4646 lines
		
	
	
		
			162 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4646 lines
		
	
	
		
			162 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Expr class and subclasses.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/APValue.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Attr.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/DependenceFlags.h"
 | 
						|
#include "clang/AST/EvaluatedExprVisitor.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/Mangle.h"
 | 
						|
#include "clang/AST/RecordLayout.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "clang/Basic/Builtins.h"
 | 
						|
#include "clang/Basic/CharInfo.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Lex/Lexer.h"
 | 
						|
#include "clang/Lex/LiteralSupport.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cstring>
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
const Expr *Expr::getBestDynamicClassTypeExpr() const {
 | 
						|
  const Expr *E = this;
 | 
						|
  while (true) {
 | 
						|
    E = E->ignoreParenBaseCasts();
 | 
						|
 | 
						|
    // Follow the RHS of a comma operator.
 | 
						|
    if (auto *BO = dyn_cast<BinaryOperator>(E)) {
 | 
						|
      if (BO->getOpcode() == BO_Comma) {
 | 
						|
        E = BO->getRHS();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Step into initializer for materialized temporaries.
 | 
						|
    if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
 | 
						|
      E = MTE->getSubExpr();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
const CXXRecordDecl *Expr::getBestDynamicClassType() const {
 | 
						|
  const Expr *E = getBestDynamicClassTypeExpr();
 | 
						|
  QualType DerivedType = E->getType();
 | 
						|
  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
 | 
						|
    DerivedType = PTy->getPointeeType();
 | 
						|
 | 
						|
  if (DerivedType->isDependentType())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const RecordType *Ty = DerivedType->castAs<RecordType>();
 | 
						|
  Decl *D = Ty->getDecl();
 | 
						|
  return cast<CXXRecordDecl>(D);
 | 
						|
}
 | 
						|
 | 
						|
const Expr *Expr::skipRValueSubobjectAdjustments(
 | 
						|
    SmallVectorImpl<const Expr *> &CommaLHSs,
 | 
						|
    SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
 | 
						|
  const Expr *E = this;
 | 
						|
  while (true) {
 | 
						|
    E = E->IgnoreParens();
 | 
						|
 | 
						|
    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
 | 
						|
      if ((CE->getCastKind() == CK_DerivedToBase ||
 | 
						|
           CE->getCastKind() == CK_UncheckedDerivedToBase) &&
 | 
						|
          E->getType()->isRecordType()) {
 | 
						|
        E = CE->getSubExpr();
 | 
						|
        auto *Derived =
 | 
						|
            cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
 | 
						|
        Adjustments.push_back(SubobjectAdjustment(CE, Derived));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (CE->getCastKind() == CK_NoOp) {
 | 
						|
        E = CE->getSubExpr();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
 | 
						|
      if (!ME->isArrow()) {
 | 
						|
        assert(ME->getBase()->getType()->isRecordType());
 | 
						|
        if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
 | 
						|
          if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
 | 
						|
            E = ME->getBase();
 | 
						|
            Adjustments.push_back(SubobjectAdjustment(Field));
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | 
						|
      if (BO->getOpcode() == BO_PtrMemD) {
 | 
						|
        assert(BO->getRHS()->isRValue());
 | 
						|
        E = BO->getLHS();
 | 
						|
        const MemberPointerType *MPT =
 | 
						|
          BO->getRHS()->getType()->getAs<MemberPointerType>();
 | 
						|
        Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
 | 
						|
        continue;
 | 
						|
      } else if (BO->getOpcode() == BO_Comma) {
 | 
						|
        CommaLHSs.push_back(BO->getLHS());
 | 
						|
        E = BO->getRHS();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Nothing changed.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
 | 
						|
  const Expr *E = IgnoreParens();
 | 
						|
 | 
						|
  // If this value has _Bool type, it is obvious 0/1.
 | 
						|
  if (E->getType()->isBooleanType()) return true;
 | 
						|
  // If this is a non-scalar-integer type, we don't care enough to try.
 | 
						|
  if (!E->getType()->isIntegralOrEnumerationType()) return false;
 | 
						|
 | 
						|
  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | 
						|
    switch (UO->getOpcode()) {
 | 
						|
    case UO_Plus:
 | 
						|
      return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
 | 
						|
    case UO_LNot:
 | 
						|
      return true;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Only look through implicit casts.  If the user writes
 | 
						|
  // '(int) (a && b)' treat it as an arbitrary int.
 | 
						|
  // FIXME: Should we look through any cast expression in !Semantic mode?
 | 
						|
  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
 | 
						|
    return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
 | 
						|
 | 
						|
  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | 
						|
    switch (BO->getOpcode()) {
 | 
						|
    default: return false;
 | 
						|
    case BO_LT:   // Relational operators.
 | 
						|
    case BO_GT:
 | 
						|
    case BO_LE:
 | 
						|
    case BO_GE:
 | 
						|
    case BO_EQ:   // Equality operators.
 | 
						|
    case BO_NE:
 | 
						|
    case BO_LAnd: // AND operator.
 | 
						|
    case BO_LOr:  // Logical OR operator.
 | 
						|
      return true;
 | 
						|
 | 
						|
    case BO_And:  // Bitwise AND operator.
 | 
						|
    case BO_Xor:  // Bitwise XOR operator.
 | 
						|
    case BO_Or:   // Bitwise OR operator.
 | 
						|
      // Handle things like (x==2)|(y==12).
 | 
						|
      return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
 | 
						|
             BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
 | 
						|
 | 
						|
    case BO_Comma:
 | 
						|
    case BO_Assign:
 | 
						|
      return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
 | 
						|
    return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
 | 
						|
           CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
 | 
						|
 | 
						|
  if (isa<ObjCBoolLiteralExpr>(E))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
 | 
						|
    return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
 | 
						|
 | 
						|
  if (const FieldDecl *FD = E->getSourceBitField())
 | 
						|
    if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
 | 
						|
        !FD->getBitWidth()->isValueDependent() &&
 | 
						|
        FD->getBitWidthValue(FD->getASTContext()) == 1)
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Amusing macro metaprogramming hack: check whether a class provides
 | 
						|
// a more specific implementation of getExprLoc().
 | 
						|
//
 | 
						|
// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
 | 
						|
namespace {
 | 
						|
  /// This implementation is used when a class provides a custom
 | 
						|
  /// implementation of getExprLoc.
 | 
						|
  template <class E, class T>
 | 
						|
  SourceLocation getExprLocImpl(const Expr *expr,
 | 
						|
                                SourceLocation (T::*v)() const) {
 | 
						|
    return static_cast<const E*>(expr)->getExprLoc();
 | 
						|
  }
 | 
						|
 | 
						|
  /// This implementation is used when a class doesn't provide
 | 
						|
  /// a custom implementation of getExprLoc.  Overload resolution
 | 
						|
  /// should pick it over the implementation above because it's
 | 
						|
  /// more specialized according to function template partial ordering.
 | 
						|
  template <class E>
 | 
						|
  SourceLocation getExprLocImpl(const Expr *expr,
 | 
						|
                                SourceLocation (Expr::*v)() const) {
 | 
						|
    return static_cast<const E *>(expr)->getBeginLoc();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation Expr::getExprLoc() const {
 | 
						|
  switch (getStmtClass()) {
 | 
						|
  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
 | 
						|
#define ABSTRACT_STMT(type)
 | 
						|
#define STMT(type, base) \
 | 
						|
  case Stmt::type##Class: break;
 | 
						|
#define EXPR(type, base) \
 | 
						|
  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
 | 
						|
#include "clang/AST/StmtNodes.inc"
 | 
						|
  }
 | 
						|
  llvm_unreachable("unknown expression kind");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Primary Expressions.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
 | 
						|
  assert((Kind == ConstantExpr::RSK_APValue ||
 | 
						|
          Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
 | 
						|
         "Invalid StorageKind Value");
 | 
						|
}
 | 
						|
 | 
						|
ConstantExpr::ResultStorageKind
 | 
						|
ConstantExpr::getStorageKind(const APValue &Value) {
 | 
						|
  switch (Value.getKind()) {
 | 
						|
  case APValue::None:
 | 
						|
  case APValue::Indeterminate:
 | 
						|
    return ConstantExpr::RSK_None;
 | 
						|
  case APValue::Int:
 | 
						|
    if (!Value.getInt().needsCleanup())
 | 
						|
      return ConstantExpr::RSK_Int64;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  default:
 | 
						|
    return ConstantExpr::RSK_APValue;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ConstantExpr::ResultStorageKind
 | 
						|
ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
 | 
						|
  if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
 | 
						|
    return ConstantExpr::RSK_Int64;
 | 
						|
  return ConstantExpr::RSK_APValue;
 | 
						|
}
 | 
						|
 | 
						|
void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) {
 | 
						|
  ConstantExprBits.ResultKind = StorageKind;
 | 
						|
  ConstantExprBits.APValueKind = APValue::None;
 | 
						|
  ConstantExprBits.HasCleanup = false;
 | 
						|
  if (StorageKind == ConstantExpr::RSK_APValue)
 | 
						|
    ::new (getTrailingObjects<APValue>()) APValue();
 | 
						|
}
 | 
						|
 | 
						|
ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind)
 | 
						|
    : FullExpr(ConstantExprClass, subexpr) {
 | 
						|
  DefaultInit(StorageKind);
 | 
						|
}
 | 
						|
 | 
						|
ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
 | 
						|
                                   ResultStorageKind StorageKind,
 | 
						|
                                   bool IsImmediateInvocation) {
 | 
						|
  assert(!isa<ConstantExpr>(E));
 | 
						|
  AssertResultStorageKind(StorageKind);
 | 
						|
  unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
 | 
						|
      StorageKind == ConstantExpr::RSK_APValue,
 | 
						|
      StorageKind == ConstantExpr::RSK_Int64);
 | 
						|
  void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
 | 
						|
  ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind);
 | 
						|
  Self->ConstantExprBits.IsImmediateInvocation =
 | 
						|
      IsImmediateInvocation;
 | 
						|
  return Self;
 | 
						|
}
 | 
						|
 | 
						|
ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
 | 
						|
                                   const APValue &Result) {
 | 
						|
  ResultStorageKind StorageKind = getStorageKind(Result);
 | 
						|
  ConstantExpr *Self = Create(Context, E, StorageKind);
 | 
						|
  Self->SetResult(Result, Context);
 | 
						|
  return Self;
 | 
						|
}
 | 
						|
 | 
						|
ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty)
 | 
						|
    : FullExpr(ConstantExprClass, Empty) {
 | 
						|
  DefaultInit(StorageKind);
 | 
						|
}
 | 
						|
 | 
						|
ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
 | 
						|
                                        ResultStorageKind StorageKind,
 | 
						|
                                        EmptyShell Empty) {
 | 
						|
  AssertResultStorageKind(StorageKind);
 | 
						|
  unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
 | 
						|
      StorageKind == ConstantExpr::RSK_APValue,
 | 
						|
      StorageKind == ConstantExpr::RSK_Int64);
 | 
						|
  void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
 | 
						|
  ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty);
 | 
						|
  return Self;
 | 
						|
}
 | 
						|
 | 
						|
void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
 | 
						|
  assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
 | 
						|
         "Invalid storage for this value kind");
 | 
						|
  ConstantExprBits.APValueKind = Value.getKind();
 | 
						|
  switch (ConstantExprBits.ResultKind) {
 | 
						|
  case RSK_None:
 | 
						|
    return;
 | 
						|
  case RSK_Int64:
 | 
						|
    Int64Result() = *Value.getInt().getRawData();
 | 
						|
    ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
 | 
						|
    ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
 | 
						|
    return;
 | 
						|
  case RSK_APValue:
 | 
						|
    if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
 | 
						|
      ConstantExprBits.HasCleanup = true;
 | 
						|
      Context.addDestruction(&APValueResult());
 | 
						|
    }
 | 
						|
    APValueResult() = std::move(Value);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid ResultKind Bits");
 | 
						|
}
 | 
						|
 | 
						|
llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
 | 
						|
  switch (ConstantExprBits.ResultKind) {
 | 
						|
  case ConstantExpr::RSK_APValue:
 | 
						|
    return APValueResult().getInt();
 | 
						|
  case ConstantExpr::RSK_Int64:
 | 
						|
    return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
 | 
						|
                        ConstantExprBits.IsUnsigned);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("invalid Accessor");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APValue ConstantExpr::getAPValueResult() const {
 | 
						|
  switch (ConstantExprBits.ResultKind) {
 | 
						|
  case ConstantExpr::RSK_APValue:
 | 
						|
    return APValueResult();
 | 
						|
  case ConstantExpr::RSK_Int64:
 | 
						|
    return APValue(
 | 
						|
        llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
 | 
						|
                     ConstantExprBits.IsUnsigned));
 | 
						|
  case ConstantExpr::RSK_None:
 | 
						|
    return APValue();
 | 
						|
  }
 | 
						|
  llvm_unreachable("invalid ResultKind");
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the type-, value-, and instantiation-dependence of a
 | 
						|
/// declaration reference
 | 
						|
/// based on the declaration being referenced.
 | 
						|
static ExprDependence computeDeclRefDependence(const ASTContext &Ctx,
 | 
						|
                                               NamedDecl *D, QualType T) {
 | 
						|
  auto R = ExprDependence::None;
 | 
						|
  if (D->isParameterPack())
 | 
						|
    R |= ExprDependence::UnexpandedPack;
 | 
						|
 | 
						|
  // (TD) C++ [temp.dep.expr]p3:
 | 
						|
  //   An id-expression is type-dependent if it contains:
 | 
						|
  //
 | 
						|
  // and
 | 
						|
  //
 | 
						|
  // (VD) C++ [temp.dep.constexpr]p2:
 | 
						|
  //  An identifier is value-dependent if it is:
 | 
						|
 | 
						|
  //  (TD)  - an identifier that was declared with dependent type
 | 
						|
  //  (VD)  - a name declared with a dependent type,
 | 
						|
  if (T->isDependentType())
 | 
						|
    return R | ExprDependence::TypeValueInstantiation;
 | 
						|
  else if (T->isInstantiationDependentType())
 | 
						|
    R |= ExprDependence::Instantiation;
 | 
						|
 | 
						|
  //  (TD)  - a conversion-function-id that specifies a dependent type
 | 
						|
  if (D->getDeclName().getNameKind()
 | 
						|
                                == DeclarationName::CXXConversionFunctionName) {
 | 
						|
    QualType T = D->getDeclName().getCXXNameType();
 | 
						|
    if (T->isDependentType())
 | 
						|
      return R | ExprDependence::TypeValueInstantiation;
 | 
						|
 | 
						|
    if (T->isInstantiationDependentType())
 | 
						|
      R |= ExprDependence::Instantiation;
 | 
						|
  }
 | 
						|
 | 
						|
  //  (VD)  - the name of a non-type template parameter,
 | 
						|
  if (isa<NonTypeTemplateParmDecl>(D))
 | 
						|
    return R | ExprDependence::ValueInstantiation;
 | 
						|
 | 
						|
  //  (VD) - a constant with integral or enumeration type and is
 | 
						|
  //         initialized with an expression that is value-dependent.
 | 
						|
  //  (VD) - a constant with literal type and is initialized with an
 | 
						|
  //         expression that is value-dependent [C++11].
 | 
						|
  //  (VD) - FIXME: Missing from the standard:
 | 
						|
  //       -  an entity with reference type and is initialized with an
 | 
						|
  //          expression that is value-dependent [C++11]
 | 
						|
  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
 | 
						|
    if ((Ctx.getLangOpts().CPlusPlus11 ?
 | 
						|
           Var->getType()->isLiteralType(Ctx) :
 | 
						|
           Var->getType()->isIntegralOrEnumerationType()) &&
 | 
						|
        (Var->getType().isConstQualified() ||
 | 
						|
         Var->getType()->isReferenceType())) {
 | 
						|
      if (const Expr *Init = Var->getAnyInitializer())
 | 
						|
        if (Init->isValueDependent()) {
 | 
						|
          R |= ExprDependence::ValueInstantiation;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // (VD) - FIXME: Missing from the standard:
 | 
						|
    //      -  a member function or a static data member of the current
 | 
						|
    //         instantiation
 | 
						|
    if (Var->isStaticDataMember() &&
 | 
						|
        Var->getDeclContext()->isDependentContext()) {
 | 
						|
      R |= ExprDependence::ValueInstantiation;
 | 
						|
      TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
 | 
						|
      if (TInfo->getType()->isIncompleteArrayType())
 | 
						|
        R |= ExprDependence::Type;
 | 
						|
    }
 | 
						|
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  // (VD) - FIXME: Missing from the standard:
 | 
						|
  //      -  a member function or a static data member of the current
 | 
						|
  //         instantiation
 | 
						|
  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext())
 | 
						|
    R |= ExprDependence::ValueInstantiation;
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
 | 
						|
                         bool RefersToEnclosingVariableOrCapture, QualType T,
 | 
						|
                         ExprValueKind VK, SourceLocation L,
 | 
						|
                         const DeclarationNameLoc &LocInfo,
 | 
						|
                         NonOdrUseReason NOUR)
 | 
						|
    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
 | 
						|
      D(D), DNLoc(LocInfo) {
 | 
						|
  DeclRefExprBits.HasQualifier = false;
 | 
						|
  DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
 | 
						|
  DeclRefExprBits.HasFoundDecl = false;
 | 
						|
  DeclRefExprBits.HadMultipleCandidates = false;
 | 
						|
  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
 | 
						|
      RefersToEnclosingVariableOrCapture;
 | 
						|
  DeclRefExprBits.NonOdrUseReason = NOUR;
 | 
						|
  DeclRefExprBits.Loc = L;
 | 
						|
  addDependence(computeDeclRefDependence(Ctx, getDecl(), getType()));
 | 
						|
}
 | 
						|
 | 
						|
DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
 | 
						|
                         NestedNameSpecifierLoc QualifierLoc,
 | 
						|
                         SourceLocation TemplateKWLoc, ValueDecl *D,
 | 
						|
                         bool RefersToEnclosingVariableOrCapture,
 | 
						|
                         const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
 | 
						|
                         const TemplateArgumentListInfo *TemplateArgs,
 | 
						|
                         QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
 | 
						|
    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
 | 
						|
      D(D), DNLoc(NameInfo.getInfo()) {
 | 
						|
  DeclRefExprBits.Loc = NameInfo.getLoc();
 | 
						|
  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
 | 
						|
  if (QualifierLoc) {
 | 
						|
    new (getTrailingObjects<NestedNameSpecifierLoc>())
 | 
						|
        NestedNameSpecifierLoc(QualifierLoc);
 | 
						|
    auto *NNS = QualifierLoc.getNestedNameSpecifier();
 | 
						|
    if (NNS->isInstantiationDependent())
 | 
						|
      addDependence(ExprDependence::Instantiation);
 | 
						|
    if (NNS->containsUnexpandedParameterPack())
 | 
						|
      addDependence(ExprDependence::UnexpandedPack);
 | 
						|
  }
 | 
						|
  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
 | 
						|
  if (FoundD)
 | 
						|
    *getTrailingObjects<NamedDecl *>() = FoundD;
 | 
						|
  DeclRefExprBits.HasTemplateKWAndArgsInfo
 | 
						|
    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
 | 
						|
  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
 | 
						|
      RefersToEnclosingVariableOrCapture;
 | 
						|
  DeclRefExprBits.NonOdrUseReason = NOUR;
 | 
						|
  if (TemplateArgs) {
 | 
						|
    auto Deps = TemplateArgumentDependence::None;
 | 
						|
    getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
 | 
						|
        TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
 | 
						|
        Deps);
 | 
						|
    assert(!(Deps & TemplateArgumentDependence::Dependent) &&
 | 
						|
           "built a DeclRefExpr with dependent template args");
 | 
						|
    addDependence(toExprDependence(Deps));
 | 
						|
  } else if (TemplateKWLoc.isValid()) {
 | 
						|
    getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
 | 
						|
        TemplateKWLoc);
 | 
						|
  }
 | 
						|
  DeclRefExprBits.HadMultipleCandidates = 0;
 | 
						|
  addDependence(computeDeclRefDependence(Ctx, getDecl(), getType()));
 | 
						|
}
 | 
						|
 | 
						|
DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
 | 
						|
                                 NestedNameSpecifierLoc QualifierLoc,
 | 
						|
                                 SourceLocation TemplateKWLoc, ValueDecl *D,
 | 
						|
                                 bool RefersToEnclosingVariableOrCapture,
 | 
						|
                                 SourceLocation NameLoc, QualType T,
 | 
						|
                                 ExprValueKind VK, NamedDecl *FoundD,
 | 
						|
                                 const TemplateArgumentListInfo *TemplateArgs,
 | 
						|
                                 NonOdrUseReason NOUR) {
 | 
						|
  return Create(Context, QualifierLoc, TemplateKWLoc, D,
 | 
						|
                RefersToEnclosingVariableOrCapture,
 | 
						|
                DeclarationNameInfo(D->getDeclName(), NameLoc),
 | 
						|
                T, VK, FoundD, TemplateArgs, NOUR);
 | 
						|
}
 | 
						|
 | 
						|
DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
 | 
						|
                                 NestedNameSpecifierLoc QualifierLoc,
 | 
						|
                                 SourceLocation TemplateKWLoc, ValueDecl *D,
 | 
						|
                                 bool RefersToEnclosingVariableOrCapture,
 | 
						|
                                 const DeclarationNameInfo &NameInfo,
 | 
						|
                                 QualType T, ExprValueKind VK,
 | 
						|
                                 NamedDecl *FoundD,
 | 
						|
                                 const TemplateArgumentListInfo *TemplateArgs,
 | 
						|
                                 NonOdrUseReason NOUR) {
 | 
						|
  // Filter out cases where the found Decl is the same as the value refenenced.
 | 
						|
  if (D == FoundD)
 | 
						|
    FoundD = nullptr;
 | 
						|
 | 
						|
  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
 | 
						|
  std::size_t Size =
 | 
						|
      totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
 | 
						|
                       ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
 | 
						|
          QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
 | 
						|
          HasTemplateKWAndArgsInfo ? 1 : 0,
 | 
						|
          TemplateArgs ? TemplateArgs->size() : 0);
 | 
						|
 | 
						|
  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
 | 
						|
  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
 | 
						|
                               RefersToEnclosingVariableOrCapture, NameInfo,
 | 
						|
                               FoundD, TemplateArgs, T, VK, NOUR);
 | 
						|
}
 | 
						|
 | 
						|
DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
 | 
						|
                                      bool HasQualifier,
 | 
						|
                                      bool HasFoundDecl,
 | 
						|
                                      bool HasTemplateKWAndArgsInfo,
 | 
						|
                                      unsigned NumTemplateArgs) {
 | 
						|
  assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
 | 
						|
  std::size_t Size =
 | 
						|
      totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
 | 
						|
                       ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
 | 
						|
          HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
 | 
						|
          NumTemplateArgs);
 | 
						|
  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
 | 
						|
  return new (Mem) DeclRefExpr(EmptyShell());
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation DeclRefExpr::getBeginLoc() const {
 | 
						|
  if (hasQualifier())
 | 
						|
    return getQualifierLoc().getBeginLoc();
 | 
						|
  return getNameInfo().getBeginLoc();
 | 
						|
}
 | 
						|
SourceLocation DeclRefExpr::getEndLoc() const {
 | 
						|
  if (hasExplicitTemplateArgs())
 | 
						|
    return getRAngleLoc();
 | 
						|
  return getNameInfo().getEndLoc();
 | 
						|
}
 | 
						|
 | 
						|
PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
 | 
						|
                               StringLiteral *SL)
 | 
						|
    : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
 | 
						|
           FNTy->isDependentType(), FNTy->isDependentType(),
 | 
						|
           FNTy->isInstantiationDependentType(),
 | 
						|
           /*ContainsUnexpandedParameterPack=*/false) {
 | 
						|
  PredefinedExprBits.Kind = IK;
 | 
						|
  assert((getIdentKind() == IK) &&
 | 
						|
         "IdentKind do not fit in PredefinedExprBitfields!");
 | 
						|
  bool HasFunctionName = SL != nullptr;
 | 
						|
  PredefinedExprBits.HasFunctionName = HasFunctionName;
 | 
						|
  PredefinedExprBits.Loc = L;
 | 
						|
  if (HasFunctionName)
 | 
						|
    setFunctionName(SL);
 | 
						|
}
 | 
						|
 | 
						|
PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
 | 
						|
    : Expr(PredefinedExprClass, Empty) {
 | 
						|
  PredefinedExprBits.HasFunctionName = HasFunctionName;
 | 
						|
}
 | 
						|
 | 
						|
PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
 | 
						|
                                       QualType FNTy, IdentKind IK,
 | 
						|
                                       StringLiteral *SL) {
 | 
						|
  bool HasFunctionName = SL != nullptr;
 | 
						|
  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
 | 
						|
                           alignof(PredefinedExpr));
 | 
						|
  return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
 | 
						|
}
 | 
						|
 | 
						|
PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
 | 
						|
                                            bool HasFunctionName) {
 | 
						|
  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
 | 
						|
                           alignof(PredefinedExpr));
 | 
						|
  return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
 | 
						|
}
 | 
						|
 | 
						|
StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
 | 
						|
  switch (IK) {
 | 
						|
  case Func:
 | 
						|
    return "__func__";
 | 
						|
  case Function:
 | 
						|
    return "__FUNCTION__";
 | 
						|
  case FuncDName:
 | 
						|
    return "__FUNCDNAME__";
 | 
						|
  case LFunction:
 | 
						|
    return "L__FUNCTION__";
 | 
						|
  case PrettyFunction:
 | 
						|
    return "__PRETTY_FUNCTION__";
 | 
						|
  case FuncSig:
 | 
						|
    return "__FUNCSIG__";
 | 
						|
  case LFuncSig:
 | 
						|
    return "L__FUNCSIG__";
 | 
						|
  case PrettyFunctionNoVirtual:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unknown ident kind for PredefinedExpr");
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Maybe this should use DeclPrinter with a special "print predefined
 | 
						|
// expr" policy instead.
 | 
						|
std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
 | 
						|
  ASTContext &Context = CurrentDecl->getASTContext();
 | 
						|
 | 
						|
  if (IK == PredefinedExpr::FuncDName) {
 | 
						|
    if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
 | 
						|
      std::unique_ptr<MangleContext> MC;
 | 
						|
      MC.reset(Context.createMangleContext());
 | 
						|
 | 
						|
      if (MC->shouldMangleDeclName(ND)) {
 | 
						|
        SmallString<256> Buffer;
 | 
						|
        llvm::raw_svector_ostream Out(Buffer);
 | 
						|
        GlobalDecl GD;
 | 
						|
        if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
 | 
						|
          GD = GlobalDecl(CD, Ctor_Base);
 | 
						|
        else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
 | 
						|
          GD = GlobalDecl(DD, Dtor_Base);
 | 
						|
        else if (ND->hasAttr<CUDAGlobalAttr>())
 | 
						|
          GD = GlobalDecl::getDefaultKernelReference(cast<FunctionDecl>(ND));
 | 
						|
        else
 | 
						|
          GD = GlobalDecl(ND);
 | 
						|
        MC->mangleName(GD, Out);
 | 
						|
 | 
						|
        if (!Buffer.empty() && Buffer.front() == '\01')
 | 
						|
          return std::string(Buffer.substr(1));
 | 
						|
        return std::string(Buffer.str());
 | 
						|
      } else
 | 
						|
        return std::string(ND->getIdentifier()->getName());
 | 
						|
    }
 | 
						|
    return "";
 | 
						|
  }
 | 
						|
  if (isa<BlockDecl>(CurrentDecl)) {
 | 
						|
    // For blocks we only emit something if it is enclosed in a function
 | 
						|
    // For top-level block we'd like to include the name of variable, but we
 | 
						|
    // don't have it at this point.
 | 
						|
    auto DC = CurrentDecl->getDeclContext();
 | 
						|
    if (DC->isFileContext())
 | 
						|
      return "";
 | 
						|
 | 
						|
    SmallString<256> Buffer;
 | 
						|
    llvm::raw_svector_ostream Out(Buffer);
 | 
						|
    if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
 | 
						|
      // For nested blocks, propagate up to the parent.
 | 
						|
      Out << ComputeName(IK, DCBlock);
 | 
						|
    else if (auto *DCDecl = dyn_cast<Decl>(DC))
 | 
						|
      Out << ComputeName(IK, DCDecl) << "_block_invoke";
 | 
						|
    return std::string(Out.str());
 | 
						|
  }
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
 | 
						|
    if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
 | 
						|
        IK != FuncSig && IK != LFuncSig)
 | 
						|
      return FD->getNameAsString();
 | 
						|
 | 
						|
    SmallString<256> Name;
 | 
						|
    llvm::raw_svector_ostream Out(Name);
 | 
						|
 | 
						|
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | 
						|
      if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
 | 
						|
        Out << "virtual ";
 | 
						|
      if (MD->isStatic())
 | 
						|
        Out << "static ";
 | 
						|
    }
 | 
						|
 | 
						|
    PrintingPolicy Policy(Context.getLangOpts());
 | 
						|
    std::string Proto;
 | 
						|
    llvm::raw_string_ostream POut(Proto);
 | 
						|
 | 
						|
    const FunctionDecl *Decl = FD;
 | 
						|
    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
 | 
						|
      Decl = Pattern;
 | 
						|
    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
 | 
						|
    const FunctionProtoType *FT = nullptr;
 | 
						|
    if (FD->hasWrittenPrototype())
 | 
						|
      FT = dyn_cast<FunctionProtoType>(AFT);
 | 
						|
 | 
						|
    if (IK == FuncSig || IK == LFuncSig) {
 | 
						|
      switch (AFT->getCallConv()) {
 | 
						|
      case CC_C: POut << "__cdecl "; break;
 | 
						|
      case CC_X86StdCall: POut << "__stdcall "; break;
 | 
						|
      case CC_X86FastCall: POut << "__fastcall "; break;
 | 
						|
      case CC_X86ThisCall: POut << "__thiscall "; break;
 | 
						|
      case CC_X86VectorCall: POut << "__vectorcall "; break;
 | 
						|
      case CC_X86RegCall: POut << "__regcall "; break;
 | 
						|
      // Only bother printing the conventions that MSVC knows about.
 | 
						|
      default: break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    FD->printQualifiedName(POut, Policy);
 | 
						|
 | 
						|
    POut << "(";
 | 
						|
    if (FT) {
 | 
						|
      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
 | 
						|
        if (i) POut << ", ";
 | 
						|
        POut << Decl->getParamDecl(i)->getType().stream(Policy);
 | 
						|
      }
 | 
						|
 | 
						|
      if (FT->isVariadic()) {
 | 
						|
        if (FD->getNumParams()) POut << ", ";
 | 
						|
        POut << "...";
 | 
						|
      } else if ((IK == FuncSig || IK == LFuncSig ||
 | 
						|
                  !Context.getLangOpts().CPlusPlus) &&
 | 
						|
                 !Decl->getNumParams()) {
 | 
						|
        POut << "void";
 | 
						|
      }
 | 
						|
    }
 | 
						|
    POut << ")";
 | 
						|
 | 
						|
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | 
						|
      assert(FT && "We must have a written prototype in this case.");
 | 
						|
      if (FT->isConst())
 | 
						|
        POut << " const";
 | 
						|
      if (FT->isVolatile())
 | 
						|
        POut << " volatile";
 | 
						|
      RefQualifierKind Ref = MD->getRefQualifier();
 | 
						|
      if (Ref == RQ_LValue)
 | 
						|
        POut << " &";
 | 
						|
      else if (Ref == RQ_RValue)
 | 
						|
        POut << " &&";
 | 
						|
    }
 | 
						|
 | 
						|
    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
 | 
						|
    SpecsTy Specs;
 | 
						|
    const DeclContext *Ctx = FD->getDeclContext();
 | 
						|
    while (Ctx && isa<NamedDecl>(Ctx)) {
 | 
						|
      const ClassTemplateSpecializationDecl *Spec
 | 
						|
                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
 | 
						|
      if (Spec && !Spec->isExplicitSpecialization())
 | 
						|
        Specs.push_back(Spec);
 | 
						|
      Ctx = Ctx->getParent();
 | 
						|
    }
 | 
						|
 | 
						|
    std::string TemplateParams;
 | 
						|
    llvm::raw_string_ostream TOut(TemplateParams);
 | 
						|
    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
 | 
						|
         I != E; ++I) {
 | 
						|
      const TemplateParameterList *Params
 | 
						|
                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
 | 
						|
      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
 | 
						|
      assert(Params->size() == Args.size());
 | 
						|
      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
 | 
						|
        StringRef Param = Params->getParam(i)->getName();
 | 
						|
        if (Param.empty()) continue;
 | 
						|
        TOut << Param << " = ";
 | 
						|
        Args.get(i).print(Policy, TOut);
 | 
						|
        TOut << ", ";
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    FunctionTemplateSpecializationInfo *FSI
 | 
						|
                                          = FD->getTemplateSpecializationInfo();
 | 
						|
    if (FSI && !FSI->isExplicitSpecialization()) {
 | 
						|
      const TemplateParameterList* Params
 | 
						|
                                  = FSI->getTemplate()->getTemplateParameters();
 | 
						|
      const TemplateArgumentList* Args = FSI->TemplateArguments;
 | 
						|
      assert(Params->size() == Args->size());
 | 
						|
      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
 | 
						|
        StringRef Param = Params->getParam(i)->getName();
 | 
						|
        if (Param.empty()) continue;
 | 
						|
        TOut << Param << " = ";
 | 
						|
        Args->get(i).print(Policy, TOut);
 | 
						|
        TOut << ", ";
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    TOut.flush();
 | 
						|
    if (!TemplateParams.empty()) {
 | 
						|
      // remove the trailing comma and space
 | 
						|
      TemplateParams.resize(TemplateParams.size() - 2);
 | 
						|
      POut << " [" << TemplateParams << "]";
 | 
						|
    }
 | 
						|
 | 
						|
    POut.flush();
 | 
						|
 | 
						|
    // Print "auto" for all deduced return types. This includes C++1y return
 | 
						|
    // type deduction and lambdas. For trailing return types resolve the
 | 
						|
    // decltype expression. Otherwise print the real type when this is
 | 
						|
    // not a constructor or destructor.
 | 
						|
    if (isa<CXXMethodDecl>(FD) &&
 | 
						|
         cast<CXXMethodDecl>(FD)->getParent()->isLambda())
 | 
						|
      Proto = "auto " + Proto;
 | 
						|
    else if (FT && FT->getReturnType()->getAs<DecltypeType>())
 | 
						|
      FT->getReturnType()
 | 
						|
          ->getAs<DecltypeType>()
 | 
						|
          ->getUnderlyingType()
 | 
						|
          .getAsStringInternal(Proto, Policy);
 | 
						|
    else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
 | 
						|
      AFT->getReturnType().getAsStringInternal(Proto, Policy);
 | 
						|
 | 
						|
    Out << Proto;
 | 
						|
 | 
						|
    return std::string(Name);
 | 
						|
  }
 | 
						|
  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
 | 
						|
    for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
 | 
						|
      // Skip to its enclosing function or method, but not its enclosing
 | 
						|
      // CapturedDecl.
 | 
						|
      if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
 | 
						|
        const Decl *D = Decl::castFromDeclContext(DC);
 | 
						|
        return ComputeName(IK, D);
 | 
						|
      }
 | 
						|
    llvm_unreachable("CapturedDecl not inside a function or method");
 | 
						|
  }
 | 
						|
  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
 | 
						|
    SmallString<256> Name;
 | 
						|
    llvm::raw_svector_ostream Out(Name);
 | 
						|
    Out << (MD->isInstanceMethod() ? '-' : '+');
 | 
						|
    Out << '[';
 | 
						|
 | 
						|
    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
 | 
						|
    // a null check to avoid a crash.
 | 
						|
    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
 | 
						|
      Out << *ID;
 | 
						|
 | 
						|
    if (const ObjCCategoryImplDecl *CID =
 | 
						|
        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
 | 
						|
      Out << '(' << *CID << ')';
 | 
						|
 | 
						|
    Out <<  ' ';
 | 
						|
    MD->getSelector().print(Out);
 | 
						|
    Out <<  ']';
 | 
						|
 | 
						|
    return std::string(Name);
 | 
						|
  }
 | 
						|
  if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
 | 
						|
    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
 | 
						|
    return "top level";
 | 
						|
  }
 | 
						|
  return "";
 | 
						|
}
 | 
						|
 | 
						|
void APNumericStorage::setIntValue(const ASTContext &C,
 | 
						|
                                   const llvm::APInt &Val) {
 | 
						|
  if (hasAllocation())
 | 
						|
    C.Deallocate(pVal);
 | 
						|
 | 
						|
  BitWidth = Val.getBitWidth();
 | 
						|
  unsigned NumWords = Val.getNumWords();
 | 
						|
  const uint64_t* Words = Val.getRawData();
 | 
						|
  if (NumWords > 1) {
 | 
						|
    pVal = new (C) uint64_t[NumWords];
 | 
						|
    std::copy(Words, Words + NumWords, pVal);
 | 
						|
  } else if (NumWords == 1)
 | 
						|
    VAL = Words[0];
 | 
						|
  else
 | 
						|
    VAL = 0;
 | 
						|
}
 | 
						|
 | 
						|
IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
 | 
						|
                               QualType type, SourceLocation l)
 | 
						|
  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
 | 
						|
         false, false),
 | 
						|
    Loc(l) {
 | 
						|
  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
 | 
						|
  assert(V.getBitWidth() == C.getIntWidth(type) &&
 | 
						|
         "Integer type is not the correct size for constant.");
 | 
						|
  setValue(C, V);
 | 
						|
}
 | 
						|
 | 
						|
IntegerLiteral *
 | 
						|
IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
 | 
						|
                       QualType type, SourceLocation l) {
 | 
						|
  return new (C) IntegerLiteral(C, V, type, l);
 | 
						|
}
 | 
						|
 | 
						|
IntegerLiteral *
 | 
						|
IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
 | 
						|
  return new (C) IntegerLiteral(Empty);
 | 
						|
}
 | 
						|
 | 
						|
FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
 | 
						|
                                     QualType type, SourceLocation l,
 | 
						|
                                     unsigned Scale)
 | 
						|
    : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
 | 
						|
           false, false),
 | 
						|
      Loc(l), Scale(Scale) {
 | 
						|
  assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
 | 
						|
  assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
 | 
						|
         "Fixed point type is not the correct size for constant.");
 | 
						|
  setValue(C, V);
 | 
						|
}
 | 
						|
 | 
						|
FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
 | 
						|
                                                       const llvm::APInt &V,
 | 
						|
                                                       QualType type,
 | 
						|
                                                       SourceLocation l,
 | 
						|
                                                       unsigned Scale) {
 | 
						|
  return new (C) FixedPointLiteral(C, V, type, l, Scale);
 | 
						|
}
 | 
						|
 | 
						|
std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
 | 
						|
  // Currently the longest decimal number that can be printed is the max for an
 | 
						|
  // unsigned long _Accum: 4294967295.99999999976716935634613037109375
 | 
						|
  // which is 43 characters.
 | 
						|
  SmallString<64> S;
 | 
						|
  FixedPointValueToString(
 | 
						|
      S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
 | 
						|
  return std::string(S.str());
 | 
						|
}
 | 
						|
 | 
						|
FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
 | 
						|
                                 bool isexact, QualType Type, SourceLocation L)
 | 
						|
  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
 | 
						|
         false, false), Loc(L) {
 | 
						|
  setSemantics(V.getSemantics());
 | 
						|
  FloatingLiteralBits.IsExact = isexact;
 | 
						|
  setValue(C, V);
 | 
						|
}
 | 
						|
 | 
						|
FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
 | 
						|
  : Expr(FloatingLiteralClass, Empty) {
 | 
						|
  setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
 | 
						|
  FloatingLiteralBits.IsExact = false;
 | 
						|
}
 | 
						|
 | 
						|
FloatingLiteral *
 | 
						|
FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
 | 
						|
                        bool isexact, QualType Type, SourceLocation L) {
 | 
						|
  return new (C) FloatingLiteral(C, V, isexact, Type, L);
 | 
						|
}
 | 
						|
 | 
						|
FloatingLiteral *
 | 
						|
FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
 | 
						|
  return new (C) FloatingLiteral(C, Empty);
 | 
						|
}
 | 
						|
 | 
						|
/// getValueAsApproximateDouble - This returns the value as an inaccurate
 | 
						|
/// double.  Note that this may cause loss of precision, but is useful for
 | 
						|
/// debugging dumps, etc.
 | 
						|
double FloatingLiteral::getValueAsApproximateDouble() const {
 | 
						|
  llvm::APFloat V = getValue();
 | 
						|
  bool ignored;
 | 
						|
  V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
 | 
						|
            &ignored);
 | 
						|
  return V.convertToDouble();
 | 
						|
}
 | 
						|
 | 
						|
unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
 | 
						|
                                         StringKind SK) {
 | 
						|
  unsigned CharByteWidth = 0;
 | 
						|
  switch (SK) {
 | 
						|
  case Ascii:
 | 
						|
  case UTF8:
 | 
						|
    CharByteWidth = Target.getCharWidth();
 | 
						|
    break;
 | 
						|
  case Wide:
 | 
						|
    CharByteWidth = Target.getWCharWidth();
 | 
						|
    break;
 | 
						|
  case UTF16:
 | 
						|
    CharByteWidth = Target.getChar16Width();
 | 
						|
    break;
 | 
						|
  case UTF32:
 | 
						|
    CharByteWidth = Target.getChar32Width();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
 | 
						|
  CharByteWidth /= 8;
 | 
						|
  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
 | 
						|
         "The only supported character byte widths are 1,2 and 4!");
 | 
						|
  return CharByteWidth;
 | 
						|
}
 | 
						|
 | 
						|
StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
 | 
						|
                             StringKind Kind, bool Pascal, QualType Ty,
 | 
						|
                             const SourceLocation *Loc,
 | 
						|
                             unsigned NumConcatenated)
 | 
						|
    : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
 | 
						|
           false) {
 | 
						|
  assert(Ctx.getAsConstantArrayType(Ty) &&
 | 
						|
         "StringLiteral must be of constant array type!");
 | 
						|
  unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
 | 
						|
  unsigned ByteLength = Str.size();
 | 
						|
  assert((ByteLength % CharByteWidth == 0) &&
 | 
						|
         "The size of the data must be a multiple of CharByteWidth!");
 | 
						|
 | 
						|
  // Avoid the expensive division. The compiler should be able to figure it
 | 
						|
  // out by itself. However as of clang 7, even with the appropriate
 | 
						|
  // llvm_unreachable added just here, it is not able to do so.
 | 
						|
  unsigned Length;
 | 
						|
  switch (CharByteWidth) {
 | 
						|
  case 1:
 | 
						|
    Length = ByteLength;
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    Length = ByteLength / 2;
 | 
						|
    break;
 | 
						|
  case 4:
 | 
						|
    Length = ByteLength / 4;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unsupported character width!");
 | 
						|
  }
 | 
						|
 | 
						|
  StringLiteralBits.Kind = Kind;
 | 
						|
  StringLiteralBits.CharByteWidth = CharByteWidth;
 | 
						|
  StringLiteralBits.IsPascal = Pascal;
 | 
						|
  StringLiteralBits.NumConcatenated = NumConcatenated;
 | 
						|
  *getTrailingObjects<unsigned>() = Length;
 | 
						|
 | 
						|
  // Initialize the trailing array of SourceLocation.
 | 
						|
  // This is safe since SourceLocation is POD-like.
 | 
						|
  std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
 | 
						|
              NumConcatenated * sizeof(SourceLocation));
 | 
						|
 | 
						|
  // Initialize the trailing array of char holding the string data.
 | 
						|
  std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
 | 
						|
}
 | 
						|
 | 
						|
StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
 | 
						|
                             unsigned Length, unsigned CharByteWidth)
 | 
						|
    : Expr(StringLiteralClass, Empty) {
 | 
						|
  StringLiteralBits.CharByteWidth = CharByteWidth;
 | 
						|
  StringLiteralBits.NumConcatenated = NumConcatenated;
 | 
						|
  *getTrailingObjects<unsigned>() = Length;
 | 
						|
}
 | 
						|
 | 
						|
StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
 | 
						|
                                     StringKind Kind, bool Pascal, QualType Ty,
 | 
						|
                                     const SourceLocation *Loc,
 | 
						|
                                     unsigned NumConcatenated) {
 | 
						|
  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
 | 
						|
                               1, NumConcatenated, Str.size()),
 | 
						|
                           alignof(StringLiteral));
 | 
						|
  return new (Mem)
 | 
						|
      StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
 | 
						|
}
 | 
						|
 | 
						|
StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
 | 
						|
                                          unsigned NumConcatenated,
 | 
						|
                                          unsigned Length,
 | 
						|
                                          unsigned CharByteWidth) {
 | 
						|
  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
 | 
						|
                               1, NumConcatenated, Length * CharByteWidth),
 | 
						|
                           alignof(StringLiteral));
 | 
						|
  return new (Mem)
 | 
						|
      StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
 | 
						|
}
 | 
						|
 | 
						|
void StringLiteral::outputString(raw_ostream &OS) const {
 | 
						|
  switch (getKind()) {
 | 
						|
  case Ascii: break; // no prefix.
 | 
						|
  case Wide:  OS << 'L'; break;
 | 
						|
  case UTF8:  OS << "u8"; break;
 | 
						|
  case UTF16: OS << 'u'; break;
 | 
						|
  case UTF32: OS << 'U'; break;
 | 
						|
  }
 | 
						|
  OS << '"';
 | 
						|
  static const char Hex[] = "0123456789ABCDEF";
 | 
						|
 | 
						|
  unsigned LastSlashX = getLength();
 | 
						|
  for (unsigned I = 0, N = getLength(); I != N; ++I) {
 | 
						|
    switch (uint32_t Char = getCodeUnit(I)) {
 | 
						|
    default:
 | 
						|
      // FIXME: Convert UTF-8 back to codepoints before rendering.
 | 
						|
 | 
						|
      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
 | 
						|
      // Leave invalid surrogates alone; we'll use \x for those.
 | 
						|
      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
 | 
						|
          Char <= 0xdbff) {
 | 
						|
        uint32_t Trail = getCodeUnit(I + 1);
 | 
						|
        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
 | 
						|
          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
 | 
						|
          ++I;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (Char > 0xff) {
 | 
						|
        // If this is a wide string, output characters over 0xff using \x
 | 
						|
        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
 | 
						|
        // codepoint: use \x escapes for invalid codepoints.
 | 
						|
        if (getKind() == Wide ||
 | 
						|
            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
 | 
						|
          // FIXME: Is this the best way to print wchar_t?
 | 
						|
          OS << "\\x";
 | 
						|
          int Shift = 28;
 | 
						|
          while ((Char >> Shift) == 0)
 | 
						|
            Shift -= 4;
 | 
						|
          for (/**/; Shift >= 0; Shift -= 4)
 | 
						|
            OS << Hex[(Char >> Shift) & 15];
 | 
						|
          LastSlashX = I;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (Char > 0xffff)
 | 
						|
          OS << "\\U00"
 | 
						|
             << Hex[(Char >> 20) & 15]
 | 
						|
             << Hex[(Char >> 16) & 15];
 | 
						|
        else
 | 
						|
          OS << "\\u";
 | 
						|
        OS << Hex[(Char >> 12) & 15]
 | 
						|
           << Hex[(Char >>  8) & 15]
 | 
						|
           << Hex[(Char >>  4) & 15]
 | 
						|
           << Hex[(Char >>  0) & 15];
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we used \x... for the previous character, and this character is a
 | 
						|
      // hexadecimal digit, prevent it being slurped as part of the \x.
 | 
						|
      if (LastSlashX + 1 == I) {
 | 
						|
        switch (Char) {
 | 
						|
          case '0': case '1': case '2': case '3': case '4':
 | 
						|
          case '5': case '6': case '7': case '8': case '9':
 | 
						|
          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
 | 
						|
          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
 | 
						|
            OS << "\"\"";
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      assert(Char <= 0xff &&
 | 
						|
             "Characters above 0xff should already have been handled.");
 | 
						|
 | 
						|
      if (isPrintable(Char))
 | 
						|
        OS << (char)Char;
 | 
						|
      else  // Output anything hard as an octal escape.
 | 
						|
        OS << '\\'
 | 
						|
           << (char)('0' + ((Char >> 6) & 7))
 | 
						|
           << (char)('0' + ((Char >> 3) & 7))
 | 
						|
           << (char)('0' + ((Char >> 0) & 7));
 | 
						|
      break;
 | 
						|
    // Handle some common non-printable cases to make dumps prettier.
 | 
						|
    case '\\': OS << "\\\\"; break;
 | 
						|
    case '"': OS << "\\\""; break;
 | 
						|
    case '\a': OS << "\\a"; break;
 | 
						|
    case '\b': OS << "\\b"; break;
 | 
						|
    case '\f': OS << "\\f"; break;
 | 
						|
    case '\n': OS << "\\n"; break;
 | 
						|
    case '\r': OS << "\\r"; break;
 | 
						|
    case '\t': OS << "\\t"; break;
 | 
						|
    case '\v': OS << "\\v"; break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  OS << '"';
 | 
						|
}
 | 
						|
 | 
						|
/// getLocationOfByte - Return a source location that points to the specified
 | 
						|
/// byte of this string literal.
 | 
						|
///
 | 
						|
/// Strings are amazingly complex.  They can be formed from multiple tokens and
 | 
						|
/// can have escape sequences in them in addition to the usual trigraph and
 | 
						|
/// escaped newline business.  This routine handles this complexity.
 | 
						|
///
 | 
						|
/// The *StartToken sets the first token to be searched in this function and
 | 
						|
/// the *StartTokenByteOffset is the byte offset of the first token. Before
 | 
						|
/// returning, it updates the *StartToken to the TokNo of the token being found
 | 
						|
/// and sets *StartTokenByteOffset to the byte offset of the token in the
 | 
						|
/// string.
 | 
						|
/// Using these two parameters can reduce the time complexity from O(n^2) to
 | 
						|
/// O(n) if one wants to get the location of byte for all the tokens in a
 | 
						|
/// string.
 | 
						|
///
 | 
						|
SourceLocation
 | 
						|
StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
 | 
						|
                                 const LangOptions &Features,
 | 
						|
                                 const TargetInfo &Target, unsigned *StartToken,
 | 
						|
                                 unsigned *StartTokenByteOffset) const {
 | 
						|
  assert((getKind() == StringLiteral::Ascii ||
 | 
						|
          getKind() == StringLiteral::UTF8) &&
 | 
						|
         "Only narrow string literals are currently supported");
 | 
						|
 | 
						|
  // Loop over all of the tokens in this string until we find the one that
 | 
						|
  // contains the byte we're looking for.
 | 
						|
  unsigned TokNo = 0;
 | 
						|
  unsigned StringOffset = 0;
 | 
						|
  if (StartToken)
 | 
						|
    TokNo = *StartToken;
 | 
						|
  if (StartTokenByteOffset) {
 | 
						|
    StringOffset = *StartTokenByteOffset;
 | 
						|
    ByteNo -= StringOffset;
 | 
						|
  }
 | 
						|
  while (1) {
 | 
						|
    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
 | 
						|
    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
 | 
						|
 | 
						|
    // Get the spelling of the string so that we can get the data that makes up
 | 
						|
    // the string literal, not the identifier for the macro it is potentially
 | 
						|
    // expanded through.
 | 
						|
    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
 | 
						|
 | 
						|
    // Re-lex the token to get its length and original spelling.
 | 
						|
    std::pair<FileID, unsigned> LocInfo =
 | 
						|
        SM.getDecomposedLoc(StrTokSpellingLoc);
 | 
						|
    bool Invalid = false;
 | 
						|
    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
 | 
						|
    if (Invalid) {
 | 
						|
      if (StartTokenByteOffset != nullptr)
 | 
						|
        *StartTokenByteOffset = StringOffset;
 | 
						|
      if (StartToken != nullptr)
 | 
						|
        *StartToken = TokNo;
 | 
						|
      return StrTokSpellingLoc;
 | 
						|
    }
 | 
						|
 | 
						|
    const char *StrData = Buffer.data()+LocInfo.second;
 | 
						|
 | 
						|
    // Create a lexer starting at the beginning of this token.
 | 
						|
    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
 | 
						|
                   Buffer.begin(), StrData, Buffer.end());
 | 
						|
    Token TheTok;
 | 
						|
    TheLexer.LexFromRawLexer(TheTok);
 | 
						|
 | 
						|
    // Use the StringLiteralParser to compute the length of the string in bytes.
 | 
						|
    StringLiteralParser SLP(TheTok, SM, Features, Target);
 | 
						|
    unsigned TokNumBytes = SLP.GetStringLength();
 | 
						|
 | 
						|
    // If the byte is in this token, return the location of the byte.
 | 
						|
    if (ByteNo < TokNumBytes ||
 | 
						|
        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
 | 
						|
      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
 | 
						|
 | 
						|
      // Now that we know the offset of the token in the spelling, use the
 | 
						|
      // preprocessor to get the offset in the original source.
 | 
						|
      if (StartTokenByteOffset != nullptr)
 | 
						|
        *StartTokenByteOffset = StringOffset;
 | 
						|
      if (StartToken != nullptr)
 | 
						|
        *StartToken = TokNo;
 | 
						|
      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
 | 
						|
    }
 | 
						|
 | 
						|
    // Move to the next string token.
 | 
						|
    StringOffset += TokNumBytes;
 | 
						|
    ++TokNo;
 | 
						|
    ByteNo -= TokNumBytes;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
 | 
						|
/// corresponds to, e.g. "sizeof" or "[pre]++".
 | 
						|
StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
 | 
						|
  switch (Op) {
 | 
						|
#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
 | 
						|
#include "clang/AST/OperationKinds.def"
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unknown unary operator");
 | 
						|
}
 | 
						|
 | 
						|
UnaryOperatorKind
 | 
						|
UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
 | 
						|
  switch (OO) {
 | 
						|
  default: llvm_unreachable("No unary operator for overloaded function");
 | 
						|
  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
 | 
						|
  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
 | 
						|
  case OO_Amp:        return UO_AddrOf;
 | 
						|
  case OO_Star:       return UO_Deref;
 | 
						|
  case OO_Plus:       return UO_Plus;
 | 
						|
  case OO_Minus:      return UO_Minus;
 | 
						|
  case OO_Tilde:      return UO_Not;
 | 
						|
  case OO_Exclaim:    return UO_LNot;
 | 
						|
  case OO_Coawait:    return UO_Coawait;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
 | 
						|
  switch (Opc) {
 | 
						|
  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
 | 
						|
  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
 | 
						|
  case UO_AddrOf: return OO_Amp;
 | 
						|
  case UO_Deref: return OO_Star;
 | 
						|
  case UO_Plus: return OO_Plus;
 | 
						|
  case UO_Minus: return OO_Minus;
 | 
						|
  case UO_Not: return OO_Tilde;
 | 
						|
  case UO_LNot: return OO_Exclaim;
 | 
						|
  case UO_Coawait: return OO_Coawait;
 | 
						|
  default: return OO_None;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Postfix Operators.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
 | 
						|
                   ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
 | 
						|
                   SourceLocation RParenLoc, unsigned MinNumArgs,
 | 
						|
                   ADLCallKind UsesADL)
 | 
						|
    : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(),
 | 
						|
           Fn->isValueDependent(), Fn->isInstantiationDependent(),
 | 
						|
           Fn->containsUnexpandedParameterPack()),
 | 
						|
      RParenLoc(RParenLoc) {
 | 
						|
  NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
 | 
						|
  unsigned NumPreArgs = PreArgs.size();
 | 
						|
  CallExprBits.NumPreArgs = NumPreArgs;
 | 
						|
  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
 | 
						|
 | 
						|
  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
 | 
						|
  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
 | 
						|
  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
 | 
						|
         "OffsetToTrailingObjects overflow!");
 | 
						|
 | 
						|
  CallExprBits.UsesADL = static_cast<bool>(UsesADL);
 | 
						|
 | 
						|
  setCallee(Fn);
 | 
						|
  for (unsigned I = 0; I != NumPreArgs; ++I) {
 | 
						|
    addDependence(PreArgs[I]->getDependence());
 | 
						|
    setPreArg(I, PreArgs[I]);
 | 
						|
  }
 | 
						|
  for (unsigned I = 0; I != Args.size(); ++I) {
 | 
						|
    addDependence(Args[I]->getDependence());
 | 
						|
    setArg(I, Args[I]);
 | 
						|
  }
 | 
						|
  for (unsigned I = Args.size(); I != NumArgs; ++I) {
 | 
						|
    setArg(I, nullptr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
 | 
						|
                   EmptyShell Empty)
 | 
						|
    : Expr(SC, Empty), NumArgs(NumArgs) {
 | 
						|
  CallExprBits.NumPreArgs = NumPreArgs;
 | 
						|
  assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
 | 
						|
 | 
						|
  unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
 | 
						|
  CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
 | 
						|
  assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
 | 
						|
         "OffsetToTrailingObjects overflow!");
 | 
						|
}
 | 
						|
 | 
						|
CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
 | 
						|
                           ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
 | 
						|
                           SourceLocation RParenLoc, unsigned MinNumArgs,
 | 
						|
                           ADLCallKind UsesADL) {
 | 
						|
  unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
 | 
						|
  unsigned SizeOfTrailingObjects =
 | 
						|
      CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
 | 
						|
  void *Mem =
 | 
						|
      Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
 | 
						|
  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
 | 
						|
                            RParenLoc, MinNumArgs, UsesADL);
 | 
						|
}
 | 
						|
 | 
						|
CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
 | 
						|
                                    ExprValueKind VK, SourceLocation RParenLoc,
 | 
						|
                                    ADLCallKind UsesADL) {
 | 
						|
  assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
 | 
						|
         "Misaligned memory in CallExpr::CreateTemporary!");
 | 
						|
  return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
 | 
						|
                            VK, RParenLoc, /*MinNumArgs=*/0, UsesADL);
 | 
						|
}
 | 
						|
 | 
						|
CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
 | 
						|
                                EmptyShell Empty) {
 | 
						|
  unsigned SizeOfTrailingObjects =
 | 
						|
      CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
 | 
						|
  void *Mem =
 | 
						|
      Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
 | 
						|
  return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
 | 
						|
}
 | 
						|
 | 
						|
unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
 | 
						|
  switch (SC) {
 | 
						|
  case CallExprClass:
 | 
						|
    return sizeof(CallExpr);
 | 
						|
  case CXXOperatorCallExprClass:
 | 
						|
    return sizeof(CXXOperatorCallExpr);
 | 
						|
  case CXXMemberCallExprClass:
 | 
						|
    return sizeof(CXXMemberCallExpr);
 | 
						|
  case UserDefinedLiteralClass:
 | 
						|
    return sizeof(UserDefinedLiteral);
 | 
						|
  case CUDAKernelCallExprClass:
 | 
						|
    return sizeof(CUDAKernelCallExpr);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unexpected class deriving from CallExpr!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Decl *Expr::getReferencedDeclOfCallee() {
 | 
						|
  Expr *CEE = IgnoreParenImpCasts();
 | 
						|
 | 
						|
  while (SubstNonTypeTemplateParmExpr *NTTP =
 | 
						|
             dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
 | 
						|
    CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're calling a dereference, look at the pointer instead.
 | 
						|
  while (true) {
 | 
						|
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
 | 
						|
      if (BO->isPtrMemOp()) {
 | 
						|
        CEE = BO->getRHS()->IgnoreParenImpCasts();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
 | 
						|
      if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
 | 
						|
          UO->getOpcode() == UO_Plus) {
 | 
						|
        CEE = UO->getSubExpr()->IgnoreParenImpCasts();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
 | 
						|
    return DRE->getDecl();
 | 
						|
  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
 | 
						|
    return ME->getMemberDecl();
 | 
						|
  if (auto *BE = dyn_cast<BlockExpr>(CEE))
 | 
						|
    return BE->getBlockDecl();
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// If this is a call to a builtin, return the builtin ID. If not, return 0.
 | 
						|
unsigned CallExpr::getBuiltinCallee() const {
 | 
						|
  auto *FDecl =
 | 
						|
      dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee());
 | 
						|
  return FDecl ? FDecl->getBuiltinID() : 0;
 | 
						|
}
 | 
						|
 | 
						|
bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
 | 
						|
  if (unsigned BI = getBuiltinCallee())
 | 
						|
    return Ctx.BuiltinInfo.isUnevaluated(BI);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
 | 
						|
  const Expr *Callee = getCallee();
 | 
						|
  QualType CalleeType = Callee->getType();
 | 
						|
  if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
 | 
						|
    CalleeType = FnTypePtr->getPointeeType();
 | 
						|
  } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
 | 
						|
    CalleeType = BPT->getPointeeType();
 | 
						|
  } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
 | 
						|
    if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
 | 
						|
      return Ctx.VoidTy;
 | 
						|
 | 
						|
    // This should never be overloaded and so should never return null.
 | 
						|
    CalleeType = Expr::findBoundMemberType(Callee);
 | 
						|
  }
 | 
						|
 | 
						|
  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
 | 
						|
  return FnType->getReturnType();
 | 
						|
}
 | 
						|
 | 
						|
const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
 | 
						|
  // If the return type is a struct, union, or enum that is marked nodiscard,
 | 
						|
  // then return the return type attribute.
 | 
						|
  if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
 | 
						|
    if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
 | 
						|
      return A;
 | 
						|
 | 
						|
  // Otherwise, see if the callee is marked nodiscard and return that attribute
 | 
						|
  // instead.
 | 
						|
  const Decl *D = getCalleeDecl();
 | 
						|
  return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation CallExpr::getBeginLoc() const {
 | 
						|
  if (isa<CXXOperatorCallExpr>(this))
 | 
						|
    return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
 | 
						|
 | 
						|
  SourceLocation begin = getCallee()->getBeginLoc();
 | 
						|
  if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
 | 
						|
    begin = getArg(0)->getBeginLoc();
 | 
						|
  return begin;
 | 
						|
}
 | 
						|
SourceLocation CallExpr::getEndLoc() const {
 | 
						|
  if (isa<CXXOperatorCallExpr>(this))
 | 
						|
    return cast<CXXOperatorCallExpr>(this)->getEndLoc();
 | 
						|
 | 
						|
  SourceLocation end = getRParenLoc();
 | 
						|
  if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
 | 
						|
    end = getArg(getNumArgs() - 1)->getEndLoc();
 | 
						|
  return end;
 | 
						|
}
 | 
						|
 | 
						|
OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
 | 
						|
                                   SourceLocation OperatorLoc,
 | 
						|
                                   TypeSourceInfo *tsi,
 | 
						|
                                   ArrayRef<OffsetOfNode> comps,
 | 
						|
                                   ArrayRef<Expr*> exprs,
 | 
						|
                                   SourceLocation RParenLoc) {
 | 
						|
  void *Mem = C.Allocate(
 | 
						|
      totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
 | 
						|
 | 
						|
  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
 | 
						|
                                RParenLoc);
 | 
						|
}
 | 
						|
 | 
						|
OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
 | 
						|
                                        unsigned numComps, unsigned numExprs) {
 | 
						|
  void *Mem =
 | 
						|
      C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
 | 
						|
  return new (Mem) OffsetOfExpr(numComps, numExprs);
 | 
						|
}
 | 
						|
 | 
						|
OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
 | 
						|
                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
 | 
						|
                           ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
 | 
						|
                           SourceLocation RParenLoc)
 | 
						|
  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
 | 
						|
         /*TypeDependent=*/false,
 | 
						|
         /*ValueDependent=*/tsi->getType()->isDependentType(),
 | 
						|
         tsi->getType()->isInstantiationDependentType(),
 | 
						|
         tsi->getType()->containsUnexpandedParameterPack()),
 | 
						|
    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
 | 
						|
    NumComps(comps.size()), NumExprs(exprs.size())
 | 
						|
{
 | 
						|
  for (unsigned i = 0; i != comps.size(); ++i) {
 | 
						|
    setComponent(i, comps[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0; i != exprs.size(); ++i) {
 | 
						|
    if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
 | 
						|
      addDependence(ExprDependence::Value);
 | 
						|
    if (exprs[i]->containsUnexpandedParameterPack())
 | 
						|
      addDependence(ExprDependence ::UnexpandedPack);
 | 
						|
 | 
						|
    setIndexExpr(i, exprs[i]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
IdentifierInfo *OffsetOfNode::getFieldName() const {
 | 
						|
  assert(getKind() == Field || getKind() == Identifier);
 | 
						|
  if (getKind() == Field)
 | 
						|
    return getField()->getIdentifier();
 | 
						|
 | 
						|
  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
 | 
						|
}
 | 
						|
 | 
						|
UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
 | 
						|
    UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
 | 
						|
    SourceLocation op, SourceLocation rp)
 | 
						|
    : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
 | 
						|
           false, // Never type-dependent (C++ [temp.dep.expr]p3).
 | 
						|
           // Value-dependent if the argument is type-dependent.
 | 
						|
           E->isTypeDependent(), E->isInstantiationDependent(),
 | 
						|
           E->containsUnexpandedParameterPack()),
 | 
						|
      OpLoc(op), RParenLoc(rp) {
 | 
						|
  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
 | 
						|
  UnaryExprOrTypeTraitExprBits.IsType = false;
 | 
						|
  Argument.Ex = E;
 | 
						|
 | 
						|
  // Check to see if we are in the situation where alignof(decl) should be
 | 
						|
  // dependent because decl's alignment is dependent.
 | 
						|
  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
 | 
						|
    if (!isValueDependent() || !isInstantiationDependent()) {
 | 
						|
      E = E->IgnoreParens();
 | 
						|
 | 
						|
      const ValueDecl *D = nullptr;
 | 
						|
      if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
 | 
						|
        D = DRE->getDecl();
 | 
						|
      else if (const auto *ME = dyn_cast<MemberExpr>(E))
 | 
						|
        D = ME->getMemberDecl();
 | 
						|
 | 
						|
      if (D) {
 | 
						|
        for (const auto *I : D->specific_attrs<AlignedAttr>()) {
 | 
						|
          if (I->isAlignmentDependent()) {
 | 
						|
            addDependence(ExprDependence::ValueInstantiation);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
 | 
						|
                       ValueDecl *MemberDecl,
 | 
						|
                       const DeclarationNameInfo &NameInfo, QualType T,
 | 
						|
                       ExprValueKind VK, ExprObjectKind OK,
 | 
						|
                       NonOdrUseReason NOUR)
 | 
						|
    : Expr(MemberExprClass, T, VK, OK, Base->isTypeDependent(),
 | 
						|
           Base->isValueDependent(), Base->isInstantiationDependent(),
 | 
						|
           Base->containsUnexpandedParameterPack()),
 | 
						|
      Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()),
 | 
						|
      MemberLoc(NameInfo.getLoc()) {
 | 
						|
  assert(!NameInfo.getName() ||
 | 
						|
         MemberDecl->getDeclName() == NameInfo.getName());
 | 
						|
  MemberExprBits.IsArrow = IsArrow;
 | 
						|
  MemberExprBits.HasQualifierOrFoundDecl = false;
 | 
						|
  MemberExprBits.HasTemplateKWAndArgsInfo = false;
 | 
						|
  MemberExprBits.HadMultipleCandidates = false;
 | 
						|
  MemberExprBits.NonOdrUseReason = NOUR;
 | 
						|
  MemberExprBits.OperatorLoc = OperatorLoc;
 | 
						|
}
 | 
						|
 | 
						|
MemberExpr *MemberExpr::Create(
 | 
						|
    const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
 | 
						|
    NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
 | 
						|
    ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
 | 
						|
    DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
 | 
						|
    QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
 | 
						|
  bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
 | 
						|
                        FoundDecl.getAccess() != MemberDecl->getAccess();
 | 
						|
  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
 | 
						|
  std::size_t Size =
 | 
						|
      totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
 | 
						|
                       TemplateArgumentLoc>(
 | 
						|
          HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
 | 
						|
          TemplateArgs ? TemplateArgs->size() : 0);
 | 
						|
 | 
						|
  void *Mem = C.Allocate(Size, alignof(MemberExpr));
 | 
						|
  MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
 | 
						|
                                       NameInfo, T, VK, OK, NOUR);
 | 
						|
 | 
						|
  if (isa<FieldDecl>(MemberDecl)) {
 | 
						|
    DeclContext *DC = MemberDecl->getDeclContext();
 | 
						|
    // dyn_cast_or_null is used to handle objC variables which do not
 | 
						|
    // have a declaration context.
 | 
						|
    CXXRecordDecl *RD = dyn_cast_or_null<CXXRecordDecl>(DC);
 | 
						|
    if (RD && RD->isDependentContext() && RD->isCurrentInstantiation(DC)) {
 | 
						|
      if (E->isTypeDependent() && !T->isDependentType())
 | 
						|
        E->removeDependence(ExprDependence::Type);
 | 
						|
    }
 | 
						|
    // Bitfield with value-dependent width is type-dependent.
 | 
						|
    FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl);
 | 
						|
    if (FD && FD->isBitField() && FD->getBitWidth()->isValueDependent())
 | 
						|
      E->addDependence(ExprDependence::Type);
 | 
						|
  }
 | 
						|
 | 
						|
  if (HasQualOrFound) {
 | 
						|
    // FIXME: Wrong. We should be looking at the member declaration we found.
 | 
						|
    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
 | 
						|
      E->addDependence(ExprDependence::TypeValueInstantiation);
 | 
						|
    else if (QualifierLoc &&
 | 
						|
             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
 | 
						|
      E->addDependence(ExprDependence::Instantiation);
 | 
						|
 | 
						|
    E->MemberExprBits.HasQualifierOrFoundDecl = true;
 | 
						|
 | 
						|
    MemberExprNameQualifier *NQ =
 | 
						|
        E->getTrailingObjects<MemberExprNameQualifier>();
 | 
						|
    NQ->QualifierLoc = QualifierLoc;
 | 
						|
    NQ->FoundDecl = FoundDecl;
 | 
						|
  }
 | 
						|
 | 
						|
  E->MemberExprBits.HasTemplateKWAndArgsInfo =
 | 
						|
      TemplateArgs || TemplateKWLoc.isValid();
 | 
						|
 | 
						|
  if (TemplateArgs) {
 | 
						|
    auto Deps = TemplateArgumentDependence::None;
 | 
						|
    E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
 | 
						|
        TemplateKWLoc, *TemplateArgs,
 | 
						|
        E->getTrailingObjects<TemplateArgumentLoc>(), Deps);
 | 
						|
    if (Deps & TemplateArgumentDependence::Instantiation)
 | 
						|
      E->addDependence(ExprDependence::Instantiation);
 | 
						|
  } else if (TemplateKWLoc.isValid()) {
 | 
						|
    E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
 | 
						|
        TemplateKWLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
 | 
						|
                                    bool HasQualifier, bool HasFoundDecl,
 | 
						|
                                    bool HasTemplateKWAndArgsInfo,
 | 
						|
                                    unsigned NumTemplateArgs) {
 | 
						|
  assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
 | 
						|
         "template args but no template arg info?");
 | 
						|
  bool HasQualOrFound = HasQualifier || HasFoundDecl;
 | 
						|
  std::size_t Size =
 | 
						|
      totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
 | 
						|
                       TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
 | 
						|
                                            HasTemplateKWAndArgsInfo ? 1 : 0,
 | 
						|
                                            NumTemplateArgs);
 | 
						|
  void *Mem = Context.Allocate(Size, alignof(MemberExpr));
 | 
						|
  return new (Mem) MemberExpr(EmptyShell());
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation MemberExpr::getBeginLoc() const {
 | 
						|
  if (isImplicitAccess()) {
 | 
						|
    if (hasQualifier())
 | 
						|
      return getQualifierLoc().getBeginLoc();
 | 
						|
    return MemberLoc;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We don't want this to happen. Rather, we should be able to
 | 
						|
  // detect all kinds of implicit accesses more cleanly.
 | 
						|
  SourceLocation BaseStartLoc = getBase()->getBeginLoc();
 | 
						|
  if (BaseStartLoc.isValid())
 | 
						|
    return BaseStartLoc;
 | 
						|
  return MemberLoc;
 | 
						|
}
 | 
						|
SourceLocation MemberExpr::getEndLoc() const {
 | 
						|
  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
 | 
						|
  if (hasExplicitTemplateArgs())
 | 
						|
    EndLoc = getRAngleLoc();
 | 
						|
  else if (EndLoc.isInvalid())
 | 
						|
    EndLoc = getBase()->getEndLoc();
 | 
						|
  return EndLoc;
 | 
						|
}
 | 
						|
 | 
						|
bool CastExpr::CastConsistency() const {
 | 
						|
  switch (getCastKind()) {
 | 
						|
  case CK_DerivedToBase:
 | 
						|
  case CK_UncheckedDerivedToBase:
 | 
						|
  case CK_DerivedToBaseMemberPointer:
 | 
						|
  case CK_BaseToDerived:
 | 
						|
  case CK_BaseToDerivedMemberPointer:
 | 
						|
    assert(!path_empty() && "Cast kind should have a base path!");
 | 
						|
    break;
 | 
						|
 | 
						|
  case CK_CPointerToObjCPointerCast:
 | 
						|
    assert(getType()->isObjCObjectPointerType());
 | 
						|
    assert(getSubExpr()->getType()->isPointerType());
 | 
						|
    goto CheckNoBasePath;
 | 
						|
 | 
						|
  case CK_BlockPointerToObjCPointerCast:
 | 
						|
    assert(getType()->isObjCObjectPointerType());
 | 
						|
    assert(getSubExpr()->getType()->isBlockPointerType());
 | 
						|
    goto CheckNoBasePath;
 | 
						|
 | 
						|
  case CK_ReinterpretMemberPointer:
 | 
						|
    assert(getType()->isMemberPointerType());
 | 
						|
    assert(getSubExpr()->getType()->isMemberPointerType());
 | 
						|
    goto CheckNoBasePath;
 | 
						|
 | 
						|
  case CK_BitCast:
 | 
						|
    // Arbitrary casts to C pointer types count as bitcasts.
 | 
						|
    // Otherwise, we should only have block and ObjC pointer casts
 | 
						|
    // here if they stay within the type kind.
 | 
						|
    if (!getType()->isPointerType()) {
 | 
						|
      assert(getType()->isObjCObjectPointerType() ==
 | 
						|
             getSubExpr()->getType()->isObjCObjectPointerType());
 | 
						|
      assert(getType()->isBlockPointerType() ==
 | 
						|
             getSubExpr()->getType()->isBlockPointerType());
 | 
						|
    }
 | 
						|
    goto CheckNoBasePath;
 | 
						|
 | 
						|
  case CK_AnyPointerToBlockPointerCast:
 | 
						|
    assert(getType()->isBlockPointerType());
 | 
						|
    assert(getSubExpr()->getType()->isAnyPointerType() &&
 | 
						|
           !getSubExpr()->getType()->isBlockPointerType());
 | 
						|
    goto CheckNoBasePath;
 | 
						|
 | 
						|
  case CK_CopyAndAutoreleaseBlockObject:
 | 
						|
    assert(getType()->isBlockPointerType());
 | 
						|
    assert(getSubExpr()->getType()->isBlockPointerType());
 | 
						|
    goto CheckNoBasePath;
 | 
						|
 | 
						|
  case CK_FunctionToPointerDecay:
 | 
						|
    assert(getType()->isPointerType());
 | 
						|
    assert(getSubExpr()->getType()->isFunctionType());
 | 
						|
    goto CheckNoBasePath;
 | 
						|
 | 
						|
  case CK_AddressSpaceConversion: {
 | 
						|
    auto Ty = getType();
 | 
						|
    auto SETy = getSubExpr()->getType();
 | 
						|
    assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
 | 
						|
    if (isRValue()) {
 | 
						|
      Ty = Ty->getPointeeType();
 | 
						|
      SETy = SETy->getPointeeType();
 | 
						|
    }
 | 
						|
    assert(!Ty.isNull() && !SETy.isNull() &&
 | 
						|
           Ty.getAddressSpace() != SETy.getAddressSpace());
 | 
						|
    goto CheckNoBasePath;
 | 
						|
  }
 | 
						|
  // These should not have an inheritance path.
 | 
						|
  case CK_Dynamic:
 | 
						|
  case CK_ToUnion:
 | 
						|
  case CK_ArrayToPointerDecay:
 | 
						|
  case CK_NullToMemberPointer:
 | 
						|
  case CK_NullToPointer:
 | 
						|
  case CK_ConstructorConversion:
 | 
						|
  case CK_IntegralToPointer:
 | 
						|
  case CK_PointerToIntegral:
 | 
						|
  case CK_ToVoid:
 | 
						|
  case CK_VectorSplat:
 | 
						|
  case CK_IntegralCast:
 | 
						|
  case CK_BooleanToSignedIntegral:
 | 
						|
  case CK_IntegralToFloating:
 | 
						|
  case CK_FloatingToIntegral:
 | 
						|
  case CK_FloatingCast:
 | 
						|
  case CK_ObjCObjectLValueCast:
 | 
						|
  case CK_FloatingRealToComplex:
 | 
						|
  case CK_FloatingComplexToReal:
 | 
						|
  case CK_FloatingComplexCast:
 | 
						|
  case CK_FloatingComplexToIntegralComplex:
 | 
						|
  case CK_IntegralRealToComplex:
 | 
						|
  case CK_IntegralComplexToReal:
 | 
						|
  case CK_IntegralComplexCast:
 | 
						|
  case CK_IntegralComplexToFloatingComplex:
 | 
						|
  case CK_ARCProduceObject:
 | 
						|
  case CK_ARCConsumeObject:
 | 
						|
  case CK_ARCReclaimReturnedObject:
 | 
						|
  case CK_ARCExtendBlockObject:
 | 
						|
  case CK_ZeroToOCLOpaqueType:
 | 
						|
  case CK_IntToOCLSampler:
 | 
						|
  case CK_FixedPointCast:
 | 
						|
  case CK_FixedPointToIntegral:
 | 
						|
  case CK_IntegralToFixedPoint:
 | 
						|
    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
 | 
						|
    goto CheckNoBasePath;
 | 
						|
 | 
						|
  case CK_Dependent:
 | 
						|
  case CK_LValueToRValue:
 | 
						|
  case CK_NoOp:
 | 
						|
  case CK_AtomicToNonAtomic:
 | 
						|
  case CK_NonAtomicToAtomic:
 | 
						|
  case CK_PointerToBoolean:
 | 
						|
  case CK_IntegralToBoolean:
 | 
						|
  case CK_FloatingToBoolean:
 | 
						|
  case CK_MemberPointerToBoolean:
 | 
						|
  case CK_FloatingComplexToBoolean:
 | 
						|
  case CK_IntegralComplexToBoolean:
 | 
						|
  case CK_LValueBitCast:            // -> bool&
 | 
						|
  case CK_LValueToRValueBitCast:
 | 
						|
  case CK_UserDefinedConversion:    // operator bool()
 | 
						|
  case CK_BuiltinFnToFnPtr:
 | 
						|
  case CK_FixedPointToBoolean:
 | 
						|
  CheckNoBasePath:
 | 
						|
    assert(path_empty() && "Cast kind should not have a base path!");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
const char *CastExpr::getCastKindName(CastKind CK) {
 | 
						|
  switch (CK) {
 | 
						|
#define CAST_OPERATION(Name) case CK_##Name: return #Name;
 | 
						|
#include "clang/AST/OperationKinds.def"
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unhandled cast kind!");
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  const Expr *skipImplicitTemporary(const Expr *E) {
 | 
						|
    // Skip through reference binding to temporary.
 | 
						|
    if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
 | 
						|
      E = Materialize->getSubExpr();
 | 
						|
 | 
						|
    // Skip any temporary bindings; they're implicit.
 | 
						|
    if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
 | 
						|
      E = Binder->getSubExpr();
 | 
						|
 | 
						|
    return E;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Expr *CastExpr::getSubExprAsWritten() {
 | 
						|
  const Expr *SubExpr = nullptr;
 | 
						|
  const CastExpr *E = this;
 | 
						|
  do {
 | 
						|
    SubExpr = skipImplicitTemporary(E->getSubExpr());
 | 
						|
 | 
						|
    // Conversions by constructor and conversion functions have a
 | 
						|
    // subexpression describing the call; strip it off.
 | 
						|
    if (E->getCastKind() == CK_ConstructorConversion)
 | 
						|
      SubExpr =
 | 
						|
        skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
 | 
						|
    else if (E->getCastKind() == CK_UserDefinedConversion) {
 | 
						|
      assert((isa<CXXMemberCallExpr>(SubExpr) ||
 | 
						|
              isa<BlockExpr>(SubExpr)) &&
 | 
						|
             "Unexpected SubExpr for CK_UserDefinedConversion.");
 | 
						|
      if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
 | 
						|
        SubExpr = MCE->getImplicitObjectArgument();
 | 
						|
    }
 | 
						|
 | 
						|
    // If the subexpression we're left with is an implicit cast, look
 | 
						|
    // through that, too.
 | 
						|
  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
 | 
						|
 | 
						|
  return const_cast<Expr*>(SubExpr);
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl *CastExpr::getConversionFunction() const {
 | 
						|
  const Expr *SubExpr = nullptr;
 | 
						|
 | 
						|
  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
 | 
						|
    SubExpr = skipImplicitTemporary(E->getSubExpr());
 | 
						|
 | 
						|
    if (E->getCastKind() == CK_ConstructorConversion)
 | 
						|
      return cast<CXXConstructExpr>(SubExpr)->getConstructor();
 | 
						|
 | 
						|
    if (E->getCastKind() == CK_UserDefinedConversion) {
 | 
						|
      if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
 | 
						|
        return MCE->getMethodDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
CXXBaseSpecifier **CastExpr::path_buffer() {
 | 
						|
  switch (getStmtClass()) {
 | 
						|
#define ABSTRACT_STMT(x)
 | 
						|
#define CASTEXPR(Type, Base)                                                   \
 | 
						|
  case Stmt::Type##Class:                                                      \
 | 
						|
    return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
 | 
						|
#define STMT(Type, Base)
 | 
						|
#include "clang/AST/StmtNodes.inc"
 | 
						|
  default:
 | 
						|
    llvm_unreachable("non-cast expressions not possible here");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
 | 
						|
                                                        QualType opType) {
 | 
						|
  auto RD = unionType->castAs<RecordType>()->getDecl();
 | 
						|
  return getTargetFieldForToUnionCast(RD, opType);
 | 
						|
}
 | 
						|
 | 
						|
const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
 | 
						|
                                                        QualType OpType) {
 | 
						|
  auto &Ctx = RD->getASTContext();
 | 
						|
  RecordDecl::field_iterator Field, FieldEnd;
 | 
						|
  for (Field = RD->field_begin(), FieldEnd = RD->field_end();
 | 
						|
       Field != FieldEnd; ++Field) {
 | 
						|
    if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
 | 
						|
        !Field->isUnnamedBitfield()) {
 | 
						|
      return *Field;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
 | 
						|
                                           CastKind Kind, Expr *Operand,
 | 
						|
                                           const CXXCastPath *BasePath,
 | 
						|
                                           ExprValueKind VK) {
 | 
						|
  unsigned PathSize = (BasePath ? BasePath->size() : 0);
 | 
						|
  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
 | 
						|
  // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
 | 
						|
  // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
 | 
						|
  assert((Kind != CK_LValueToRValue ||
 | 
						|
          !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
 | 
						|
         "invalid type for lvalue-to-rvalue conversion");
 | 
						|
  ImplicitCastExpr *E =
 | 
						|
    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
 | 
						|
  if (PathSize)
 | 
						|
    std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
 | 
						|
                              E->getTrailingObjects<CXXBaseSpecifier *>());
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
 | 
						|
                                                unsigned PathSize) {
 | 
						|
  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
 | 
						|
  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
 | 
						|
                                       ExprValueKind VK, CastKind K, Expr *Op,
 | 
						|
                                       const CXXCastPath *BasePath,
 | 
						|
                                       TypeSourceInfo *WrittenTy,
 | 
						|
                                       SourceLocation L, SourceLocation R) {
 | 
						|
  unsigned PathSize = (BasePath ? BasePath->size() : 0);
 | 
						|
  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
 | 
						|
  CStyleCastExpr *E =
 | 
						|
    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
 | 
						|
  if (PathSize)
 | 
						|
    std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
 | 
						|
                              E->getTrailingObjects<CXXBaseSpecifier *>());
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
 | 
						|
                                            unsigned PathSize) {
 | 
						|
  void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
 | 
						|
  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
 | 
						|
}
 | 
						|
 | 
						|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
 | 
						|
/// corresponds to, e.g. "<<=".
 | 
						|
StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
 | 
						|
  switch (Op) {
 | 
						|
#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
 | 
						|
#include "clang/AST/OperationKinds.def"
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid OpCode!");
 | 
						|
}
 | 
						|
 | 
						|
BinaryOperatorKind
 | 
						|
BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
 | 
						|
  switch (OO) {
 | 
						|
  default: llvm_unreachable("Not an overloadable binary operator");
 | 
						|
  case OO_Plus: return BO_Add;
 | 
						|
  case OO_Minus: return BO_Sub;
 | 
						|
  case OO_Star: return BO_Mul;
 | 
						|
  case OO_Slash: return BO_Div;
 | 
						|
  case OO_Percent: return BO_Rem;
 | 
						|
  case OO_Caret: return BO_Xor;
 | 
						|
  case OO_Amp: return BO_And;
 | 
						|
  case OO_Pipe: return BO_Or;
 | 
						|
  case OO_Equal: return BO_Assign;
 | 
						|
  case OO_Spaceship: return BO_Cmp;
 | 
						|
  case OO_Less: return BO_LT;
 | 
						|
  case OO_Greater: return BO_GT;
 | 
						|
  case OO_PlusEqual: return BO_AddAssign;
 | 
						|
  case OO_MinusEqual: return BO_SubAssign;
 | 
						|
  case OO_StarEqual: return BO_MulAssign;
 | 
						|
  case OO_SlashEqual: return BO_DivAssign;
 | 
						|
  case OO_PercentEqual: return BO_RemAssign;
 | 
						|
  case OO_CaretEqual: return BO_XorAssign;
 | 
						|
  case OO_AmpEqual: return BO_AndAssign;
 | 
						|
  case OO_PipeEqual: return BO_OrAssign;
 | 
						|
  case OO_LessLess: return BO_Shl;
 | 
						|
  case OO_GreaterGreater: return BO_Shr;
 | 
						|
  case OO_LessLessEqual: return BO_ShlAssign;
 | 
						|
  case OO_GreaterGreaterEqual: return BO_ShrAssign;
 | 
						|
  case OO_EqualEqual: return BO_EQ;
 | 
						|
  case OO_ExclaimEqual: return BO_NE;
 | 
						|
  case OO_LessEqual: return BO_LE;
 | 
						|
  case OO_GreaterEqual: return BO_GE;
 | 
						|
  case OO_AmpAmp: return BO_LAnd;
 | 
						|
  case OO_PipePipe: return BO_LOr;
 | 
						|
  case OO_Comma: return BO_Comma;
 | 
						|
  case OO_ArrowStar: return BO_PtrMemI;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
 | 
						|
  static const OverloadedOperatorKind OverOps[] = {
 | 
						|
    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
 | 
						|
    OO_Star, OO_Slash, OO_Percent,
 | 
						|
    OO_Plus, OO_Minus,
 | 
						|
    OO_LessLess, OO_GreaterGreater,
 | 
						|
    OO_Spaceship,
 | 
						|
    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
 | 
						|
    OO_EqualEqual, OO_ExclaimEqual,
 | 
						|
    OO_Amp,
 | 
						|
    OO_Caret,
 | 
						|
    OO_Pipe,
 | 
						|
    OO_AmpAmp,
 | 
						|
    OO_PipePipe,
 | 
						|
    OO_Equal, OO_StarEqual,
 | 
						|
    OO_SlashEqual, OO_PercentEqual,
 | 
						|
    OO_PlusEqual, OO_MinusEqual,
 | 
						|
    OO_LessLessEqual, OO_GreaterGreaterEqual,
 | 
						|
    OO_AmpEqual, OO_CaretEqual,
 | 
						|
    OO_PipeEqual,
 | 
						|
    OO_Comma
 | 
						|
  };
 | 
						|
  return OverOps[Opc];
 | 
						|
}
 | 
						|
 | 
						|
bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
 | 
						|
                                                      Opcode Opc,
 | 
						|
                                                      Expr *LHS, Expr *RHS) {
 | 
						|
  if (Opc != BO_Add)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that we have one pointer and one integer operand.
 | 
						|
  Expr *PExp;
 | 
						|
  if (LHS->getType()->isPointerType()) {
 | 
						|
    if (!RHS->getType()->isIntegerType())
 | 
						|
      return false;
 | 
						|
    PExp = LHS;
 | 
						|
  } else if (RHS->getType()->isPointerType()) {
 | 
						|
    if (!LHS->getType()->isIntegerType())
 | 
						|
      return false;
 | 
						|
    PExp = RHS;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the pointer is a nullptr.
 | 
						|
  if (!PExp->IgnoreParenCasts()
 | 
						|
          ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the pointee type is char-sized.
 | 
						|
  const PointerType *PTy = PExp->getType()->getAs<PointerType>();
 | 
						|
  if (!PTy || !PTy->getPointeeType()->isCharType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
 | 
						|
                                            SourceLocExpr::IdentKind Kind) {
 | 
						|
  switch (Kind) {
 | 
						|
  case SourceLocExpr::File:
 | 
						|
  case SourceLocExpr::Function: {
 | 
						|
    QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
 | 
						|
    return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
 | 
						|
  }
 | 
						|
  case SourceLocExpr::Line:
 | 
						|
  case SourceLocExpr::Column:
 | 
						|
    return Ctx.UnsignedIntTy;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unhandled case");
 | 
						|
}
 | 
						|
 | 
						|
SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
 | 
						|
                             SourceLocation BLoc, SourceLocation RParenLoc,
 | 
						|
                             DeclContext *ParentContext)
 | 
						|
    : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
 | 
						|
           VK_RValue, OK_Ordinary, false, false, false, false),
 | 
						|
      BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
 | 
						|
  SourceLocExprBits.Kind = Kind;
 | 
						|
}
 | 
						|
 | 
						|
StringRef SourceLocExpr::getBuiltinStr() const {
 | 
						|
  switch (getIdentKind()) {
 | 
						|
  case File:
 | 
						|
    return "__builtin_FILE";
 | 
						|
  case Function:
 | 
						|
    return "__builtin_FUNCTION";
 | 
						|
  case Line:
 | 
						|
    return "__builtin_LINE";
 | 
						|
  case Column:
 | 
						|
    return "__builtin_COLUMN";
 | 
						|
  }
 | 
						|
  llvm_unreachable("unexpected IdentKind!");
 | 
						|
}
 | 
						|
 | 
						|
APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
 | 
						|
                                         const Expr *DefaultExpr) const {
 | 
						|
  SourceLocation Loc;
 | 
						|
  const DeclContext *Context;
 | 
						|
 | 
						|
  std::tie(Loc,
 | 
						|
           Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
 | 
						|
    if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
 | 
						|
      return {DIE->getUsedLocation(), DIE->getUsedContext()};
 | 
						|
    if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
 | 
						|
      return {DAE->getUsedLocation(), DAE->getUsedContext()};
 | 
						|
    return {this->getLocation(), this->getParentContext()};
 | 
						|
  }();
 | 
						|
 | 
						|
  PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
 | 
						|
      Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
 | 
						|
 | 
						|
  auto MakeStringLiteral = [&](StringRef Tmp) {
 | 
						|
    using LValuePathEntry = APValue::LValuePathEntry;
 | 
						|
    StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
 | 
						|
    // Decay the string to a pointer to the first character.
 | 
						|
    LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
 | 
						|
    return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
 | 
						|
  };
 | 
						|
 | 
						|
  switch (getIdentKind()) {
 | 
						|
  case SourceLocExpr::File:
 | 
						|
    return MakeStringLiteral(PLoc.getFilename());
 | 
						|
  case SourceLocExpr::Function: {
 | 
						|
    const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
 | 
						|
    return MakeStringLiteral(
 | 
						|
        CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
 | 
						|
                : std::string(""));
 | 
						|
  }
 | 
						|
  case SourceLocExpr::Line:
 | 
						|
  case SourceLocExpr::Column: {
 | 
						|
    llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
 | 
						|
                        /*isUnsigned=*/true);
 | 
						|
    IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
 | 
						|
                                                   : PLoc.getColumn();
 | 
						|
    return APValue(IntVal);
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("unhandled case");
 | 
						|
}
 | 
						|
 | 
						|
InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
 | 
						|
                           ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
 | 
						|
  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
 | 
						|
         false, false),
 | 
						|
    InitExprs(C, initExprs.size()),
 | 
						|
    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
 | 
						|
{
 | 
						|
  sawArrayRangeDesignator(false);
 | 
						|
  for (unsigned I = 0; I != initExprs.size(); ++I)
 | 
						|
    addDependence(initExprs[I]->getDependence());
 | 
						|
 | 
						|
  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
 | 
						|
}
 | 
						|
 | 
						|
void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
 | 
						|
  if (NumInits > InitExprs.size())
 | 
						|
    InitExprs.reserve(C, NumInits);
 | 
						|
}
 | 
						|
 | 
						|
void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
 | 
						|
  InitExprs.resize(C, NumInits, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
 | 
						|
  if (Init >= InitExprs.size()) {
 | 
						|
    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
 | 
						|
    setInit(Init, expr);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
 | 
						|
  setInit(Init, expr);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void InitListExpr::setArrayFiller(Expr *filler) {
 | 
						|
  assert(!hasArrayFiller() && "Filler already set!");
 | 
						|
  ArrayFillerOrUnionFieldInit = filler;
 | 
						|
  // Fill out any "holes" in the array due to designated initializers.
 | 
						|
  Expr **inits = getInits();
 | 
						|
  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
 | 
						|
    if (inits[i] == nullptr)
 | 
						|
      inits[i] = filler;
 | 
						|
}
 | 
						|
 | 
						|
bool InitListExpr::isStringLiteralInit() const {
 | 
						|
  if (getNumInits() != 1)
 | 
						|
    return false;
 | 
						|
  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
 | 
						|
  if (!AT || !AT->getElementType()->isIntegerType())
 | 
						|
    return false;
 | 
						|
  // It is possible for getInit() to return null.
 | 
						|
  const Expr *Init = getInit(0);
 | 
						|
  if (!Init)
 | 
						|
    return false;
 | 
						|
  Init = Init->IgnoreParens();
 | 
						|
  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
 | 
						|
}
 | 
						|
 | 
						|
bool InitListExpr::isTransparent() const {
 | 
						|
  assert(isSemanticForm() && "syntactic form never semantically transparent");
 | 
						|
 | 
						|
  // A glvalue InitListExpr is always just sugar.
 | 
						|
  if (isGLValue()) {
 | 
						|
    assert(getNumInits() == 1 && "multiple inits in glvalue init list");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we're sugar if and only if we have exactly one initializer that
 | 
						|
  // is of the same type.
 | 
						|
  if (getNumInits() != 1 || !getInit(0))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't confuse aggregate initialization of a struct X { X &x; }; with a
 | 
						|
  // transparent struct copy.
 | 
						|
  if (!getInit(0)->isRValue() && getType()->isRecordType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return getType().getCanonicalType() ==
 | 
						|
         getInit(0)->getType().getCanonicalType();
 | 
						|
}
 | 
						|
 | 
						|
bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
 | 
						|
  assert(isSyntacticForm() && "only test syntactic form as zero initializer");
 | 
						|
 | 
						|
  if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
 | 
						|
  return Lit && Lit->getValue() == 0;
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation InitListExpr::getBeginLoc() const {
 | 
						|
  if (InitListExpr *SyntacticForm = getSyntacticForm())
 | 
						|
    return SyntacticForm->getBeginLoc();
 | 
						|
  SourceLocation Beg = LBraceLoc;
 | 
						|
  if (Beg.isInvalid()) {
 | 
						|
    // Find the first non-null initializer.
 | 
						|
    for (InitExprsTy::const_iterator I = InitExprs.begin(),
 | 
						|
                                     E = InitExprs.end();
 | 
						|
      I != E; ++I) {
 | 
						|
      if (Stmt *S = *I) {
 | 
						|
        Beg = S->getBeginLoc();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Beg;
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation InitListExpr::getEndLoc() const {
 | 
						|
  if (InitListExpr *SyntacticForm = getSyntacticForm())
 | 
						|
    return SyntacticForm->getEndLoc();
 | 
						|
  SourceLocation End = RBraceLoc;
 | 
						|
  if (End.isInvalid()) {
 | 
						|
    // Find the first non-null initializer from the end.
 | 
						|
    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
 | 
						|
         E = InitExprs.rend();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (Stmt *S = *I) {
 | 
						|
        End = S->getEndLoc();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return End;
 | 
						|
}
 | 
						|
 | 
						|
/// getFunctionType - Return the underlying function type for this block.
 | 
						|
///
 | 
						|
const FunctionProtoType *BlockExpr::getFunctionType() const {
 | 
						|
  // The block pointer is never sugared, but the function type might be.
 | 
						|
  return cast<BlockPointerType>(getType())
 | 
						|
           ->getPointeeType()->castAs<FunctionProtoType>();
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation BlockExpr::getCaretLocation() const {
 | 
						|
  return TheBlock->getCaretLocation();
 | 
						|
}
 | 
						|
const Stmt *BlockExpr::getBody() const {
 | 
						|
  return TheBlock->getBody();
 | 
						|
}
 | 
						|
Stmt *BlockExpr::getBody() {
 | 
						|
  return TheBlock->getBody();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Generic Expression Routines
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isUnusedResultAWarning - Return true if this immediate expression should
 | 
						|
/// be warned about if the result is unused.  If so, fill in Loc and Ranges
 | 
						|
/// with location to warn on and the source range[s] to report with the
 | 
						|
/// warning.
 | 
						|
bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
 | 
						|
                                  SourceRange &R1, SourceRange &R2,
 | 
						|
                                  ASTContext &Ctx) const {
 | 
						|
  // Don't warn if the expr is type dependent. The type could end up
 | 
						|
  // instantiating to void.
 | 
						|
  if (isTypeDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (getStmtClass()) {
 | 
						|
  default:
 | 
						|
    if (getType()->isVoidType())
 | 
						|
      return false;
 | 
						|
    WarnE = this;
 | 
						|
    Loc = getExprLoc();
 | 
						|
    R1 = getSourceRange();
 | 
						|
    return true;
 | 
						|
  case ParenExprClass:
 | 
						|
    return cast<ParenExpr>(this)->getSubExpr()->
 | 
						|
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
  case GenericSelectionExprClass:
 | 
						|
    return cast<GenericSelectionExpr>(this)->getResultExpr()->
 | 
						|
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
  case CoawaitExprClass:
 | 
						|
  case CoyieldExprClass:
 | 
						|
    return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
 | 
						|
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
  case ChooseExprClass:
 | 
						|
    return cast<ChooseExpr>(this)->getChosenSubExpr()->
 | 
						|
      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
  case UnaryOperatorClass: {
 | 
						|
    const UnaryOperator *UO = cast<UnaryOperator>(this);
 | 
						|
 | 
						|
    switch (UO->getOpcode()) {
 | 
						|
    case UO_Plus:
 | 
						|
    case UO_Minus:
 | 
						|
    case UO_AddrOf:
 | 
						|
    case UO_Not:
 | 
						|
    case UO_LNot:
 | 
						|
    case UO_Deref:
 | 
						|
      break;
 | 
						|
    case UO_Coawait:
 | 
						|
      // This is just the 'operator co_await' call inside the guts of a
 | 
						|
      // dependent co_await call.
 | 
						|
    case UO_PostInc:
 | 
						|
    case UO_PostDec:
 | 
						|
    case UO_PreInc:
 | 
						|
    case UO_PreDec:                 // ++/--
 | 
						|
      return false;  // Not a warning.
 | 
						|
    case UO_Real:
 | 
						|
    case UO_Imag:
 | 
						|
      // accessing a piece of a volatile complex is a side-effect.
 | 
						|
      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
 | 
						|
          .isVolatileQualified())
 | 
						|
        return false;
 | 
						|
      break;
 | 
						|
    case UO_Extension:
 | 
						|
      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
    }
 | 
						|
    WarnE = this;
 | 
						|
    Loc = UO->getOperatorLoc();
 | 
						|
    R1 = UO->getSubExpr()->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case BinaryOperatorClass: {
 | 
						|
    const BinaryOperator *BO = cast<BinaryOperator>(this);
 | 
						|
    switch (BO->getOpcode()) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      // Consider the RHS of comma for side effects. LHS was checked by
 | 
						|
      // Sema::CheckCommaOperands.
 | 
						|
      case BO_Comma:
 | 
						|
        // ((foo = <blah>), 0) is an idiom for hiding the result (and
 | 
						|
        // lvalue-ness) of an assignment written in a macro.
 | 
						|
        if (IntegerLiteral *IE =
 | 
						|
              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
 | 
						|
          if (IE->getValue() == 0)
 | 
						|
            return false;
 | 
						|
        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
      // Consider '||', '&&' to have side effects if the LHS or RHS does.
 | 
						|
      case BO_LAnd:
 | 
						|
      case BO_LOr:
 | 
						|
        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
 | 
						|
            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
 | 
						|
          return false;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    if (BO->isAssignmentOp())
 | 
						|
      return false;
 | 
						|
    WarnE = this;
 | 
						|
    Loc = BO->getOperatorLoc();
 | 
						|
    R1 = BO->getLHS()->getSourceRange();
 | 
						|
    R2 = BO->getRHS()->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case CompoundAssignOperatorClass:
 | 
						|
  case VAArgExprClass:
 | 
						|
  case AtomicExprClass:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case ConditionalOperatorClass: {
 | 
						|
    // If only one of the LHS or RHS is a warning, the operator might
 | 
						|
    // be being used for control flow. Only warn if both the LHS and
 | 
						|
    // RHS are warnings.
 | 
						|
    const auto *Exp = cast<ConditionalOperator>(this);
 | 
						|
    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
 | 
						|
           Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
  }
 | 
						|
  case BinaryConditionalOperatorClass: {
 | 
						|
    const auto *Exp = cast<BinaryConditionalOperator>(this);
 | 
						|
    return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
  }
 | 
						|
 | 
						|
  case MemberExprClass:
 | 
						|
    WarnE = this;
 | 
						|
    Loc = cast<MemberExpr>(this)->getMemberLoc();
 | 
						|
    R1 = SourceRange(Loc, Loc);
 | 
						|
    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
 | 
						|
    return true;
 | 
						|
 | 
						|
  case ArraySubscriptExprClass:
 | 
						|
    WarnE = this;
 | 
						|
    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
 | 
						|
    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
 | 
						|
    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
 | 
						|
    return true;
 | 
						|
 | 
						|
  case CXXOperatorCallExprClass: {
 | 
						|
    // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
 | 
						|
    // overloads as there is no reasonable way to define these such that they
 | 
						|
    // have non-trivial, desirable side-effects. See the -Wunused-comparison
 | 
						|
    // warning: operators == and != are commonly typo'ed, and so warning on them
 | 
						|
    // provides additional value as well. If this list is updated,
 | 
						|
    // DiagnoseUnusedComparison should be as well.
 | 
						|
    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
 | 
						|
    switch (Op->getOperator()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case OO_EqualEqual:
 | 
						|
    case OO_ExclaimEqual:
 | 
						|
    case OO_Less:
 | 
						|
    case OO_Greater:
 | 
						|
    case OO_GreaterEqual:
 | 
						|
    case OO_LessEqual:
 | 
						|
      if (Op->getCallReturnType(Ctx)->isReferenceType() ||
 | 
						|
          Op->getCallReturnType(Ctx)->isVoidType())
 | 
						|
        break;
 | 
						|
      WarnE = this;
 | 
						|
      Loc = Op->getOperatorLoc();
 | 
						|
      R1 = Op->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Fallthrough for generic call handling.
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  }
 | 
						|
  case CallExprClass:
 | 
						|
  case CXXMemberCallExprClass:
 | 
						|
  case UserDefinedLiteralClass: {
 | 
						|
    // If this is a direct call, get the callee.
 | 
						|
    const CallExpr *CE = cast<CallExpr>(this);
 | 
						|
    if (const Decl *FD = CE->getCalleeDecl()) {
 | 
						|
      // If the callee has attribute pure, const, or warn_unused_result, warn
 | 
						|
      // about it. void foo() { strlen("bar"); } should warn.
 | 
						|
      //
 | 
						|
      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
 | 
						|
      // updated to match for QoI.
 | 
						|
      if (CE->hasUnusedResultAttr(Ctx) ||
 | 
						|
          FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
 | 
						|
        WarnE = this;
 | 
						|
        Loc = CE->getCallee()->getBeginLoc();
 | 
						|
        R1 = CE->getCallee()->getSourceRange();
 | 
						|
 | 
						|
        if (unsigned NumArgs = CE->getNumArgs())
 | 
						|
          R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
 | 
						|
                           CE->getArg(NumArgs - 1)->getEndLoc());
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we don't know precisely what we're looking at, let's not warn.
 | 
						|
  case UnresolvedLookupExprClass:
 | 
						|
  case CXXUnresolvedConstructExprClass:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case CXXTemporaryObjectExprClass:
 | 
						|
  case CXXConstructExprClass: {
 | 
						|
    if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
 | 
						|
      const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
 | 
						|
      if (Type->hasAttr<WarnUnusedAttr>() ||
 | 
						|
          (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
 | 
						|
        WarnE = this;
 | 
						|
        Loc = getBeginLoc();
 | 
						|
        R1 = getSourceRange();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    const auto *CE = cast<CXXConstructExpr>(this);
 | 
						|
    if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
 | 
						|
      const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
 | 
						|
      if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
 | 
						|
        WarnE = this;
 | 
						|
        Loc = getBeginLoc();
 | 
						|
        R1 = getSourceRange();
 | 
						|
 | 
						|
        if (unsigned NumArgs = CE->getNumArgs())
 | 
						|
          R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
 | 
						|
                           CE->getArg(NumArgs - 1)->getEndLoc());
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  case ObjCMessageExprClass: {
 | 
						|
    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
 | 
						|
    if (Ctx.getLangOpts().ObjCAutoRefCount &&
 | 
						|
        ME->isInstanceMessage() &&
 | 
						|
        !ME->getType()->isVoidType() &&
 | 
						|
        ME->getMethodFamily() == OMF_init) {
 | 
						|
      WarnE = this;
 | 
						|
      Loc = getExprLoc();
 | 
						|
      R1 = ME->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const ObjCMethodDecl *MD = ME->getMethodDecl())
 | 
						|
      if (MD->hasAttr<WarnUnusedResultAttr>()) {
 | 
						|
        WarnE = this;
 | 
						|
        Loc = getExprLoc();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  case ObjCPropertyRefExprClass:
 | 
						|
    WarnE = this;
 | 
						|
    Loc = getExprLoc();
 | 
						|
    R1 = getSourceRange();
 | 
						|
    return true;
 | 
						|
 | 
						|
  case PseudoObjectExprClass: {
 | 
						|
    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
 | 
						|
 | 
						|
    // Only complain about things that have the form of a getter.
 | 
						|
    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
 | 
						|
        isa<BinaryOperator>(PO->getSyntacticForm()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    WarnE = this;
 | 
						|
    Loc = getExprLoc();
 | 
						|
    R1 = getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case StmtExprClass: {
 | 
						|
    // Statement exprs don't logically have side effects themselves, but are
 | 
						|
    // sometimes used in macros in ways that give them a type that is unused.
 | 
						|
    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
 | 
						|
    // however, if the result of the stmt expr is dead, we don't want to emit a
 | 
						|
    // warning.
 | 
						|
    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
 | 
						|
    if (!CS->body_empty()) {
 | 
						|
      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
 | 
						|
        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
 | 
						|
        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
 | 
						|
          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
    }
 | 
						|
 | 
						|
    if (getType()->isVoidType())
 | 
						|
      return false;
 | 
						|
    WarnE = this;
 | 
						|
    Loc = cast<StmtExpr>(this)->getLParenLoc();
 | 
						|
    R1 = getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case CXXFunctionalCastExprClass:
 | 
						|
  case CStyleCastExprClass: {
 | 
						|
    // Ignore an explicit cast to void unless the operand is a non-trivial
 | 
						|
    // volatile lvalue.
 | 
						|
    const CastExpr *CE = cast<CastExpr>(this);
 | 
						|
    if (CE->getCastKind() == CK_ToVoid) {
 | 
						|
      if (CE->getSubExpr()->isGLValue() &&
 | 
						|
          CE->getSubExpr()->getType().isVolatileQualified()) {
 | 
						|
        const DeclRefExpr *DRE =
 | 
						|
            dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
 | 
						|
        if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
 | 
						|
              cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
 | 
						|
            !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
 | 
						|
          return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
 | 
						|
                                                          R1, R2, Ctx);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a cast to a constructor conversion, check the operand.
 | 
						|
    // Otherwise, the result of the cast is unused.
 | 
						|
    if (CE->getCastKind() == CK_ConstructorConversion)
 | 
						|
      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
 | 
						|
    WarnE = this;
 | 
						|
    if (const CXXFunctionalCastExpr *CXXCE =
 | 
						|
            dyn_cast<CXXFunctionalCastExpr>(this)) {
 | 
						|
      Loc = CXXCE->getBeginLoc();
 | 
						|
      R1 = CXXCE->getSubExpr()->getSourceRange();
 | 
						|
    } else {
 | 
						|
      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
 | 
						|
      Loc = CStyleCE->getLParenLoc();
 | 
						|
      R1 = CStyleCE->getSubExpr()->getSourceRange();
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case ImplicitCastExprClass: {
 | 
						|
    const CastExpr *ICE = cast<ImplicitCastExpr>(this);
 | 
						|
 | 
						|
    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
 | 
						|
    if (ICE->getCastKind() == CK_LValueToRValue &&
 | 
						|
        ICE->getSubExpr()->getType().isVolatileQualified())
 | 
						|
      return false;
 | 
						|
 | 
						|
    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
  }
 | 
						|
  case CXXDefaultArgExprClass:
 | 
						|
    return (cast<CXXDefaultArgExpr>(this)
 | 
						|
            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
 | 
						|
  case CXXDefaultInitExprClass:
 | 
						|
    return (cast<CXXDefaultInitExpr>(this)
 | 
						|
            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
 | 
						|
 | 
						|
  case CXXNewExprClass:
 | 
						|
    // FIXME: In theory, there might be new expressions that don't have side
 | 
						|
    // effects (e.g. a placement new with an uninitialized POD).
 | 
						|
  case CXXDeleteExprClass:
 | 
						|
    return false;
 | 
						|
  case MaterializeTemporaryExprClass:
 | 
						|
    return cast<MaterializeTemporaryExpr>(this)
 | 
						|
        ->getSubExpr()
 | 
						|
        ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
  case CXXBindTemporaryExprClass:
 | 
						|
    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
 | 
						|
               ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
  case ExprWithCleanupsClass:
 | 
						|
    return cast<ExprWithCleanups>(this)->getSubExpr()
 | 
						|
               ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isOBJCGCCandidate - Check if an expression is objc gc'able.
 | 
						|
/// returns true, if it is; false otherwise.
 | 
						|
bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
 | 
						|
  const Expr *E = IgnoreParens();
 | 
						|
  switch (E->getStmtClass()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case ObjCIvarRefExprClass:
 | 
						|
    return true;
 | 
						|
  case Expr::UnaryOperatorClass:
 | 
						|
    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
 | 
						|
  case ImplicitCastExprClass:
 | 
						|
    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
 | 
						|
  case MaterializeTemporaryExprClass:
 | 
						|
    return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
 | 
						|
        Ctx);
 | 
						|
  case CStyleCastExprClass:
 | 
						|
    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
 | 
						|
  case DeclRefExprClass: {
 | 
						|
    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
 | 
						|
 | 
						|
    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
      if (VD->hasGlobalStorage())
 | 
						|
        return true;
 | 
						|
      QualType T = VD->getType();
 | 
						|
      // dereferencing to a  pointer is always a gc'able candidate,
 | 
						|
      // unless it is __weak.
 | 
						|
      return T->isPointerType() &&
 | 
						|
             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case MemberExprClass: {
 | 
						|
    const MemberExpr *M = cast<MemberExpr>(E);
 | 
						|
    return M->getBase()->isOBJCGCCandidate(Ctx);
 | 
						|
  }
 | 
						|
  case ArraySubscriptExprClass:
 | 
						|
    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
 | 
						|
  if (isTypeDependent())
 | 
						|
    return false;
 | 
						|
  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
 | 
						|
}
 | 
						|
 | 
						|
QualType Expr::findBoundMemberType(const Expr *expr) {
 | 
						|
  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
 | 
						|
 | 
						|
  // Bound member expressions are always one of these possibilities:
 | 
						|
  //   x->m      x.m      x->*y      x.*y
 | 
						|
  // (possibly parenthesized)
 | 
						|
 | 
						|
  expr = expr->IgnoreParens();
 | 
						|
  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
 | 
						|
    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
 | 
						|
    return mem->getMemberDecl()->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
 | 
						|
    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
 | 
						|
                      ->getPointeeType();
 | 
						|
    assert(type->isFunctionType());
 | 
						|
    return type;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IgnoreImpCastsSingleStep(Expr *E) {
 | 
						|
  if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
 | 
						|
    return ICE->getSubExpr();
 | 
						|
 | 
						|
  if (auto *FE = dyn_cast<FullExpr>(E))
 | 
						|
    return FE->getSubExpr();
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) {
 | 
						|
  // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in
 | 
						|
  // addition to what IgnoreImpCasts() skips to account for the current
 | 
						|
  // behaviour of IgnoreParenImpCasts().
 | 
						|
  Expr *SubE = IgnoreImpCastsSingleStep(E);
 | 
						|
  if (SubE != E)
 | 
						|
    return SubE;
 | 
						|
 | 
						|
  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
 | 
						|
    return MTE->getSubExpr();
 | 
						|
 | 
						|
  if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
 | 
						|
    return NTTP->getReplacement();
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IgnoreCastsSingleStep(Expr *E) {
 | 
						|
  if (auto *CE = dyn_cast<CastExpr>(E))
 | 
						|
    return CE->getSubExpr();
 | 
						|
 | 
						|
  if (auto *FE = dyn_cast<FullExpr>(E))
 | 
						|
    return FE->getSubExpr();
 | 
						|
 | 
						|
  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
 | 
						|
    return MTE->getSubExpr();
 | 
						|
 | 
						|
  if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
 | 
						|
    return NTTP->getReplacement();
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IgnoreLValueCastsSingleStep(Expr *E) {
 | 
						|
  // Skip what IgnoreCastsSingleStep skips, except that only
 | 
						|
  // lvalue-to-rvalue casts are skipped.
 | 
						|
  if (auto *CE = dyn_cast<CastExpr>(E))
 | 
						|
    if (CE->getCastKind() != CK_LValueToRValue)
 | 
						|
      return E;
 | 
						|
 | 
						|
  return IgnoreCastsSingleStep(E);
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IgnoreBaseCastsSingleStep(Expr *E) {
 | 
						|
  if (auto *CE = dyn_cast<CastExpr>(E))
 | 
						|
    if (CE->getCastKind() == CK_DerivedToBase ||
 | 
						|
        CE->getCastKind() == CK_UncheckedDerivedToBase ||
 | 
						|
        CE->getCastKind() == CK_NoOp)
 | 
						|
      return CE->getSubExpr();
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IgnoreImplicitSingleStep(Expr *E) {
 | 
						|
  Expr *SubE = IgnoreImpCastsSingleStep(E);
 | 
						|
  if (SubE != E)
 | 
						|
    return SubE;
 | 
						|
 | 
						|
  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
 | 
						|
    return MTE->getSubExpr();
 | 
						|
 | 
						|
  if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
 | 
						|
    return BTE->getSubExpr();
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IgnoreImplicitAsWrittenSingleStep(Expr *E) {
 | 
						|
  if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
 | 
						|
    return ICE->getSubExprAsWritten();
 | 
						|
 | 
						|
  return IgnoreImplicitSingleStep(E);
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IgnoreParensOnlySingleStep(Expr *E) {
 | 
						|
  if (auto *PE = dyn_cast<ParenExpr>(E))
 | 
						|
    return PE->getSubExpr();
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IgnoreParensSingleStep(Expr *E) {
 | 
						|
  if (auto *PE = dyn_cast<ParenExpr>(E))
 | 
						|
    return PE->getSubExpr();
 | 
						|
 | 
						|
  if (auto *UO = dyn_cast<UnaryOperator>(E)) {
 | 
						|
    if (UO->getOpcode() == UO_Extension)
 | 
						|
      return UO->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
 | 
						|
    if (!GSE->isResultDependent())
 | 
						|
      return GSE->getResultExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  else if (auto *CE = dyn_cast<ChooseExpr>(E)) {
 | 
						|
    if (!CE->isConditionDependent())
 | 
						|
      return CE->getChosenSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  else if (auto *CE = dyn_cast<ConstantExpr>(E))
 | 
						|
    return CE->getSubExpr();
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) {
 | 
						|
  if (auto *CE = dyn_cast<CastExpr>(E)) {
 | 
						|
    // We ignore integer <-> casts that are of the same width, ptr<->ptr and
 | 
						|
    // ptr<->int casts of the same width. We also ignore all identity casts.
 | 
						|
    Expr *SubExpr = CE->getSubExpr();
 | 
						|
    bool IsIdentityCast =
 | 
						|
        Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
 | 
						|
    bool IsSameWidthCast =
 | 
						|
        (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) &&
 | 
						|
        (SubExpr->getType()->isPointerType() ||
 | 
						|
         SubExpr->getType()->isIntegralType(Ctx)) &&
 | 
						|
        (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType()));
 | 
						|
 | 
						|
    if (IsIdentityCast || IsSameWidthCast)
 | 
						|
      return SubExpr;
 | 
						|
  }
 | 
						|
 | 
						|
  else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
 | 
						|
    return NTTP->getReplacement();
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
static Expr *IgnoreExprNodesImpl(Expr *E) { return E; }
 | 
						|
template <typename FnTy, typename... FnTys>
 | 
						|
static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) {
 | 
						|
  return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...);
 | 
						|
}
 | 
						|
 | 
						|
/// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *,
 | 
						|
/// Recursively apply each of the functions to E until reaching a fixed point.
 | 
						|
/// Note that a null E is valid; in this case nothing is done.
 | 
						|
template <typename... FnTys>
 | 
						|
static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) {
 | 
						|
  Expr *LastE = nullptr;
 | 
						|
  while (E != LastE) {
 | 
						|
    LastE = E;
 | 
						|
    E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...);
 | 
						|
  }
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::IgnoreImpCasts() {
 | 
						|
  return IgnoreExprNodes(this, IgnoreImpCastsSingleStep);
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::IgnoreCasts() {
 | 
						|
  return IgnoreExprNodes(this, IgnoreCastsSingleStep);
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::IgnoreImplicit() {
 | 
						|
  return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::IgnoreImplicitAsWritten() {
 | 
						|
  return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::IgnoreParens() {
 | 
						|
  return IgnoreExprNodes(this, IgnoreParensSingleStep);
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::IgnoreParenImpCasts() {
 | 
						|
  return IgnoreExprNodes(this, IgnoreParensSingleStep,
 | 
						|
                         IgnoreImpCastsExtraSingleStep);
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::IgnoreParenCasts() {
 | 
						|
  return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::IgnoreConversionOperator() {
 | 
						|
  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
 | 
						|
    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
 | 
						|
      return MCE->getImplicitObjectArgument();
 | 
						|
  }
 | 
						|
  return this;
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::IgnoreParenLValueCasts() {
 | 
						|
  return IgnoreExprNodes(this, IgnoreParensSingleStep,
 | 
						|
                         IgnoreLValueCastsSingleStep);
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::ignoreParenBaseCasts() {
 | 
						|
  return IgnoreExprNodes(this, IgnoreParensSingleStep,
 | 
						|
                         IgnoreBaseCastsSingleStep);
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
 | 
						|
  return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) {
 | 
						|
    return IgnoreNoopCastsSingleStep(Ctx, E);
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
Expr *Expr::IgnoreUnlessSpelledInSource() {
 | 
						|
  Expr *E = this;
 | 
						|
 | 
						|
  Expr *LastE = nullptr;
 | 
						|
  while (E != LastE) {
 | 
						|
    LastE = E;
 | 
						|
    E = IgnoreExprNodes(E, IgnoreImplicitSingleStep, IgnoreImpCastsSingleStep,
 | 
						|
                        IgnoreParensOnlySingleStep);
 | 
						|
 | 
						|
    auto SR = E->getSourceRange();
 | 
						|
 | 
						|
    if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
 | 
						|
      if (C->getNumArgs() == 1) {
 | 
						|
        Expr *A = C->getArg(0);
 | 
						|
        if (A->getSourceRange() == SR || !isa<CXXTemporaryObjectExpr>(C))
 | 
						|
          E = A;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
 | 
						|
      Expr *ExprNode = C->getImplicitObjectArgument()->IgnoreParenImpCasts();
 | 
						|
      if (ExprNode->getSourceRange() == SR)
 | 
						|
        E = ExprNode;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isDefaultArgument() const {
 | 
						|
  const Expr *E = this;
 | 
						|
  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
 | 
						|
    E = M->getSubExpr();
 | 
						|
 | 
						|
  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
 | 
						|
    E = ICE->getSubExprAsWritten();
 | 
						|
 | 
						|
  return isa<CXXDefaultArgExpr>(E);
 | 
						|
}
 | 
						|
 | 
						|
/// Skip over any no-op casts and any temporary-binding
 | 
						|
/// expressions.
 | 
						|
static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
 | 
						|
  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
 | 
						|
    E = M->getSubExpr();
 | 
						|
 | 
						|
  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | 
						|
    if (ICE->getCastKind() == CK_NoOp)
 | 
						|
      E = ICE->getSubExpr();
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
 | 
						|
    E = BE->getSubExpr();
 | 
						|
 | 
						|
  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | 
						|
    if (ICE->getCastKind() == CK_NoOp)
 | 
						|
      E = ICE->getSubExpr();
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return E->IgnoreParens();
 | 
						|
}
 | 
						|
 | 
						|
/// isTemporaryObject - Determines if this expression produces a
 | 
						|
/// temporary of the given class type.
 | 
						|
bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
 | 
						|
  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
 | 
						|
 | 
						|
  // Temporaries are by definition pr-values of class type.
 | 
						|
  if (!E->Classify(C).isPRValue()) {
 | 
						|
    // In this context, property reference is a message call and is pr-value.
 | 
						|
    if (!isa<ObjCPropertyRefExpr>(E))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Black-list a few cases which yield pr-values of class type that don't
 | 
						|
  // refer to temporaries of that type:
 | 
						|
 | 
						|
  // - implicit derived-to-base conversions
 | 
						|
  if (isa<ImplicitCastExpr>(E)) {
 | 
						|
    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
 | 
						|
    case CK_DerivedToBase:
 | 
						|
    case CK_UncheckedDerivedToBase:
 | 
						|
      return false;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // - member expressions (all)
 | 
						|
  if (isa<MemberExpr>(E))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
 | 
						|
    if (BO->isPtrMemOp())
 | 
						|
      return false;
 | 
						|
 | 
						|
  // - opaque values (all)
 | 
						|
  if (isa<OpaqueValueExpr>(E))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isImplicitCXXThis() const {
 | 
						|
  const Expr *E = this;
 | 
						|
 | 
						|
  // Strip away parentheses and casts we don't care about.
 | 
						|
  while (true) {
 | 
						|
    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
 | 
						|
      E = Paren->getSubExpr();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | 
						|
      if (ICE->getCastKind() == CK_NoOp ||
 | 
						|
          ICE->getCastKind() == CK_LValueToRValue ||
 | 
						|
          ICE->getCastKind() == CK_DerivedToBase ||
 | 
						|
          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
 | 
						|
        E = ICE->getSubExpr();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
 | 
						|
      if (UnOp->getOpcode() == UO_Extension) {
 | 
						|
        E = UnOp->getSubExpr();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (const MaterializeTemporaryExpr *M
 | 
						|
                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
 | 
						|
      E = M->getSubExpr();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
 | 
						|
    return This->isImplicit();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// hasAnyTypeDependentArguments - Determines if any of the expressions
 | 
						|
/// in Exprs is type-dependent.
 | 
						|
bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
 | 
						|
  for (unsigned I = 0; I < Exprs.size(); ++I)
 | 
						|
    if (Exprs[I]->isTypeDependent())
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
 | 
						|
                                 const Expr **Culprit) const {
 | 
						|
  assert(!isValueDependent() &&
 | 
						|
         "Expression evaluator can't be called on a dependent expression.");
 | 
						|
 | 
						|
  // This function is attempting whether an expression is an initializer
 | 
						|
  // which can be evaluated at compile-time. It very closely parallels
 | 
						|
  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
 | 
						|
  // will lead to unexpected results.  Like ConstExprEmitter, it falls back
 | 
						|
  // to isEvaluatable most of the time.
 | 
						|
  //
 | 
						|
  // If we ever capture reference-binding directly in the AST, we can
 | 
						|
  // kill the second parameter.
 | 
						|
 | 
						|
  if (IsForRef) {
 | 
						|
    EvalResult Result;
 | 
						|
    if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
 | 
						|
      return true;
 | 
						|
    if (Culprit)
 | 
						|
      *Culprit = this;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (getStmtClass()) {
 | 
						|
  default: break;
 | 
						|
  case StringLiteralClass:
 | 
						|
  case ObjCEncodeExprClass:
 | 
						|
    return true;
 | 
						|
  case CXXTemporaryObjectExprClass:
 | 
						|
  case CXXConstructExprClass: {
 | 
						|
    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
 | 
						|
 | 
						|
    if (CE->getConstructor()->isTrivial() &&
 | 
						|
        CE->getConstructor()->getParent()->hasTrivialDestructor()) {
 | 
						|
      // Trivial default constructor
 | 
						|
      if (!CE->getNumArgs()) return true;
 | 
						|
 | 
						|
      // Trivial copy constructor
 | 
						|
      assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
 | 
						|
      return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ConstantExprClass: {
 | 
						|
    // FIXME: We should be able to return "true" here, but it can lead to extra
 | 
						|
    // error messages. E.g. in Sema/array-init.c.
 | 
						|
    const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
 | 
						|
    return Exp->isConstantInitializer(Ctx, false, Culprit);
 | 
						|
  }
 | 
						|
  case CompoundLiteralExprClass: {
 | 
						|
    // This handles gcc's extension that allows global initializers like
 | 
						|
    // "struct x {int x;} x = (struct x) {};".
 | 
						|
    // FIXME: This accepts other cases it shouldn't!
 | 
						|
    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
 | 
						|
    return Exp->isConstantInitializer(Ctx, false, Culprit);
 | 
						|
  }
 | 
						|
  case DesignatedInitUpdateExprClass: {
 | 
						|
    const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
 | 
						|
    return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
 | 
						|
           DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
 | 
						|
  }
 | 
						|
  case InitListExprClass: {
 | 
						|
    const InitListExpr *ILE = cast<InitListExpr>(this);
 | 
						|
    assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
 | 
						|
    if (ILE->getType()->isArrayType()) {
 | 
						|
      unsigned numInits = ILE->getNumInits();
 | 
						|
      for (unsigned i = 0; i < numInits; i++) {
 | 
						|
        if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ILE->getType()->isRecordType()) {
 | 
						|
      unsigned ElementNo = 0;
 | 
						|
      RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
 | 
						|
      for (const auto *Field : RD->fields()) {
 | 
						|
        // If this is a union, skip all the fields that aren't being initialized.
 | 
						|
        if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Don't emit anonymous bitfields, they just affect layout.
 | 
						|
        if (Field->isUnnamedBitfield())
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (ElementNo < ILE->getNumInits()) {
 | 
						|
          const Expr *Elt = ILE->getInit(ElementNo++);
 | 
						|
          if (Field->isBitField()) {
 | 
						|
            // Bitfields have to evaluate to an integer.
 | 
						|
            EvalResult Result;
 | 
						|
            if (!Elt->EvaluateAsInt(Result, Ctx)) {
 | 
						|
              if (Culprit)
 | 
						|
                *Culprit = Elt;
 | 
						|
              return false;
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            bool RefType = Field->getType()->isReferenceType();
 | 
						|
            if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ImplicitValueInitExprClass:
 | 
						|
  case NoInitExprClass:
 | 
						|
    return true;
 | 
						|
  case ParenExprClass:
 | 
						|
    return cast<ParenExpr>(this)->getSubExpr()
 | 
						|
      ->isConstantInitializer(Ctx, IsForRef, Culprit);
 | 
						|
  case GenericSelectionExprClass:
 | 
						|
    return cast<GenericSelectionExpr>(this)->getResultExpr()
 | 
						|
      ->isConstantInitializer(Ctx, IsForRef, Culprit);
 | 
						|
  case ChooseExprClass:
 | 
						|
    if (cast<ChooseExpr>(this)->isConditionDependent()) {
 | 
						|
      if (Culprit)
 | 
						|
        *Culprit = this;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return cast<ChooseExpr>(this)->getChosenSubExpr()
 | 
						|
      ->isConstantInitializer(Ctx, IsForRef, Culprit);
 | 
						|
  case UnaryOperatorClass: {
 | 
						|
    const UnaryOperator* Exp = cast<UnaryOperator>(this);
 | 
						|
    if (Exp->getOpcode() == UO_Extension)
 | 
						|
      return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case CXXFunctionalCastExprClass:
 | 
						|
  case CXXStaticCastExprClass:
 | 
						|
  case ImplicitCastExprClass:
 | 
						|
  case CStyleCastExprClass:
 | 
						|
  case ObjCBridgedCastExprClass:
 | 
						|
  case CXXDynamicCastExprClass:
 | 
						|
  case CXXReinterpretCastExprClass:
 | 
						|
  case CXXConstCastExprClass: {
 | 
						|
    const CastExpr *CE = cast<CastExpr>(this);
 | 
						|
 | 
						|
    // Handle misc casts we want to ignore.
 | 
						|
    if (CE->getCastKind() == CK_NoOp ||
 | 
						|
        CE->getCastKind() == CK_LValueToRValue ||
 | 
						|
        CE->getCastKind() == CK_ToUnion ||
 | 
						|
        CE->getCastKind() == CK_ConstructorConversion ||
 | 
						|
        CE->getCastKind() == CK_NonAtomicToAtomic ||
 | 
						|
        CE->getCastKind() == CK_AtomicToNonAtomic ||
 | 
						|
        CE->getCastKind() == CK_IntToOCLSampler)
 | 
						|
      return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MaterializeTemporaryExprClass:
 | 
						|
    return cast<MaterializeTemporaryExpr>(this)
 | 
						|
        ->getSubExpr()
 | 
						|
        ->isConstantInitializer(Ctx, false, Culprit);
 | 
						|
 | 
						|
  case SubstNonTypeTemplateParmExprClass:
 | 
						|
    return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
 | 
						|
      ->isConstantInitializer(Ctx, false, Culprit);
 | 
						|
  case CXXDefaultArgExprClass:
 | 
						|
    return cast<CXXDefaultArgExpr>(this)->getExpr()
 | 
						|
      ->isConstantInitializer(Ctx, false, Culprit);
 | 
						|
  case CXXDefaultInitExprClass:
 | 
						|
    return cast<CXXDefaultInitExpr>(this)->getExpr()
 | 
						|
      ->isConstantInitializer(Ctx, false, Culprit);
 | 
						|
  }
 | 
						|
  // Allow certain forms of UB in constant initializers: signed integer
 | 
						|
  // overflow and floating-point division by zero. We'll give a warning on
 | 
						|
  // these, but they're common enough that we have to accept them.
 | 
						|
  if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
 | 
						|
    return true;
 | 
						|
  if (Culprit)
 | 
						|
    *Culprit = this;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
 | 
						|
  const FunctionDecl* FD = getDirectCallee();
 | 
						|
  if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
 | 
						|
              FD->getBuiltinID() != Builtin::BI__builtin_assume))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const Expr* Arg = getArg(0);
 | 
						|
  bool ArgVal;
 | 
						|
  return !Arg->isValueDependent() &&
 | 
						|
         Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// Look for any side effects within a Stmt.
 | 
						|
  class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
 | 
						|
    typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
 | 
						|
    const bool IncludePossibleEffects;
 | 
						|
    bool HasSideEffects;
 | 
						|
 | 
						|
  public:
 | 
						|
    explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
 | 
						|
      : Inherited(Context),
 | 
						|
        IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
 | 
						|
 | 
						|
    bool hasSideEffects() const { return HasSideEffects; }
 | 
						|
 | 
						|
    void VisitExpr(const Expr *E) {
 | 
						|
      if (!HasSideEffects &&
 | 
						|
          E->HasSideEffects(Context, IncludePossibleEffects))
 | 
						|
        HasSideEffects = true;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::HasSideEffects(const ASTContext &Ctx,
 | 
						|
                          bool IncludePossibleEffects) const {
 | 
						|
  // In circumstances where we care about definite side effects instead of
 | 
						|
  // potential side effects, we want to ignore expressions that are part of a
 | 
						|
  // macro expansion as a potential side effect.
 | 
						|
  if (!IncludePossibleEffects && getExprLoc().isMacroID())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isInstantiationDependent())
 | 
						|
    return IncludePossibleEffects;
 | 
						|
 | 
						|
  switch (getStmtClass()) {
 | 
						|
  case NoStmtClass:
 | 
						|
  #define ABSTRACT_STMT(Type)
 | 
						|
  #define STMT(Type, Base) case Type##Class:
 | 
						|
  #define EXPR(Type, Base)
 | 
						|
  #include "clang/AST/StmtNodes.inc"
 | 
						|
    llvm_unreachable("unexpected Expr kind");
 | 
						|
 | 
						|
  case DependentScopeDeclRefExprClass:
 | 
						|
  case CXXUnresolvedConstructExprClass:
 | 
						|
  case CXXDependentScopeMemberExprClass:
 | 
						|
  case UnresolvedLookupExprClass:
 | 
						|
  case UnresolvedMemberExprClass:
 | 
						|
  case PackExpansionExprClass:
 | 
						|
  case SubstNonTypeTemplateParmPackExprClass:
 | 
						|
  case FunctionParmPackExprClass:
 | 
						|
  case TypoExprClass:
 | 
						|
  case CXXFoldExprClass:
 | 
						|
    llvm_unreachable("shouldn't see dependent / unresolved nodes here");
 | 
						|
 | 
						|
  case DeclRefExprClass:
 | 
						|
  case ObjCIvarRefExprClass:
 | 
						|
  case PredefinedExprClass:
 | 
						|
  case IntegerLiteralClass:
 | 
						|
  case FixedPointLiteralClass:
 | 
						|
  case FloatingLiteralClass:
 | 
						|
  case ImaginaryLiteralClass:
 | 
						|
  case StringLiteralClass:
 | 
						|
  case CharacterLiteralClass:
 | 
						|
  case OffsetOfExprClass:
 | 
						|
  case ImplicitValueInitExprClass:
 | 
						|
  case UnaryExprOrTypeTraitExprClass:
 | 
						|
  case AddrLabelExprClass:
 | 
						|
  case GNUNullExprClass:
 | 
						|
  case ArrayInitIndexExprClass:
 | 
						|
  case NoInitExprClass:
 | 
						|
  case CXXBoolLiteralExprClass:
 | 
						|
  case CXXNullPtrLiteralExprClass:
 | 
						|
  case CXXThisExprClass:
 | 
						|
  case CXXScalarValueInitExprClass:
 | 
						|
  case TypeTraitExprClass:
 | 
						|
  case ArrayTypeTraitExprClass:
 | 
						|
  case ExpressionTraitExprClass:
 | 
						|
  case CXXNoexceptExprClass:
 | 
						|
  case SizeOfPackExprClass:
 | 
						|
  case ObjCStringLiteralClass:
 | 
						|
  case ObjCEncodeExprClass:
 | 
						|
  case ObjCBoolLiteralExprClass:
 | 
						|
  case ObjCAvailabilityCheckExprClass:
 | 
						|
  case CXXUuidofExprClass:
 | 
						|
  case OpaqueValueExprClass:
 | 
						|
  case SourceLocExprClass:
 | 
						|
  case ConceptSpecializationExprClass:
 | 
						|
  case RequiresExprClass:
 | 
						|
    // These never have a side-effect.
 | 
						|
    return false;
 | 
						|
 | 
						|
  case ConstantExprClass:
 | 
						|
    // FIXME: Move this into the "return false;" block above.
 | 
						|
    return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
 | 
						|
        Ctx, IncludePossibleEffects);
 | 
						|
 | 
						|
  case CallExprClass:
 | 
						|
  case CXXOperatorCallExprClass:
 | 
						|
  case CXXMemberCallExprClass:
 | 
						|
  case CUDAKernelCallExprClass:
 | 
						|
  case UserDefinedLiteralClass: {
 | 
						|
    // We don't know a call definitely has side effects, except for calls
 | 
						|
    // to pure/const functions that definitely don't.
 | 
						|
    // If the call itself is considered side-effect free, check the operands.
 | 
						|
    const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
 | 
						|
    bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
 | 
						|
    if (IsPure || !IncludePossibleEffects)
 | 
						|
      break;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case BlockExprClass:
 | 
						|
  case CXXBindTemporaryExprClass:
 | 
						|
    if (!IncludePossibleEffects)
 | 
						|
      break;
 | 
						|
    return true;
 | 
						|
 | 
						|
  case MSPropertyRefExprClass:
 | 
						|
  case MSPropertySubscriptExprClass:
 | 
						|
  case CompoundAssignOperatorClass:
 | 
						|
  case VAArgExprClass:
 | 
						|
  case AtomicExprClass:
 | 
						|
  case CXXThrowExprClass:
 | 
						|
  case CXXNewExprClass:
 | 
						|
  case CXXDeleteExprClass:
 | 
						|
  case CoawaitExprClass:
 | 
						|
  case DependentCoawaitExprClass:
 | 
						|
  case CoyieldExprClass:
 | 
						|
    // These always have a side-effect.
 | 
						|
    return true;
 | 
						|
 | 
						|
  case StmtExprClass: {
 | 
						|
    // StmtExprs have a side-effect if any substatement does.
 | 
						|
    SideEffectFinder Finder(Ctx, IncludePossibleEffects);
 | 
						|
    Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
 | 
						|
    return Finder.hasSideEffects();
 | 
						|
  }
 | 
						|
 | 
						|
  case ExprWithCleanupsClass:
 | 
						|
    if (IncludePossibleEffects)
 | 
						|
      if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
 | 
						|
        return true;
 | 
						|
    break;
 | 
						|
 | 
						|
  case ParenExprClass:
 | 
						|
  case ArraySubscriptExprClass:
 | 
						|
  case OMPArraySectionExprClass:
 | 
						|
  case MemberExprClass:
 | 
						|
  case ConditionalOperatorClass:
 | 
						|
  case BinaryConditionalOperatorClass:
 | 
						|
  case CompoundLiteralExprClass:
 | 
						|
  case ExtVectorElementExprClass:
 | 
						|
  case DesignatedInitExprClass:
 | 
						|
  case DesignatedInitUpdateExprClass:
 | 
						|
  case ArrayInitLoopExprClass:
 | 
						|
  case ParenListExprClass:
 | 
						|
  case CXXPseudoDestructorExprClass:
 | 
						|
  case CXXRewrittenBinaryOperatorClass:
 | 
						|
  case CXXStdInitializerListExprClass:
 | 
						|
  case SubstNonTypeTemplateParmExprClass:
 | 
						|
  case MaterializeTemporaryExprClass:
 | 
						|
  case ShuffleVectorExprClass:
 | 
						|
  case ConvertVectorExprClass:
 | 
						|
  case AsTypeExprClass:
 | 
						|
    // These have a side-effect if any subexpression does.
 | 
						|
    break;
 | 
						|
 | 
						|
  case UnaryOperatorClass:
 | 
						|
    if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
 | 
						|
  case BinaryOperatorClass:
 | 
						|
    if (cast<BinaryOperator>(this)->isAssignmentOp())
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
 | 
						|
  case InitListExprClass:
 | 
						|
    // FIXME: The children for an InitListExpr doesn't include the array filler.
 | 
						|
    if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
 | 
						|
      if (E->HasSideEffects(Ctx, IncludePossibleEffects))
 | 
						|
        return true;
 | 
						|
    break;
 | 
						|
 | 
						|
  case GenericSelectionExprClass:
 | 
						|
    return cast<GenericSelectionExpr>(this)->getResultExpr()->
 | 
						|
        HasSideEffects(Ctx, IncludePossibleEffects);
 | 
						|
 | 
						|
  case ChooseExprClass:
 | 
						|
    return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
 | 
						|
        Ctx, IncludePossibleEffects);
 | 
						|
 | 
						|
  case CXXDefaultArgExprClass:
 | 
						|
    return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
 | 
						|
        Ctx, IncludePossibleEffects);
 | 
						|
 | 
						|
  case CXXDefaultInitExprClass: {
 | 
						|
    const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
 | 
						|
    if (const Expr *E = FD->getInClassInitializer())
 | 
						|
      return E->HasSideEffects(Ctx, IncludePossibleEffects);
 | 
						|
    // If we've not yet parsed the initializer, assume it has side-effects.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case CXXDynamicCastExprClass: {
 | 
						|
    // A dynamic_cast expression has side-effects if it can throw.
 | 
						|
    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
 | 
						|
    if (DCE->getTypeAsWritten()->isReferenceType() &&
 | 
						|
        DCE->getCastKind() == CK_Dynamic)
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ImplicitCastExprClass:
 | 
						|
  case CStyleCastExprClass:
 | 
						|
  case CXXStaticCastExprClass:
 | 
						|
  case CXXReinterpretCastExprClass:
 | 
						|
  case CXXConstCastExprClass:
 | 
						|
  case CXXFunctionalCastExprClass:
 | 
						|
  case BuiltinBitCastExprClass: {
 | 
						|
    // While volatile reads are side-effecting in both C and C++, we treat them
 | 
						|
    // as having possible (not definite) side-effects. This allows idiomatic
 | 
						|
    // code to behave without warning, such as sizeof(*v) for a volatile-
 | 
						|
    // qualified pointer.
 | 
						|
    if (!IncludePossibleEffects)
 | 
						|
      break;
 | 
						|
 | 
						|
    const CastExpr *CE = cast<CastExpr>(this);
 | 
						|
    if (CE->getCastKind() == CK_LValueToRValue &&
 | 
						|
        CE->getSubExpr()->getType().isVolatileQualified())
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case CXXTypeidExprClass:
 | 
						|
    // typeid might throw if its subexpression is potentially-evaluated, so has
 | 
						|
    // side-effects in that case whether or not its subexpression does.
 | 
						|
    return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
 | 
						|
 | 
						|
  case CXXConstructExprClass:
 | 
						|
  case CXXTemporaryObjectExprClass: {
 | 
						|
    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
 | 
						|
    if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
 | 
						|
      return true;
 | 
						|
    // A trivial constructor does not add any side-effects of its own. Just look
 | 
						|
    // at its arguments.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case CXXInheritedCtorInitExprClass: {
 | 
						|
    const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
 | 
						|
    if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case LambdaExprClass: {
 | 
						|
    const LambdaExpr *LE = cast<LambdaExpr>(this);
 | 
						|
    for (Expr *E : LE->capture_inits())
 | 
						|
      if (E->HasSideEffects(Ctx, IncludePossibleEffects))
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  case PseudoObjectExprClass: {
 | 
						|
    // Only look for side-effects in the semantic form, and look past
 | 
						|
    // OpaqueValueExpr bindings in that form.
 | 
						|
    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
 | 
						|
    for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
 | 
						|
                                                    E = PO->semantics_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      const Expr *Subexpr = *I;
 | 
						|
      if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
 | 
						|
        Subexpr = OVE->getSourceExpr();
 | 
						|
      if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  case ObjCBoxedExprClass:
 | 
						|
  case ObjCArrayLiteralClass:
 | 
						|
  case ObjCDictionaryLiteralClass:
 | 
						|
  case ObjCSelectorExprClass:
 | 
						|
  case ObjCProtocolExprClass:
 | 
						|
  case ObjCIsaExprClass:
 | 
						|
  case ObjCIndirectCopyRestoreExprClass:
 | 
						|
  case ObjCSubscriptRefExprClass:
 | 
						|
  case ObjCBridgedCastExprClass:
 | 
						|
  case ObjCMessageExprClass:
 | 
						|
  case ObjCPropertyRefExprClass:
 | 
						|
  // FIXME: Classify these cases better.
 | 
						|
    if (IncludePossibleEffects)
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Recurse to children.
 | 
						|
  for (const Stmt *SubStmt : children())
 | 
						|
    if (SubStmt &&
 | 
						|
        cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// Look for a call to a non-trivial function within an expression.
 | 
						|
  class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
 | 
						|
  {
 | 
						|
    typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
 | 
						|
 | 
						|
    bool NonTrivial;
 | 
						|
 | 
						|
  public:
 | 
						|
    explicit NonTrivialCallFinder(const ASTContext &Context)
 | 
						|
      : Inherited(Context), NonTrivial(false) { }
 | 
						|
 | 
						|
    bool hasNonTrivialCall() const { return NonTrivial; }
 | 
						|
 | 
						|
    void VisitCallExpr(const CallExpr *E) {
 | 
						|
      if (const CXXMethodDecl *Method
 | 
						|
          = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
 | 
						|
        if (Method->isTrivial()) {
 | 
						|
          // Recurse to children of the call.
 | 
						|
          Inherited::VisitStmt(E);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      NonTrivial = true;
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitCXXConstructExpr(const CXXConstructExpr *E) {
 | 
						|
      if (E->getConstructor()->isTrivial()) {
 | 
						|
        // Recurse to children of the call.
 | 
						|
        Inherited::VisitStmt(E);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      NonTrivial = true;
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
 | 
						|
      if (E->getTemporary()->getDestructor()->isTrivial()) {
 | 
						|
        Inherited::VisitStmt(E);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      NonTrivial = true;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
 | 
						|
  NonTrivialCallFinder Finder(Ctx);
 | 
						|
  Finder.Visit(this);
 | 
						|
  return Finder.hasNonTrivialCall();
 | 
						|
}
 | 
						|
 | 
						|
/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
 | 
						|
/// pointer constant or not, as well as the specific kind of constant detected.
 | 
						|
/// Null pointer constants can be integer constant expressions with the
 | 
						|
/// value zero, casts of zero to void*, nullptr (C++0X), or __null
 | 
						|
/// (a GNU extension).
 | 
						|
Expr::NullPointerConstantKind
 | 
						|
Expr::isNullPointerConstant(ASTContext &Ctx,
 | 
						|
                            NullPointerConstantValueDependence NPC) const {
 | 
						|
  if (isValueDependent() &&
 | 
						|
      (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
 | 
						|
    switch (NPC) {
 | 
						|
    case NPC_NeverValueDependent:
 | 
						|
      llvm_unreachable("Unexpected value dependent expression!");
 | 
						|
    case NPC_ValueDependentIsNull:
 | 
						|
      if (isTypeDependent() || getType()->isIntegralType(Ctx))
 | 
						|
        return NPCK_ZeroExpression;
 | 
						|
      else
 | 
						|
        return NPCK_NotNull;
 | 
						|
 | 
						|
    case NPC_ValueDependentIsNotNull:
 | 
						|
      return NPCK_NotNull;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Strip off a cast to void*, if it exists. Except in C++.
 | 
						|
  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
 | 
						|
    if (!Ctx.getLangOpts().CPlusPlus) {
 | 
						|
      // Check that it is a cast to void*.
 | 
						|
      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
 | 
						|
        QualType Pointee = PT->getPointeeType();
 | 
						|
        Qualifiers Qs = Pointee.getQualifiers();
 | 
						|
        // Only (void*)0 or equivalent are treated as nullptr. If pointee type
 | 
						|
        // has non-default address space it is not treated as nullptr.
 | 
						|
        // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
 | 
						|
        // since it cannot be assigned to a pointer to constant address space.
 | 
						|
        if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
 | 
						|
             Pointee.getAddressSpace() == LangAS::opencl_generic) ||
 | 
						|
            (Ctx.getLangOpts().OpenCL &&
 | 
						|
             Ctx.getLangOpts().OpenCLVersion < 200 &&
 | 
						|
             Pointee.getAddressSpace() == LangAS::opencl_private))
 | 
						|
          Qs.removeAddressSpace();
 | 
						|
 | 
						|
        if (Pointee->isVoidType() && Qs.empty() && // to void*
 | 
						|
            CE->getSubExpr()->getType()->isIntegerType()) // from int
 | 
						|
          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
 | 
						|
    // Ignore the ImplicitCastExpr type entirely.
 | 
						|
    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
 | 
						|
  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
 | 
						|
    // Accept ((void*)0) as a null pointer constant, as many other
 | 
						|
    // implementations do.
 | 
						|
    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
 | 
						|
  } else if (const GenericSelectionExpr *GE =
 | 
						|
               dyn_cast<GenericSelectionExpr>(this)) {
 | 
						|
    if (GE->isResultDependent())
 | 
						|
      return NPCK_NotNull;
 | 
						|
    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
 | 
						|
  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
 | 
						|
    if (CE->isConditionDependent())
 | 
						|
      return NPCK_NotNull;
 | 
						|
    return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
 | 
						|
  } else if (const CXXDefaultArgExpr *DefaultArg
 | 
						|
               = dyn_cast<CXXDefaultArgExpr>(this)) {
 | 
						|
    // See through default argument expressions.
 | 
						|
    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
 | 
						|
  } else if (const CXXDefaultInitExpr *DefaultInit
 | 
						|
               = dyn_cast<CXXDefaultInitExpr>(this)) {
 | 
						|
    // See through default initializer expressions.
 | 
						|
    return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
 | 
						|
  } else if (isa<GNUNullExpr>(this)) {
 | 
						|
    // The GNU __null extension is always a null pointer constant.
 | 
						|
    return NPCK_GNUNull;
 | 
						|
  } else if (const MaterializeTemporaryExpr *M
 | 
						|
                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
 | 
						|
    return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
 | 
						|
  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
 | 
						|
    if (const Expr *Source = OVE->getSourceExpr())
 | 
						|
      return Source->isNullPointerConstant(Ctx, NPC);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 nullptr_t is always a null pointer constant.
 | 
						|
  if (getType()->isNullPtrType())
 | 
						|
    return NPCK_CXX11_nullptr;
 | 
						|
 | 
						|
  if (const RecordType *UT = getType()->getAsUnionType())
 | 
						|
    if (!Ctx.getLangOpts().CPlusPlus11 &&
 | 
						|
        UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
 | 
						|
      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
 | 
						|
        const Expr *InitExpr = CLE->getInitializer();
 | 
						|
        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
 | 
						|
          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
 | 
						|
      }
 | 
						|
  // This expression must be an integer type.
 | 
						|
  if (!getType()->isIntegerType() ||
 | 
						|
      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
 | 
						|
    return NPCK_NotNull;
 | 
						|
 | 
						|
  if (Ctx.getLangOpts().CPlusPlus11) {
 | 
						|
    // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
 | 
						|
    // value zero or a prvalue of type std::nullptr_t.
 | 
						|
    // Microsoft mode permits C++98 rules reflecting MSVC behavior.
 | 
						|
    const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
 | 
						|
    if (Lit && !Lit->getValue())
 | 
						|
      return NPCK_ZeroLiteral;
 | 
						|
    else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
 | 
						|
      return NPCK_NotNull;
 | 
						|
  } else {
 | 
						|
    // If we have an integer constant expression, we need to *evaluate* it and
 | 
						|
    // test for the value 0.
 | 
						|
    if (!isIntegerConstantExpr(Ctx))
 | 
						|
      return NPCK_NotNull;
 | 
						|
  }
 | 
						|
 | 
						|
  if (EvaluateKnownConstInt(Ctx) != 0)
 | 
						|
    return NPCK_NotNull;
 | 
						|
 | 
						|
  if (isa<IntegerLiteral>(this))
 | 
						|
    return NPCK_ZeroLiteral;
 | 
						|
  return NPCK_ZeroExpression;
 | 
						|
}
 | 
						|
 | 
						|
/// If this expression is an l-value for an Objective C
 | 
						|
/// property, find the underlying property reference expression.
 | 
						|
const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
 | 
						|
  const Expr *E = this;
 | 
						|
  while (true) {
 | 
						|
    assert((E->getValueKind() == VK_LValue &&
 | 
						|
            E->getObjectKind() == OK_ObjCProperty) &&
 | 
						|
           "expression is not a property reference");
 | 
						|
    E = E->IgnoreParenCasts();
 | 
						|
    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | 
						|
      if (BO->getOpcode() == BO_Comma) {
 | 
						|
        E = BO->getRHS();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return cast<ObjCPropertyRefExpr>(E);
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isObjCSelfExpr() const {
 | 
						|
  const Expr *E = IgnoreParenImpCasts();
 | 
						|
 | 
						|
  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
 | 
						|
  if (!DRE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
 | 
						|
  if (!Param)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
 | 
						|
  if (!M)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return M->getSelfDecl() == Param;
 | 
						|
}
 | 
						|
 | 
						|
FieldDecl *Expr::getSourceBitField() {
 | 
						|
  Expr *E = this->IgnoreParens();
 | 
						|
 | 
						|
  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | 
						|
    if (ICE->getCastKind() == CK_LValueToRValue ||
 | 
						|
        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
 | 
						|
      E = ICE->getSubExpr()->IgnoreParens();
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
 | 
						|
    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
 | 
						|
      if (Field->isBitField())
 | 
						|
        return Field;
 | 
						|
 | 
						|
  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
 | 
						|
    FieldDecl *Ivar = IvarRef->getDecl();
 | 
						|
    if (Ivar->isBitField())
 | 
						|
      return Ivar;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
 | 
						|
    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
 | 
						|
      if (Field->isBitField())
 | 
						|
        return Field;
 | 
						|
 | 
						|
    if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
 | 
						|
      if (Expr *E = BD->getBinding())
 | 
						|
        return E->getSourceBitField();
 | 
						|
  }
 | 
						|
 | 
						|
  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
 | 
						|
    if (BinOp->isAssignmentOp() && BinOp->getLHS())
 | 
						|
      return BinOp->getLHS()->getSourceBitField();
 | 
						|
 | 
						|
    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
 | 
						|
      return BinOp->getRHS()->getSourceBitField();
 | 
						|
  }
 | 
						|
 | 
						|
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
 | 
						|
    if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
 | 
						|
      return UnOp->getSubExpr()->getSourceBitField();
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::refersToVectorElement() const {
 | 
						|
  // FIXME: Why do we not just look at the ObjectKind here?
 | 
						|
  const Expr *E = this->IgnoreParens();
 | 
						|
 | 
						|
  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | 
						|
    if (ICE->getValueKind() != VK_RValue &&
 | 
						|
        ICE->getCastKind() == CK_NoOp)
 | 
						|
      E = ICE->getSubExpr()->IgnoreParens();
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
 | 
						|
    return ASE->getBase()->getType()->isVectorType();
 | 
						|
 | 
						|
  if (isa<ExtVectorElementExpr>(E))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
 | 
						|
    if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
 | 
						|
      if (auto *E = BD->getBinding())
 | 
						|
        return E->refersToVectorElement();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::refersToGlobalRegisterVar() const {
 | 
						|
  const Expr *E = this->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | 
						|
    if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
 | 
						|
      if (VD->getStorageClass() == SC_Register &&
 | 
						|
          VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
 | 
						|
  E1 = E1->IgnoreParens();
 | 
						|
  E2 = E2->IgnoreParens();
 | 
						|
 | 
						|
  if (E1->getStmtClass() != E2->getStmtClass())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (E1->getStmtClass()) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case CXXThisExprClass:
 | 
						|
      return true;
 | 
						|
    case DeclRefExprClass: {
 | 
						|
      // DeclRefExpr without an ImplicitCastExpr can happen for integral
 | 
						|
      // template parameters.
 | 
						|
      const auto *DRE1 = cast<DeclRefExpr>(E1);
 | 
						|
      const auto *DRE2 = cast<DeclRefExpr>(E2);
 | 
						|
      return DRE1->isRValue() && DRE2->isRValue() &&
 | 
						|
             DRE1->getDecl() == DRE2->getDecl();
 | 
						|
    }
 | 
						|
    case ImplicitCastExprClass: {
 | 
						|
      // Peel off implicit casts.
 | 
						|
      while (true) {
 | 
						|
        const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
 | 
						|
        const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
 | 
						|
        if (!ICE1 || !ICE2)
 | 
						|
          return false;
 | 
						|
        if (ICE1->getCastKind() != ICE2->getCastKind())
 | 
						|
          return false;
 | 
						|
        E1 = ICE1->getSubExpr()->IgnoreParens();
 | 
						|
        E2 = ICE2->getSubExpr()->IgnoreParens();
 | 
						|
        // The final cast must be one of these types.
 | 
						|
        if (ICE1->getCastKind() == CK_LValueToRValue ||
 | 
						|
            ICE1->getCastKind() == CK_ArrayToPointerDecay ||
 | 
						|
            ICE1->getCastKind() == CK_FunctionToPointerDecay) {
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
 | 
						|
      const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
 | 
						|
      if (DRE1 && DRE2)
 | 
						|
        return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
 | 
						|
 | 
						|
      const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
 | 
						|
      const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
 | 
						|
      if (Ivar1 && Ivar2) {
 | 
						|
        return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
 | 
						|
               declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
 | 
						|
      }
 | 
						|
 | 
						|
      const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
 | 
						|
      const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
 | 
						|
      if (Array1 && Array2) {
 | 
						|
        if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
 | 
						|
          return false;
 | 
						|
 | 
						|
        auto Idx1 = Array1->getIdx();
 | 
						|
        auto Idx2 = Array2->getIdx();
 | 
						|
        const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
 | 
						|
        const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
 | 
						|
        if (Integer1 && Integer2) {
 | 
						|
          if (!llvm::APInt::isSameValue(Integer1->getValue(),
 | 
						|
                                        Integer2->getValue()))
 | 
						|
            return false;
 | 
						|
        } else {
 | 
						|
          if (!isSameComparisonOperand(Idx1, Idx2))
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Walk the MemberExpr chain.
 | 
						|
      while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
 | 
						|
        const auto *ME1 = cast<MemberExpr>(E1);
 | 
						|
        const auto *ME2 = cast<MemberExpr>(E2);
 | 
						|
        if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
 | 
						|
          return false;
 | 
						|
        if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
 | 
						|
          if (D->isStaticDataMember())
 | 
						|
            return true;
 | 
						|
        E1 = ME1->getBase()->IgnoreParenImpCasts();
 | 
						|
        E2 = ME2->getBase()->IgnoreParenImpCasts();
 | 
						|
      }
 | 
						|
 | 
						|
      if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
 | 
						|
        return true;
 | 
						|
 | 
						|
      // A static member variable can end the MemberExpr chain with either
 | 
						|
      // a MemberExpr or a DeclRefExpr.
 | 
						|
      auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
 | 
						|
        if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
 | 
						|
          return DRE->getDecl();
 | 
						|
        if (const auto *ME = dyn_cast<MemberExpr>(E))
 | 
						|
          return ME->getMemberDecl();
 | 
						|
        return nullptr;
 | 
						|
      };
 | 
						|
 | 
						|
      const ValueDecl *VD1 = getAnyDecl(E1);
 | 
						|
      const ValueDecl *VD2 = getAnyDecl(E2);
 | 
						|
      return declaresSameEntity(VD1, VD2);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isArrow - Return true if the base expression is a pointer to vector,
 | 
						|
/// return false if the base expression is a vector.
 | 
						|
bool ExtVectorElementExpr::isArrow() const {
 | 
						|
  return getBase()->getType()->isPointerType();
 | 
						|
}
 | 
						|
 | 
						|
unsigned ExtVectorElementExpr::getNumElements() const {
 | 
						|
  if (const VectorType *VT = getType()->getAs<VectorType>())
 | 
						|
    return VT->getNumElements();
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/// containsDuplicateElements - Return true if any element access is repeated.
 | 
						|
bool ExtVectorElementExpr::containsDuplicateElements() const {
 | 
						|
  // FIXME: Refactor this code to an accessor on the AST node which returns the
 | 
						|
  // "type" of component access, and share with code below and in Sema.
 | 
						|
  StringRef Comp = Accessor->getName();
 | 
						|
 | 
						|
  // Halving swizzles do not contain duplicate elements.
 | 
						|
  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Advance past s-char prefix on hex swizzles.
 | 
						|
  if (Comp[0] == 's' || Comp[0] == 'S')
 | 
						|
    Comp = Comp.substr(1);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
 | 
						|
    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
 | 
						|
void ExtVectorElementExpr::getEncodedElementAccess(
 | 
						|
    SmallVectorImpl<uint32_t> &Elts) const {
 | 
						|
  StringRef Comp = Accessor->getName();
 | 
						|
  bool isNumericAccessor = false;
 | 
						|
  if (Comp[0] == 's' || Comp[0] == 'S') {
 | 
						|
    Comp = Comp.substr(1);
 | 
						|
    isNumericAccessor = true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isHi =   Comp == "hi";
 | 
						|
  bool isLo =   Comp == "lo";
 | 
						|
  bool isEven = Comp == "even";
 | 
						|
  bool isOdd  = Comp == "odd";
 | 
						|
 | 
						|
  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
 | 
						|
    uint64_t Index;
 | 
						|
 | 
						|
    if (isHi)
 | 
						|
      Index = e + i;
 | 
						|
    else if (isLo)
 | 
						|
      Index = i;
 | 
						|
    else if (isEven)
 | 
						|
      Index = 2 * i;
 | 
						|
    else if (isOdd)
 | 
						|
      Index = 2 * i + 1;
 | 
						|
    else
 | 
						|
      Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
 | 
						|
 | 
						|
    Elts.push_back(Index);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
 | 
						|
                                     QualType Type, SourceLocation BLoc,
 | 
						|
                                     SourceLocation RP)
 | 
						|
   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
 | 
						|
          Type->isDependentType(), Type->isDependentType(),
 | 
						|
          Type->isInstantiationDependentType(),
 | 
						|
          Type->containsUnexpandedParameterPack()),
 | 
						|
     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
 | 
						|
{
 | 
						|
  SubExprs = new (C) Stmt*[args.size()];
 | 
						|
  for (unsigned i = 0; i != args.size(); i++) {
 | 
						|
    addDependence(args[i]->getDependence());
 | 
						|
    SubExprs[i] = args[i];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
 | 
						|
  if (SubExprs) C.Deallocate(SubExprs);
 | 
						|
 | 
						|
  this->NumExprs = Exprs.size();
 | 
						|
  SubExprs = new (C) Stmt*[NumExprs];
 | 
						|
  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
 | 
						|
}
 | 
						|
 | 
						|
GenericSelectionExpr::GenericSelectionExpr(
 | 
						|
    const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
 | 
						|
    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
 | 
						|
    SourceLocation DefaultLoc, SourceLocation RParenLoc,
 | 
						|
    bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
 | 
						|
    : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
 | 
						|
           AssocExprs[ResultIndex]->getValueKind(),
 | 
						|
           AssocExprs[ResultIndex]->getObjectKind(),
 | 
						|
           AssocExprs[ResultIndex]->isTypeDependent(),
 | 
						|
           AssocExprs[ResultIndex]->isValueDependent(),
 | 
						|
           AssocExprs[ResultIndex]->isInstantiationDependent(),
 | 
						|
           ContainsUnexpandedParameterPack),
 | 
						|
      NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
 | 
						|
      DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
 | 
						|
  assert(AssocTypes.size() == AssocExprs.size() &&
 | 
						|
         "Must have the same number of association expressions"
 | 
						|
         " and TypeSourceInfo!");
 | 
						|
  assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
 | 
						|
 | 
						|
  GenericSelectionExprBits.GenericLoc = GenericLoc;
 | 
						|
  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
 | 
						|
  std::copy(AssocExprs.begin(), AssocExprs.end(),
 | 
						|
            getTrailingObjects<Stmt *>() + AssocExprStartIndex);
 | 
						|
  std::copy(AssocTypes.begin(), AssocTypes.end(),
 | 
						|
            getTrailingObjects<TypeSourceInfo *>());
 | 
						|
}
 | 
						|
 | 
						|
GenericSelectionExpr::GenericSelectionExpr(
 | 
						|
    const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
 | 
						|
    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
 | 
						|
    SourceLocation DefaultLoc, SourceLocation RParenLoc,
 | 
						|
    bool ContainsUnexpandedParameterPack)
 | 
						|
    : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
 | 
						|
           OK_Ordinary,
 | 
						|
           /*isTypeDependent=*/true,
 | 
						|
           /*isValueDependent=*/true,
 | 
						|
           /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack),
 | 
						|
      NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
 | 
						|
      DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
 | 
						|
  assert(AssocTypes.size() == AssocExprs.size() &&
 | 
						|
         "Must have the same number of association expressions"
 | 
						|
         " and TypeSourceInfo!");
 | 
						|
 | 
						|
  GenericSelectionExprBits.GenericLoc = GenericLoc;
 | 
						|
  getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
 | 
						|
  std::copy(AssocExprs.begin(), AssocExprs.end(),
 | 
						|
            getTrailingObjects<Stmt *>() + AssocExprStartIndex);
 | 
						|
  std::copy(AssocTypes.begin(), AssocTypes.end(),
 | 
						|
            getTrailingObjects<TypeSourceInfo *>());
 | 
						|
}
 | 
						|
 | 
						|
GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
 | 
						|
    : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
 | 
						|
 | 
						|
GenericSelectionExpr *GenericSelectionExpr::Create(
 | 
						|
    const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
 | 
						|
    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
 | 
						|
    SourceLocation DefaultLoc, SourceLocation RParenLoc,
 | 
						|
    bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
 | 
						|
  unsigned NumAssocs = AssocExprs.size();
 | 
						|
  void *Mem = Context.Allocate(
 | 
						|
      totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
 | 
						|
      alignof(GenericSelectionExpr));
 | 
						|
  return new (Mem) GenericSelectionExpr(
 | 
						|
      Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
 | 
						|
      RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
 | 
						|
}
 | 
						|
 | 
						|
GenericSelectionExpr *GenericSelectionExpr::Create(
 | 
						|
    const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
 | 
						|
    ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
 | 
						|
    SourceLocation DefaultLoc, SourceLocation RParenLoc,
 | 
						|
    bool ContainsUnexpandedParameterPack) {
 | 
						|
  unsigned NumAssocs = AssocExprs.size();
 | 
						|
  void *Mem = Context.Allocate(
 | 
						|
      totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
 | 
						|
      alignof(GenericSelectionExpr));
 | 
						|
  return new (Mem) GenericSelectionExpr(
 | 
						|
      Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
 | 
						|
      RParenLoc, ContainsUnexpandedParameterPack);
 | 
						|
}
 | 
						|
 | 
						|
GenericSelectionExpr *
 | 
						|
GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
 | 
						|
                                  unsigned NumAssocs) {
 | 
						|
  void *Mem = Context.Allocate(
 | 
						|
      totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
 | 
						|
      alignof(GenericSelectionExpr));
 | 
						|
  return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  DesignatedInitExpr
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
 | 
						|
  assert(Kind == FieldDesignator && "Only valid on a field designator");
 | 
						|
  if (Field.NameOrField & 0x01)
 | 
						|
    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
 | 
						|
  else
 | 
						|
    return getField()->getIdentifier();
 | 
						|
}
 | 
						|
 | 
						|
DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
 | 
						|
                                       llvm::ArrayRef<Designator> Designators,
 | 
						|
                                       SourceLocation EqualOrColonLoc,
 | 
						|
                                       bool GNUSyntax,
 | 
						|
                                       ArrayRef<Expr*> IndexExprs,
 | 
						|
                                       Expr *Init)
 | 
						|
  : Expr(DesignatedInitExprClass, Ty,
 | 
						|
         Init->getValueKind(), Init->getObjectKind(),
 | 
						|
         Init->isTypeDependent(), Init->isValueDependent(),
 | 
						|
         Init->isInstantiationDependent(),
 | 
						|
         Init->containsUnexpandedParameterPack()),
 | 
						|
    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
 | 
						|
    NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
 | 
						|
  this->Designators = new (C) Designator[NumDesignators];
 | 
						|
 | 
						|
  // Record the initializer itself.
 | 
						|
  child_iterator Child = child_begin();
 | 
						|
  *Child++ = Init;
 | 
						|
 | 
						|
  // Copy the designators and their subexpressions, computing
 | 
						|
  // value-dependence along the way.
 | 
						|
  unsigned IndexIdx = 0;
 | 
						|
  for (unsigned I = 0; I != NumDesignators; ++I) {
 | 
						|
    this->Designators[I] = Designators[I];
 | 
						|
 | 
						|
    if (this->Designators[I].isArrayDesignator()) {
 | 
						|
      // Compute type- and value-dependence.
 | 
						|
      Expr *Index = IndexExprs[IndexIdx];
 | 
						|
 | 
						|
      // Propagate dependence flags.
 | 
						|
      auto Deps = Index->getDependence();
 | 
						|
      if (Deps & (ExprDependence::Type | ExprDependence::Value))
 | 
						|
        Deps |= ExprDependence::Type | ExprDependence::Value;
 | 
						|
      addDependence(Deps);
 | 
						|
 | 
						|
      // Copy the index expressions into permanent storage.
 | 
						|
      *Child++ = IndexExprs[IndexIdx++];
 | 
						|
    } else if (this->Designators[I].isArrayRangeDesignator()) {
 | 
						|
      // Compute type- and value-dependence.
 | 
						|
      Expr *Start = IndexExprs[IndexIdx];
 | 
						|
      Expr *End = IndexExprs[IndexIdx + 1];
 | 
						|
 | 
						|
      auto Deps = Start->getDependence() | End->getDependence();
 | 
						|
      if (Deps & (ExprDependence::Type | ExprDependence::Value))
 | 
						|
        Deps |= ExprDependence::TypeValueInstantiation;
 | 
						|
      addDependence(Deps);
 | 
						|
 | 
						|
      // Copy the start/end expressions into permanent storage.
 | 
						|
      *Child++ = IndexExprs[IndexIdx++];
 | 
						|
      *Child++ = IndexExprs[IndexIdx++];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
 | 
						|
}
 | 
						|
 | 
						|
DesignatedInitExpr *
 | 
						|
DesignatedInitExpr::Create(const ASTContext &C,
 | 
						|
                           llvm::ArrayRef<Designator> Designators,
 | 
						|
                           ArrayRef<Expr*> IndexExprs,
 | 
						|
                           SourceLocation ColonOrEqualLoc,
 | 
						|
                           bool UsesColonSyntax, Expr *Init) {
 | 
						|
  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
 | 
						|
                         alignof(DesignatedInitExpr));
 | 
						|
  return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
 | 
						|
                                      ColonOrEqualLoc, UsesColonSyntax,
 | 
						|
                                      IndexExprs, Init);
 | 
						|
}
 | 
						|
 | 
						|
DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
 | 
						|
                                                    unsigned NumIndexExprs) {
 | 
						|
  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
 | 
						|
                         alignof(DesignatedInitExpr));
 | 
						|
  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
 | 
						|
}
 | 
						|
 | 
						|
void DesignatedInitExpr::setDesignators(const ASTContext &C,
 | 
						|
                                        const Designator *Desigs,
 | 
						|
                                        unsigned NumDesigs) {
 | 
						|
  Designators = new (C) Designator[NumDesigs];
 | 
						|
  NumDesignators = NumDesigs;
 | 
						|
  for (unsigned I = 0; I != NumDesigs; ++I)
 | 
						|
    Designators[I] = Desigs[I];
 | 
						|
}
 | 
						|
 | 
						|
SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
 | 
						|
  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
 | 
						|
  if (size() == 1)
 | 
						|
    return DIE->getDesignator(0)->getSourceRange();
 | 
						|
  return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
 | 
						|
                     DIE->getDesignator(size() - 1)->getEndLoc());
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation DesignatedInitExpr::getBeginLoc() const {
 | 
						|
  SourceLocation StartLoc;
 | 
						|
  auto *DIE = const_cast<DesignatedInitExpr *>(this);
 | 
						|
  Designator &First = *DIE->getDesignator(0);
 | 
						|
  if (First.isFieldDesignator()) {
 | 
						|
    if (GNUSyntax)
 | 
						|
      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
 | 
						|
    else
 | 
						|
      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
 | 
						|
  } else
 | 
						|
    StartLoc =
 | 
						|
      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
 | 
						|
  return StartLoc;
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation DesignatedInitExpr::getEndLoc() const {
 | 
						|
  return getInit()->getEndLoc();
 | 
						|
}
 | 
						|
 | 
						|
Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
 | 
						|
  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
 | 
						|
  return getSubExpr(D.ArrayOrRange.Index + 1);
 | 
						|
}
 | 
						|
 | 
						|
Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
 | 
						|
  assert(D.Kind == Designator::ArrayRangeDesignator &&
 | 
						|
         "Requires array range designator");
 | 
						|
  return getSubExpr(D.ArrayOrRange.Index + 1);
 | 
						|
}
 | 
						|
 | 
						|
Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
 | 
						|
  assert(D.Kind == Designator::ArrayRangeDesignator &&
 | 
						|
         "Requires array range designator");
 | 
						|
  return getSubExpr(D.ArrayOrRange.Index + 2);
 | 
						|
}
 | 
						|
 | 
						|
/// Replaces the designator at index @p Idx with the series
 | 
						|
/// of designators in [First, Last).
 | 
						|
void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
 | 
						|
                                          const Designator *First,
 | 
						|
                                          const Designator *Last) {
 | 
						|
  unsigned NumNewDesignators = Last - First;
 | 
						|
  if (NumNewDesignators == 0) {
 | 
						|
    std::copy_backward(Designators + Idx + 1,
 | 
						|
                       Designators + NumDesignators,
 | 
						|
                       Designators + Idx);
 | 
						|
    --NumNewDesignators;
 | 
						|
    return;
 | 
						|
  } else if (NumNewDesignators == 1) {
 | 
						|
    Designators[Idx] = *First;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Designator *NewDesignators
 | 
						|
    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
 | 
						|
  std::copy(Designators, Designators + Idx, NewDesignators);
 | 
						|
  std::copy(First, Last, NewDesignators + Idx);
 | 
						|
  std::copy(Designators + Idx + 1, Designators + NumDesignators,
 | 
						|
            NewDesignators + Idx + NumNewDesignators);
 | 
						|
  Designators = NewDesignators;
 | 
						|
  NumDesignators = NumDesignators - 1 + NumNewDesignators;
 | 
						|
}
 | 
						|
 | 
						|
DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
 | 
						|
    SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
 | 
						|
  : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
 | 
						|
         OK_Ordinary, false, false, false, false) {
 | 
						|
  BaseAndUpdaterExprs[0] = baseExpr;
 | 
						|
 | 
						|
  InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
 | 
						|
  ILE->setType(baseExpr->getType());
 | 
						|
  BaseAndUpdaterExprs[1] = ILE;
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
 | 
						|
  return getBase()->getBeginLoc();
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
 | 
						|
  return getBase()->getEndLoc();
 | 
						|
}
 | 
						|
 | 
						|
ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
 | 
						|
                             SourceLocation RParenLoc)
 | 
						|
    : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
 | 
						|
           false, false),
 | 
						|
      LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
 | 
						|
  ParenListExprBits.NumExprs = Exprs.size();
 | 
						|
 | 
						|
  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
 | 
						|
    addDependence(Exprs[I]->getDependence());
 | 
						|
    getTrailingObjects<Stmt *>()[I] = Exprs[I];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
 | 
						|
    : Expr(ParenListExprClass, Empty) {
 | 
						|
  ParenListExprBits.NumExprs = NumExprs;
 | 
						|
}
 | 
						|
 | 
						|
ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
 | 
						|
                                     SourceLocation LParenLoc,
 | 
						|
                                     ArrayRef<Expr *> Exprs,
 | 
						|
                                     SourceLocation RParenLoc) {
 | 
						|
  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
 | 
						|
                           alignof(ParenListExpr));
 | 
						|
  return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
 | 
						|
}
 | 
						|
 | 
						|
ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
 | 
						|
                                          unsigned NumExprs) {
 | 
						|
  void *Mem =
 | 
						|
      Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
 | 
						|
  return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
 | 
						|
}
 | 
						|
 | 
						|
const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
 | 
						|
  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
 | 
						|
    e = ewc->getSubExpr();
 | 
						|
  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
 | 
						|
    e = m->getSubExpr();
 | 
						|
  e = cast<CXXConstructExpr>(e)->getArg(0);
 | 
						|
  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
 | 
						|
    e = ice->getSubExpr();
 | 
						|
  return cast<OpaqueValueExpr>(e);
 | 
						|
}
 | 
						|
 | 
						|
PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
 | 
						|
                                           EmptyShell sh,
 | 
						|
                                           unsigned numSemanticExprs) {
 | 
						|
  void *buffer =
 | 
						|
      Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
 | 
						|
                       alignof(PseudoObjectExpr));
 | 
						|
  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
 | 
						|
}
 | 
						|
 | 
						|
PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
 | 
						|
  : Expr(PseudoObjectExprClass, shell) {
 | 
						|
  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
 | 
						|
}
 | 
						|
 | 
						|
PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
 | 
						|
                                           ArrayRef<Expr*> semantics,
 | 
						|
                                           unsigned resultIndex) {
 | 
						|
  assert(syntax && "no syntactic expression!");
 | 
						|
  assert(semantics.size() && "no semantic expressions!");
 | 
						|
 | 
						|
  QualType type;
 | 
						|
  ExprValueKind VK;
 | 
						|
  if (resultIndex == NoResult) {
 | 
						|
    type = C.VoidTy;
 | 
						|
    VK = VK_RValue;
 | 
						|
  } else {
 | 
						|
    assert(resultIndex < semantics.size());
 | 
						|
    type = semantics[resultIndex]->getType();
 | 
						|
    VK = semantics[resultIndex]->getValueKind();
 | 
						|
    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
 | 
						|
  }
 | 
						|
 | 
						|
  void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
 | 
						|
                            alignof(PseudoObjectExpr));
 | 
						|
  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
 | 
						|
                                      resultIndex);
 | 
						|
}
 | 
						|
 | 
						|
PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
 | 
						|
                                   Expr *syntax, ArrayRef<Expr*> semantics,
 | 
						|
                                   unsigned resultIndex)
 | 
						|
  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
 | 
						|
         /*filled in at end of ctor*/ false, false, false, false) {
 | 
						|
  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
 | 
						|
  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
 | 
						|
    Expr *E = (i == 0 ? syntax : semantics[i-1]);
 | 
						|
    getSubExprsBuffer()[i] = E;
 | 
						|
 | 
						|
    addDependence(E->getDependence());
 | 
						|
 | 
						|
    if (isa<OpaqueValueExpr>(E))
 | 
						|
      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
 | 
						|
             "opaque-value semantic expressions for pseudo-object "
 | 
						|
             "operations must have sources");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Child Iterators for iterating over subexpressions/substatements
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// UnaryExprOrTypeTraitExpr
 | 
						|
Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
 | 
						|
  const_child_range CCR =
 | 
						|
      const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
 | 
						|
  return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
 | 
						|
}
 | 
						|
 | 
						|
Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
 | 
						|
  // If this is of a type and the type is a VLA type (and not a typedef), the
 | 
						|
  // size expression of the VLA needs to be treated as an executable expression.
 | 
						|
  // Why isn't this weirdness documented better in StmtIterator?
 | 
						|
  if (isArgumentType()) {
 | 
						|
    if (const VariableArrayType *T =
 | 
						|
            dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
 | 
						|
      return const_child_range(const_child_iterator(T), const_child_iterator());
 | 
						|
    return const_child_range(const_child_iterator(), const_child_iterator());
 | 
						|
  }
 | 
						|
  return const_child_range(&Argument.Ex, &Argument.Ex + 1);
 | 
						|
}
 | 
						|
 | 
						|
AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
 | 
						|
                       QualType t, AtomicOp op, SourceLocation RP)
 | 
						|
  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
 | 
						|
         false, false, false, false),
 | 
						|
    NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
 | 
						|
{
 | 
						|
  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
 | 
						|
  for (unsigned i = 0; i != args.size(); i++) {
 | 
						|
    addDependence(args[i]->getDependence());
 | 
						|
    SubExprs[i] = args[i];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
 | 
						|
  switch (Op) {
 | 
						|
  case AO__c11_atomic_init:
 | 
						|
  case AO__opencl_atomic_init:
 | 
						|
  case AO__c11_atomic_load:
 | 
						|
  case AO__atomic_load_n:
 | 
						|
    return 2;
 | 
						|
 | 
						|
  case AO__opencl_atomic_load:
 | 
						|
  case AO__c11_atomic_store:
 | 
						|
  case AO__c11_atomic_exchange:
 | 
						|
  case AO__atomic_load:
 | 
						|
  case AO__atomic_store:
 | 
						|
  case AO__atomic_store_n:
 | 
						|
  case AO__atomic_exchange_n:
 | 
						|
  case AO__c11_atomic_fetch_add:
 | 
						|
  case AO__c11_atomic_fetch_sub:
 | 
						|
  case AO__c11_atomic_fetch_and:
 | 
						|
  case AO__c11_atomic_fetch_or:
 | 
						|
  case AO__c11_atomic_fetch_xor:
 | 
						|
  case AO__c11_atomic_fetch_max:
 | 
						|
  case AO__c11_atomic_fetch_min:
 | 
						|
  case AO__atomic_fetch_add:
 | 
						|
  case AO__atomic_fetch_sub:
 | 
						|
  case AO__atomic_fetch_and:
 | 
						|
  case AO__atomic_fetch_or:
 | 
						|
  case AO__atomic_fetch_xor:
 | 
						|
  case AO__atomic_fetch_nand:
 | 
						|
  case AO__atomic_add_fetch:
 | 
						|
  case AO__atomic_sub_fetch:
 | 
						|
  case AO__atomic_and_fetch:
 | 
						|
  case AO__atomic_or_fetch:
 | 
						|
  case AO__atomic_xor_fetch:
 | 
						|
  case AO__atomic_nand_fetch:
 | 
						|
  case AO__atomic_min_fetch:
 | 
						|
  case AO__atomic_max_fetch:
 | 
						|
  case AO__atomic_fetch_min:
 | 
						|
  case AO__atomic_fetch_max:
 | 
						|
    return 3;
 | 
						|
 | 
						|
  case AO__opencl_atomic_store:
 | 
						|
  case AO__opencl_atomic_exchange:
 | 
						|
  case AO__opencl_atomic_fetch_add:
 | 
						|
  case AO__opencl_atomic_fetch_sub:
 | 
						|
  case AO__opencl_atomic_fetch_and:
 | 
						|
  case AO__opencl_atomic_fetch_or:
 | 
						|
  case AO__opencl_atomic_fetch_xor:
 | 
						|
  case AO__opencl_atomic_fetch_min:
 | 
						|
  case AO__opencl_atomic_fetch_max:
 | 
						|
  case AO__atomic_exchange:
 | 
						|
    return 4;
 | 
						|
 | 
						|
  case AO__c11_atomic_compare_exchange_strong:
 | 
						|
  case AO__c11_atomic_compare_exchange_weak:
 | 
						|
    return 5;
 | 
						|
 | 
						|
  case AO__opencl_atomic_compare_exchange_strong:
 | 
						|
  case AO__opencl_atomic_compare_exchange_weak:
 | 
						|
  case AO__atomic_compare_exchange:
 | 
						|
  case AO__atomic_compare_exchange_n:
 | 
						|
    return 6;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unknown atomic op");
 | 
						|
}
 | 
						|
 | 
						|
QualType AtomicExpr::getValueType() const {
 | 
						|
  auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
 | 
						|
  if (auto AT = T->getAs<AtomicType>())
 | 
						|
    return AT->getValueType();
 | 
						|
  return T;
 | 
						|
}
 | 
						|
 | 
						|
QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
 | 
						|
  unsigned ArraySectionCount = 0;
 | 
						|
  while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
 | 
						|
    Base = OASE->getBase();
 | 
						|
    ++ArraySectionCount;
 | 
						|
  }
 | 
						|
  while (auto *ASE =
 | 
						|
             dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
 | 
						|
    Base = ASE->getBase();
 | 
						|
    ++ArraySectionCount;
 | 
						|
  }
 | 
						|
  Base = Base->IgnoreParenImpCasts();
 | 
						|
  auto OriginalTy = Base->getType();
 | 
						|
  if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
 | 
						|
    if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
 | 
						|
      OriginalTy = PVD->getOriginalType().getNonReferenceType();
 | 
						|
 | 
						|
  for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
 | 
						|
    if (OriginalTy->isAnyPointerType())
 | 
						|
      OriginalTy = OriginalTy->getPointeeType();
 | 
						|
    else {
 | 
						|
      assert (OriginalTy->isArrayType());
 | 
						|
      OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return OriginalTy;
 | 
						|
}
 |