval from SReg.
 | |
|     void setIsSplitFromReg(unsigned virtReg, unsigned SReg) {
 | |
|       Virt2SplitMap[virtReg] = SReg;
 | |
|     }
 | |
| 
 | |
|     /// @brief returns the live interval virtReg is split from.
 | |
|     unsigned getPreSplitReg(unsigned virtReg) {
 | |
|       return Virt2SplitMap[virtReg];
 | |
|     }
 | |
| 
 | |
|     /// @brief returns true is the specified virtual register is not
 | |
|     /// mapped to a stack slot or rematerialized.
 | |
|     bool isAssignedReg(unsigned virtReg) const {
 | |
|       if (getStackSlot(virtReg) == NO_STACK_SLOT &&
 | |
|           getReMatId(virtReg) == NO_STACK_SLOT)
 | |
|         return true;
 | |
|       // Split register can be assigned a physical register as well as a
 | |
|       // stack slot or remat id.
 | |
|       return (Virt2SplitMap[virtReg] && Virt2PhysMap[virtReg] != NO_PHYS_REG);
 | |
|     }
 | |
| 
 | |
|     /// @brief returns the stack slot mapped to the specified virtual
 | |
|     /// register
 | |
|     int getStackSlot(unsigned virtReg) const {
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | |
|       return Virt2StackSlotMap[virtReg];
 | |
|     }
 | |
| 
 | |
|     /// @brief returns the rematerialization id mapped to the specified virtual
 | |
|     /// register
 | |
|     int getReMatId(unsigned virtReg) const {
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | |
|       return Virt2ReMatIdMap[virtReg];
 | |
|     }
 | |
| 
 | |
|     /// @brief create a mapping for the specifed virtual register to
 | |
|     /// the next available stack slot
 | |
|     int assignVirt2StackSlot(unsigned virtReg);
 | |
|     /// @brief create a mapping for the specified virtual register to
 | |
|     /// the specified stack slot
 | |
|     void assignVirt2StackSlot(unsigned virtReg, int frameIndex);
 | |
| 
 | |
|     /// @brief assign an unique re-materialization id to the specified
 | |
|     /// virtual register.
 | |
|     int assignVirtReMatId(unsigned virtReg);
 | |
|     /// @brief assign an unique re-materialization id to the specified
 | |
|     /// virtual register.
 | |
|     void assignVirtReMatId(unsigned virtReg, int id);
 | |
| 
 | |
|     /// @brief returns true if the specified virtual register is being
 | |
|     /// re-materialized.
 | |
|     bool isReMaterialized(unsigned virtReg) const {
 | |
|       return ReMatMap[virtReg] != NULL;
 | |
|     }
 | |
| 
 | |
|     /// @brief returns the original machine instruction being re-issued
 | |
|     /// to re-materialize the specified virtual register.
 | |
|     MachineInstr *getReMaterializedMI(unsigned virtReg) const {
 | |
|       return ReMatMap[virtReg];
 | |
|     }
 | |
| 
 | |
|     /// @brief records the specified virtual register will be
 | |
|     /// re-materialized and the original instruction which will be re-issed
 | |
|     /// for this purpose.  If parameter all is true, then all uses of the
 | |
|     /// registers are rematerialized and it's safe to delete the definition.
 | |
|     void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) {
 | |
|       ReMatMap[virtReg] = def;
 | |
|     }
 | |
| 
 | |
|     /// @brief record the last use (kill) of a split virtual register.
 | |
|     void addKillPoint(unsigned virtReg, unsigned index) {
 | |
|       Virt2SplitKillMap[virtReg] = index;
 | |
|     }
 | |
| 
 | |
|     unsigned getKillPoint(unsigned virtReg) const {
 | |
|       return Virt2SplitKillMap[virtReg];
 | |
|     }
 | |
| 
 | |
|     /// @brief remove the last use (kill) of a split virtual register.
 | |
|     void removeKillPoint(unsigned virtReg) {
 | |
|       Virt2SplitKillMap[virtReg] = 0;
 | |
|     }
 | |
| 
 | |
|     /// @brief returns true if the specified MachineInstr is a spill point.
 | |
|     bool isSpillPt(MachineInstr *Pt) const {
 | |
|       return SpillPt2VirtMap.find(Pt) != SpillPt2VirtMap.end();
 | |
|     }
 | |
| 
 | |
|     /// @brief returns the virtual registers that should be spilled due to
 | |
|     /// splitting right after the specified MachineInstr.
 | |
|     std::vector<std::pair<unsigned,bool> > &getSpillPtSpills(MachineInstr *Pt) {
 | |
|       return SpillPt2VirtMap[Pt];
 | |
|     }
 | |
| 
 | |
|     /// @brief records the specified MachineInstr as a spill point for virtReg.
 | |
|     void addSpillPoint(unsigned virtReg, bool isKill, MachineInstr *Pt) {
 | |
|       if (SpillPt2VirtMap.find(Pt) != SpillPt2VirtMap.end())
 | |
|         SpillPt2VirtMap[Pt].push_back(std::make_pair(virtReg, isKill));
 | |
|       else {
 | |
|         std::vector<std::pair<unsigned,bool> > Virts;
 | |
|         Virts.push_back(std::make_pair(virtReg, isKill));
 | |
|         SpillPt2VirtMap.insert(std::make_pair(Pt, Virts));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void transferSpillPts(MachineInstr *Old, MachineInstr *New) {
 | |
|       std::map<MachineInstr*,std::vector<std::pair<unsigned,bool> > >::iterator
 | |
|         I = SpillPt2VirtMap.find(Old);
 | |
|       if (I == SpillPt2VirtMap.end())
 | |
|         return;
 | |
|       while (!I->second.empty()) {
 | |
|         unsigned virtReg = I->second.back().first;
 | |
|         bool isKill = I->second.back().second;
 | |
|         I->second.pop_back();
 | |
|         addSpillPoint(virtReg, isKill, New);
 | |
|       }
 | |
|       SpillPt2VirtMap.erase(I);
 | |
|     }
 | |
| 
 | |
|     /// @brief returns true if the specified MachineInstr is a restore point.
 | |
|     bool isRestorePt(MachineInstr *Pt) const {
 | |
|       return RestorePt2VirtMap.find(Pt) != RestorePt2VirtMap.end();
 | |
|     }
 | |
| 
 | |
|     /// @brief returns the virtual registers that should be restoreed due to
 | |
|     /// splitting right after the specified MachineInstr.
 | |
|     std::vector<unsigned> &getRestorePtRestores(MachineInstr *Pt) {
 | |
|       return RestorePt2VirtMap[Pt];
 | |
|     }
 | |
| 
 | |
|     /// @brief records the specified MachineInstr as a restore point for virtReg.
 | |
|     void addRestorePoint(unsigned virtReg, MachineInstr *Pt) {
 | |
|       if (RestorePt2VirtMap.find(Pt) != RestorePt2VirtMap.end())
 | |
|         RestorePt2VirtMap[Pt].push_back(virtReg);
 | |
|       else {
 | |
|         std::vector<unsigned> Virts;
 | |
|         Virts.push_back(virtReg);
 | |
|         RestorePt2VirtMap.insert(std::make_pair(Pt, Virts));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void transferRestorePts(MachineInstr *Old, MachineInstr *New) {
 | |
|       std::map<MachineInstr*,std::vector<unsigned> >::iterator I =
 | |
|         RestorePt2VirtMap.find(Old);
 | |
|       if (I == RestorePt2VirtMap.end())
 | |
|         return;
 | |
|       while (!I->second.empty()) {
 | |
|         unsigned virtReg = I->second.back();
 | |
|         I->second.pop_back();
 | |
|         addRestorePoint(virtReg, New);
 | |
|       }
 | |
|       RestorePt2VirtMap.erase(I);
 | |
|     }
 | |
| 
 | |
|     /// @brief Updates information about the specified virtual register's value
 | |
|     /// folded into newMI machine instruction.
 | |
|     void virtFolded(unsigned VirtReg, MachineInstr *OldMI, MachineInstr *NewMI,
 | |
|                     ModRef MRInfo);
 | |
| 
 | |
|     /// @brief Updates information about the specified virtual register's value
 | |
|     /// folded into the specified machine instruction.
 | |
|     void virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo);
 | |
| 
 | |
|     /// @brief returns the virtual registers' values folded in memory
 | |
|     /// operands of this instruction
 | |
|     std::pair<MI2VirtMapTy::const_iterator, MI2VirtMapTy::const_iterator>
 | |
|     getFoldedVirts(MachineInstr* MI) const {
 | |
|       return MI2VirtMap.equal_range(MI);
 | |
|     }
 | |
|     
 | |
|     /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
 | |
|     /// the folded instruction map and spill point map.
 | |
|     void RemoveMachineInstrFromMaps(MachineInstr *MI) {
 | |
|       MI2VirtMap.erase(MI);
 | |
|       SpillPt2VirtMap.erase(MI);
 | |
|       RestorePt2VirtMap.erase(MI);
 | |
|     }
 | |
| 
 | |
|     void print(std::ostream &OS) const;
 | |
|     void print(std::ostream *OS) const { if (OS) print(*OS); }
 | |
|     void dump() const;
 | |
|   };
 | |
| 
 | |
|   inline std::ostream *operator<<(std::ostream *OS, const VirtRegMap &VRM) {
 | |
|     VRM.print(OS);
 | |
|     return OS;
 | |
|   }
 | |
|   inline std::ostream &operator<<(std::ostream &OS, const VirtRegMap &VRM) {
 | |
|     VRM.print(OS);
 | |
|     return OS;
 | |
|   }
 | |
| 
 | |
|   /// Spiller interface: Implementations of this interface assign spilled
 | |
|   /// virtual registers to stack slots, rewriting the code.
 | |
|   struct Spiller {
 | |
|     virtual ~Spiller();
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF,
 | |
|                                       VirtRegMap &VRM) = 0;
 | |
|   };
 | |
| 
 | |
|   /// createSpiller - Create an return a spiller object, as specified on the
 | |
|   /// command line.
 | |
|   Spiller* createSpiller();
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |