1462 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1462 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the function verifier interface, that can be used for some
 | |
| // sanity checking of input to the system.
 | |
| //
 | |
| // Note that this does not provide full `Java style' security and verifications,
 | |
| // instead it just tries to ensure that code is well-formed.
 | |
| //
 | |
| //  * Both of a binary operator's parameters are of the same type
 | |
| //  * Verify that the indices of mem access instructions match other operands
 | |
| //  * Verify that arithmetic and other things are only performed on first-class
 | |
| //    types.  Verify that shifts & logicals only happen on integrals f.e.
 | |
| //  * All of the constants in a switch statement are of the correct type
 | |
| //  * The code is in valid SSA form
 | |
| //  * It should be illegal to put a label into any other type (like a structure)
 | |
| //    or to return one. [except constant arrays!]
 | |
| //  * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
 | |
| //  * PHI nodes must have an entry for each predecessor, with no extras.
 | |
| //  * PHI nodes must be the first thing in a basic block, all grouped together
 | |
| //  * PHI nodes must have at least one entry
 | |
| //  * All basic blocks should only end with terminator insts, not contain them
 | |
| //  * The entry node to a function must not have predecessors
 | |
| //  * All Instructions must be embedded into a basic block
 | |
| //  * Functions cannot take a void-typed parameter
 | |
| //  * Verify that a function's argument list agrees with it's declared type.
 | |
| //  * It is illegal to specify a name for a void value.
 | |
| //  * It is illegal to have a internal global value with no initializer
 | |
| //  * It is illegal to have a ret instruction that returns a value that does not
 | |
| //    agree with the function return value type.
 | |
| //  * Function call argument types match the function prototype
 | |
| //  * All other things that are tested by asserts spread about the code...
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/ParamAttrsList.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include <algorithm>
 | |
| #include <sstream>
 | |
| #include <cstdarg>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {  // Anonymous namespace for class
 | |
|   struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass {
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
| 
 | |
|     PreVerifier() : FunctionPass((intptr_t)&ID) { }
 | |
| 
 | |
|     // Check that the prerequisites for successful DominatorTree construction
 | |
|     // are satisfied.
 | |
|     bool runOnFunction(Function &F) {
 | |
|       bool Broken = false;
 | |
| 
 | |
|       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | |
|         if (I->empty() || !I->back().isTerminator()) {
 | |
|           cerr << "Basic Block does not have terminator!\n";
 | |
|           WriteAsOperand(*cerr, I, true);
 | |
|           cerr << "\n";
 | |
|           Broken = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Broken)
 | |
|         abort();
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   char PreVerifier::ID = 0;
 | |
|   RegisterPass<PreVerifier> PreVer("preverify", "Preliminary module verification");
 | |
|   const PassInfo *PreVerifyID = PreVer.getPassInfo();
 | |
| 
 | |
|   struct VISIBILITY_HIDDEN
 | |
|      Verifier : public FunctionPass, InstVisitor<Verifier> {
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
|     bool Broken;          // Is this module found to be broken?
 | |
|     bool RealPass;        // Are we not being run by a PassManager?
 | |
|     VerifierFailureAction action;
 | |
|                           // What to do if verification fails.
 | |
|     Module *Mod;          // Module we are verifying right now
 | |
|     DominatorTree *DT; // Dominator Tree, caution can be null!
 | |
|     std::stringstream msgs;  // A stringstream to collect messages
 | |
| 
 | |
|     /// InstInThisBlock - when verifying a basic block, keep track of all of the
 | |
|     /// instructions we have seen so far.  This allows us to do efficient
 | |
|     /// dominance checks for the case when an instruction has an operand that is
 | |
|     /// an instruction in the same block.
 | |
|     SmallPtrSet<Instruction*, 16> InstsInThisBlock;
 | |
| 
 | |
|     Verifier()
 | |
|       : FunctionPass((intptr_t)&ID), 
 | |
|       Broken(false), RealPass(true), action(AbortProcessAction),
 | |
|       DT(0), msgs( std::ios::app | std::ios::out ) {}
 | |
|     Verifier( VerifierFailureAction ctn )
 | |
|       : FunctionPass((intptr_t)&ID), 
 | |
|       Broken(false), RealPass(true), action(ctn), DT(0),
 | |
|       msgs( std::ios::app | std::ios::out ) {}
 | |
|     Verifier(bool AB )
 | |
|       : FunctionPass((intptr_t)&ID), 
 | |
|       Broken(false), RealPass(true),
 | |
|       action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
 | |
|       msgs( std::ios::app | std::ios::out ) {}
 | |
|     Verifier(DominatorTree &dt)
 | |
|       : FunctionPass((intptr_t)&ID), 
 | |
|       Broken(false), RealPass(false), action(PrintMessageAction),
 | |
|       DT(&dt), msgs( std::ios::app | std::ios::out ) {}
 | |
| 
 | |
| 
 | |
|     bool doInitialization(Module &M) {
 | |
|       Mod = &M;
 | |
|       verifyTypeSymbolTable(M.getTypeSymbolTable());
 | |
| 
 | |
|       // If this is a real pass, in a pass manager, we must abort before
 | |
|       // returning back to the pass manager, or else the pass manager may try to
 | |
|       // run other passes on the broken module.
 | |
|       if (RealPass)
 | |
|         return abortIfBroken();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) {
 | |
|       // Get dominator information if we are being run by PassManager
 | |
|       if (RealPass) DT = &getAnalysis<DominatorTree>();
 | |
| 
 | |
|       Mod = F.getParent();
 | |
| 
 | |
|       visit(F);
 | |
|       InstsInThisBlock.clear();
 | |
| 
 | |
|       // If this is a real pass, in a pass manager, we must abort before
 | |
|       // returning back to the pass manager, or else the pass manager may try to
 | |
|       // run other passes on the broken module.
 | |
|       if (RealPass)
 | |
|         return abortIfBroken();
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool doFinalization(Module &M) {
 | |
|       // Scan through, checking all of the external function's linkage now...
 | |
|       for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | |
|         visitGlobalValue(*I);
 | |
| 
 | |
|         // Check to make sure function prototypes are okay.
 | |
|         if (I->isDeclaration()) visitFunction(*I);
 | |
|       }
 | |
| 
 | |
|       for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
 | |
|            I != E; ++I)
 | |
|         visitGlobalVariable(*I);
 | |
| 
 | |
|       for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 
 | |
|            I != E; ++I)
 | |
|         visitGlobalAlias(*I);
 | |
| 
 | |
|       // If the module is broken, abort at this time.
 | |
|       return abortIfBroken();
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesAll();
 | |
|       AU.addRequiredID(PreVerifyID);
 | |
|       if (RealPass)
 | |
|         AU.addRequired<DominatorTree>();
 | |
|     }
 | |
| 
 | |
|     /// abortIfBroken - If the module is broken and we are supposed to abort on
 | |
|     /// this condition, do so.
 | |
|     ///
 | |
|     bool abortIfBroken() {
 | |
|       if (Broken) {
 | |
|         msgs << "Broken module found, ";
 | |
|         switch (action) {
 | |
|           case AbortProcessAction:
 | |
|             msgs << "compilation aborted!\n";
 | |
|             cerr << msgs.str();
 | |
|             abort();
 | |
|           case PrintMessageAction:
 | |
|             msgs << "verification continues.\n";
 | |
|             cerr << msgs.str();
 | |
|             return false;
 | |
|           case ReturnStatusAction:
 | |
|             msgs << "compilation terminated.\n";
 | |
|             return Broken;
 | |
|         }
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Verification methods...
 | |
|     void verifyTypeSymbolTable(TypeSymbolTable &ST);
 | |
|     void visitGlobalValue(GlobalValue &GV);
 | |
|     void visitGlobalVariable(GlobalVariable &GV);
 | |
|     void visitGlobalAlias(GlobalAlias &GA);
 | |
|     void visitFunction(Function &F);
 | |
|     void visitBasicBlock(BasicBlock &BB);
 | |
|     void visitTruncInst(TruncInst &I);
 | |
|     void visitZExtInst(ZExtInst &I);
 | |
|     void visitSExtInst(SExtInst &I);
 | |
|     void visitFPTruncInst(FPTruncInst &I);
 | |
|     void visitFPExtInst(FPExtInst &I);
 | |
|     void visitFPToUIInst(FPToUIInst &I);
 | |
|     void visitFPToSIInst(FPToSIInst &I);
 | |
|     void visitUIToFPInst(UIToFPInst &I);
 | |
|     void visitSIToFPInst(SIToFPInst &I);
 | |
|     void visitIntToPtrInst(IntToPtrInst &I);
 | |
|     void visitPtrToIntInst(PtrToIntInst &I);
 | |
|     void visitBitCastInst(BitCastInst &I);
 | |
|     void visitPHINode(PHINode &PN);
 | |
|     void visitBinaryOperator(BinaryOperator &B);
 | |
|     void visitICmpInst(ICmpInst &IC);
 | |
|     void visitFCmpInst(FCmpInst &FC);
 | |
|     void visitExtractElementInst(ExtractElementInst &EI);
 | |
|     void visitInsertElementInst(InsertElementInst &EI);
 | |
|     void visitShuffleVectorInst(ShuffleVectorInst &EI);
 | |
|     void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
 | |
|     void visitCallInst(CallInst &CI);
 | |
|     void visitInvokeInst(InvokeInst &II);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|     void visitLoadInst(LoadInst &LI);
 | |
|     void visitStoreInst(StoreInst &SI);
 | |
|     void visitInstruction(Instruction &I);
 | |
|     void visitTerminatorInst(TerminatorInst &I);
 | |
|     void visitReturnInst(ReturnInst &RI);
 | |
|     void visitSwitchInst(SwitchInst &SI);
 | |
|     void visitSelectInst(SelectInst &SI);
 | |
|     void visitUserOp1(Instruction &I);
 | |
|     void visitUserOp2(Instruction &I) { visitUserOp1(I); }
 | |
|     void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
 | |
|     void visitAllocationInst(AllocationInst &AI);
 | |
|     void visitGetResultInst(GetResultInst &GRI);
 | |
| 
 | |
|     void VerifyCallSite(CallSite CS);
 | |
|     void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
 | |
|                                   unsigned Count, ...);
 | |
|     void VerifyAttrs(ParameterAttributes Attrs, const Type *Ty,
 | |
|                      bool isReturnValue, const Value *V);
 | |
|     void VerifyFunctionAttrs(const FunctionType *FT, const ParamAttrsList *Attrs,
 | |
|                              const Value *V);
 | |
| 
 | |
|     void WriteValue(const Value *V) {
 | |
|       if (!V) return;
 | |
|       if (isa<Instruction>(V)) {
 | |
|         msgs << *V;
 | |
|       } else {
 | |
|         WriteAsOperand(msgs, V, true, Mod);
 | |
|         msgs << "\n";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void WriteType(const Type* T ) {
 | |
|       if ( !T ) return;
 | |
|       WriteTypeSymbolic(msgs, T, Mod );
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // CheckFailed - A check failed, so print out the condition and the message
 | |
|     // that failed.  This provides a nice place to put a breakpoint if you want
 | |
|     // to see why something is not correct.
 | |
|     void CheckFailed(const std::string &Message,
 | |
|                      const Value *V1 = 0, const Value *V2 = 0,
 | |
|                      const Value *V3 = 0, const Value *V4 = 0) {
 | |
|       msgs << Message << "\n";
 | |
|       WriteValue(V1);
 | |
|       WriteValue(V2);
 | |
|       WriteValue(V3);
 | |
|       WriteValue(V4);
 | |
|       Broken = true;
 | |
|     }
 | |
| 
 | |
|     void CheckFailed( const std::string& Message, const Value* V1,
 | |
|                       const Type* T2, const Value* V3 = 0 ) {
 | |
|       msgs << Message << "\n";
 | |
|       WriteValue(V1);
 | |
|       WriteType(T2);
 | |
|       WriteValue(V3);
 | |
|       Broken = true;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   char Verifier::ID = 0;
 | |
|   RegisterPass<Verifier> X("verify", "Module Verifier");
 | |
| } // End anonymous namespace
 | |
| 
 | |
| 
 | |
| // Assert - We know that cond should be true, if not print an error message.
 | |
| #define Assert(C, M) \
 | |
|   do { if (!(C)) { CheckFailed(M); return; } } while (0)
 | |
| #define Assert1(C, M, V1) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
 | |
| #define Assert2(C, M, V1, V2) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
 | |
| #define Assert3(C, M, V1, V2, V3) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
 | |
| #define Assert4(C, M, V1, V2, V3, V4) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
 | |
| 
 | |
| 
 | |
| void Verifier::visitGlobalValue(GlobalValue &GV) {
 | |
|   Assert1(!GV.isDeclaration() ||
 | |
|           GV.hasExternalLinkage() ||
 | |
|           GV.hasDLLImportLinkage() ||
 | |
|           GV.hasExternalWeakLinkage() ||
 | |
|           (isa<GlobalAlias>(GV) &&
 | |
|            (GV.hasInternalLinkage() || GV.hasWeakLinkage())),
 | |
|   "Global is external, but doesn't have external or dllimport or weak linkage!",
 | |
|           &GV);
 | |
| 
 | |
|   Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
 | |
|           "Global is marked as dllimport, but not external", &GV);
 | |
|   
 | |
|   Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
 | |
|           "Only global variables can have appending linkage!", &GV);
 | |
| 
 | |
|   if (GV.hasAppendingLinkage()) {
 | |
|     GlobalVariable &GVar = cast<GlobalVariable>(GV);
 | |
|     Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
 | |
|             "Only global arrays can have appending linkage!", &GV);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitGlobalVariable(GlobalVariable &GV) {
 | |
|   if (GV.hasInitializer()) {
 | |
|     Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
 | |
|             "Global variable initializer type does not match global "
 | |
|             "variable type!", &GV);
 | |
|   } else {
 | |
|     Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
 | |
|             GV.hasExternalWeakLinkage(),
 | |
|             "invalid linkage type for global declaration", &GV);
 | |
|   }
 | |
| 
 | |
|   visitGlobalValue(GV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGlobalAlias(GlobalAlias &GA) {
 | |
|   Assert1(!GA.getName().empty(),
 | |
|           "Alias name cannot be empty!", &GA);
 | |
|   Assert1(GA.hasExternalLinkage() || GA.hasInternalLinkage() ||
 | |
|           GA.hasWeakLinkage(),
 | |
|           "Alias should have external or external weak linkage!", &GA);
 | |
|   Assert1(GA.getType() == GA.getAliasee()->getType(),
 | |
|           "Alias and aliasee types should match!", &GA);
 | |
|   
 | |
|   if (!isa<GlobalValue>(GA.getAliasee())) {
 | |
|     const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
 | |
|     Assert1(CE && CE->getOpcode() == Instruction::BitCast &&
 | |
|             isa<GlobalValue>(CE->getOperand(0)),
 | |
|             "Aliasee should be either GlobalValue or bitcast of GlobalValue",
 | |
|             &GA);
 | |
|   }
 | |
|   
 | |
|   visitGlobalValue(GA);
 | |
| }
 | |
| 
 | |
| void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
 | |
| }
 | |
| 
 | |
| // VerifyAttrs - Check the given parameter attributes for an argument or return
 | |
| // value of the specified type.  The value V is printed in error messages.
 | |
| void Verifier::VerifyAttrs(ParameterAttributes Attrs, const Type *Ty, 
 | |
|                            bool isReturnValue, const Value *V) {
 | |
|   if (Attrs == ParamAttr::None)
 | |
|     return;
 | |
| 
 | |
|   if (isReturnValue) {
 | |
|     ParameterAttributes RetI = Attrs & ParamAttr::ParameterOnly;
 | |
|     Assert1(!RetI, "Attribute " + ParamAttrsList::getParamAttrsText(RetI) +
 | |
|             "does not apply to return values!", V);
 | |
|   } else {
 | |
|     ParameterAttributes ParmI = Attrs & ParamAttr::ReturnOnly;
 | |
|     Assert1(!ParmI, "Attribute " + ParamAttrsList::getParamAttrsText(ParmI) +
 | |
|             "only applies to return values!", V);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0;
 | |
|        i < array_lengthof(ParamAttr::MutuallyIncompatible); ++i) {
 | |
|     ParameterAttributes MutI = Attrs & ParamAttr::MutuallyIncompatible[i];
 | |
|     Assert1(!(MutI & (MutI - 1)), "Attributes " +
 | |
|             ParamAttrsList::getParamAttrsText(MutI) + "are incompatible!", V);
 | |
|   }
 | |
| 
 | |
|   ParameterAttributes TypeI = Attrs & ParamAttr::typeIncompatible(Ty);
 | |
|   Assert1(!TypeI, "Wrong type for attribute " +
 | |
|           ParamAttrsList::getParamAttrsText(TypeI), V);
 | |
| }
 | |
| 
 | |
| // VerifyFunctionAttrs - Check parameter attributes against a function type.
 | |
| // The value V is printed in error messages.
 | |
| void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
 | |
|                                    const ParamAttrsList *Attrs,
 | |
|                                    const Value *V) {
 | |
|   if (!Attrs)
 | |
|     return;
 | |
| 
 | |
|   bool SawNest = false;
 | |
| 
 | |
|   for (unsigned Idx = 0; Idx <= FT->getNumParams(); ++Idx) {
 | |
|     ParameterAttributes Attr = Attrs->getParamAttrs(Idx);
 | |
| 
 | |
|     VerifyAttrs(Attr, FT->getParamType(Idx-1), !Idx, V);
 | |
| 
 | |
|     if (Attr & ParamAttr::Nest) {
 | |
|       Assert1(!SawNest, "More than one parameter has attribute nest!", V);
 | |
|       SawNest = true;
 | |
|     }
 | |
| 
 | |
|     if (Attr & ParamAttr::StructRet) {
 | |
|       Assert1(Idx == 1, "Attribute sret not on first parameter!", V);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // visitFunction - Verify that a function is ok.
 | |
| //
 | |
| void Verifier::visitFunction(Function &F) {
 | |
|   // Check function arguments.
 | |
|   const FunctionType *FT = F.getFunctionType();
 | |
|   unsigned NumArgs = F.arg_size();
 | |
| 
 | |
|   Assert2(FT->getNumParams() == NumArgs,
 | |
|           "# formal arguments must match # of arguments for function type!",
 | |
|           &F, FT);
 | |
|   Assert1(F.getReturnType()->isFirstClassType() ||
 | |
|           F.getReturnType() == Type::VoidTy || 
 | |
|           isa<StructType>(F.getReturnType()),
 | |
|           "Functions cannot return aggregate values!", &F);
 | |
| 
 | |
|   Assert1(!F.isStructReturn() || FT->getReturnType() == Type::VoidTy,
 | |
|           "Invalid struct-return function!", &F);
 | |
| 
 | |
|   const ParamAttrsList *Attrs = F.getParamAttrs();
 | |
| 
 | |
|   Assert1(!Attrs ||
 | |
|           (Attrs->size() &&
 | |
|            Attrs->getParamIndex(Attrs->size()-1) <= FT->getNumParams()),
 | |
|           "Attributes after last parameter!", &F);
 | |
| 
 | |
|   // Check function attributes.
 | |
|   VerifyFunctionAttrs(FT, Attrs, &F);
 | |
| 
 | |
|   // Check that this function meets the restrictions on this calling convention.
 | |
|   switch (F.getCallingConv()) {
 | |
|   default:
 | |
|     break;
 | |
|   case CallingConv::C:
 | |
|     break;
 | |
|   case CallingConv::Fast:
 | |
|   case CallingConv::Cold:
 | |
|   case CallingConv::X86_FastCall:
 | |
|     Assert1(!F.isVarArg(),
 | |
|             "Varargs functions must have C calling conventions!", &F);
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Check that the argument values match the function type for this function...
 | |
|   unsigned i = 0;
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
 | |
|        I != E; ++I, ++i) {
 | |
|     Assert2(I->getType() == FT->getParamType(i),
 | |
|             "Argument value does not match function argument type!",
 | |
|             I, FT->getParamType(i));
 | |
|     // Make sure no aggregates are passed by value.
 | |
|     Assert1(I->getType()->isFirstClassType(),
 | |
|             "Functions cannot take aggregates as arguments by value!", I);
 | |
|    }
 | |
| 
 | |
|   if (F.isDeclaration()) {
 | |
|     Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
 | |
|             F.hasExternalWeakLinkage(),
 | |
|             "invalid linkage type for function declaration", &F);
 | |
|   } else {
 | |
|     // Verify that this function (which has a body) is not named "llvm.*".  It
 | |
|     // is not legal to define intrinsics.
 | |
|     if (F.getName().size() >= 5)
 | |
|       Assert1(F.getName().substr(0, 5) != "llvm.",
 | |
|               "llvm intrinsics cannot be defined!", &F);
 | |
|     
 | |
|     // Check the entry node
 | |
|     BasicBlock *Entry = &F.getEntryBlock();
 | |
|     Assert1(pred_begin(Entry) == pred_end(Entry),
 | |
|             "Entry block to function must not have predecessors!", Entry);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // verifyBasicBlock - Verify that a basic block is well formed...
 | |
| //
 | |
| void Verifier::visitBasicBlock(BasicBlock &BB) {
 | |
|   InstsInThisBlock.clear();
 | |
| 
 | |
|   // Ensure that basic blocks have terminators!
 | |
|   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
 | |
| 
 | |
|   // Check constraints that this basic block imposes on all of the PHI nodes in
 | |
|   // it.
 | |
|   if (isa<PHINode>(BB.front())) {
 | |
|     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
 | |
|     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
 | |
|     std::sort(Preds.begin(), Preds.end());
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
 | |
| 
 | |
|       // Ensure that PHI nodes have at least one entry!
 | |
|       Assert1(PN->getNumIncomingValues() != 0,
 | |
|               "PHI nodes must have at least one entry.  If the block is dead, "
 | |
|               "the PHI should be removed!", PN);
 | |
|       Assert1(PN->getNumIncomingValues() == Preds.size(),
 | |
|               "PHINode should have one entry for each predecessor of its "
 | |
|               "parent basic block!", PN);
 | |
| 
 | |
|       // Get and sort all incoming values in the PHI node...
 | |
|       Values.clear();
 | |
|       Values.reserve(PN->getNumIncomingValues());
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
 | |
|                                         PN->getIncomingValue(i)));
 | |
|       std::sort(Values.begin(), Values.end());
 | |
| 
 | |
|       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
 | |
|         // Check to make sure that if there is more than one entry for a
 | |
|         // particular basic block in this PHI node, that the incoming values are
 | |
|         // all identical.
 | |
|         //
 | |
|         Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
 | |
|                 Values[i].second == Values[i-1].second,
 | |
|                 "PHI node has multiple entries for the same basic block with "
 | |
|                 "different incoming values!", PN, Values[i].first,
 | |
|                 Values[i].second, Values[i-1].second);
 | |
| 
 | |
|         // Check to make sure that the predecessors and PHI node entries are
 | |
|         // matched up.
 | |
|         Assert3(Values[i].first == Preds[i],
 | |
|                 "PHI node entries do not match predecessors!", PN,
 | |
|                 Values[i].first, Preds[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitTerminatorInst(TerminatorInst &I) {
 | |
|   // Ensure that terminators only exist at the end of the basic block.
 | |
|   Assert1(&I == I.getParent()->getTerminator(),
 | |
|           "Terminator found in the middle of a basic block!", I.getParent());
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitReturnInst(ReturnInst &RI) {
 | |
|   Function *F = RI.getParent()->getParent();
 | |
|   unsigned N = RI.getNumOperands();
 | |
|   if (N == 0) 
 | |
|     Assert2(F->getReturnType() == Type::VoidTy,
 | |
|             "Found return instr that returns void in Function of non-void "
 | |
|             "return type!", &RI, F->getReturnType());
 | |
|   else if (N == 1)
 | |
|     Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
 | |
|             "Function return type does not match operand "
 | |
|             "type of return inst!", &RI, F->getReturnType());
 | |
|   else {
 | |
|     const StructType *STy = cast<StructType>(F->getReturnType());
 | |
|     for (unsigned i = 0; i < N; i++)
 | |
|       Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(),
 | |
|             "Function return type does not match operand "
 | |
|             "type of return inst!", &RI, F->getReturnType());
 | |
|   }
 | |
| 
 | |
|   // Check to make sure that the return value has necessary properties for
 | |
|   // terminators...
 | |
|   visitTerminatorInst(RI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSwitchInst(SwitchInst &SI) {
 | |
|   // Check to make sure that all of the constants in the switch instruction
 | |
|   // have the same type as the switched-on value.
 | |
|   const Type *SwitchTy = SI.getCondition()->getType();
 | |
|   for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
 | |
|     Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
 | |
|             "Switch constants must all be same type as switch value!", &SI);
 | |
| 
 | |
|   visitTerminatorInst(SI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSelectInst(SelectInst &SI) {
 | |
|   Assert1(SI.getCondition()->getType() == Type::Int1Ty,
 | |
|           "Select condition type must be bool!", &SI);
 | |
|   Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
 | |
|           "Select values must have identical types!", &SI);
 | |
|   Assert1(SI.getTrueValue()->getType() == SI.getType(),
 | |
|           "Select values must have same type as select instruction!", &SI);
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
 | |
| /// a pass, if any exist, it's an error.
 | |
| ///
 | |
| void Verifier::visitUserOp1(Instruction &I) {
 | |
|   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitTruncInst(TruncInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isInteger(), "Trunc only operates on integer", &I);
 | |
|   Assert1(DestTy->isInteger(), "Trunc only produces integer", &I);
 | |
|   Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitZExtInst(ZExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   Assert1(SrcTy->isInteger(), "ZExt only operates on integer", &I);
 | |
|   Assert1(DestTy->isInteger(), "ZExt only produces an integer", &I);
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSExtInst(SExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isInteger(), "SExt only operates on integer", &I);
 | |
|   Assert1(DestTy->isInteger(), "SExt only produces an integer", &I);
 | |
|   Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPTruncInst(FPTruncInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I);
 | |
|   Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I);
 | |
|   Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPExtInst(FPExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I);
 | |
|   Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I);
 | |
|   Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitUIToFPInst(UIToFPInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
 | |
|   bool DstVec = DestTy->getTypeID() == Type::VectorTyID;
 | |
| 
 | |
|   Assert1(SrcVec == DstVec,"UIToFP source and dest must both be vector or scalar", &I);
 | |
|   Assert1(SrcTy->isIntOrIntVector(),"UIToFP source must be integer or integer vector", &I);
 | |
|   Assert1(DestTy->isFPOrFPVector(),"UIToFP result must be FP or FP vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert1(cast<VectorType>(SrcTy)->getNumElements() == cast<VectorType>(DestTy)->getNumElements(),
 | |
|             "UIToFP source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSIToFPInst(SIToFPInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
 | |
|   bool DstVec = DestTy->getTypeID() == Type::VectorTyID;
 | |
| 
 | |
|   Assert1(SrcVec == DstVec,"SIToFP source and dest must both be vector or scalar", &I);
 | |
|   Assert1(SrcTy->isIntOrIntVector(),"SIToFP source must be integer or integer vector", &I);
 | |
|   Assert1(DestTy->isFPOrFPVector(),"SIToFP result must be FP or FP vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert1(cast<VectorType>(SrcTy)->getNumElements() == cast<VectorType>(DestTy)->getNumElements(),
 | |
|             "SIToFP source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPToUIInst(FPToUIInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
 | |
|   bool DstVec = DestTy->getTypeID() == Type::VectorTyID;
 | |
| 
 | |
|   Assert1(SrcVec == DstVec,"FPToUI source and dest must both be vector or scalar", &I);
 | |
|   Assert1(SrcTy->isFPOrFPVector(),"FPToUI source must be FP or FP vector", &I);
 | |
|   Assert1(DestTy->isIntOrIntVector(),"FPToUI result must be integer or integer vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert1(cast<VectorType>(SrcTy)->getNumElements() == cast<VectorType>(DestTy)->getNumElements(),
 | |
|             "FPToUI source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPToSIInst(FPToSIInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
 | |
|   bool DstVec = DestTy->getTypeID() == Type::VectorTyID;
 | |
| 
 | |
|   Assert1(SrcVec == DstVec,"FPToSI source and dest must both be vector or scalar", &I);
 | |
|   Assert1(SrcTy->isFPOrFPVector(),"FPToSI source must be FP or FP vector", &I);
 | |
|   Assert1(DestTy->isIntOrIntVector(),"FPToSI result must be integer or integer vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert1(cast<VectorType>(SrcTy)->getNumElements() == cast<VectorType>(DestTy)->getNumElements(),
 | |
|             "FPToSI source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
 | |
|   Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
 | |
|   Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitBitCastInst(BitCastInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   // BitCast implies a no-op cast of type only. No bits change.
 | |
|   // However, you can't cast pointers to anything but pointers.
 | |
|   Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
 | |
|           "Bitcast requires both operands to be pointer or neither", &I);
 | |
|   Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| /// visitPHINode - Ensure that a PHI node is well formed.
 | |
| ///
 | |
| void Verifier::visitPHINode(PHINode &PN) {
 | |
|   // Ensure that the PHI nodes are all grouped together at the top of the block.
 | |
|   // This can be tested by checking whether the instruction before this is
 | |
|   // either nonexistent (because this is begin()) or is a PHI node.  If not,
 | |
|   // then there is some other instruction before a PHI.
 | |
|   Assert2(&PN == &PN.getParent()->front() || 
 | |
|           isa<PHINode>(--BasicBlock::iterator(&PN)),
 | |
|           "PHI nodes not grouped at top of basic block!",
 | |
|           &PN, PN.getParent());
 | |
| 
 | |
|   // Check that all of the operands of the PHI node have the same type as the
 | |
|   // result.
 | |
|   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|     Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
 | |
|             "PHI node operands are not the same type as the result!", &PN);
 | |
| 
 | |
|   // All other PHI node constraints are checked in the visitBasicBlock method.
 | |
| 
 | |
|   visitInstruction(PN);
 | |
| }
 | |
| 
 | |
| void Verifier::VerifyCallSite(CallSite CS) {
 | |
|   Instruction *I = CS.getInstruction();
 | |
| 
 | |
|   Assert1(isa<PointerType>(CS.getCalledValue()->getType()),
 | |
|           "Called function must be a pointer!", I);
 | |
|   const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
 | |
|   Assert1(isa<FunctionType>(FPTy->getElementType()),
 | |
|           "Called function is not pointer to function type!", I);
 | |
| 
 | |
|   const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
 | |
| 
 | |
|   // Verify that the correct number of arguments are being passed
 | |
|   if (FTy->isVarArg())
 | |
|     Assert1(CS.arg_size() >= FTy->getNumParams(),
 | |
|             "Called function requires more parameters than were provided!",I);
 | |
|   else
 | |
|     Assert1(CS.arg_size() == FTy->getNumParams(),
 | |
|             "Incorrect number of arguments passed to called function!", I);
 | |
| 
 | |
|   // Verify that all arguments to the call match the function type...
 | |
|   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | |
|     Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
 | |
|             "Call parameter type does not match function signature!",
 | |
|             CS.getArgument(i), FTy->getParamType(i), I);
 | |
| 
 | |
|   const ParamAttrsList *Attrs = CS.getParamAttrs();
 | |
| 
 | |
|   Assert1(!Attrs ||
 | |
|           (Attrs->size() &&
 | |
|            Attrs->getParamIndex(Attrs->size()-1) <= CS.arg_size()),
 | |
|           "Attributes after last argument!", I);
 | |
| 
 | |
|   // Verify call attributes.
 | |
|   VerifyFunctionAttrs(FTy, Attrs, I);
 | |
| 
 | |
|   if (Attrs && FTy->isVarArg())
 | |
|     // Check attributes on the varargs part.
 | |
|     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
 | |
|       ParameterAttributes Attr = Attrs->getParamAttrs(Idx);
 | |
| 
 | |
|       VerifyAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
 | |
| 
 | |
|       ParameterAttributes VArgI = Attr & ParamAttr::VarArgsIncompatible;
 | |
|       Assert1(!VArgI, "Attribute " + ParamAttrsList::getParamAttrsText(VArgI) +
 | |
|               "cannot be used for vararg call arguments!", I);
 | |
|     }
 | |
| 
 | |
|   visitInstruction(*I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitCallInst(CallInst &CI) {
 | |
|   VerifyCallSite(&CI);
 | |
| 
 | |
|   if (Function *F = CI.getCalledFunction()) {
 | |
|     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
 | |
|       visitIntrinsicFunctionCall(ID, CI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitInvokeInst(InvokeInst &II) {
 | |
|   VerifyCallSite(&II);
 | |
| }
 | |
| 
 | |
| /// visitBinaryOperator - Check that both arguments to the binary operator are
 | |
| /// of the same type!
 | |
| ///
 | |
| void Verifier::visitBinaryOperator(BinaryOperator &B) {
 | |
|   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
 | |
|           "Both operands to a binary operator are not of the same type!", &B);
 | |
| 
 | |
|   switch (B.getOpcode()) {
 | |
|   // Check that logical operators are only used with integral operands.
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     Assert1(B.getType()->isInteger() ||
 | |
|             (isa<VectorType>(B.getType()) && 
 | |
|              cast<VectorType>(B.getType())->getElementType()->isInteger()),
 | |
|             "Logical operators only work with integral types!", &B);
 | |
|     Assert1(B.getType() == B.getOperand(0)->getType(),
 | |
|             "Logical operators must have same type for operands and result!",
 | |
|             &B);
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     Assert1(B.getType()->isInteger(),
 | |
|             "Shift must return an integer result!", &B);
 | |
|     Assert1(B.getType() == B.getOperand(0)->getType(),
 | |
|             "Shift return type must be same as operands!", &B);
 | |
|     /* FALL THROUGH */
 | |
|   default:
 | |
|     // Arithmetic operators only work on integer or fp values
 | |
|     Assert1(B.getType() == B.getOperand(0)->getType(),
 | |
|             "Arithmetic operators must have same type for operands and result!",
 | |
|             &B);
 | |
|     Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
 | |
|             isa<VectorType>(B.getType()),
 | |
|             "Arithmetic operators must have integer, fp, or vector type!", &B);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   visitInstruction(B);
 | |
| }
 | |
| 
 | |
| void Verifier::visitICmpInst(ICmpInst& IC) {
 | |
|   // Check that the operands are the same type
 | |
|   const Type* Op0Ty = IC.getOperand(0)->getType();
 | |
|   const Type* Op1Ty = IC.getOperand(1)->getType();
 | |
|   Assert1(Op0Ty == Op1Ty,
 | |
|           "Both operands to ICmp instruction are not of the same type!", &IC);
 | |
|   // Check that the operands are the right type
 | |
|   Assert1(Op0Ty->isInteger() || isa<PointerType>(Op0Ty),
 | |
|           "Invalid operand types for ICmp instruction", &IC);
 | |
|   visitInstruction(IC);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFCmpInst(FCmpInst& FC) {
 | |
|   // Check that the operands are the same type
 | |
|   const Type* Op0Ty = FC.getOperand(0)->getType();
 | |
|   const Type* Op1Ty = FC.getOperand(1)->getType();
 | |
|   Assert1(Op0Ty == Op1Ty,
 | |
|           "Both operands to FCmp instruction are not of the same type!", &FC);
 | |
|   // Check that the operands are the right type
 | |
|   Assert1(Op0Ty->isFloatingPoint(),
 | |
|           "Invalid operand types for FCmp instruction", &FC);
 | |
|   visitInstruction(FC);
 | |
| }
 | |
| 
 | |
| void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
 | |
|   Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
 | |
|                                               EI.getOperand(1)),
 | |
|           "Invalid extractelement operands!", &EI);
 | |
|   visitInstruction(EI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitInsertElementInst(InsertElementInst &IE) {
 | |
|   Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
 | |
|                                              IE.getOperand(1),
 | |
|                                              IE.getOperand(2)),
 | |
|           "Invalid insertelement operands!", &IE);
 | |
|   visitInstruction(IE);
 | |
| }
 | |
| 
 | |
| void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
 | |
|   Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
 | |
|                                              SV.getOperand(2)),
 | |
|           "Invalid shufflevector operands!", &SV);
 | |
|   Assert1(SV.getType() == SV.getOperand(0)->getType(),
 | |
|           "Result of shufflevector must match first operand type!", &SV);
 | |
|   
 | |
|   // Check to see if Mask is valid.
 | |
|   if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
 | |
|     for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
 | |
|       Assert1(isa<ConstantInt>(MV->getOperand(i)) ||
 | |
|               isa<UndefValue>(MV->getOperand(i)),
 | |
|               "Invalid shufflevector shuffle mask!", &SV);
 | |
|     }
 | |
|   } else {
 | |
|     Assert1(isa<UndefValue>(SV.getOperand(2)) || 
 | |
|             isa<ConstantAggregateZero>(SV.getOperand(2)),
 | |
|             "Invalid shufflevector shuffle mask!", &SV);
 | |
|   }
 | |
|   
 | |
|   visitInstruction(SV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
 | |
|   const Type *ElTy =
 | |
|     GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
 | |
|                                       Idxs.begin(), Idxs.end(), true);
 | |
|   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
 | |
|   Assert2(isa<PointerType>(GEP.getType()) &&
 | |
|           cast<PointerType>(GEP.getType())->getElementType() == ElTy,
 | |
|           "GEP is not of right type for indices!", &GEP, ElTy);
 | |
|   visitInstruction(GEP);
 | |
| }
 | |
| 
 | |
| void Verifier::visitLoadInst(LoadInst &LI) {
 | |
|   const Type *ElTy =
 | |
|     cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
 | |
|   Assert2(ElTy == LI.getType(),
 | |
|           "Load result type does not match pointer operand type!", &LI, ElTy);
 | |
|   visitInstruction(LI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitStoreInst(StoreInst &SI) {
 | |
|   const Type *ElTy =
 | |
|     cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
 | |
|   Assert2(ElTy == SI.getOperand(0)->getType(),
 | |
|           "Stored value type does not match pointer operand type!", &SI, ElTy);
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAllocationInst(AllocationInst &AI) {
 | |
|   const PointerType *Ptr = AI.getType();
 | |
|   Assert(Ptr->getAddressSpace() == 0, 
 | |
|     "Allocation instruction pointer not in the generic address space!");
 | |
|   visitInstruction(AI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGetResultInst(GetResultInst &GRI) {
 | |
|   Assert1(GRI.isValidOperands(GRI.getAggregateValue(), GRI.getIndex()),
 | |
|           "Invalid GetResultInst operands!", &GRI);
 | |
|   visitInstruction(GRI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// verifyInstruction - Verify that an instruction is well formed.
 | |
| ///
 | |
| void Verifier::visitInstruction(Instruction &I) {
 | |
|   BasicBlock *BB = I.getParent();
 | |
|   Assert1(BB, "Instruction not embedded in basic block!", &I);
 | |
| 
 | |
|   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
 | |
|     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|          UI != UE; ++UI)
 | |
|       Assert1(*UI != (User*)&I ||
 | |
|               !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
 | |
|               "Only PHI nodes may reference their own value!", &I);
 | |
|   }
 | |
|   
 | |
|   // Verify that if this is a terminator that it is at the end of the block.
 | |
|   if (isa<TerminatorInst>(I))
 | |
|     Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I);
 | |
|   
 | |
| 
 | |
|   // Check that void typed values don't have names
 | |
|   Assert1(I.getType() != Type::VoidTy || !I.hasName(),
 | |
|           "Instruction has a name, but provides a void value!", &I);
 | |
| 
 | |
|   // Check that the return value of the instruction is either void or a legal
 | |
|   // value type.
 | |
|   Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType()
 | |
|           || ((isa<CallInst>(I) || isa<InvokeInst>(I)) 
 | |
|               && isa<StructType>(I.getType())),
 | |
|           "Instruction returns a non-scalar type!", &I);
 | |
| 
 | |
|   // Check that all uses of the instruction, if they are instructions
 | |
|   // themselves, actually have parent basic blocks.  If the use is not an
 | |
|   // instruction, it is an error!
 | |
|   for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
 | |
|             *UI);
 | |
|     Instruction *Used = cast<Instruction>(*UI);
 | |
|     Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
 | |
|             " embeded in a basic block!", &I, Used);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|     Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
 | |
| 
 | |
|     // Check to make sure that only first-class-values are operands to
 | |
|     // instructions.
 | |
|     if (!I.getOperand(i)->getType()->isFirstClassType()) {
 | |
|       if (isa<ReturnInst>(I) || isa<GetResultInst>(I))
 | |
|         Assert1(isa<StructType>(I.getOperand(i)->getType()),
 | |
|                 "Invalid ReturnInst operands!", &I);
 | |
|       else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
 | |
|         if (const PointerType *PT = dyn_cast<PointerType>
 | |
|             (I.getOperand(i)->getType())) {
 | |
|           const Type *ETy = PT->getElementType();
 | |
|           Assert1(isa<StructType>(ETy), "Invalid CallInst operands!", &I);
 | |
|         }
 | |
|         else
 | |
|           Assert1(0, "Invalid CallInst operands!", &I);
 | |
|       }
 | |
|       else
 | |
|         Assert1(0, "Instruction operands must be first-class values!", &I);
 | |
|     }
 | |
|     
 | |
|     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
 | |
|       // Check to make sure that the "address of" an intrinsic function is never
 | |
|       // taken.
 | |
|       Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
 | |
|               "Cannot take the address of an intrinsic!", &I);
 | |
|       Assert1(F->getParent() == Mod, "Referencing function in another module!",
 | |
|               &I);
 | |
|     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
 | |
|       Assert1(OpBB->getParent() == BB->getParent(),
 | |
|               "Referring to a basic block in another function!", &I);
 | |
|     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
 | |
|       Assert1(OpArg->getParent() == BB->getParent(),
 | |
|               "Referring to an argument in another function!", &I);
 | |
|     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
 | |
|       Assert1(GV->getParent() == Mod, "Referencing global in another module!",
 | |
|               &I);
 | |
|     } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
 | |
|       BasicBlock *OpBlock = Op->getParent();
 | |
| 
 | |
|       // Check that a definition dominates all of its uses.
 | |
|       if (!isa<PHINode>(I)) {
 | |
|         // Invoke results are only usable in the normal destination, not in the
 | |
|         // exceptional destination.
 | |
|         if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
 | |
|           OpBlock = II->getNormalDest();
 | |
|           
 | |
|           Assert2(OpBlock != II->getUnwindDest(),
 | |
|                   "No uses of invoke possible due to dominance structure!",
 | |
|                   Op, II);
 | |
|           
 | |
|           // If the normal successor of an invoke instruction has multiple
 | |
|           // predecessors, then the normal edge from the invoke is critical, so
 | |
|           // the invoke value can only be live if the destination block
 | |
|           // dominates all of it's predecessors (other than the invoke) or if
 | |
|           // the invoke value is only used by a phi in the successor.
 | |
|           if (!OpBlock->getSinglePredecessor() &&
 | |
|               DT->dominates(&BB->getParent()->getEntryBlock(), BB)) {
 | |
|             // The first case we allow is if the use is a PHI operand in the
 | |
|             // normal block, and if that PHI operand corresponds to the invoke's
 | |
|             // block.
 | |
|             bool Bad = true;
 | |
|             if (PHINode *PN = dyn_cast<PHINode>(&I))
 | |
|               if (PN->getParent() == OpBlock &&
 | |
|                   PN->getIncomingBlock(i/2) == Op->getParent())
 | |
|                 Bad = false;
 | |
|             
 | |
|             // If it is used by something non-phi, then the other case is that
 | |
|             // 'OpBlock' dominates all of its predecessors other than the
 | |
|             // invoke.  In this case, the invoke value can still be used.
 | |
|             if (Bad) {
 | |
|               Bad = false;
 | |
|               for (pred_iterator PI = pred_begin(OpBlock),
 | |
|                    E = pred_end(OpBlock); PI != E; ++PI) {
 | |
|                 if (*PI != II->getParent() && !DT->dominates(OpBlock, *PI)) {
 | |
|                   Bad = true;
 | |
|                   break;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|             Assert2(!Bad,
 | |
|                     "Invoke value defined on critical edge but not dead!", &I,
 | |
|                     Op);
 | |
|           }
 | |
|         } else if (OpBlock == BB) {
 | |
|           // If they are in the same basic block, make sure that the definition
 | |
|           // comes before the use.
 | |
|           Assert2(InstsInThisBlock.count(Op) ||
 | |
|                   !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
 | |
|                   "Instruction does not dominate all uses!", Op, &I);
 | |
|         }
 | |
| 
 | |
|         // Definition must dominate use unless use is unreachable!
 | |
|         Assert2(DT->dominates(OpBlock, BB) ||
 | |
|                 !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
 | |
|                 "Instruction does not dominate all uses!", Op, &I);
 | |
|       } else {
 | |
|         // PHI nodes are more difficult than other nodes because they actually
 | |
|         // "use" the value in the predecessor basic blocks they correspond to.
 | |
|         BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
 | |
|         Assert2(DT->dominates(OpBlock, PredBB) ||
 | |
|                 !DT->dominates(&BB->getParent()->getEntryBlock(), PredBB),
 | |
|                 "Instruction does not dominate all uses!", Op, &I);
 | |
|       }
 | |
|     } else if (isa<InlineAsm>(I.getOperand(i))) {
 | |
|       Assert1(i == 0 && (isa<CallInst>(I) || isa<InvokeInst>(I)),
 | |
|               "Cannot take the address of an inline asm!", &I);
 | |
|     }
 | |
|   }
 | |
|   InstsInThisBlock.insert(&I);
 | |
| }
 | |
| 
 | |
| /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
 | |
| ///
 | |
| void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
 | |
|   Function *IF = CI.getCalledFunction();
 | |
|   Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
 | |
|           IF);
 | |
|   
 | |
| #define GET_INTRINSIC_VERIFIER
 | |
| #include "llvm/Intrinsics.gen"
 | |
| #undef GET_INTRINSIC_VERIFIER
 | |
|   
 | |
|   switch (ID) {
 | |
|   default:
 | |
|     break;
 | |
|   case Intrinsic::gcroot:
 | |
|   case Intrinsic::gcwrite:
 | |
|   case Intrinsic::gcread: {
 | |
|       Type *PtrTy    = PointerType::getUnqual(Type::Int8Ty),
 | |
|            *PtrPtrTy = PointerType::getUnqual(PtrTy);
 | |
|       
 | |
|       switch (ID) {
 | |
|       default:
 | |
|         break;
 | |
|       case Intrinsic::gcroot:
 | |
|         Assert1(CI.getOperand(1)->getType() == PtrPtrTy,
 | |
|                 "Intrinsic parameter #1 is not i8**.", &CI);
 | |
|         Assert1(CI.getOperand(2)->getType() == PtrTy,
 | |
|                 "Intrinsic parameter #2 is not i8*.", &CI);
 | |
|         Assert1(isa<AllocaInst>(
 | |
|                   IntrinsicInst::StripPointerCasts(CI.getOperand(1))),
 | |
|                 "llvm.gcroot parameter #1 must be an alloca.", &CI);
 | |
|         Assert1(isa<Constant>(CI.getOperand(2)),
 | |
|                 "llvm.gcroot parameter #2 must be a constant.", &CI);
 | |
|         break;
 | |
|       case Intrinsic::gcwrite:
 | |
|         Assert1(CI.getOperand(1)->getType() == PtrTy,
 | |
|                 "Intrinsic parameter #1 is not a i8*.", &CI);
 | |
|         Assert1(CI.getOperand(2)->getType() == PtrTy,
 | |
|                 "Intrinsic parameter #2 is not a i8*.", &CI);
 | |
|         Assert1(CI.getOperand(3)->getType() == PtrPtrTy,
 | |
|                 "Intrinsic parameter #3 is not a i8**.", &CI);
 | |
|         break;
 | |
|       case Intrinsic::gcread:
 | |
|         Assert1(CI.getOperand(1)->getType() == PtrTy,
 | |
|                 "Intrinsic parameter #1 is not a i8*.", &CI);
 | |
|         Assert1(CI.getOperand(2)->getType() == PtrPtrTy,
 | |
|                 "Intrinsic parameter #2 is not a i8**.", &CI);
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|       Assert1(CI.getParent()->getParent()->hasCollector(),
 | |
|               "Enclosing function does not specify a collector algorithm.",
 | |
|               &CI);
 | |
|     } break;
 | |
|   case Intrinsic::init_trampoline:
 | |
|     Assert1(isa<Function>(IntrinsicInst::StripPointerCasts(CI.getOperand(2))),
 | |
|             "llvm.init_trampoline parameter #2 must resolve to a function.",
 | |
|             &CI);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
 | |
| /// Intrinsics.gen.  This implements a little state machine that verifies the
 | |
| /// prototype of intrinsics.
 | |
| void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID,
 | |
|                                         Function *F,
 | |
|                                         unsigned Count, ...) {
 | |
|   va_list VA;
 | |
|   va_start(VA, Count);
 | |
|   
 | |
|   const FunctionType *FTy = F->getFunctionType();
 | |
|   
 | |
|   // For overloaded intrinsics, the Suffix of the function name must match the
 | |
|   // types of the arguments. This variable keeps track of the expected
 | |
|   // suffix, to be checked at the end.
 | |
|   std::string Suffix;
 | |
| 
 | |
|   if (FTy->getNumParams() + FTy->isVarArg() != Count - 1) {
 | |
|     CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Note that "arg#0" is the return type.
 | |
|   for (unsigned ArgNo = 0; ArgNo < Count; ++ArgNo) {
 | |
|     MVT::ValueType VT = va_arg(VA, MVT::ValueType);
 | |
| 
 | |
|     if (VT == MVT::isVoid && ArgNo > 0) {
 | |
|       if (!FTy->isVarArg())
 | |
|         CheckFailed("Intrinsic prototype has no '...'!", F);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     const Type *Ty;
 | |
|     if (ArgNo == 0)
 | |
|       Ty = FTy->getReturnType();
 | |
|     else
 | |
|       Ty = FTy->getParamType(ArgNo-1);
 | |
| 
 | |
|     unsigned NumElts = 0;
 | |
|     const Type *EltTy = Ty;
 | |
|     if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | |
|       EltTy = VTy->getElementType();
 | |
|       NumElts = VTy->getNumElements();
 | |
|     }
 | |
|     
 | |
|     if ((int)VT < 0) {
 | |
|       int Match = ~VT;
 | |
|       if (Match == 0) {
 | |
|         if (Ty != FTy->getReturnType()) {
 | |
|           CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
 | |
|                       "match return type.", F);
 | |
|           break;
 | |
|         }
 | |
|       } else {
 | |
|         if (Ty != FTy->getParamType(Match-1)) {
 | |
|           CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
 | |
|                       "match parameter %" + utostr(Match-1) + ".", F);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     } else if (VT == MVT::iAny) {
 | |
|       if (!EltTy->isInteger()) {
 | |
|         if (ArgNo == 0)
 | |
|           CheckFailed("Intrinsic result type is not "
 | |
|                       "an integer type.", F);
 | |
|         else
 | |
|           CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
 | |
|                       "an integer type.", F);
 | |
|         break;
 | |
|       }
 | |
|       unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
 | |
|       Suffix += ".";
 | |
|       if (EltTy != Ty)
 | |
|         Suffix += "v" + utostr(NumElts);
 | |
|       Suffix += "i" + utostr(GotBits);;
 | |
|       // Check some constraints on various intrinsics.
 | |
|       switch (ID) {
 | |
|         default: break; // Not everything needs to be checked.
 | |
|         case Intrinsic::bswap:
 | |
|           if (GotBits < 16 || GotBits % 16 != 0)
 | |
|             CheckFailed("Intrinsic requires even byte width argument", F);
 | |
|           break;
 | |
|       }
 | |
|     } else if (VT == MVT::fAny) {
 | |
|       if (!EltTy->isFloatingPoint()) {
 | |
|         if (ArgNo == 0)
 | |
|           CheckFailed("Intrinsic result type is not "
 | |
|                       "a floating-point type.", F);
 | |
|         else
 | |
|           CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
 | |
|                       "a floating-point type.", F);
 | |
|         break;
 | |
|       }
 | |
|       Suffix += ".";
 | |
|       if (EltTy != Ty)
 | |
|         Suffix += "v" + utostr(NumElts);
 | |
|       Suffix += MVT::getValueTypeString(MVT::getValueType(EltTy));
 | |
|     } else if (VT == MVT::iPTR) {
 | |
|       if (!isa<PointerType>(Ty)) {
 | |
|         if (ArgNo == 0)
 | |
|           CheckFailed("Intrinsic result type is not a "
 | |
|                       "pointer and a pointer is required.", F);
 | |
|         else
 | |
|           CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not a "
 | |
|                       "pointer and a pointer is required.", F);
 | |
|         break;
 | |
|       }
 | |
|     } else if (MVT::isVector(VT)) {
 | |
|       // If this is a vector argument, verify the number and type of elements.
 | |
|       if (MVT::getVectorElementType(VT) != MVT::getValueType(EltTy)) {
 | |
|         CheckFailed("Intrinsic prototype has incorrect vector element type!",
 | |
|                     F);
 | |
|         break;
 | |
|       }
 | |
|       if (MVT::getVectorNumElements(VT) != NumElts) {
 | |
|         CheckFailed("Intrinsic prototype has incorrect number of "
 | |
|                     "vector elements!",F);
 | |
|         break;
 | |
|       }
 | |
|     } else if (MVT::getTypeForValueType(VT) != EltTy) {
 | |
|       if (ArgNo == 0)
 | |
|         CheckFailed("Intrinsic prototype has incorrect result type!", F);
 | |
|       else
 | |
|         CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F);
 | |
|       break;
 | |
|     } else if (EltTy != Ty) {
 | |
|       if (ArgNo == 0)
 | |
|         CheckFailed("Intrinsic result type is vector "
 | |
|                     "and a scalar is required.", F);
 | |
|       else
 | |
|         CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is vector "
 | |
|                     "and a scalar is required.", F);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   va_end(VA);
 | |
| 
 | |
|   // If we computed a Suffix then the intrinsic is overloaded and we need to 
 | |
|   // make sure that the name of the function is correct. We add the suffix to
 | |
|   // the name of the intrinsic and compare against the given function name. If
 | |
|   // they are not the same, the function name is invalid. This ensures that
 | |
|   // overloading of intrinsics uses a sane and consistent naming convention.
 | |
|   if (!Suffix.empty()) {
 | |
|     std::string Name(Intrinsic::getName(ID));
 | |
|     if (Name + Suffix != F->getName())
 | |
|       CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
 | |
|                   F->getName().substr(Name.length()) + "'. It should be '" +
 | |
|                   Suffix + "'", F);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Implement the public interfaces to this file...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
 | |
|   return new Verifier(action);
 | |
| }
 | |
| 
 | |
| 
 | |
| // verifyFunction - Create
 | |
| bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
 | |
|   Function &F = const_cast<Function&>(f);
 | |
|   assert(!F.isDeclaration() && "Cannot verify external functions");
 | |
| 
 | |
|   FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
 | |
|   Verifier *V = new Verifier(action);
 | |
|   FPM.add(V);
 | |
|   FPM.run(F);
 | |
|   return V->Broken;
 | |
| }
 | |
| 
 | |
| /// verifyModule - Check a module for errors, printing messages on stderr.
 | |
| /// Return true if the module is corrupt.
 | |
| ///
 | |
| bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
 | |
|                         std::string *ErrorInfo) {
 | |
|   PassManager PM;
 | |
|   Verifier *V = new Verifier(action);
 | |
|   PM.add(V);
 | |
|   PM.run((Module&)M);
 | |
|   
 | |
|   if (ErrorInfo && V->Broken)
 | |
|     *ErrorInfo = V->msgs.str();
 | |
|   return V->Broken;
 | |
| }
 | |
| 
 | |
| // vim: sw=2
 |