655 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			655 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the pass that transforms the ARM machine instructions into
 | |
| // relocatable machine code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "arm-emitter"
 | |
| #include "ARMInstrInfo.h"
 | |
| #include "ARMSubtarget.h"
 | |
| #include "ARMTargetMachine.h"
 | |
| #include "ARMRelocations.h"
 | |
| #include "ARMAddressingModes.h"
 | |
| #include "ARM.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/CodeGen/MachineCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumEmitted, "Number of machine instructions emitted");
 | |
| 
 | |
| namespace {
 | |
|   class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
 | |
|     const ARMInstrInfo  *II;
 | |
|     const TargetData    *TD;
 | |
|     TargetMachine       &TM;
 | |
|     MachineCodeEmitter  &MCE;
 | |
|   public:
 | |
|     static char ID;
 | |
|     explicit Emitter(TargetMachine &tm, MachineCodeEmitter &mce)
 | |
|       : MachineFunctionPass((intptr_t)&ID), II(0), TD(0), TM(tm), 
 | |
|       MCE(mce) {}
 | |
|     Emitter(TargetMachine &tm, MachineCodeEmitter &mce,
 | |
|             const ARMInstrInfo &ii, const TargetData &td)
 | |
|       : MachineFunctionPass((intptr_t)&ID), II(&ii), TD(&td), TM(tm), 
 | |
|       MCE(mce) {}
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "ARM Machine Code Emitter";
 | |
|     }
 | |
| 
 | |
|     void emitInstruction(const MachineInstr &MI);
 | |
|     int getMachineOpValue(const MachineInstr &MI, unsigned OpIndex);
 | |
|     unsigned getBaseOpcodeFor(const TargetInstrDesc &TID);
 | |
|     unsigned getBinaryCodeForInstr(const MachineInstr &MI);
 | |
| 
 | |
|     void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub);
 | |
|     void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
 | |
|     void emitConstPoolAddress(unsigned CPI, unsigned Reloc,
 | |
|                               int Disp = 0, unsigned PCAdj = 0 );
 | |
|     void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
 | |
|                               unsigned PCAdj = 0);
 | |
|     void emitGlobalConstant(const Constant *CV);
 | |
|     void emitMachineBasicBlock(MachineBasicBlock *BB);
 | |
| 
 | |
|   private:
 | |
|     int getShiftOp(const MachineOperand &MO);
 | |
| 
 | |
|   };
 | |
|   char Emitter::ID = 0;
 | |
| }
 | |
| 
 | |
| /// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
 | |
| /// to the specified MCE object.
 | |
| FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
 | |
|                                              MachineCodeEmitter &MCE) {
 | |
|   return new Emitter(TM, MCE);
 | |
| }
 | |
| 
 | |
| bool Emitter::runOnMachineFunction(MachineFunction &MF) {
 | |
|   assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
 | |
|           MF.getTarget().getRelocationModel() != Reloc::Static) &&
 | |
|          "JIT relocation model must be set to static or default!");
 | |
|   II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
 | |
|   TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
 | |
| 
 | |
|   do {
 | |
|     MCE.startFunction(MF);
 | |
|     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
 | |
|          MBB != E; ++MBB) {
 | |
|       MCE.StartMachineBasicBlock(MBB);
 | |
|       for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
 | |
|            I != E; ++I)
 | |
|         emitInstruction(*I);
 | |
|     }
 | |
|   } while (MCE.finishFunction(MF));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getBaseOpcodeFor - Return the opcode value
 | |
| unsigned Emitter::getBaseOpcodeFor(const TargetInstrDesc &TID) {
 | |
|   return (TID.TSFlags & ARMII::OpcodeMask) >> ARMII::OpcodeShift;
 | |
| }
 | |
| 
 | |
| /// getShiftOp - Verify which is the shift opcode (bit[6:5]) of the
 | |
| /// machine operand.
 | |
| int Emitter::getShiftOp(const MachineOperand &MO) {
 | |
|   unsigned ShiftOp = 0x0;
 | |
|   switch(ARM_AM::getAM2ShiftOpc(MO.getImm())) {
 | |
|   default: assert(0 && "Unknown shift opc!");
 | |
|   case ARM_AM::asr:
 | |
|     ShiftOp = 0X2;
 | |
|     break;
 | |
|   case ARM_AM::lsl:
 | |
|     ShiftOp = 0X0;
 | |
|     break;
 | |
|   case ARM_AM::lsr:
 | |
|     ShiftOp = 0X1;
 | |
|     break;
 | |
|   case ARM_AM::ror:
 | |
|   case ARM_AM::rrx:
 | |
|     ShiftOp = 0X3;
 | |
|     break;
 | |
|   }
 | |
|   return ShiftOp;
 | |
| }
 | |
| 
 | |
| int Emitter::getMachineOpValue(const MachineInstr &MI, unsigned OpIndex) {
 | |
|   intptr_t rv = 0;
 | |
|   const MachineOperand &MO = MI.getOperand(OpIndex);
 | |
|   if (MO.isRegister()) {
 | |
|     assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
 | |
|     rv = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
 | |
|   } else if (MO.isImmediate()) {
 | |
|     rv = MO.getImm();
 | |
|   } else if (MO.isGlobalAddress()) {
 | |
|     emitGlobalAddressForCall(MO.getGlobal(), false);
 | |
|   } else if (MO.isExternalSymbol()) {
 | |
|     emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative);
 | |
|   } else if (MO.isConstantPoolIndex()) {
 | |
|     emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_relative);
 | |
|   } else if (MO.isJumpTableIndex()) {
 | |
|     emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
 | |
|   } else if (MO.isMachineBasicBlock()) {
 | |
|     emitMachineBasicBlock(MO.getMBB());
 | |
|   }
 | |
| 
 | |
|   return rv;
 | |
| }
 | |
| 
 | |
| /// emitGlobalAddressForCall - Emit the specified address to the code stream
 | |
| /// assuming this is part of a function call, which is PC relative.
 | |
| ///
 | |
| void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub) {
 | |
|   MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
 | |
|                                       ARM::reloc_arm_branch, GV, 0,
 | |
|                                       DoesntNeedStub));
 | |
| }
 | |
| 
 | |
| /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
 | |
| /// be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
 | |
|   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
 | |
|                                                  Reloc, ES));
 | |
| }
 | |
| 
 | |
| /// emitConstPoolAddress - Arrange for the address of an constant pool
 | |
| /// to be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
 | |
|                                    int Disp /* = 0 */,
 | |
|                                    unsigned PCAdj /* = 0 */) {
 | |
|   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
 | |
|                                                     Reloc, CPI, PCAdj));
 | |
| }
 | |
| 
 | |
| /// emitJumpTableAddress - Arrange for the address of a jump table to
 | |
| /// be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
 | |
|                                    unsigned PCAdj /* = 0 */) {
 | |
|   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
 | |
|                                                     Reloc, JTI, PCAdj));
 | |
| }
 | |
| 
 | |
| /// emitMachineBasicBlock - Emit the specified address basic block.
 | |
| void Emitter::emitMachineBasicBlock(MachineBasicBlock *BB) {
 | |
|   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
 | |
|                                       ARM::reloc_arm_branch, BB));
 | |
| }
 | |
| 
 | |
| void Emitter::emitInstruction(const MachineInstr &MI) {
 | |
|   NumEmitted++;  // Keep track of the # of mi's emitted
 | |
|   MCE.emitWordLE(getBinaryCodeForInstr(MI));
 | |
| }
 | |
| 
 | |
| unsigned Emitter::getBinaryCodeForInstr(const MachineInstr &MI) {
 | |
|   const TargetInstrDesc &Desc = MI.getDesc();
 | |
|   unsigned opcode = Desc.Opcode;
 | |
|   // initial instruction mask
 | |
|   unsigned Value = 0xE0000000;
 | |
|   unsigned op;
 | |
| 
 | |
|   switch (Desc.TSFlags & ARMII::AddrModeMask) {
 | |
|   case ARMII::AddrModeNone: {
 | |
|     switch(Desc.TSFlags & ARMII::FormMask) {
 | |
|     default: {
 | |
|       assert(0 && "Unknown instruction subtype!");
 | |
|       // treat special instruction CLZ
 | |
|       if(opcode == ARM::CLZ) {
 | |
|         // set first operand
 | |
|         op = getMachineOpValue(MI,0);
 | |
|         Value |= op << ARMII::RegRdShift;
 | |
| 
 | |
|         // set second operand
 | |
|         op = getMachineOpValue(MI,1);
 | |
|         Value |= op;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::MulSMLAW:
 | |
|     case ARMII::MulSMULW:
 | |
|       // set bit W(21)
 | |
|       Value |= 1 << 21;
 | |
|     case ARMII::MulSMLA:
 | |
|     case ARMII::MulSMUL: {
 | |
|       // set bit W(21)
 | |
|       Value |= 1 << 24;
 | |
| 
 | |
|       // set opcode (bit[7:4]). For more information, see ARM-ARM page A3-31
 | |
|       // SMLA<x><y>  - 1yx0
 | |
|       // SMLAW<y>    - 1y00
 | |
|       // SMULW<y>    - 1y10
 | |
|       // SMUL<x><y>  - 1yx0
 | |
|       unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
 | |
|       Value |= BaseOpcode << 4;
 | |
| 
 | |
|       unsigned Format = (Desc.TSFlags & ARMII::FormMask);
 | |
|       if (Format == ARMII::MulSMUL)
 | |
|         Value |= 1 << 22;
 | |
| 
 | |
|       // set first operand
 | |
|       op = getMachineOpValue(MI,0);
 | |
|       Value |= op << ARMII::RegRnShift;
 | |
| 
 | |
|       // set second operand
 | |
|       op = getMachineOpValue(MI,1);
 | |
|       Value |= op;
 | |
| 
 | |
|       // set third operand
 | |
|       op = getMachineOpValue(MI,2);
 | |
|       Value |= op << ARMII::RegRsShift;
 | |
| 
 | |
|       // instructions SMLA and SMLAW have a fourth operand
 | |
|       if (Format != ARMII::MulSMULW && Format != ARMII::MulSMUL) {
 | |
|         op = getMachineOpValue(MI,3);
 | |
|         Value |= op << ARMII::RegRdShift;
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::MulFrm: {
 | |
|       // bit[7:4] is always 9
 | |
|       Value |= 9 << 4;
 | |
|       // set opcode (bit[23:20])
 | |
|       unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
 | |
|       Value |= BaseOpcode << 20;
 | |
| 
 | |
|       bool isMUL = opcode == ARM::MUL;
 | |
|       bool isMLA = opcode == ARM::MLA;
 | |
| 
 | |
|       // set first operand
 | |
|       op = getMachineOpValue(MI,0);
 | |
|       Value |= op << (isMUL || isMLA ? ARMII::RegRnShift : ARMII::RegRdShift);
 | |
| 
 | |
|       // set second operand
 | |
|       op = getMachineOpValue(MI,1);
 | |
|       Value |= op << (isMUL || isMLA ? 0 : ARMII::RegRnShift);
 | |
| 
 | |
|       // set third operand
 | |
|       op = getMachineOpValue(MI,2);
 | |
|       Value |= op << (isMUL || isMLA ? ARMII::RegRsShift : 0);
 | |
| 
 | |
|       // multiply instructions (except MUL), have a fourth operand
 | |
|       if (!isMUL) {
 | |
|         op = getMachineOpValue(MI,3);
 | |
|         Value |= op << (isMLA ? ARMII::RegRdShift : ARMII::RegRsShift);
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::Branch: {
 | |
|       // set opcode (bit[27:24])
 | |
|       unsigned BaseOpcode = getBaseOpcodeFor(Desc);
 | |
|       Value |= BaseOpcode << 24;
 | |
| 
 | |
|       // set signed_immed_24 field
 | |
|       op = getMachineOpValue(MI,0);
 | |
|       Value |= op;
 | |
| 
 | |
|       // if it is a conditional branch, set cond field
 | |
|       if (opcode == ARM::Bcc) {
 | |
|         op = getMachineOpValue(MI,1);
 | |
|         Value &= 0x0FFFFFFF; // clear conditional field
 | |
|         Value |= op << 28;   // set conditional field
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::BranchMisc: {
 | |
|       // set opcode (bit[7:4])
 | |
|       unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
 | |
|       Value |= BaseOpcode << 4;
 | |
|       // set bit[27:24] to 1, set bit[23:20] to 2 and set bit[19:8] to 0xFFF
 | |
|       Value |= 0x12fff << 8;
 | |
| 
 | |
|       if (opcode == ARM::BX_RET)
 | |
|         op = 0xe; // the return register is LR
 | |
|       else 
 | |
|         // otherwise, set the return register
 | |
|         op = getMachineOpValue(MI,0);
 | |
|       Value |= op;
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::Pseudo:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case ARMII::AddrMode1: {
 | |
|     // set opcode (bit[24:21]) of data-processing instructions
 | |
|     unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
 | |
|     Value |= BaseOpcode << 21;
 | |
| 
 | |
|     // treat 3 special instructions: MOVsra_flag, MOVsrl_flag and
 | |
|     // MOVrx.
 | |
|     unsigned Format = Desc.TSFlags & ARMII::FormMask;
 | |
|     if (Format == ARMII::DPRdMisc) {
 | |
|       Value |= getMachineOpValue(MI,0) << ARMII::RegRdShift;
 | |
|       Value |= getMachineOpValue(MI,1);
 | |
|       switch(opcode) {
 | |
|       case ARM::MOVsra_flag: {
 | |
|         Value |= 0x1 << 6;
 | |
|         Value |= 0x1 << 7;
 | |
|         break;
 | |
|       }
 | |
|       case ARM::MOVsrl_flag: {
 | |
|         Value |= 0x1 << 5;
 | |
|         Value |= 0x1 << 7;
 | |
|         break;
 | |
|       }
 | |
|       case ARM::MOVrx: {
 | |
|         Value |= 0x3 << 5;
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Data processing operand instructions has 3 possible encodings (for more
 | |
|     // information, see ARM-ARM page A3-10):
 | |
|     // 1. <instr> <Rd>,<shifter_operand>
 | |
|     // 2. <instr> <Rn>,<shifter_operand>
 | |
|     // 3. <instr> <Rd>,<Rn>,<shifter_operand>
 | |
|     bool IsDataProcessing1 = Format == ARMII::DPRdIm    ||
 | |
|                              Format == ARMII::DPRdReg   ||
 | |
|                              Format == ARMII::DPRdSoReg;
 | |
|     bool IsDataProcessing2 = Format == ARMII::DPRnIm    ||
 | |
|                              Format == ARMII::DPRnReg   ||
 | |
|                              Format == ARMII::DPRnSoReg;
 | |
|     bool IsDataProcessing3 = false;
 | |
| 
 | |
|     // set bit S(20)
 | |
|     if (Format == ARMII::DPRImS || Format == ARMII::DPRRegS ||
 | |
|         Format == ARMII::DPRSoRegS || IsDataProcessing2) {
 | |
|       Value |= 1 << ARMII::S_BitShift;
 | |
|       IsDataProcessing3 = !IsDataProcessing2;
 | |
|     }
 | |
| 
 | |
|     IsDataProcessing3 = Format == ARMII::DPRIm     ||
 | |
|                         Format == ARMII::DPRReg    ||
 | |
|                         Format == ARMII::DPRSoReg  ||
 | |
|                         IsDataProcessing3;
 | |
| 
 | |
|     // set first operand
 | |
|     op = getMachineOpValue(MI,0);
 | |
|     if (IsDataProcessing1 || IsDataProcessing3) {
 | |
|       Value |= op << ARMII::RegRdShift;
 | |
|     } else if (IsDataProcessing2) {
 | |
|       Value |= op << ARMII::RegRnShift;
 | |
|     }
 | |
| 
 | |
|     // set second operand of data processing #3 instructions
 | |
|     if (IsDataProcessing3) {
 | |
|       op = getMachineOpValue(MI,1);
 | |
|       Value |= op << ARMII::RegRnShift;
 | |
|     }
 | |
| 
 | |
|     unsigned OperandIndex = IsDataProcessing3 ? 2 : 1;
 | |
|     switch (Format) {
 | |
|     case ARMII::DPRdIm: case ARMII::DPRnIm:
 | |
|     case ARMII::DPRIm:  case ARMII::DPRImS: {
 | |
|       // set bit I(25) to identify this is the immediate form of <shifter_op>
 | |
|       Value |= 1 << ARMII::I_BitShift;
 | |
|       // set immed_8 field
 | |
|       const MachineOperand &MO = MI.getOperand(OperandIndex);
 | |
|       op = ARM_AM::getSOImmVal(MO.getImm());
 | |
|       Value |= op;
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::DPRdReg: case ARMII::DPRnReg:
 | |
|     case ARMII::DPRReg:  case ARMII::DPRRegS: {
 | |
|       // set last operand (register Rm)
 | |
|       op = getMachineOpValue(MI,OperandIndex);
 | |
|       Value |= op;
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::DPRdSoReg: case ARMII::DPRnSoReg:
 | |
|     case ARMII::DPRSoReg:  case ARMII::DPRSoRegS: {
 | |
|       // set last operand (register Rm)
 | |
|       op = getMachineOpValue(MI,OperandIndex);
 | |
|       Value |= op;
 | |
| 
 | |
|       const MachineOperand &MO1 = MI.getOperand(OperandIndex + 1);
 | |
|       const MachineOperand &MO2 = MI.getOperand(OperandIndex + 2);
 | |
|       // identify it the instr is in immed or register shifts encoding
 | |
|       bool IsShiftByRegister = MO1.getReg() > 0;
 | |
|       // set shift operand (bit[6:4]).
 | |
|       // ASR - 101 if it is in register shifts encoding; 100, otherwise.
 | |
|       // LSL - 001 if it is in register shifts encoding; 000, otherwise.
 | |
|       // LSR - 011 if it is in register shifts encoding; 010, otherwise.
 | |
|       // ROR - 111 if it is in register shifts encoding; 110, otherwise.
 | |
|       // RRX - 110 and bit[11:7] clear.
 | |
|       switch(ARM_AM::getSORegShOp(MO2.getImm())) {
 | |
|         default: assert(0 && "Unknown shift opc!");
 | |
|         case ARM_AM::asr: {
 | |
|           if(IsShiftByRegister)
 | |
|             Value |= 0x5 << 4;
 | |
|           else
 | |
|             Value |= 0x1 << 6;
 | |
|           break;
 | |
|         }
 | |
|         case ARM_AM::lsl: {
 | |
|           if(IsShiftByRegister)
 | |
|             Value |= 0x1 << 4;
 | |
|           break;
 | |
|         }
 | |
|         case ARM_AM::lsr: {
 | |
|           if(IsShiftByRegister)
 | |
|             Value |= 0x3 << 4;
 | |
|           else
 | |
|             Value |= 0x1 << 5;
 | |
|           break;
 | |
|         }
 | |
|         case ARM_AM::ror: {
 | |
|           if(IsShiftByRegister)
 | |
|             Value |= 0x7 << 4;
 | |
|           else
 | |
|             Value |= 0x3 << 5;
 | |
|           break;
 | |
|         }
 | |
|         case ARM_AM::rrx: {
 | |
|           Value |= 0x3 << 5;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // set the field related to shift operations (except rrx).
 | |
|       if (ARM_AM::getSORegShOp(MO2.getImm()) != ARM_AM::rrx) {
 | |
|         if (IsShiftByRegister) {
 | |
|           // set the value of bit[11:8] (register Rs).
 | |
|           assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
 | |
|           op = ARMRegisterInfo::getRegisterNumbering(MO1.getReg());
 | |
|           assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
 | |
|           Value |= op << ARMII::RegRsShift;
 | |
|         } else {
 | |
|           // set the value of bit [11:7] (shift_immed field).
 | |
|           op = ARM_AM::getSORegOffset(MO2.getImm());
 | |
|           Value |= op << 7;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: assert(false && "Unknown operand type!");
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case ARMII::AddrMode2: {
 | |
|     // bit 26 is always 1
 | |
|     Value |= 1 << 26;
 | |
| 
 | |
|     unsigned Index = Desc.TSFlags & ARMII::IndexModeMask;
 | |
|     // if the instruction uses offset addressing or pre-indexed addressing,
 | |
|     // set bit P(24) to 1
 | |
|     if (Index == ARMII::IndexModePre || Index == 0)
 | |
|       Value |= 1 << ARMII::IndexShift;
 | |
|     // if the instruction uses post-indexed addressing, set bit W(21) to 1
 | |
|     if (Index == ARMII::IndexModePre)
 | |
|       Value |= 1 << 21;
 | |
| 
 | |
|     unsigned Format = Desc.TSFlags & ARMII::FormMask;
 | |
|     // If it is a load instruction (except LDRD), set bit L(20) to 1
 | |
|     if (Format == ARMII::LdFrm)
 | |
|       Value |= 1 << ARMII::L_BitShift;
 | |
| 
 | |
|     // set bit B(22)
 | |
|     unsigned BitByte = getBaseOpcodeFor(Desc);
 | |
|     Value |= BitByte << 22;
 | |
| 
 | |
|     // set first operand
 | |
|     op = getMachineOpValue(MI,0);
 | |
|     Value |= op << ARMII::RegRdShift;
 | |
| 
 | |
|     // set second operand
 | |
|     op = getMachineOpValue(MI,1);
 | |
|     Value |= op << ARMII::RegRnShift;
 | |
| 
 | |
|     const MachineOperand &MO2 = MI.getOperand(2);
 | |
|     const MachineOperand &MO3 = MI.getOperand(3);
 | |
| 
 | |
|     // set bit U(23) according to signal of immed value (positive or negative)
 | |
|     Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
 | |
|                                                 ARMII::U_BitShift;
 | |
|     if (!MO2.getReg()) { // is immediate
 | |
|       if (ARM_AM::getAM2Offset(MO3.getImm()))
 | |
|         // set the value of offset_12 field
 | |
|         Value |= ARM_AM::getAM2Offset(MO3.getImm());
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // set bit I(25), because this is not in immediate enconding.
 | |
|     Value |= 1 << ARMII::I_BitShift;
 | |
|     assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
 | |
|     // set bit[3:0] to the corresponding Rm register
 | |
|     Value |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
 | |
| 
 | |
|     // if this instr is in scaled register offset/index instruction, set
 | |
|     // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
 | |
|     if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) {
 | |
|       unsigned ShiftOp = getShiftOp(MO3);
 | |
|       Value |= ShiftOp << 5; // shift
 | |
|       Value |= ShImm << 7;   // shift_immed
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case ARMII::AddrMode3: {
 | |
|     unsigned Index = Desc.TSFlags & ARMII::IndexModeMask;
 | |
|     // if the instruction uses offset addressing or pre-indexed addressing,
 | |
|     // set bit P(24) to 1
 | |
|     if (Index == ARMII::IndexModePre || Index == 0)
 | |
|       Value |= 1 << ARMII::IndexShift;
 | |
| 
 | |
|     unsigned Format = Desc.TSFlags & ARMII::FormMask;
 | |
|     // If it is a load instruction (except LDRD), set bit L(20) to 1
 | |
|     if (Format == ARMII::LdFrm && opcode != ARM::LDRD)
 | |
|       Value |= 1 << ARMII::L_BitShift;
 | |
| 
 | |
|     // bit[7:4] is the opcode of this instruction class (bits S and H).
 | |
|     unsigned char BaseOpcode = getBaseOpcodeFor(Desc);
 | |
|     Value |= BaseOpcode << 4;
 | |
| 
 | |
|     // set first operand
 | |
|     op = getMachineOpValue(MI,0);
 | |
|     Value |= op << ARMII::RegRdShift;
 | |
| 
 | |
|     // set second operand
 | |
|     op = getMachineOpValue(MI,1);
 | |
|     Value |= op << ARMII::RegRnShift;
 | |
| 
 | |
|     const MachineOperand &MO2 = MI.getOperand(2);
 | |
|     const MachineOperand &MO3 = MI.getOperand(3);
 | |
| 
 | |
|     // set bit U(23) according to signal of immed value (positive or negative)
 | |
|     Value |= (ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
 | |
|                                                 ARMII::U_BitShift;
 | |
| 
 | |
|     // if this instr is in register offset/index encoding, set bit[3:0]
 | |
|     // to the corresponding Rm register.
 | |
|     if (MO2.getReg()) {
 | |
|       Value |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // if this instr is in immediate offset/index encoding, set bit 22 to 1
 | |
|     if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) {
 | |
|       Value |= 1 << 22;
 | |
|       // set operands
 | |
|       Value |= (ImmOffs >> 4) << 8; // immedH
 | |
|       Value |= (ImmOffs & ~0xF); // immedL
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case ARMII::AddrMode4: {
 | |
|     // bit 27 is always 1
 | |
|     Value |= 1 << 27;
 | |
| 
 | |
|     unsigned Format = Desc.TSFlags & ARMII::FormMask;
 | |
|     // if it is a load instr, set bit L(20) to 1
 | |
|     if (Format == ARMII::LdFrm)
 | |
|       Value |= 1 << ARMII::L_BitShift;
 | |
| 
 | |
|     unsigned OpIndex = 0;
 | |
| 
 | |
|     // set first operand
 | |
|     op = getMachineOpValue(MI,OpIndex);
 | |
|     Value |= op << ARMII::RegRnShift;
 | |
| 
 | |
|     // set addressing mode by modifying bits U(23) and P(24)
 | |
|     // IA - Increment after  - bit U = 1 and bit P = 0
 | |
|     // IB - Increment before - bit U = 1 and bit P = 1
 | |
|     // DA - Decrement after  - bit U = 0 and bit P = 0
 | |
|     // DB - Decrement before - bit U = 0 and bit P = 1
 | |
|     const MachineOperand &MO = MI.getOperand(OpIndex + 1);
 | |
|     ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm());
 | |
|     switch(Mode) {
 | |
|     default: assert(0 && "Unknown addressing sub-mode!");
 | |
|     case ARM_AM::ia: Value |= 0x1 << 23; break;
 | |
|     case ARM_AM::ib: Value |= 0x3 << 23; break;
 | |
|     case ARM_AM::da: break;
 | |
|     case ARM_AM::db: Value |= 0x1 << 24; break;
 | |
|     }
 | |
| 
 | |
|     // set bit W(21)
 | |
|     if (ARM_AM::getAM4WBFlag(MO.getImm()))
 | |
|       Value |= 0x1 << 21;
 | |
| 
 | |
|     // set registers
 | |
|     for (unsigned i = OpIndex + 4, e = MI.getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MOR = MI.getOperand(i);
 | |
|       unsigned RegNumber = ARMRegisterInfo::getRegisterNumbering(MOR.getReg());
 | |
|       assert(TargetRegisterInfo::isPhysicalRegister(MOR.getReg()) &&
 | |
|              RegNumber < 16);
 | |
|       Value |= 0x1 << RegNumber;
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return Value;
 | |
| }
 |