1146 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1146 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This contains code dealing with C++ code generation of virtual tables.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CGCXXABI.h"
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "clang/AST/Attr.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/RecordLayout.h"
 | 
						|
#include "clang/Basic/CodeGenOptions.h"
 | 
						|
#include "clang/CodeGen/CGFunctionInfo.h"
 | 
						|
#include "clang/CodeGen/ConstantInitBuilder.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cstdio>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
 | 
						|
    : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
 | 
						|
 | 
						|
llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
 | 
						|
                                              GlobalDecl GD) {
 | 
						|
  return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
 | 
						|
                                 /*DontDefer=*/true, /*IsThunk=*/true);
 | 
						|
}
 | 
						|
 | 
						|
static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
 | 
						|
                               llvm::Function *ThunkFn, bool ForVTable,
 | 
						|
                               GlobalDecl GD) {
 | 
						|
  CGM.setFunctionLinkage(GD, ThunkFn);
 | 
						|
  CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
 | 
						|
                                  !Thunk.Return.isEmpty());
 | 
						|
 | 
						|
  // Set the right visibility.
 | 
						|
  CGM.setGVProperties(ThunkFn, GD);
 | 
						|
 | 
						|
  if (!CGM.getCXXABI().exportThunk()) {
 | 
						|
    ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
 | 
						|
    ThunkFn->setDSOLocal(true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
 | 
						|
    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
 | 
						|
                    const ABIArgInfo &infoR, CanQualType typeR) {
 | 
						|
  return (infoL.getKind() == infoR.getKind() &&
 | 
						|
          (typeL == typeR ||
 | 
						|
           (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
 | 
						|
           (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
 | 
						|
                                      QualType ResultType, RValue RV,
 | 
						|
                                      const ThunkInfo &Thunk) {
 | 
						|
  // Emit the return adjustment.
 | 
						|
  bool NullCheckValue = !ResultType->isReferenceType();
 | 
						|
 | 
						|
  llvm::BasicBlock *AdjustNull = nullptr;
 | 
						|
  llvm::BasicBlock *AdjustNotNull = nullptr;
 | 
						|
  llvm::BasicBlock *AdjustEnd = nullptr;
 | 
						|
 | 
						|
  llvm::Value *ReturnValue = RV.getScalarVal();
 | 
						|
 | 
						|
  if (NullCheckValue) {
 | 
						|
    AdjustNull = CGF.createBasicBlock("adjust.null");
 | 
						|
    AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
 | 
						|
    AdjustEnd = CGF.createBasicBlock("adjust.end");
 | 
						|
 | 
						|
    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
 | 
						|
    CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
 | 
						|
    CGF.EmitBlock(AdjustNotNull);
 | 
						|
  }
 | 
						|
 | 
						|
  auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
 | 
						|
  auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
 | 
						|
  ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
 | 
						|
                                            Address(ReturnValue, ClassAlign),
 | 
						|
                                            Thunk.Return);
 | 
						|
 | 
						|
  if (NullCheckValue) {
 | 
						|
    CGF.Builder.CreateBr(AdjustEnd);
 | 
						|
    CGF.EmitBlock(AdjustNull);
 | 
						|
    CGF.Builder.CreateBr(AdjustEnd);
 | 
						|
    CGF.EmitBlock(AdjustEnd);
 | 
						|
 | 
						|
    llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
 | 
						|
    PHI->addIncoming(ReturnValue, AdjustNotNull);
 | 
						|
    PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
 | 
						|
                     AdjustNull);
 | 
						|
    ReturnValue = PHI;
 | 
						|
  }
 | 
						|
 | 
						|
  return RValue::get(ReturnValue);
 | 
						|
}
 | 
						|
 | 
						|
/// This function clones a function's DISubprogram node and enters it into
 | 
						|
/// a value map with the intent that the map can be utilized by the cloner
 | 
						|
/// to short-circuit Metadata node mapping.
 | 
						|
/// Furthermore, the function resolves any DILocalVariable nodes referenced
 | 
						|
/// by dbg.value intrinsics so they can be properly mapped during cloning.
 | 
						|
static void resolveTopLevelMetadata(llvm::Function *Fn,
 | 
						|
                                    llvm::ValueToValueMapTy &VMap) {
 | 
						|
  // Clone the DISubprogram node and put it into the Value map.
 | 
						|
  auto *DIS = Fn->getSubprogram();
 | 
						|
  if (!DIS)
 | 
						|
    return;
 | 
						|
  auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
 | 
						|
  VMap.MD()[DIS].reset(NewDIS);
 | 
						|
 | 
						|
  // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
 | 
						|
  // they are referencing.
 | 
						|
  for (auto &BB : Fn->getBasicBlockList()) {
 | 
						|
    for (auto &I : BB) {
 | 
						|
      if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
 | 
						|
        auto *DILocal = DII->getVariable();
 | 
						|
        if (!DILocal->isResolved())
 | 
						|
          DILocal->resolve();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// This function does roughly the same thing as GenerateThunk, but in a
 | 
						|
// very different way, so that va_start and va_end work correctly.
 | 
						|
// FIXME: This function assumes "this" is the first non-sret LLVM argument of
 | 
						|
//        a function, and that there is an alloca built in the entry block
 | 
						|
//        for all accesses to "this".
 | 
						|
// FIXME: This function assumes there is only one "ret" statement per function.
 | 
						|
// FIXME: Cloning isn't correct in the presence of indirect goto!
 | 
						|
// FIXME: This implementation of thunks bloats codesize by duplicating the
 | 
						|
//        function definition.  There are alternatives:
 | 
						|
//        1. Add some sort of stub support to LLVM for cases where we can
 | 
						|
//           do a this adjustment, then a sibcall.
 | 
						|
//        2. We could transform the definition to take a va_list instead of an
 | 
						|
//           actual variable argument list, then have the thunks (including a
 | 
						|
//           no-op thunk for the regular definition) call va_start/va_end.
 | 
						|
//           There's a bit of per-call overhead for this solution, but it's
 | 
						|
//           better for codesize if the definition is long.
 | 
						|
llvm::Function *
 | 
						|
CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
 | 
						|
                                      const CGFunctionInfo &FnInfo,
 | 
						|
                                      GlobalDecl GD, const ThunkInfo &Thunk) {
 | 
						|
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | 
						|
  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
 | 
						|
  QualType ResultType = FPT->getReturnType();
 | 
						|
 | 
						|
  // Get the original function
 | 
						|
  assert(FnInfo.isVariadic());
 | 
						|
  llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
 | 
						|
  llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
 | 
						|
  llvm::Function *BaseFn = cast<llvm::Function>(Callee);
 | 
						|
 | 
						|
  // Cloning can't work if we don't have a definition. The Microsoft ABI may
 | 
						|
  // require thunks when a definition is not available. Emit an error in these
 | 
						|
  // cases.
 | 
						|
  if (!MD->isDefined()) {
 | 
						|
    CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
 | 
						|
    return Fn;
 | 
						|
  }
 | 
						|
  assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");
 | 
						|
 | 
						|
  // Clone to thunk.
 | 
						|
  llvm::ValueToValueMapTy VMap;
 | 
						|
 | 
						|
  // We are cloning a function while some Metadata nodes are still unresolved.
 | 
						|
  // Ensure that the value mapper does not encounter any of them.
 | 
						|
  resolveTopLevelMetadata(BaseFn, VMap);
 | 
						|
  llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
 | 
						|
  Fn->replaceAllUsesWith(NewFn);
 | 
						|
  NewFn->takeName(Fn);
 | 
						|
  Fn->eraseFromParent();
 | 
						|
  Fn = NewFn;
 | 
						|
 | 
						|
  // "Initialize" CGF (minimally).
 | 
						|
  CurFn = Fn;
 | 
						|
 | 
						|
  // Get the "this" value
 | 
						|
  llvm::Function::arg_iterator AI = Fn->arg_begin();
 | 
						|
  if (CGM.ReturnTypeUsesSRet(FnInfo))
 | 
						|
    ++AI;
 | 
						|
 | 
						|
  // Find the first store of "this", which will be to the alloca associated
 | 
						|
  // with "this".
 | 
						|
  Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent()));
 | 
						|
  llvm::BasicBlock *EntryBB = &Fn->front();
 | 
						|
  llvm::BasicBlock::iterator ThisStore =
 | 
						|
      std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
 | 
						|
        return isa<llvm::StoreInst>(I) &&
 | 
						|
               I.getOperand(0) == ThisPtr.getPointer();
 | 
						|
      });
 | 
						|
  assert(ThisStore != EntryBB->end() &&
 | 
						|
         "Store of this should be in entry block?");
 | 
						|
  // Adjust "this", if necessary.
 | 
						|
  Builder.SetInsertPoint(&*ThisStore);
 | 
						|
  llvm::Value *AdjustedThisPtr =
 | 
						|
      CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
 | 
						|
  AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
 | 
						|
                                          ThisStore->getOperand(0)->getType());
 | 
						|
  ThisStore->setOperand(0, AdjustedThisPtr);
 | 
						|
 | 
						|
  if (!Thunk.Return.isEmpty()) {
 | 
						|
    // Fix up the returned value, if necessary.
 | 
						|
    for (llvm::BasicBlock &BB : *Fn) {
 | 
						|
      llvm::Instruction *T = BB.getTerminator();
 | 
						|
      if (isa<llvm::ReturnInst>(T)) {
 | 
						|
        RValue RV = RValue::get(T->getOperand(0));
 | 
						|
        T->eraseFromParent();
 | 
						|
        Builder.SetInsertPoint(&BB);
 | 
						|
        RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
 | 
						|
        Builder.CreateRet(RV.getScalarVal());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Fn;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
 | 
						|
                                 const CGFunctionInfo &FnInfo,
 | 
						|
                                 bool IsUnprototyped) {
 | 
						|
  assert(!CurGD.getDecl() && "CurGD was already set!");
 | 
						|
  CurGD = GD;
 | 
						|
  CurFuncIsThunk = true;
 | 
						|
 | 
						|
  // Build FunctionArgs.
 | 
						|
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | 
						|
  QualType ThisType = MD->getThisType();
 | 
						|
  QualType ResultType;
 | 
						|
  if (IsUnprototyped)
 | 
						|
    ResultType = CGM.getContext().VoidTy;
 | 
						|
  else if (CGM.getCXXABI().HasThisReturn(GD))
 | 
						|
    ResultType = ThisType;
 | 
						|
  else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
 | 
						|
    ResultType = CGM.getContext().VoidPtrTy;
 | 
						|
  else
 | 
						|
    ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
 | 
						|
  FunctionArgList FunctionArgs;
 | 
						|
 | 
						|
  // Create the implicit 'this' parameter declaration.
 | 
						|
  CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
 | 
						|
 | 
						|
  // Add the rest of the parameters, if we have a prototype to work with.
 | 
						|
  if (!IsUnprototyped) {
 | 
						|
    FunctionArgs.append(MD->param_begin(), MD->param_end());
 | 
						|
 | 
						|
    if (isa<CXXDestructorDecl>(MD))
 | 
						|
      CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
 | 
						|
                                                FunctionArgs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Start defining the function.
 | 
						|
  auto NL = ApplyDebugLocation::CreateEmpty(*this);
 | 
						|
  StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
 | 
						|
                MD->getLocation());
 | 
						|
  // Create a scope with an artificial location for the body of this function.
 | 
						|
  auto AL = ApplyDebugLocation::CreateArtificial(*this);
 | 
						|
 | 
						|
  // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
 | 
						|
  CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
 | 
						|
  CXXThisValue = CXXABIThisValue;
 | 
						|
  CurCodeDecl = MD;
 | 
						|
  CurFuncDecl = MD;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::FinishThunk() {
 | 
						|
  // Clear these to restore the invariants expected by
 | 
						|
  // StartFunction/FinishFunction.
 | 
						|
  CurCodeDecl = nullptr;
 | 
						|
  CurFuncDecl = nullptr;
 | 
						|
 | 
						|
  FinishFunction();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
 | 
						|
                                                const ThunkInfo *Thunk,
 | 
						|
                                                bool IsUnprototyped) {
 | 
						|
  assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
 | 
						|
         "Please use a new CGF for this thunk");
 | 
						|
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
 | 
						|
 | 
						|
  // Adjust the 'this' pointer if necessary
 | 
						|
  llvm::Value *AdjustedThisPtr =
 | 
						|
    Thunk ? CGM.getCXXABI().performThisAdjustment(
 | 
						|
                          *this, LoadCXXThisAddress(), Thunk->This)
 | 
						|
          : LoadCXXThis();
 | 
						|
 | 
						|
  // If perfect forwarding is required a variadic method, a method using
 | 
						|
  // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
 | 
						|
  // thunk requires a return adjustment, since that is impossible with musttail.
 | 
						|
  if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
 | 
						|
    if (Thunk && !Thunk->Return.isEmpty()) {
 | 
						|
      if (IsUnprototyped)
 | 
						|
        CGM.ErrorUnsupported(
 | 
						|
            MD, "return-adjusting thunk with incomplete parameter type");
 | 
						|
      else if (CurFnInfo->isVariadic())
 | 
						|
        llvm_unreachable("shouldn't try to emit musttail return-adjusting "
 | 
						|
                         "thunks for variadic functions");
 | 
						|
      else
 | 
						|
        CGM.ErrorUnsupported(
 | 
						|
            MD, "non-trivial argument copy for return-adjusting thunk");
 | 
						|
    }
 | 
						|
    EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Start building CallArgs.
 | 
						|
  CallArgList CallArgs;
 | 
						|
  QualType ThisType = MD->getThisType();
 | 
						|
  CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
 | 
						|
 | 
						|
  if (isa<CXXDestructorDecl>(MD))
 | 
						|
    CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  unsigned PrefixArgs = CallArgs.size() - 1;
 | 
						|
#endif
 | 
						|
  // Add the rest of the arguments.
 | 
						|
  for (const ParmVarDecl *PD : MD->parameters())
 | 
						|
    EmitDelegateCallArg(CallArgs, PD, SourceLocation());
 | 
						|
 | 
						|
  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
 | 
						|
      CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
 | 
						|
  assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
 | 
						|
         CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
 | 
						|
         CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
 | 
						|
  assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
 | 
						|
         similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
 | 
						|
                 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
 | 
						|
  assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
 | 
						|
  for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
 | 
						|
    assert(similar(CallFnInfo.arg_begin()[i].info,
 | 
						|
                   CallFnInfo.arg_begin()[i].type,
 | 
						|
                   CurFnInfo->arg_begin()[i].info,
 | 
						|
                   CurFnInfo->arg_begin()[i].type));
 | 
						|
#endif
 | 
						|
 | 
						|
  // Determine whether we have a return value slot to use.
 | 
						|
  QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
 | 
						|
                            ? ThisType
 | 
						|
                            : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
 | 
						|
                                  ? CGM.getContext().VoidPtrTy
 | 
						|
                                  : FPT->getReturnType();
 | 
						|
  ReturnValueSlot Slot;
 | 
						|
  if (!ResultType->isVoidType() &&
 | 
						|
      CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect)
 | 
						|
    Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
 | 
						|
 | 
						|
  // Now emit our call.
 | 
						|
  llvm::CallBase *CallOrInvoke;
 | 
						|
  RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
 | 
						|
                       CallArgs, &CallOrInvoke);
 | 
						|
 | 
						|
  // Consider return adjustment if we have ThunkInfo.
 | 
						|
  if (Thunk && !Thunk->Return.isEmpty())
 | 
						|
    RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
 | 
						|
  else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
 | 
						|
    Call->setTailCallKind(llvm::CallInst::TCK_Tail);
 | 
						|
 | 
						|
  // Emit return.
 | 
						|
  if (!ResultType->isVoidType() && Slot.isNull())
 | 
						|
    CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
 | 
						|
 | 
						|
  // Disable the final ARC autorelease.
 | 
						|
  AutoreleaseResult = false;
 | 
						|
 | 
						|
  FinishThunk();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
 | 
						|
                                        llvm::Value *AdjustedThisPtr,
 | 
						|
                                        llvm::FunctionCallee Callee) {
 | 
						|
  // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
 | 
						|
  // to translate AST arguments into LLVM IR arguments.  For thunks, we know
 | 
						|
  // that the caller prototype more or less matches the callee prototype with
 | 
						|
  // the exception of 'this'.
 | 
						|
  SmallVector<llvm::Value *, 8> Args;
 | 
						|
  for (llvm::Argument &A : CurFn->args())
 | 
						|
    Args.push_back(&A);
 | 
						|
 | 
						|
  // Set the adjusted 'this' pointer.
 | 
						|
  const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
 | 
						|
  if (ThisAI.isDirect()) {
 | 
						|
    const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
 | 
						|
    int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
 | 
						|
    llvm::Type *ThisType = Args[ThisArgNo]->getType();
 | 
						|
    if (ThisType != AdjustedThisPtr->getType())
 | 
						|
      AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
 | 
						|
    Args[ThisArgNo] = AdjustedThisPtr;
 | 
						|
  } else {
 | 
						|
    assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
 | 
						|
    Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
 | 
						|
    llvm::Type *ThisType = ThisAddr.getElementType();
 | 
						|
    if (ThisType != AdjustedThisPtr->getType())
 | 
						|
      AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
 | 
						|
    Builder.CreateStore(AdjustedThisPtr, ThisAddr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
 | 
						|
  // don't actually want to run them.
 | 
						|
  llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
 | 
						|
  Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
 | 
						|
 | 
						|
  // Apply the standard set of call attributes.
 | 
						|
  unsigned CallingConv;
 | 
						|
  llvm::AttributeList Attrs;
 | 
						|
  CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
 | 
						|
                             Attrs, CallingConv, /*AttrOnCallSite=*/true);
 | 
						|
  Call->setAttributes(Attrs);
 | 
						|
  Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
 | 
						|
 | 
						|
  if (Call->getType()->isVoidTy())
 | 
						|
    Builder.CreateRetVoid();
 | 
						|
  else
 | 
						|
    Builder.CreateRet(Call);
 | 
						|
 | 
						|
  // Finish the function to maintain CodeGenFunction invariants.
 | 
						|
  // FIXME: Don't emit unreachable code.
 | 
						|
  EmitBlock(createBasicBlock());
 | 
						|
  FinishFunction();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::generateThunk(llvm::Function *Fn,
 | 
						|
                                    const CGFunctionInfo &FnInfo, GlobalDecl GD,
 | 
						|
                                    const ThunkInfo &Thunk,
 | 
						|
                                    bool IsUnprototyped) {
 | 
						|
  StartThunk(Fn, GD, FnInfo, IsUnprototyped);
 | 
						|
  // Create a scope with an artificial location for the body of this function.
 | 
						|
  auto AL = ApplyDebugLocation::CreateArtificial(*this);
 | 
						|
 | 
						|
  // Get our callee. Use a placeholder type if this method is unprototyped so
 | 
						|
  // that CodeGenModule doesn't try to set attributes.
 | 
						|
  llvm::Type *Ty;
 | 
						|
  if (IsUnprototyped)
 | 
						|
    Ty = llvm::StructType::get(getLLVMContext());
 | 
						|
  else
 | 
						|
    Ty = CGM.getTypes().GetFunctionType(FnInfo);
 | 
						|
 | 
						|
  llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
 | 
						|
 | 
						|
  // Fix up the function type for an unprototyped musttail call.
 | 
						|
  if (IsUnprototyped)
 | 
						|
    Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType());
 | 
						|
 | 
						|
  // Make the call and return the result.
 | 
						|
  EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
 | 
						|
                            &Thunk, IsUnprototyped);
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
 | 
						|
                                  bool IsUnprototyped, bool ForVTable) {
 | 
						|
  // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
 | 
						|
  // provide thunks for us.
 | 
						|
  if (CGM.getTarget().getCXXABI().isMicrosoft())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
 | 
						|
  // definitions of the main method. Therefore, emitting thunks with the vtable
 | 
						|
  // is purely an optimization. Emit the thunk if optimizations are enabled and
 | 
						|
  // all of the parameter types are complete.
 | 
						|
  if (ForVTable)
 | 
						|
    return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
 | 
						|
 | 
						|
  // Always emit thunks along with the method definition.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
 | 
						|
                                               const ThunkInfo &TI,
 | 
						|
                                               bool ForVTable) {
 | 
						|
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | 
						|
 | 
						|
  // First, get a declaration. Compute the mangled name. Don't worry about
 | 
						|
  // getting the function prototype right, since we may only need this
 | 
						|
  // declaration to fill in a vtable slot.
 | 
						|
  SmallString<256> Name;
 | 
						|
  MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
 | 
						|
  llvm::raw_svector_ostream Out(Name);
 | 
						|
  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
 | 
						|
    MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
 | 
						|
  else
 | 
						|
    MCtx.mangleThunk(MD, TI, Out);
 | 
						|
  llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
 | 
						|
  llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
 | 
						|
 | 
						|
  // If we don't need to emit a definition, return this declaration as is.
 | 
						|
  bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
 | 
						|
      MD->getType()->castAs<FunctionType>());
 | 
						|
  if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
 | 
						|
    return Thunk;
 | 
						|
 | 
						|
  // Arrange a function prototype appropriate for a function definition. In some
 | 
						|
  // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
 | 
						|
  const CGFunctionInfo &FnInfo =
 | 
						|
      IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
 | 
						|
                     : CGM.getTypes().arrangeGlobalDeclaration(GD);
 | 
						|
  llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
 | 
						|
 | 
						|
  // If the type of the underlying GlobalValue is wrong, we'll have to replace
 | 
						|
  // it. It should be a declaration.
 | 
						|
  llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
 | 
						|
  if (ThunkFn->getFunctionType() != ThunkFnTy) {
 | 
						|
    llvm::GlobalValue *OldThunkFn = ThunkFn;
 | 
						|
 | 
						|
    assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
 | 
						|
 | 
						|
    // Remove the name from the old thunk function and get a new thunk.
 | 
						|
    OldThunkFn->setName(StringRef());
 | 
						|
    ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
 | 
						|
                                     Name.str(), &CGM.getModule());
 | 
						|
    CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
 | 
						|
 | 
						|
    // If needed, replace the old thunk with a bitcast.
 | 
						|
    if (!OldThunkFn->use_empty()) {
 | 
						|
      llvm::Constant *NewPtrForOldDecl =
 | 
						|
          llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType());
 | 
						|
      OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove the old thunk.
 | 
						|
    OldThunkFn->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
 | 
						|
  bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
 | 
						|
 | 
						|
  if (!ThunkFn->isDeclaration()) {
 | 
						|
    if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
 | 
						|
      // There is already a thunk emitted for this function, do nothing.
 | 
						|
      return ThunkFn;
 | 
						|
    }
 | 
						|
 | 
						|
    setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
 | 
						|
    return ThunkFn;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
 | 
						|
  // that the return type is meaningless. These thunks can be used to call
 | 
						|
  // functions with differing return types, and the caller is required to cast
 | 
						|
  // the prototype appropriately to extract the correct value.
 | 
						|
  if (IsUnprototyped)
 | 
						|
    ThunkFn->addFnAttr("thunk");
 | 
						|
 | 
						|
  CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
 | 
						|
 | 
						|
  // Thunks for variadic methods are special because in general variadic
 | 
						|
  // arguments cannot be perferctly forwarded. In the general case, clang
 | 
						|
  // implements such thunks by cloning the original function body. However, for
 | 
						|
  // thunks with no return adjustment on targets that support musttail, we can
 | 
						|
  // use musttail to perfectly forward the variadic arguments.
 | 
						|
  bool ShouldCloneVarArgs = false;
 | 
						|
  if (!IsUnprototyped && ThunkFn->isVarArg()) {
 | 
						|
    ShouldCloneVarArgs = true;
 | 
						|
    if (TI.Return.isEmpty()) {
 | 
						|
      switch (CGM.getTriple().getArch()) {
 | 
						|
      case llvm::Triple::x86_64:
 | 
						|
      case llvm::Triple::x86:
 | 
						|
      case llvm::Triple::aarch64:
 | 
						|
        ShouldCloneVarArgs = false;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShouldCloneVarArgs) {
 | 
						|
    if (UseAvailableExternallyLinkage)
 | 
						|
      return ThunkFn;
 | 
						|
    ThunkFn =
 | 
						|
        CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
 | 
						|
  } else {
 | 
						|
    // Normal thunk body generation.
 | 
						|
    CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
 | 
						|
  }
 | 
						|
 | 
						|
  setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
 | 
						|
  return ThunkFn;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenVTables::EmitThunks(GlobalDecl GD) {
 | 
						|
  const CXXMethodDecl *MD =
 | 
						|
    cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
 | 
						|
 | 
						|
  // We don't need to generate thunks for the base destructor.
 | 
						|
  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
 | 
						|
    return;
 | 
						|
 | 
						|
  const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
 | 
						|
      VTContext->getThunkInfo(GD);
 | 
						|
 | 
						|
  if (!ThunkInfoVector)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (const ThunkInfo& Thunk : *ThunkInfoVector)
 | 
						|
    maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenVTables::addVTableComponent(
 | 
						|
    ConstantArrayBuilder &builder, const VTableLayout &layout,
 | 
						|
    unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) {
 | 
						|
  auto &component = layout.vtable_components()[idx];
 | 
						|
 | 
						|
  auto addOffsetConstant = [&](CharUnits offset) {
 | 
						|
    builder.add(llvm::ConstantExpr::getIntToPtr(
 | 
						|
        llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
 | 
						|
        CGM.Int8PtrTy));
 | 
						|
  };
 | 
						|
 | 
						|
  switch (component.getKind()) {
 | 
						|
  case VTableComponent::CK_VCallOffset:
 | 
						|
    return addOffsetConstant(component.getVCallOffset());
 | 
						|
 | 
						|
  case VTableComponent::CK_VBaseOffset:
 | 
						|
    return addOffsetConstant(component.getVBaseOffset());
 | 
						|
 | 
						|
  case VTableComponent::CK_OffsetToTop:
 | 
						|
    return addOffsetConstant(component.getOffsetToTop());
 | 
						|
 | 
						|
  case VTableComponent::CK_RTTI:
 | 
						|
    return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy));
 | 
						|
 | 
						|
  case VTableComponent::CK_FunctionPointer:
 | 
						|
  case VTableComponent::CK_CompleteDtorPointer:
 | 
						|
  case VTableComponent::CK_DeletingDtorPointer: {
 | 
						|
    GlobalDecl GD;
 | 
						|
 | 
						|
    // Get the right global decl.
 | 
						|
    switch (component.getKind()) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unexpected vtable component kind");
 | 
						|
    case VTableComponent::CK_FunctionPointer:
 | 
						|
      GD = component.getFunctionDecl();
 | 
						|
      break;
 | 
						|
    case VTableComponent::CK_CompleteDtorPointer:
 | 
						|
      GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete);
 | 
						|
      break;
 | 
						|
    case VTableComponent::CK_DeletingDtorPointer:
 | 
						|
      GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CGM.getLangOpts().CUDA) {
 | 
						|
      // Emit NULL for methods we can't codegen on this
 | 
						|
      // side. Otherwise we'd end up with vtable with unresolved
 | 
						|
      // references.
 | 
						|
      const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | 
						|
      // OK on device side: functions w/ __device__ attribute
 | 
						|
      // OK on host side: anything except __device__-only functions.
 | 
						|
      bool CanEmitMethod =
 | 
						|
          CGM.getLangOpts().CUDAIsDevice
 | 
						|
              ? MD->hasAttr<CUDADeviceAttr>()
 | 
						|
              : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
 | 
						|
      if (!CanEmitMethod)
 | 
						|
        return builder.addNullPointer(CGM.Int8PtrTy);
 | 
						|
      // Method is acceptable, continue processing as usual.
 | 
						|
    }
 | 
						|
 | 
						|
    auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
 | 
						|
      // For NVPTX devices in OpenMP emit special functon as null pointers,
 | 
						|
      // otherwise linking ends up with unresolved references.
 | 
						|
      if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice &&
 | 
						|
          CGM.getTriple().isNVPTX())
 | 
						|
        return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
 | 
						|
      llvm::FunctionType *fnTy =
 | 
						|
          llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
 | 
						|
      llvm::Constant *fn = cast<llvm::Constant>(
 | 
						|
          CGM.CreateRuntimeFunction(fnTy, name).getCallee());
 | 
						|
      if (auto f = dyn_cast<llvm::Function>(fn))
 | 
						|
        f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | 
						|
      return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy);
 | 
						|
    };
 | 
						|
 | 
						|
    llvm::Constant *fnPtr;
 | 
						|
 | 
						|
    // Pure virtual member functions.
 | 
						|
    if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
 | 
						|
      if (!PureVirtualFn)
 | 
						|
        PureVirtualFn =
 | 
						|
          getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
 | 
						|
      fnPtr = PureVirtualFn;
 | 
						|
 | 
						|
    // Deleted virtual member functions.
 | 
						|
    } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
 | 
						|
      if (!DeletedVirtualFn)
 | 
						|
        DeletedVirtualFn =
 | 
						|
          getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
 | 
						|
      fnPtr = DeletedVirtualFn;
 | 
						|
 | 
						|
    // Thunks.
 | 
						|
    } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
 | 
						|
               layout.vtable_thunks()[nextVTableThunkIndex].first == idx) {
 | 
						|
      auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
 | 
						|
 | 
						|
      nextVTableThunkIndex++;
 | 
						|
      fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
 | 
						|
 | 
						|
    // Otherwise we can use the method definition directly.
 | 
						|
    } else {
 | 
						|
      llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
 | 
						|
      fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
 | 
						|
    }
 | 
						|
 | 
						|
    fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy);
 | 
						|
    builder.add(fnPtr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case VTableComponent::CK_UnusedFunctionPointer:
 | 
						|
    return builder.addNullPointer(CGM.Int8PtrTy);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Unexpected vtable component kind");
 | 
						|
}
 | 
						|
 | 
						|
llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
 | 
						|
  SmallVector<llvm::Type *, 4> tys;
 | 
						|
  for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) {
 | 
						|
    tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i)));
 | 
						|
  }
 | 
						|
 | 
						|
  return llvm::StructType::get(CGM.getLLVMContext(), tys);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
 | 
						|
                                             const VTableLayout &layout,
 | 
						|
                                             llvm::Constant *rtti) {
 | 
						|
  unsigned nextVTableThunkIndex = 0;
 | 
						|
  for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) {
 | 
						|
    auto vtableElem = builder.beginArray(CGM.Int8PtrTy);
 | 
						|
    size_t thisIndex = layout.getVTableOffset(i);
 | 
						|
    size_t nextIndex = thisIndex + layout.getVTableSize(i);
 | 
						|
    for (unsigned i = thisIndex; i != nextIndex; ++i) {
 | 
						|
      addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex);
 | 
						|
    }
 | 
						|
    vtableElem.finishAndAddTo(builder);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::GlobalVariable *
 | 
						|
CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
 | 
						|
                                      const BaseSubobject &Base,
 | 
						|
                                      bool BaseIsVirtual,
 | 
						|
                                   llvm::GlobalVariable::LinkageTypes Linkage,
 | 
						|
                                      VTableAddressPointsMapTy& AddressPoints) {
 | 
						|
  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
 | 
						|
    DI->completeClassData(Base.getBase());
 | 
						|
 | 
						|
  std::unique_ptr<VTableLayout> VTLayout(
 | 
						|
      getItaniumVTableContext().createConstructionVTableLayout(
 | 
						|
          Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
 | 
						|
 | 
						|
  // Add the address points.
 | 
						|
  AddressPoints = VTLayout->getAddressPoints();
 | 
						|
 | 
						|
  // Get the mangled construction vtable name.
 | 
						|
  SmallString<256> OutName;
 | 
						|
  llvm::raw_svector_ostream Out(OutName);
 | 
						|
  cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
 | 
						|
      .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
 | 
						|
                           Base.getBase(), Out);
 | 
						|
  StringRef Name = OutName.str();
 | 
						|
 | 
						|
  llvm::Type *VTType = getVTableType(*VTLayout);
 | 
						|
 | 
						|
  // Construction vtable symbols are not part of the Itanium ABI, so we cannot
 | 
						|
  // guarantee that they actually will be available externally. Instead, when
 | 
						|
  // emitting an available_externally VTT, we provide references to an internal
 | 
						|
  // linkage construction vtable. The ABI only requires complete-object vtables
 | 
						|
  // to be the same for all instances of a type, not construction vtables.
 | 
						|
  if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
 | 
						|
    Linkage = llvm::GlobalVariable::InternalLinkage;
 | 
						|
 | 
						|
  unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType);
 | 
						|
 | 
						|
  // Create the variable that will hold the construction vtable.
 | 
						|
  llvm::GlobalVariable *VTable =
 | 
						|
      CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
 | 
						|
 | 
						|
  // V-tables are always unnamed_addr.
 | 
						|
  VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | 
						|
 | 
						|
  llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
 | 
						|
      CGM.getContext().getTagDeclType(Base.getBase()));
 | 
						|
 | 
						|
  // Create and set the initializer.
 | 
						|
  ConstantInitBuilder builder(CGM);
 | 
						|
  auto components = builder.beginStruct();
 | 
						|
  createVTableInitializer(components, *VTLayout, RTTI);
 | 
						|
  components.finishAndSetAsInitializer(VTable);
 | 
						|
 | 
						|
  // Set properties only after the initializer has been set to ensure that the
 | 
						|
  // GV is treated as definition and not declaration.
 | 
						|
  assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
 | 
						|
  CGM.setGVProperties(VTable, RD);
 | 
						|
 | 
						|
  CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());
 | 
						|
 | 
						|
  return VTable;
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
 | 
						|
                                                const CXXRecordDecl *RD) {
 | 
						|
  return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
 | 
						|
         CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the required linkage of the vtable for the given class.
 | 
						|
///
 | 
						|
/// Note that we only call this at the end of the translation unit.
 | 
						|
llvm::GlobalVariable::LinkageTypes
 | 
						|
CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
 | 
						|
  if (!RD->isExternallyVisible())
 | 
						|
    return llvm::GlobalVariable::InternalLinkage;
 | 
						|
 | 
						|
  // We're at the end of the translation unit, so the current key
 | 
						|
  // function is fully correct.
 | 
						|
  const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
 | 
						|
  if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
 | 
						|
    // If this class has a key function, use that to determine the
 | 
						|
    // linkage of the vtable.
 | 
						|
    const FunctionDecl *def = nullptr;
 | 
						|
    if (keyFunction->hasBody(def))
 | 
						|
      keyFunction = cast<CXXMethodDecl>(def);
 | 
						|
 | 
						|
    switch (keyFunction->getTemplateSpecializationKind()) {
 | 
						|
      case TSK_Undeclared:
 | 
						|
      case TSK_ExplicitSpecialization:
 | 
						|
        assert((def || CodeGenOpts.OptimizationLevel > 0 ||
 | 
						|
                CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) &&
 | 
						|
               "Shouldn't query vtable linkage without key function, "
 | 
						|
               "optimizations, or debug info");
 | 
						|
        if (!def && CodeGenOpts.OptimizationLevel > 0)
 | 
						|
          return llvm::GlobalVariable::AvailableExternallyLinkage;
 | 
						|
 | 
						|
        if (keyFunction->isInlined())
 | 
						|
          return !Context.getLangOpts().AppleKext ?
 | 
						|
                   llvm::GlobalVariable::LinkOnceODRLinkage :
 | 
						|
                   llvm::Function::InternalLinkage;
 | 
						|
 | 
						|
        return llvm::GlobalVariable::ExternalLinkage;
 | 
						|
 | 
						|
      case TSK_ImplicitInstantiation:
 | 
						|
        return !Context.getLangOpts().AppleKext ?
 | 
						|
                 llvm::GlobalVariable::LinkOnceODRLinkage :
 | 
						|
                 llvm::Function::InternalLinkage;
 | 
						|
 | 
						|
      case TSK_ExplicitInstantiationDefinition:
 | 
						|
        return !Context.getLangOpts().AppleKext ?
 | 
						|
                 llvm::GlobalVariable::WeakODRLinkage :
 | 
						|
                 llvm::Function::InternalLinkage;
 | 
						|
 | 
						|
      case TSK_ExplicitInstantiationDeclaration:
 | 
						|
        llvm_unreachable("Should not have been asked to emit this");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // -fapple-kext mode does not support weak linkage, so we must use
 | 
						|
  // internal linkage.
 | 
						|
  if (Context.getLangOpts().AppleKext)
 | 
						|
    return llvm::Function::InternalLinkage;
 | 
						|
 | 
						|
  llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
 | 
						|
      llvm::GlobalValue::LinkOnceODRLinkage;
 | 
						|
  llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
 | 
						|
      llvm::GlobalValue::WeakODRLinkage;
 | 
						|
  if (RD->hasAttr<DLLExportAttr>()) {
 | 
						|
    // Cannot discard exported vtables.
 | 
						|
    DiscardableODRLinkage = NonDiscardableODRLinkage;
 | 
						|
  } else if (RD->hasAttr<DLLImportAttr>()) {
 | 
						|
    // Imported vtables are available externally.
 | 
						|
    DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
 | 
						|
    NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (RD->getTemplateSpecializationKind()) {
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      return DiscardableODRLinkage;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
      // Explicit instantiations in MSVC do not provide vtables, so we must emit
 | 
						|
      // our own.
 | 
						|
      if (getTarget().getCXXABI().isMicrosoft())
 | 
						|
        return DiscardableODRLinkage;
 | 
						|
      return shouldEmitAvailableExternallyVTable(*this, RD)
 | 
						|
                 ? llvm::GlobalVariable::AvailableExternallyLinkage
 | 
						|
                 : llvm::GlobalVariable::ExternalLinkage;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      return NonDiscardableODRLinkage;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid TemplateSpecializationKind!");
 | 
						|
}
 | 
						|
 | 
						|
/// This is a callback from Sema to tell us that a particular vtable is
 | 
						|
/// required to be emitted in this translation unit.
 | 
						|
///
 | 
						|
/// This is only called for vtables that _must_ be emitted (mainly due to key
 | 
						|
/// functions).  For weak vtables, CodeGen tracks when they are needed and
 | 
						|
/// emits them as-needed.
 | 
						|
void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
 | 
						|
  VTables.GenerateClassData(theClass);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
 | 
						|
  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
 | 
						|
    DI->completeClassData(RD);
 | 
						|
 | 
						|
  if (RD->getNumVBases())
 | 
						|
    CGM.getCXXABI().emitVirtualInheritanceTables(RD);
 | 
						|
 | 
						|
  CGM.getCXXABI().emitVTableDefinitions(*this, RD);
 | 
						|
}
 | 
						|
 | 
						|
/// At this point in the translation unit, does it appear that can we
 | 
						|
/// rely on the vtable being defined elsewhere in the program?
 | 
						|
///
 | 
						|
/// The response is really only definitive when called at the end of
 | 
						|
/// the translation unit.
 | 
						|
///
 | 
						|
/// The only semantic restriction here is that the object file should
 | 
						|
/// not contain a vtable definition when that vtable is defined
 | 
						|
/// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
 | 
						|
/// vtables when unnecessary.
 | 
						|
bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
 | 
						|
  assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
 | 
						|
 | 
						|
  // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
 | 
						|
  // emit them even if there is an explicit template instantiation.
 | 
						|
  if (CGM.getTarget().getCXXABI().isMicrosoft())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we have an explicit instantiation declaration (and not a
 | 
						|
  // definition), the vtable is defined elsewhere.
 | 
						|
  TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
 | 
						|
  if (TSK == TSK_ExplicitInstantiationDeclaration)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Otherwise, if the class is an instantiated template, the
 | 
						|
  // vtable must be defined here.
 | 
						|
  if (TSK == TSK_ImplicitInstantiation ||
 | 
						|
      TSK == TSK_ExplicitInstantiationDefinition)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, if the class doesn't have a key function (possibly
 | 
						|
  // anymore), the vtable must be defined here.
 | 
						|
  const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
 | 
						|
  if (!keyFunction)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, if we don't have a definition of the key function, the
 | 
						|
  // vtable must be defined somewhere else.
 | 
						|
  return !keyFunction->hasBody();
 | 
						|
}
 | 
						|
 | 
						|
/// Given that we're currently at the end of the translation unit, and
 | 
						|
/// we've emitted a reference to the vtable for this class, should
 | 
						|
/// we define that vtable?
 | 
						|
static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
 | 
						|
                                                   const CXXRecordDecl *RD) {
 | 
						|
  // If vtable is internal then it has to be done.
 | 
						|
  if (!CGM.getVTables().isVTableExternal(RD))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If it's external then maybe we will need it as available_externally.
 | 
						|
  return shouldEmitAvailableExternallyVTable(CGM, RD);
 | 
						|
}
 | 
						|
 | 
						|
/// Given that at some point we emitted a reference to one or more
 | 
						|
/// vtables, and that we are now at the end of the translation unit,
 | 
						|
/// decide whether we should emit them.
 | 
						|
void CodeGenModule::EmitDeferredVTables() {
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Remember the size of DeferredVTables, because we're going to assume
 | 
						|
  // that this entire operation doesn't modify it.
 | 
						|
  size_t savedSize = DeferredVTables.size();
 | 
						|
#endif
 | 
						|
 | 
						|
  for (const CXXRecordDecl *RD : DeferredVTables)
 | 
						|
    if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
 | 
						|
      VTables.GenerateClassData(RD);
 | 
						|
    else if (shouldOpportunisticallyEmitVTables())
 | 
						|
      OpportunisticVTables.push_back(RD);
 | 
						|
 | 
						|
  assert(savedSize == DeferredVTables.size() &&
 | 
						|
         "deferred extra vtables during vtable emission?");
 | 
						|
  DeferredVTables.clear();
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::HasLTOVisibilityPublicStd(const CXXRecordDecl *RD) {
 | 
						|
  if (!getCodeGenOpts().LTOVisibilityPublicStd)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const DeclContext *DC = RD;
 | 
						|
  while (1) {
 | 
						|
    auto *D = cast<Decl>(DC);
 | 
						|
    DC = DC->getParent();
 | 
						|
    if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
 | 
						|
      if (auto *ND = dyn_cast<NamespaceDecl>(D))
 | 
						|
        if (const IdentifierInfo *II = ND->getIdentifier())
 | 
						|
          if (II->isStr("std") || II->isStr("stdext"))
 | 
						|
            return true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
 | 
						|
  LinkageInfo LV = RD->getLinkageAndVisibility();
 | 
						|
  if (!isExternallyVisible(LV.getLinkage()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (getTriple().isOSBinFormatCOFF()) {
 | 
						|
    if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (LV.getVisibility() != HiddenVisibility)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return !HasLTOVisibilityPublicStd(RD);
 | 
						|
}
 | 
						|
 | 
						|
llvm::GlobalObject::VCallVisibility
 | 
						|
CodeGenModule::GetVCallVisibilityLevel(const CXXRecordDecl *RD) {
 | 
						|
  LinkageInfo LV = RD->getLinkageAndVisibility();
 | 
						|
  llvm::GlobalObject::VCallVisibility TypeVis;
 | 
						|
  if (!isExternallyVisible(LV.getLinkage()))
 | 
						|
    TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
 | 
						|
  else if (HasHiddenLTOVisibility(RD))
 | 
						|
    TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
 | 
						|
  else
 | 
						|
    TypeVis = llvm::GlobalObject::VCallVisibilityPublic;
 | 
						|
 | 
						|
  for (auto B : RD->bases())
 | 
						|
    if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
 | 
						|
      TypeVis = std::min(TypeVis,
 | 
						|
                    GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl()));
 | 
						|
 | 
						|
  for (auto B : RD->vbases())
 | 
						|
    if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
 | 
						|
      TypeVis = std::min(TypeVis,
 | 
						|
                    GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl()));
 | 
						|
 | 
						|
  return TypeVis;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
 | 
						|
                                           llvm::GlobalVariable *VTable,
 | 
						|
                                           const VTableLayout &VTLayout) {
 | 
						|
  if (!getCodeGenOpts().LTOUnit)
 | 
						|
    return;
 | 
						|
 | 
						|
  CharUnits PointerWidth =
 | 
						|
      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
 | 
						|
 | 
						|
  typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint;
 | 
						|
  std::vector<AddressPoint> AddressPoints;
 | 
						|
  for (auto &&AP : VTLayout.getAddressPoints())
 | 
						|
    AddressPoints.push_back(std::make_pair(
 | 
						|
        AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) +
 | 
						|
                                AP.second.AddressPointIndex));
 | 
						|
 | 
						|
  // Sort the address points for determinism.
 | 
						|
  llvm::sort(AddressPoints, [this](const AddressPoint &AP1,
 | 
						|
                                   const AddressPoint &AP2) {
 | 
						|
    if (&AP1 == &AP2)
 | 
						|
      return false;
 | 
						|
 | 
						|
    std::string S1;
 | 
						|
    llvm::raw_string_ostream O1(S1);
 | 
						|
    getCXXABI().getMangleContext().mangleTypeName(
 | 
						|
        QualType(AP1.first->getTypeForDecl(), 0), O1);
 | 
						|
    O1.flush();
 | 
						|
 | 
						|
    std::string S2;
 | 
						|
    llvm::raw_string_ostream O2(S2);
 | 
						|
    getCXXABI().getMangleContext().mangleTypeName(
 | 
						|
        QualType(AP2.first->getTypeForDecl(), 0), O2);
 | 
						|
    O2.flush();
 | 
						|
 | 
						|
    if (S1 < S2)
 | 
						|
      return true;
 | 
						|
    if (S1 != S2)
 | 
						|
      return false;
 | 
						|
 | 
						|
    return AP1.second < AP2.second;
 | 
						|
  });
 | 
						|
 | 
						|
  ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
 | 
						|
  for (auto AP : AddressPoints) {
 | 
						|
    // Create type metadata for the address point.
 | 
						|
    AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first);
 | 
						|
 | 
						|
    // The class associated with each address point could also potentially be
 | 
						|
    // used for indirect calls via a member function pointer, so we need to
 | 
						|
    // annotate the address of each function pointer with the appropriate member
 | 
						|
    // function pointer type.
 | 
						|
    for (unsigned I = 0; I != Comps.size(); ++I) {
 | 
						|
      if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
 | 
						|
        continue;
 | 
						|
      llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
 | 
						|
          Context.getMemberPointerType(
 | 
						|
              Comps[I].getFunctionDecl()->getType(),
 | 
						|
              Context.getRecordType(AP.first).getTypePtr()));
 | 
						|
      VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (getCodeGenOpts().VirtualFunctionElimination ||
 | 
						|
      getCodeGenOpts().WholeProgramVTables) {
 | 
						|
    llvm::GlobalObject::VCallVisibility TypeVis = GetVCallVisibilityLevel(RD);
 | 
						|
    if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
 | 
						|
      VTable->setVCallVisibilityMetadata(TypeVis);
 | 
						|
  }
 | 
						|
}
 |