463 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			TableGen
		
	
	
	
			
		
		
	
	
			463 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			TableGen
		
	
	
	
| //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the target-independent interfaces which should be
 | |
| // implemented by each target which is using a TableGen based code generator.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Include all information about LLVM intrinsics.
 | |
| include "llvm/Intrinsics.td"
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Register file description - These classes are used to fill in the target
 | |
| // description classes.
 | |
| 
 | |
| class RegisterClass; // Forward def
 | |
| 
 | |
| // Register - You should define one instance of this class for each register
 | |
| // in the target machine.  String n will become the "name" of the register.
 | |
| class Register<string n> {
 | |
|   string Namespace = "";
 | |
|   string Name = n;
 | |
| 
 | |
|   // SpillSize - If this value is set to a non-zero value, it is the size in
 | |
|   // bits of the spill slot required to hold this register.  If this value is
 | |
|   // set to zero, the information is inferred from any register classes the
 | |
|   // register belongs to.
 | |
|   int SpillSize = 0;
 | |
| 
 | |
|   // SpillAlignment - This value is used to specify the alignment required for
 | |
|   // spilling the register.  Like SpillSize, this should only be explicitly
 | |
|   // specified if the register is not in a register class.
 | |
|   int SpillAlignment = 0;
 | |
| 
 | |
|   // Aliases - A list of registers that this register overlaps with.  A read or
 | |
|   // modification of this register can potentially read or modify the aliased
 | |
|   // registers.
 | |
|   list<Register> Aliases = [];
 | |
|   
 | |
|   // SubRegs - A list of registers that are parts of this register. Note these
 | |
|   // are "immediate" sub-registers and the registers within the list do not
 | |
|   // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
 | |
|   // not [AX, AH, AL].
 | |
|   list<Register> SubRegs = [];
 | |
| 
 | |
|   // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
 | |
|   // These values can be determined by locating the <target>.h file in the
 | |
|   // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
 | |
|   // order of these names correspond to the enumeration used by gcc.  A value of
 | |
|   // -1 indicates that the gcc number is undefined and -2 that register number
 | |
|   // is invalid for this mode/flavour.
 | |
|   list<int> DwarfNumbers = [];
 | |
| }
 | |
| 
 | |
| // RegisterWithSubRegs - This can be used to define instances of Register which
 | |
| // need to specify sub-registers.
 | |
| // List "subregs" specifies which registers are sub-registers to this one. This
 | |
| // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
 | |
| // This allows the code generator to be careful not to put two values with 
 | |
| // overlapping live ranges into registers which alias.
 | |
| class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
 | |
|   let SubRegs = subregs;
 | |
| }
 | |
| 
 | |
| // SubRegSet - This can be used to define a specific mapping of registers to
 | |
| // indices, for use as named subregs of a particular physical register.  Each
 | |
| // register in 'subregs' becomes an addressable subregister at index 'n' of the
 | |
| // corresponding register in 'regs'.
 | |
| class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
 | |
|   int index = n;
 | |
|   
 | |
|   list<Register> From = regs;
 | |
|   list<Register> To = subregs;
 | |
| }
 | |
| 
 | |
| // RegisterClass - Now that all of the registers are defined, and aliases
 | |
| // between registers are defined, specify which registers belong to which
 | |
| // register classes.  This also defines the default allocation order of
 | |
| // registers by register allocators.
 | |
| //
 | |
| class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
 | |
|                     list<Register> regList> {
 | |
|   string Namespace = namespace;
 | |
| 
 | |
|   // RegType - Specify the list ValueType of the registers in this register
 | |
|   // class.  Note that all registers in a register class must have the same
 | |
|   // ValueTypes.  This is a list because some targets permit storing different 
 | |
|   // types in same register, for example vector values with 128-bit total size,
 | |
|   // but different count/size of items, like SSE on x86.
 | |
|   //
 | |
|   list<ValueType> RegTypes = regTypes;
 | |
| 
 | |
|   // Size - Specify the spill size in bits of the registers.  A default value of
 | |
|   // zero lets tablgen pick an appropriate size.
 | |
|   int Size = 0;
 | |
| 
 | |
|   // Alignment - Specify the alignment required of the registers when they are
 | |
|   // stored or loaded to memory.
 | |
|   //
 | |
|   int Alignment = alignment;
 | |
| 
 | |
|   // CopyCost - This value is used to specify the cost of copying a value
 | |
|   // between two registers in this register class. The default value is one
 | |
|   // meaning it takes a single instruction to perform the copying. A negative
 | |
|   // value means copying is extremely expensive or impossible.
 | |
|   int CopyCost = 1;
 | |
| 
 | |
|   // MemberList - Specify which registers are in this class.  If the
 | |
|   // allocation_order_* method are not specified, this also defines the order of
 | |
|   // allocation used by the register allocator.
 | |
|   //
 | |
|   list<Register> MemberList = regList;
 | |
|   
 | |
|   // SubClassList - Specify which register classes correspond to subregisters
 | |
|   // of this class. The order should be by subregister set index.
 | |
|   list<RegisterClass> SubRegClassList = [];
 | |
| 
 | |
|   // MethodProtos/MethodBodies - These members can be used to insert arbitrary
 | |
|   // code into a generated register class.   The normal usage of this is to 
 | |
|   // overload virtual methods.
 | |
|   code MethodProtos = [{}];
 | |
|   code MethodBodies = [{}];
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DwarfRegNum - This class provides a mapping of the llvm register enumeration
 | |
| // to the register numbering used by gcc and gdb.  These values are used by a
 | |
| // debug information writer (ex. DwarfWriter) to describe where values may be
 | |
| // located during execution.
 | |
| class DwarfRegNum<list<int> Numbers> {
 | |
|   // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
 | |
|   // These values can be determined by locating the <target>.h file in the
 | |
|   // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
 | |
|   // order of these names correspond to the enumeration used by gcc.  A value of
 | |
|   // -1 indicates that the gcc number is undefined and -2 that register number is 
 | |
|   // invalid for this mode/flavour.
 | |
|   list<int> DwarfNumbers = Numbers;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pull in the common support for scheduling
 | |
| //
 | |
| include "TargetSchedule.td"
 | |
| 
 | |
| class Predicate; // Forward def
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Instruction set description - These classes correspond to the C++ classes in
 | |
| // the Target/TargetInstrInfo.h file.
 | |
| //
 | |
| class Instruction {
 | |
|   string Namespace = "";
 | |
| 
 | |
|   dag OutOperandList;       // An dag containing the MI def operand list.
 | |
|   dag InOperandList;        // An dag containing the MI use operand list.
 | |
|   string AsmString = "";    // The .s format to print the instruction with.
 | |
| 
 | |
|   // Pattern - Set to the DAG pattern for this instruction, if we know of one,
 | |
|   // otherwise, uninitialized.
 | |
|   list<dag> Pattern;
 | |
| 
 | |
|   // The follow state will eventually be inferred automatically from the
 | |
|   // instruction pattern.
 | |
| 
 | |
|   list<Register> Uses = []; // Default to using no non-operand registers
 | |
|   list<Register> Defs = []; // Default to modifying no non-operand registers
 | |
| 
 | |
|   // Predicates - List of predicates which will be turned into isel matching
 | |
|   // code.
 | |
|   list<Predicate> Predicates = [];
 | |
| 
 | |
|   // Code size.
 | |
|   int CodeSize = 0;
 | |
| 
 | |
|   // Added complexity passed onto matching pattern.
 | |
|   int AddedComplexity  = 0;
 | |
| 
 | |
|   // These bits capture information about the high-level semantics of the
 | |
|   // instruction.
 | |
|   bit isReturn     = 0;     // Is this instruction a return instruction?
 | |
|   bit isBranch     = 0;     // Is this instruction a branch instruction?
 | |
|   bit isIndirectBranch = 0; // Is this instruction an indirect branch?
 | |
|   bit isBarrier    = 0;     // Can control flow fall through this instruction?
 | |
|   bit isCall       = 0;     // Is this instruction a call instruction?
 | |
|   bit isSimpleLoad = 0;     // Is this just a load instruction?
 | |
|   bit mayLoad      = 0;     // Is it possible for this inst to read memory?
 | |
|   bit mayStore     = 0;     // Is it possible for this inst to write memory?
 | |
|   bit isImplicitDef = 0;    // Is this instruction an implicit def instruction?
 | |
|   bit isTwoAddress = 0;     // Is this a two address instruction?
 | |
|   bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
 | |
|   bit isCommutable = 0;     // Is this 3 operand instruction commutable?
 | |
|   bit isTerminator = 0;     // Is this part of the terminator for a basic block?
 | |
|   bit isReMaterializable = 0; // Is this instruction re-materializable?
 | |
|   bit isPredicable = 0;     // Is this instruction predicable?
 | |
|   bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
 | |
|   bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
 | |
|   bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
 | |
|   bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
 | |
| 
 | |
|   // Side effect flags - When set, the flags have these meanings:
 | |
|   //
 | |
|   //  hasSideEffects - The instruction has side effects that are not
 | |
|   //    captured by any operands of the instruction or other flags.
 | |
|   //  mayHaveSideEffects  - Some instances of the instruction can have side
 | |
|   //    effects. The virtual method "isReallySideEffectFree" is called to
 | |
|   //    determine this. Load instructions are an example of where this is
 | |
|   //    useful. In general, loads always have side effects. However, loads from
 | |
|   //    constant pools don't. Individual back ends make this determination.
 | |
|   //  neverHasSideEffects - Set on an instruction with no pattern if it has no
 | |
|   //    side effects.
 | |
|   bit hasSideEffects = 0;
 | |
|   bit mayHaveSideEffects = 0;
 | |
|   bit neverHasSideEffects = 0;
 | |
|   
 | |
|   InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
 | |
| 
 | |
|   string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
 | |
|   
 | |
|   /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
 | |
|   /// be encoded into the output machineinstr.
 | |
|   string DisableEncoding = "";
 | |
| }
 | |
| 
 | |
| /// Predicates - These are extra conditionals which are turned into instruction
 | |
| /// selector matching code. Currently each predicate is just a string.
 | |
| class Predicate<string cond> {
 | |
|   string CondString = cond;
 | |
| }
 | |
| 
 | |
| /// NoHonorSignDependentRounding - This predicate is true if support for
 | |
| /// sign-dependent-rounding is not enabled.
 | |
| def NoHonorSignDependentRounding
 | |
|  : Predicate<"!HonorSignDependentRoundingFPMath()">;
 | |
| 
 | |
| class Requires<list<Predicate> preds> {
 | |
|   list<Predicate> Predicates = preds;
 | |
| }
 | |
| 
 | |
| /// ops definition - This is just a simple marker used to identify the operands
 | |
| /// list for an instruction. outs and ins are identical both syntatically and
 | |
| /// semantically, they are used to define def operands and use operands to
 | |
| /// improve readibility. This should be used like this:
 | |
| ///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
 | |
| def ops;
 | |
| def outs;
 | |
| def ins;
 | |
| 
 | |
| /// variable_ops definition - Mark this instruction as taking a variable number
 | |
| /// of operands.
 | |
| def variable_ops;
 | |
| 
 | |
| /// ptr_rc definition - Mark this operand as being a pointer value whose
 | |
| /// register class is resolved dynamically via a callback to TargetInstrInfo.
 | |
| /// FIXME: We should probably change this to a class which contain a list of
 | |
| /// flags. But currently we have but one flag.
 | |
| def ptr_rc;
 | |
| 
 | |
| /// Operand Types - These provide the built-in operand types that may be used
 | |
| /// by a target.  Targets can optionally provide their own operand types as
 | |
| /// needed, though this should not be needed for RISC targets.
 | |
| class Operand<ValueType ty> {
 | |
|   ValueType Type = ty;
 | |
|   string PrintMethod = "printOperand";
 | |
|   dag MIOperandInfo = (ops);
 | |
| }
 | |
| 
 | |
| def i1imm  : Operand<i1>;
 | |
| def i8imm  : Operand<i8>;
 | |
| def i16imm : Operand<i16>;
 | |
| def i32imm : Operand<i32>;
 | |
| def i64imm : Operand<i64>;
 | |
| 
 | |
| def f32imm : Operand<f32>;
 | |
| def f64imm : Operand<f64>;
 | |
| 
 | |
| /// zero_reg definition - Special node to stand for the zero register.
 | |
| ///
 | |
| def zero_reg;
 | |
| 
 | |
| /// PredicateOperand - This can be used to define a predicate operand for an
 | |
| /// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
 | |
| /// AlwaysVal specifies the value of this predicate when set to "always
 | |
| /// execute".
 | |
| class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
 | |
|   : Operand<ty> {
 | |
|   let MIOperandInfo = OpTypes;
 | |
|   dag DefaultOps = AlwaysVal;
 | |
| }
 | |
| 
 | |
| /// OptionalDefOperand - This is used to define a optional definition operand
 | |
| /// for an instruction. DefaultOps is the register the operand represents if none
 | |
| /// is supplied, e.g. zero_reg.
 | |
| class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
 | |
|   : Operand<ty> {
 | |
|   let MIOperandInfo = OpTypes;
 | |
|   dag DefaultOps = defaultops;
 | |
| }
 | |
| 
 | |
| 
 | |
| // InstrInfo - This class should only be instantiated once to provide parameters
 | |
| // which are global to the the target machine.
 | |
| //
 | |
| class InstrInfo {
 | |
|   // If the target wants to associate some target-specific information with each
 | |
|   // instruction, it should provide these two lists to indicate how to assemble
 | |
|   // the target specific information into the 32 bits available.
 | |
|   //
 | |
|   list<string> TSFlagsFields = [];
 | |
|   list<int>    TSFlagsShifts = [];
 | |
| 
 | |
|   // Target can specify its instructions in either big or little-endian formats.
 | |
|   // For instance, while both Sparc and PowerPC are big-endian platforms, the
 | |
|   // Sparc manual specifies its instructions in the format [31..0] (big), while
 | |
|   // PowerPC specifies them using the format [0..31] (little).
 | |
|   bit isLittleEndianEncoding = 0;
 | |
| }
 | |
| 
 | |
| // Standard Instructions.
 | |
| def PHI : Instruction {
 | |
|   let OutOperandList = (ops);
 | |
|   let InOperandList = (ops variable_ops);
 | |
|   let AsmString = "PHINODE";
 | |
|   let Namespace = "TargetInstrInfo";
 | |
| }
 | |
| def INLINEASM : Instruction {
 | |
|   let OutOperandList = (ops);
 | |
|   let InOperandList = (ops variable_ops);
 | |
|   let AsmString = "";
 | |
|   let Namespace = "TargetInstrInfo";
 | |
| }
 | |
| def LABEL : Instruction {
 | |
|   let OutOperandList = (ops);
 | |
|   let InOperandList = (ops i32imm:$id, i32imm:$flavor);
 | |
|   let AsmString = "";
 | |
|   let Namespace = "TargetInstrInfo";
 | |
|   let hasCtrlDep = 1;
 | |
| }
 | |
| def DECLARE : Instruction {
 | |
|   let OutOperandList = (ops);
 | |
|   let InOperandList = (ops variable_ops);
 | |
|   let AsmString = "";
 | |
|   let Namespace = "TargetInstrInfo";
 | |
|   let hasCtrlDep = 1;
 | |
| }
 | |
| def EXTRACT_SUBREG : Instruction {
 | |
|   let OutOperandList = (ops variable_ops);
 | |
|   let InOperandList = (ops variable_ops);
 | |
|   let AsmString = "";
 | |
|   let Namespace = "TargetInstrInfo";
 | |
|   let neverHasSideEffects = 1;
 | |
| }
 | |
| def INSERT_SUBREG : Instruction {
 | |
|         let OutOperandList = (ops variable_ops);
 | |
|   let InOperandList = (ops variable_ops);
 | |
|   let AsmString = "";
 | |
|   let Namespace = "TargetInstrInfo";
 | |
|   let neverHasSideEffects = 1;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // AsmWriter - This class can be implemented by targets that need to customize
 | |
| // the format of the .s file writer.
 | |
| //
 | |
| // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
 | |
| // on X86 for example).
 | |
| //
 | |
| class AsmWriter {
 | |
|   // AsmWriterClassName - This specifies the suffix to use for the asmwriter
 | |
|   // class.  Generated AsmWriter classes are always prefixed with the target
 | |
|   // name.
 | |
|   string AsmWriterClassName  = "AsmPrinter";
 | |
| 
 | |
|   // InstFormatName - AsmWriters can specify the name of the format string to
 | |
|   // print instructions with.
 | |
|   string InstFormatName = "AsmString";
 | |
| 
 | |
|   // Variant - AsmWriters can be of multiple different variants.  Variants are
 | |
|   // used to support targets that need to emit assembly code in ways that are
 | |
|   // mostly the same for different targets, but have minor differences in
 | |
|   // syntax.  If the asmstring contains {|} characters in them, this integer
 | |
|   // will specify which alternative to use.  For example "{x|y|z}" with Variant
 | |
|   // == 1, will expand to "y".
 | |
|   int Variant = 0;
 | |
| }
 | |
| def DefaultAsmWriter : AsmWriter;
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Target - This class contains the "global" target information
 | |
| //
 | |
| class Target {
 | |
|   // InstructionSet - Instruction set description for this target.
 | |
|   InstrInfo InstructionSet;
 | |
| 
 | |
|   // AssemblyWriters - The AsmWriter instances available for this target.
 | |
|   list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SubtargetFeature - A characteristic of the chip set.
 | |
| //
 | |
| class SubtargetFeature<string n, string a,  string v, string d,
 | |
|                        list<SubtargetFeature> i = []> {
 | |
|   // Name - Feature name.  Used by command line (-mattr=) to determine the
 | |
|   // appropriate target chip.
 | |
|   //
 | |
|   string Name = n;
 | |
|   
 | |
|   // Attribute - Attribute to be set by feature.
 | |
|   //
 | |
|   string Attribute = a;
 | |
|   
 | |
|   // Value - Value the attribute to be set to by feature.
 | |
|   //
 | |
|   string Value = v;
 | |
|   
 | |
|   // Desc - Feature description.  Used by command line (-mattr=) to display help
 | |
|   // information.
 | |
|   //
 | |
|   string Desc = d;
 | |
| 
 | |
|   // Implies - Features that this feature implies are present. If one of those
 | |
|   // features isn't set, then this one shouldn't be set either.
 | |
|   //
 | |
|   list<SubtargetFeature> Implies = i;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Processor chip sets - These values represent each of the chip sets supported
 | |
| // by the scheduler.  Each Processor definition requires corresponding
 | |
| // instruction itineraries.
 | |
| //
 | |
| class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
 | |
|   // Name - Chip set name.  Used by command line (-mcpu=) to determine the
 | |
|   // appropriate target chip.
 | |
|   //
 | |
|   string Name = n;
 | |
|   
 | |
|   // ProcItin - The scheduling information for the target processor.
 | |
|   //
 | |
|   ProcessorItineraries ProcItin = pi;
 | |
|   
 | |
|   // Features - list of 
 | |
|   list<SubtargetFeature> Features = f;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pull in the common support for calling conventions.
 | |
| //
 | |
| include "TargetCallingConv.td"
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pull in the common support for DAG isel generation.
 | |
| //
 | |
| include "TargetSelectionDAG.td"
 |